
HAL Id: hal-02331718
https://hal.science/hal-02331718

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Occurrence and environmental distribution of 5 UV
filters during the 1 summer season in different water

bodies
Clémence Rohée, Richard Roe, Sonja K Fagervold, Alice M. S. Rodrigues,

Muriel Bourrain, Didier Stien, Philippe Lebaron

To cite this version:
Clémence Rohée, Richard Roe, Sonja K Fagervold, Alice M. S. Rodrigues, Muriel Bourrain, et al.. Oc-
currence and environmental distribution of 5 UV filters during the 1 summer season in different water
bodies. Water, Air, and Soil Pollution, 2019, 230 (7), �10.1007/s11270-019-4217-7�. �hal-02331718�

https://hal.science/hal-02331718
https://hal.archives-ouvertes.fr


Occurrence and environmental distribution of 5 UV filters during the 1 

summer season in different water bodies 2 

 3 

S. K. Fagervold1,2, A. S. Rodrigues1,2, C. Rohee3, R. Roé3, M. Bourrain3, D. Stien1,2 4 

and P. Lebaron1,2* 5 

  6 

1 Sorbonne Universités, CNRS, Laboratoire de Biodiversité et Biotechnologie 7 

Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-sur-mer, 8 

France 9 

2 Sorbonne Université, CNRS, Fédération de Recherche, Observatoire 10 

Océanologique, 66650 Banyuls-sur-mer, France 11 

3 Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre 12 

Fabre, 31000 Toulouse 13 

  14 

* Corresponding author: Philippe Lebaron. Email: lebaron@obs-banyuls.fr 15 

Address: Sorbonne Université, CNRS, Laboratoire de Biodiversité et 16 

Biotechnologie Microbienne, USR3579, Observatoire Océanologique, 66650 17 

Banyuls-sur-mer, France 18 

 19 

Abstract 20 

 21 

Organic UV filters are used worldwide in various personal care products as well 22 

as textiles, paints, plastic, food and adhesives. They are main ingredients in 23 

sunscreen lotions that are used heavily by beachgoers in the summer season. 24 

There is thus an increasing concern regarding the fate of organic UV filters in the 25 
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environment and their impact on living organisms. Many of the UV filters in use 1 

are hydrophobic and are expected to accumulate in the sediment phase in 2 

aquatic systems, but this has yet to be validated in situ. We targeted the UV filters 3 

benzophenone 3 (BP3), butyl Methoxydibenzoylmethane (BMDBM), diethylhexyl 4 

butamido triazone (DBT), bis-ethylhexyloxyphenol methoxyphenyl triazine 5 

(BEMT) and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) in a 6 

freshwater lake and in a coastal bay in order to understand their distribution 7 

during summer 2016. Further, we examined their environmental partitioning by 8 

collecting samples from the surface water, the sediment phase and water surface 9 

microlayer (SML). We show for the first time the presence of DBT, BEMT and 10 

MBBT in environmental matrices (water, SML, and sediment). Notably, these UV 11 

filters were detected at low amounts in surface waters with maximum 12 

concentrations of 9.9 ng/L for DBT, 18.4 ng/L for BEMT and below detection 13 

limits for MBBT, and somewhat higher concentrations in the SML, with 14 

maximum concentrations of 43.3 ng/L for DBT, 5625.4 ng/L for BEMT and 45.6 15 

ng/L for MBBT. These filters were detected at even greater concentrations in the 16 

sediments, with maximum concentrations of 652.6 ng/g for DBT, 115.0 ng/g for 17 

BEMT and 75.2 ng/g for MBBT (dry weight sediment). We also performed 18 

controlled laboratory experiments to determine their partitioning behavior and 19 

we verified the actual solubility of many of the filters. This will help in 20 

determining the environmental fate and finally lead to a better risk assessment 21 

of these compounds. Together, these results corroborate the hypothesis that 22 

hydrophobic UV filters accumulate in the sediment phase and highlight the 23 

importance of discerning whether these UV filters impact the benthic community 24 

and their potential for bioaccumulation.  25 



 1 

1 Introduction 2 

 3 

Over the past fifteen years, public interest in sunscreens has increased because 4 

of their potential ecological risk in aquatic environments. Sunscreens use organic 5 

UV filters as ingredients in their formulations to protect human skin from 6 

sunburns, premature skin aging and skin cancer. Organic UV filters include a 7 

heterogeneous group of molecules characterized by conjugated aromatic groups 8 

that can absorb UV-A (320–400 nm) and UV-B (280–320 nm) radiation. These 9 

UV filters are also added to textiles, plastics, paints, food and adhesives to protect 10 

polymers and pigments against photo degradation and to prevent discoloring. In 11 

sunscreen lotions, formulations generally combine several filters and ingredients 12 

to cover a broad UV spectrum and to improve skin application and water 13 

resistance (Osterwalder et al. 2014). More than 50 different UV filters are on the 14 

market (Shaath 2010), and their usage varies depending on the regulations of the 15 

region. 16 

 17 

UV filters enter the aquatic environment directly from recreational activities and 18 

indirectly from wastewater treatment plants (WWTPs), see Ramos et al. (2016) 19 

and references therein, or leaching from solid waste disposal sites on land. UV 20 

filters enter the sewage systems when people shower following bathing or from 21 

industrial discharge. Once in the environment, partitioning between water and 22 

sediment occurs depending on the lipophilicity of the compound, which is 23 

estimated by the octanol-water partition coefficient (log kow) value. Those 24 

compounds with low aqueous solubility tend to accumulate in sediments and 25 



sludge (Ramos et al. 2015). Environmental concentrations of different UV filters 1 

are found in numerous reports, with recent reviews summarizing their 2 

concentrations in different matrices (Montes-Grajales et al. 2017) including 3 

wastewater treatment plants (Ramos et al. 2016), sediments (Tsui et al. 2015) 4 

and water bodies (Ramos et al. 2015;Sánchez-Quiles and Tovar-Sánchez 2015).  5 

 6 

The possibility that these compounds have negative effects on non-target 7 

organisms is one factor that raises concern about the release of UV filters into the 8 

environment. This is especially true in areas, like the Mediterranean, that are 9 

highly impacted by tourism (Tovar-Sanchez et al. 2019). Further, because UV 10 

filters have been detected in various biological materials, such as fish (Balmer et 11 

al. 2005; Fent et al. 2010; Tsai et al. 2014; Langford et al. 2015; Gago-Ferrero et 12 

al. 2015; Emnet et al. 2015; Sang and Leung 2016), dolphins (Gago-Ferrero et al. 13 

2013; Alonso et al. 2015) and bird eggs (Molins-Delgado et al. 2017), 14 

biomagnification is a real concern (Fent et al. 2010; Sang and Leung 2016; 15 

Molins-Delgado et al.,  2017). Many UV filters are thought to impact non-target 16 

organisms via endocrine disruption (Díaz-Cruz and Barceló 2009; Sánchez-17 

Quiles and Tovar-Sánchez 2015). Recently, benzophenone 3 (BP3) was shown to 18 

have toxic effects on many living organisms (Downs et al. 2016; Wnuk et al. 19 

2018). As a consequence, this compound was banned in the state of Hawaii, USA 20 

(“Office of the governor — news release — Governor David Ige signs bill making 21 

Hawaii first in the world to ban certain sunscreens” 2018). 22 

 23 

Diethylhexyl butamido triazone (DBT), methylene bis-benzotriazolyl 24 

tetramethylbutylphenol (MBBT) and bis-ethylhexyloxyphenol methoxyphenyl 25 



triazine (BEMT) have very high predicted log Kow values (Table 1) and have not 1 

been reported in any environmental matrix to date. BP3 and butyl 2 

Methoxydibenzoylmethane (BMDBM), have lower log Kow values (Table 1) and 3 

are technically easier to detect: butyl methoxydibenzoylmethane (BMDBM), has 4 

been detected in various compartments, including seawater and freshwater 5 

(Bratkovics and Sapozhnikova 2011; Giokas et al. 2005; Sánchez Rodríguez et al. 6 

2015; Poiger et al. 2004) and in WWTP effluents and influents (Rodil et al. 2009; 7 

Tsui et al. 2014) and BP3 has been found in many environmental matrices  (ex. 8 

(Montes-Grajales et al. 2017; Ramos et al. 2016)). However, for a proper 9 

assessment of the environmental fate of these filters, we also need to determine 10 

the solubility and the partitioning behavior of these compounds experimentally. 11 

 12 

In the current study, we determined the concentration of the widely studied UV 13 

filter BP3 and compared the concentration of BP3 with that of less investigated 14 

but relatively broadly utilized compounds. We investigated a coastal marine site, 15 

the Bay of Banyuls-sur-mer, and a freshwater lake, Villeneuve de la Raho Lake. 16 

Both sites experience a high number of sunbathers during the summer months 17 

(June to August). In addition to determining the dynamics of the filters during 18 

the summer months, we determined in which compartment these UV filters are 19 

found. For example, the surface microlayer (SML) has different chemical and 20 

biological characteristics than those of the underlying water (Obernosterer et al. 21 

2005) and this air-sea boundary, in which hydrophobic compounds may 22 

accumulate and living organisms may be present (Rahlff et al. 2018), can be 23 

important in the aquatic environment.  Further, given the fairly high log Kow of 24 

many UV filters; the expectation is that these compounds will eventually 25 



concentrate into the solid/sediment compartment. However, we do not know 1 

how long this partitioning will take and whether UV filters will accumulate in 2 

sediments over time. Therefore we also set out to resolve several factors 3 

important to better understand the fate of these compounds in aquatic 4 

environments. 5 

 6 

2 Materials and methods 7 

 8 

2.1 Chemicals and solvents 9 

The molecular structures and physicochemical properties of the studied 10 

compounds are shown in Table 1. Analytical standards of MBBT, (97 %), BEMT 11 

(98 %), DBT (98 %), BMDBM (99 %) and BP3 (98%) were purchased from 12 

Sigma-Aldrich (Lyon, France). Analytical or LC-MS grade methanol was 13 

purchased from Biosolve (Biosolve Chimie France, Dieuze). Analytical-grade 14 

dichloromethane, 1-methyl-2-pyrrolidinone (NMP) and formic acid (98 %) were 15 

obtained from Sigma-Aldrich. Pure water was obtained from Elga Purelab Flex 16 

System (Veolia LabWater STI, Antony, France). In order to avoid contamination, 17 

glassware was cleaned with dichloromethane and dried at 450 °C for 2 hours. 18 

 19 

Standard solutions of individual UV filters were prepared in NMP at a 20 

concentration of 1 mg/mL. These solutions were kept at -20°C and protected 21 

from light. A standard mixture solution was prepared by diluting each individual 22 

standard solution with NMP/water (8:2, volume/volume (v/v)) in order to get a 23 

concentration range from 1024 to 4 ng/mL. A calibration curve was built both 24 

with LC-MS/MS and LC/DAD using these solutions. These standard solutions 25 



were also used for spiking seawater and sediments for recovery studies. 1 

  2 

2.2 Sampling sites 3 

All samples were collected from April to October 2016 from two different sites: 4 

the main beach in Banyuls-sur-mer (Latitude 42°28'57.5" N, Longitude 5 

3°07'55.4" E), and a nearby artificial lake in Villeneuve-de-la-Raho (Latitude 6 

42°37'46.3" N, Longitude 2°54'18.0" E). Both these sites see highly increased 7 

tourism pressure during the summer months. Lake Villeneuve measures more 8 

than 200 ha, with 16 ha dedicated to touristic activities including a bathing zone 9 

and a 800 m-wide beach. Banyuls-sur-Mer is a small tourist town in the south of 10 

France, where the main beach measures 350 meters and is partially enclosed and 11 

protected from heavy ocean currents. We sampled the surface water, the water 12 

surface microlayer (SML) and the sediment in Villeneuve Lake and Banyuls Bay 13 

during the summer season from April to October. We sampled at 5 time points 14 

from Villeneuve Lake and at 9 from Banyuls Bay (Table S1). The first time point 15 

was before the bathing season for both sites. 16 

 17 

2.3 Sampling procedures 18 

All samples were collected using gloves and in order to minimize contamination, 19 

the people involved in sampling did not use any UV protection cream. The 20 

sampling was always performed in the afternoon where wind conditions were 21 

favourable. Water samples were collected in the middle of the bathing zones 22 

using an inflatable boat. For Banyuls Bay this was approximately 50 meters from 23 

the beach and for lake Villeneuve the sampling was preformed approximately 10 24 

m from the beach. Samples from the water column (approximately 50 cm below 25 



the surface) were collected using a bucket and poured into glass bottles and 1 

closed with PTFE caps. The bucket and glass bottles were rinsed several times 2 

before final sampling and 3 x 1L were collected at each time point. The SML was 3 

collected with a glass plate system (Harvey and Burzell 1972) resulting in 3 x 0.5 4 

L SML samples per time point. The superficial layer (top 5 cm) of sediments from 5 

the same zone was collected in glass jars. This was done manually in Lake 6 

Villeneuve because the water depth was less than 1 meter, and by 7 

snorkeling/freediving in Banyuls bay, where the sediment depths were around 8 

7-8 meters 9 

 10 

2.4 Water extraction and LC-MS/MS analysis 11 

Collected water samples were filtered through 47 mm glass microfiber filters 12 

with a pore size of 1.6 μm (GF/A Whatman, GE Healthcare, Little Chalfont, UK), 13 

using a glass filtration system. All samples were acidified with formic acid (0.1% 14 

v/v) and extracted using an automated liquid handler GX-271 ASPEC® (Gilson 15 

International, Villiers-le-Bel, France) using HypersepTM phenyl SPE cartridges 1 16 

g/6 mL (Thermo Fisher Scientific, Illkirch, France). All the eluents were acidified 17 

with formic acid (0.1% v/v) to pH 3. Before loading, the cartridges were 18 

conditioned with 10 mL of methanol followed by 10 mL of water. Next, an entire 19 

1 L sample was percolated through the cartridge with a constant flow rate (8 20 

mL/min). The cartridge was dried under nitrogen for 10 min (AirLiquide, 21 

Toulouse, France). Then, the analytes were extracted with 10 mL of methanol 22 

followed by 10 mL of methanol/dichloromethane (1:1, v/v). The extracts were 23 

evaporated to dryness under vacuum in an HT-4X system (Genevac, Biopharma 24 

Technologies France, Lyon, France) and dissolved in 500 µL of NMP/water (8:2, 25 



v/v) before analysis.  1 

 2 

LC-MS/MS is more sensitive than LC-DAD (lower limits of detection (LODs)) for 3 

the detection of these UV filters. Water samples were analyzed with LC-MS/MS 4 

because UV filter concentration was lower in these samples, while sediment 5 

samples were analyzed with LC-DAD. Here, chemical analyses were conducted 6 

with a Q Exactive Focus Orbitrap System coupled to an Ultimate 3000TM UHPLC 7 

system (Thermo Fisher Scientific). Analyses of water samples and standards (5 8 

µL injected) were performed in electrospray positive ionization mode in the 9 

53.4–800 m/z range in profile mode. The parameters were as follow: spray 10 

voltage: 3 kV; sheath flow rate: 75; aux gas pressure: 20; capillary temperature: 11 

350°C; heater temperature: 430°C. The analysis was conducted in FullMS data 12 

dependent MS2 mode (confirming ions). Resolution was set to 70,000 in Full MS 13 

mode, and the AGC (automatic gain control) target was set to 1x106. In MS2, 14 

resolution was 35,000, AGC target was set to 1x5e4, isolation window was 3 m/z, 15 

and normalized collision energy was 35 eV, with an inclusion table. The UHPLC 16 

column was a Kinetex Biphenyl 2.6 µm, 150 x 4.6 mm column (Phenomenex). 17 

The column temperature was set to 50°C, and the flow rate was 1 mL min-1. The 18 

solvent system was a mixture of water (A) with increasing proportions of 19 

methanol (B), with both solvents modified with 0.1% formic acid. The gradient 20 

was as follows: 20% B 4 min before injection, then from 1 to 7 min, a gradient 21 

increase of B up to 100% (curve 2), followed by 100% B for 8 min. The flow was 22 

injected into the mass spectrometer starting from 6,5 min after injection. All data 23 

were acquired and processed using Trace Finder 3.1 software Trace FinderTM 3.1 24 

software (Thermo Fisher Scientific). Obtained retention times (RT) were the 25 



following: 6,68 min for BP-3; 7,84 min for BM-DBM; 9,26 min for DBT; 13,68 min 1 

for BEMT; and 12,79 min for MBBT. 2 

 3 

2.5 Sediment extraction and LC-DAD analysis 4 

Collected sediments were frozen at -20°C and then freeze-dried for 24 h. The 5 

freeze-dried samples (5 g) were passed through a 1 mm pore sieve and stored at 6 

-20°C until extraction. Freeze-dried sieved sediment (1 g) were extracted twice 7 

with 5 mL of a mixture of methanol/dichloromethane (1:1, v/v), with 0.1% 8 

formic acid and a 10 min sonication. All the supernatants were combined and 9 

evaporated under vacuum in an HT-4X system (Genevac, Biopharma 10 

Technologies) and dissolved in 1 mL of NMP/water (8:2, v/v) before analysis. 11 

 12 

Samples (30 µL injected) were analyzed with an Ultimate 3000TM HPLC system, 13 

equipped with a DAD detector (Thermo Fisher Scientific) and a Phenomenex 14 

Kinetex Biphenyl 2.6 µm, 150 x 4.6 mm column. The oven temperature was set to 15 

50°C, and the flow rate was 1 mL min-1. The solvent system was a mixture of 16 

water (A) with increasing proportions of methanol (B), with both solvents 17 

modified with 0.1% formic acid. The gradient was as follows: 10% B 4 min 18 

before injection, then from 1 to 15 min, a gradient increase of B up to 100% 19 

(curve 2), followed by 100% B for 10 min. The data acquisition software was 20 

Chromeleon™ 7.2 (Thermo Fisher Scientific). Standard solutions were injected to 21 

generate ten-point calibration curves for the quantification of target compounds. 22 

Peak areas were within the linear range of the curve. The obtained retention 23 

times (RT) were the following: 9,4 min for BP-3; 11,76 min for BMDBM; 14,9 min 24 

for DBT; 20,6 min for BEMT; and 19,5 min for MBBT. 25 



 1 

Sediment samples were also analyzed for organic carbon and granulometry. 2 

Dried sediments were decarbonized with repeated additions of H3PO4 (1M) and 3 

HCl (2M) until no effervescence occurred. Decarbonated sediment were dried 4 

again at 40 °C at least 24 hours. POC content were then measured using an 5 

Elementar Variomax elemental analyzer. Particle size analyses (range: 0.1-3500 6 

µm) was performed using a Malvern3000 laser diffraction particle size analyzer 7 

coupled with Hydro EV unit (Wet dispersion). 8 

 9 

2.6 Method performance 10 

Water and sediment extraction recovery was determined using spiked samples 11 

(100 ng/L for water samples or 100 ng/g dry sediment). Net recovery was 12 

calculated by subtracting the analyte concentration observed in unspiked 13 

samples from the concentrations in the corresponding spiked samples. The LODs 14 

were determined based on the concentrations in a signal-to-noise ratio of 3 and 15 

ranged from 1.3 to 5.2 ng/L. The LODs in the sediment samples ranged from 4.6 16 

to 8.6 ng/g. The concentrations were corrected for the contributions from the 17 

blanks. Recovery rate and LODs of each compound are shown in Table 2. The 18 

values we report in the paper are not corrected for recovery rates. 19 

 20 

2.7 Sediment/water distribution coefficient experiment 21 

Dry sediment (3 g) was placed into 250 mL Erlenmeyer flasks. A mix of the 22 

different UV filters dissolved in acetone was added to the sediment and left 23 

overnight in a chemical hood to evaporate the acetone. The final amounts (total) 24 

added were 100 ng, 1 µg, and 10 µg of each of the UV filters tested, each in 25 



triplicate. MilliQ water, 100 mL, was then added, and the flasks were incubated in 1 

the dark for 24 h at 25°C with constant shaking. The liquid and solid phase were 2 

then separated by filtration and extracted, and the UV filters quantified as 3 

described above.  4 

 5 

3 Results and discussion 6 

 7 

3.1 Detection of hydrophobic UV filters in different environmental matrices and 8 

experimental solubility measurements.  9 

 10 

The UV filters we tested had varying chemical characteristics, with predicted log 11 

Kow values from 3.79 to 14.06 (Table 1 and (Ramos et al. 2016)) and many of 12 

them were very hydrophobic.  Therefore, a method that effectively includes the 13 

wide range of chemicals targeted in this study had to be developed for the 14 

extraction and concentration from the different environmental matrices tested. 15 

For testing the extraction efficiency from water samples, we used spiked 16 

seawater and tap water and tested different extraction protocols using different 17 

solvents (data not shown). The optimum extraction protocol determined for both 18 

the water and sediment samples was a compromise among the different filters. 19 

The recovery of BP3, DBT, BEMT and MBBT filters from tap water, seawater and 20 

sediment samples ranged from 47 to 80%, but was only 10% for BMDBM 21 

extracted from tap water and seawater samples and 2% from sediment (Table 22 

2). Therefore, we must consider these extraction efficiency values when 23 

interpreting our data, particularly for BMDBM. 24 

 25 



For many filters, the only available data regarding solubility are predicted values. 1 

To investigate the water solubility of the five UV filters in greater detail, a private 2 

and independent analytical laboratory (Intertek France) measured the water 3 

solubility by conducting a water saturation study in pure water and seawater. 4 

Solubilities were low ranging from < 4 x 104 to 1.3. x 108 ng/L. The least water 5 

soluble UV filter is MBBT (2500 fold less than BP3), followed by BEMT, DBT and 6 

BMDBM (approximatively 500-, 300- and 10-fold less soluble than BP3 7 

respectively; Table 1). Indeed, values for MBBT were not obtained because the 8 

saturated water concentration was below the defined limit of detection (LOD) for 9 

this study.  10 

 11 

This study shows, for the first time, experimental values for the water solubility 12 

of BEMT, DBT and MBBT (Table 1). The experimental and predicted values are 13 

comparable for BP3 and BMDBM, but for BEMT and DBT, experimental values 14 

are much higher. This difference demonstrates the difficulty in predicting the 15 

fate of these extremely hydrophobic UV filters in the environment. The 16 

hypothesis that such compounds should not be detected in the water column 17 

(Ramos et al. 2015) was not supported by the experimental values. Although the 18 

solubility of the UV filters was very low in filtered seawater, one can expect that 19 

a portion of these compounds might also absorb onto planktonic 20 

microorganisms and suspended matter. Indeed, we filtered the water before we 21 

passed the water through SPE columns, so we did not measure any UV filter 22 

absorbed to particles bigger than 1.6 μm. Therefore, our values represent 23 

dissolved UV filter and filters absorbed to very small particles.  For example, 24 

polycyclic aromatic hydrocarbons (PAHs) have been detected in water (water 25 



accommodated fraction), although they are also virtually insoluble in water 1 

(Forth et al. 2017). In the water column, PAHs are predominantly associated 2 

with the solid-phase particulate matter that eventually settles in marine 3 

sediments (Hassan et al. 2018; Wang et al. 2001). This is most likely also the case 4 

for many of the hydrophobic UV filters. 5 

 6 

3.2 Temporal dynamics of UV filter concentrations in Lake Villeneuve and Banyuls 7 

Bay 8 

 9 

3.2.1 Surface water 10 

In many samples from surface waters, we could not detect any of the UV filters in 11 

quantities above LOD. For clarification, the graphs in Figure 1 depict the 12 

sampling points where all three replicates from one timepoint contained the 13 

specific UV filter above the LOD, while figure 2 depict maximum values for any 14 

one sample (not triplicates). Generally, we could not detect any of the filters in 15 

surface waters in the early summer season. The highest concentrations in the 16 

lake were found for BMDBM and BEMT in July and August with average 17 

concentrations of 14.5 and 7.2 ng/L, respectively, whereas MBBT and DBT 18 

concentrations were below LOD. In Banyuls Bay, only BEMT was found at peak 19 

concentrations of approximately 12 ng/L, (Figure 1), DBT could be detected 20 

above the LOD in some samples with a maximum value of 9.88 ng/L (Figure 2) 21 

and we could only determine a concentration above LOD for BP in one sample, 22 

namely August 8th with 1.52 ng/L. However, BMDBM, and MBBT were not 23 

detected.  24 

 25 



Concerning the surface water, many studies detail different concentrations of UV 1 

filters, but of the five UV filters in this study, most data are available for the two 2 

least hydrophobic compounds, BP3 and to a small extent, BMDBM (see review 3 

article (Sánchez-Quiles and Tovar-Sánchez 2015)). The highest concentration of 4 

BP3 in the Villeneuve Lake surface water was found in September and was close 5 

to 3 ng/L (Figure 1a and Figure 2a). BP3 has previously been detected in lakes 6 

with maximum values of 125 ng/L (Poiger et al. 2004), 35 ng/L (Balmer et al. 7 

2005) and 40 ng/L (Rodil et al. 2009); thus, the maximum values we report here 8 

are not exceedingly high. BP3 concentrations in Banyuls Bay, which did not 9 

surpass LOD (Figure 1D and 2A), were also low compared with concentrations 10 

found in previous studies. For example, concentrations of BP3 in (filtered) 11 

seawater samples from recreational areas were as high as 241.9 ng/L in Mallorca 12 

(Tovar-Sanchez et al. 2013) and an extreme value of 1,390,000 ng/L has been 13 

reported in the US Virgin Islands (Downs et al. 2016). These varying values can 14 

be partly explained because BP3 is more commonly used in the US due to the 15 

limited number of filters that are allowed, and the use of BP3 is perhaps more 16 

limited in Europe due to regulations (European Union 2009).  17 

 18 

The peak value of BMDBM in the Villeneuve Lake surface water was 19 

approximately 14.5 ng/L, whereas BMDBM was not detected in Banyuls Bay. 20 

Regarding BMDBM concentrations in lakes, there are only a few studies that can 21 

be used for comparison, and they report varying concentrations, from below 22 

detection level (Poiger et al. 2004) to a very high concentration of over 2000 23 

ng/L (Rodil et al. 2009). For the coastal marine environment, BMDBM was 24 

detected in relatively high concentrations in beaches in Gran Canaria, with a 25 



median value of 59.4 ng/L (Sánchez Rodríguez et al. 2015), and the maximum 1 

concentration of 321 ng/L was found in coastal water samples from South 2 

Carolina (Bratkovics and Sapozhnikova 2011).  3 

 4 

Notably, we found BEMT at significant concentrations in the lake and Banyuls 5 

Bay surface waters, with maximum concentrations of 13.8 and 18 ng/L, 6 

respectively, see figure 2a. Further, DBT was detected at the height of summer, 7 

albeit at concentrations very close to the calculated LOD. To our knowledge, this 8 

is the first report of detection of this UV filter in the water phase in the 9 

environment. This finding is notable considering the extremely low predicted 10 

and experimentally determined water solubility values of this compound. 11 

Indeed, this compound should be practically insoluble in the water phase (Table 12 

1). However, we propose that, similar to PAHs, hydrophobic UV filters are in the 13 

water-accommodated fraction presumably associated with suspended particles. 14 

 15 

3.2.2 SML 16 

The concentrations of some of the UV filters in the SML in Villeneuve Lake 17 

showed a clear trend during the summer months, with a peak in July-August 18 

(Figure 1B). Furthermore, the SML contained higher concentrations of the UV 19 

filters than the surface water (note the difference in scale between Figure 1 A 20 

and B and Figure 2 A and B). The peak average concentrations of BEMT and 21 

BMDBM were 4281 and 531 ng/L, respectively. However, the variability was 22 

very high at these sampling points. Additionally, July and August samplings in the 23 

lake were both performed when many swimmers were present, and we observed 24 

an “oily layer” on the water during these peak sampling times. We know of no 25 



other reports on the SML in lakes. 1 

 2 

The SML in Banyuls Bay contained consistently over 10 ng/L of BEMT, with a 3 

peak average concentration on June 28 at 101.2 ng/L (Figure 1e). The 4 

concentrations of the other UV filters were below detection level for most of the 5 

samples. The concentrations of BP3 remained below LOD, which is very low 6 

compared with previous values in Mallorca which exceeded 100 ng/L in many 7 

cases (Tovar-Sanchez et al. 2013). The variations reported between sites and 8 

over the season can be explained by variations in the environmental conditions 9 

and because the SML can only be established when the wind speed is below 5 10 

m/s (Romano and Garabetian, 1996). 11 

 12 

3.2.3 Sediment 13 

The dynamics of UV filters in the sediment were very different from those we 14 

observed for the surface water and SML. Notably, we detected several of the UV 15 

filters in significant amounts in April, before the bathing season. In particular, in 16 

Lake Villeneuve BEMT, MBBT and DBT were found at average concentrations of 17 

48.2, 47.8 and 22 ng/g (dw) sediment, respectively. Further, DBT and BEMT 18 

concentrations in Lake Villeneuve sediments increased during the summer 19 

season, and the highest detected average values were 628.8 and 87 ng/g (dw), 20 

respectively, at the end of September. MBBT, BP-3 and DBM concentrations were 21 

more or less stable and slightly decreased at the last sample point in October 22 

(Figure 1c). 23 

 24 

The results regarding the concentrations of UV filters in the Banyuls Bay 25 



sediment were unexpected because the concentrations of many of the UV filters 1 

were actually higher in the beginning of May than those at the last time points 2 

(Figure 1f). This was the case for all UV filters except BEMT. BP3 was the only UV 3 

filter to follow a dynamic during the summer season with a maximum average 4 

peak of 49.4 ng/L in July, and this value is relatively high compared with that of 5 

other studies. Baron et al. (2013) found low concentrations of BP3 (max 2.96 6 

ng/g) in estuary samples, and Tsui et al. (2015) found a maximum concentration 7 

of 39.8 ng/g. Indeed, the low concentrations of BP3 found in sediments from 8 

highly industrialized areas (Peng et al. 2017) suggest BP3 partitions less into the 9 

sediment phase or is degraded. One reason for these differences could be that the 10 

source of UV filters to sediments in Banyuls Bay is direct, through the swimmers 11 

at the beach, whereas the marine sediments from China described by Tsui et al. 12 

(2015) are affected by industrial and municipal discharge sources. BMDBM is 13 

also reported previously in marine sediments at concentrations up to 64.4 ng/g 14 

(Tsui et al. 2015), but we were only able to detect BMDBM above our LOD in two 15 

samples from lake sediment,  presumably due to the low recovery rate of this 16 

molecule in the extraction process. It is also worth noting that the sediments 17 

from both sites contained a relatively low percentage of organic carbon (Table 18 

S2). The median organic carbon percentage of Banyuls Bay sediments was 0.032 19 

% and 0.011 % for sediments from Lake Villeneuve, and samples from both these 20 

contained more than 95% sand (particles > 63 µm). 21 

 22 

There are only a few studies that have examined the concentrations of UV filters 23 

in the sediments of lakes. One comparative study found both BP3 and BMDBM in 24 

several German lakes also at several time points during the year (Kaiser et al. 25 



2012). These authors detected BP3 at a maximum concentration of 3.6 ng/g and 1 

BMDBM at 62.2 ng/g, which are within the same order of magnitude of 2 

concentrations we found in Villeneuve Lake for BP3. However, they observed 3 

more of a seasonal dynamic with a sharp increase in the peak summer season, 4 

whereas our results showed a more steady concentration of these compounds in 5 

the summer season (Figure 1c). This same study Kaiser et al. (2012) found 6 

octocrylene (OC) concentrations up to 652 ng/g in some lake sediments, and we 7 

found maximum detectable concentrations for DBT, BEMT and MBBT (629, 88 8 

and 57 ng/g, respectively). Furthermore, we found a higher concentration of the 9 

UV filters in the sediment in the lake than that in the bay sediment (Figure 1c), 10 

except for BP3. 11 

 12 

3.3 Environmental distribution of UV filters 13 

Previous studies assume that hydrophobic UV filters will partition into the 14 

sediment phase. Nevertheless, environmental concentrations of MBBT, BEMT 15 

and DBT in the different compartments (sediment, water phase and SML) have 16 

not been reported. To further explore the distribution of these compounds in the 17 

environment, we defined “environmental distribution coefficients (env Kd)” for 18 

sediment/water and SML/water. For this calculation, we used the median value 19 

over the entire season for each UV filter from both the lake and Banyuls Bay 20 

(Table 3).  21 

 22 

We also experimentally determined the distribution sediment/water ratio by 23 

performing controlled laboratory experiments for 24 h. The distribution ratio 24 

between water and solid phase is determined by: Kd = Cs/Cw, where Cs is the 25 



concentration (ng/kg) in the solid phase and Cw is the concentration in the water 1 

phase (ng/L). Thus, we could easily and directly compare the Kd among the 2 

different UV filters. Furthermore, the sorption isotherms were determined after 3 

fitting the data to the Freundlich model in which plotting the log Cs to log Cw 4 

should give a linear response, which was the case in our study (Figure S2). The 5 

Freundlich model equation is Cs = Kf  x Cw n, where Kf characterizes the absorption 6 

capacity of the solid and n measures the intensity of the absorption (or the 7 

nonlinearity). Indeed, we observed some nonlinearity of the sorption kinetics of 8 

the UV filters; the lowest concentration (100 ng added or 1 µg/L) gave a higher 9 

Kd than that of 10 and 100 µg/L (Table 3). Thus, the UV filters adsorbed to the 10 

sediment in a higher proportion at low concentrations.  11 

 12 

Clearly, the experimental Kd values varied greatly among the different UV filters 13 

(Table 3); thus, although many of the UV filters partitioned into the sediment 14 

phase, the filters partitioned at different ratios or alternatively at different rates. 15 

BEMT strongly distributed into the sediment phase, with the highest Kd value of 16 

over 3000, although MBBT and DBT also produced high values, whereas BP3, 17 

with the experimental Kd of approximately 10, was expected to distribute into 18 

the sediment at a comparatively low rate. We determined a Kd for BMDBM of 19 

777, which is substantially different from a previous report (Li et al. 2016) with  20 

values from approximately 11 to 45.8 depending on the sediment. These 21 

differences could also be due to differences in experimental design; for example, 22 

Li and colleagues used only an 8-hour contact time and did not actually measure 23 

the amount sorbed to the sediment (Li et al. 2016).  24 

 25 



We could not determine the “environmental Kd (env Kd)” values for many of the 1 

filters because they were not present above the methodological LOD in the 2 

surface water. For the UV filters that we could determine the sediment/water 3 

“env Kd”, we see that the “env Kd” values were in the same order of magnitude as 4 

the experimental ones. Further, from the SML Kd, we can see that many of the 5 

filters are present at higher concentrations in the SML compared to the surface 6 

water.  7 

 8 

Once the UV filters are adsorbed to the sediments, and if no degradation or 9 

dilution processes occur, the UV filters can potentially accumulate over time. 10 

Data regarding the degradation of UV filters in sediments are scarce. Volpe et al. 11 

(2017) found that EH-DPAB degraded after approximately 60 days in aerobic 12 

microcosms with marine sediments but found even slower degradation of 4-13 

MBC, with a half-life of over a year. Compared to Volpe et al. (2017), Liu et al. 14 

(2013) found shorter half-lives of 4-MBC in their experiments, but in a different 15 

environment, namely aquifer sediments. Of the UV filters we examined, BP3 16 

degrades in aquifer sediments (Liu et al. 2013) within 5-6 days. Li and colleagues 17 

followed the potential degradation of BMDBM in sediment microcosms, but 18 

whether BMDBM was degraded or adsorbed to the sediment to a greater extent 19 

with time was unclear (Li et al. 2016). 20 

 21 

We would expect that in an open environment, hydrodynamic processes would 22 

result in a dilution of the UV filters. Thus, an accumulation from year to year or 23 

even throughout the season would not be likely in Banyuls Bay. However, we 24 

observed a considerably higher concentration of DBT and MBBT in the April 25 



samples (beginning of the season) than that at the end of the season in Banyuls 1 

Bay. This means that, surprisingly, UV filters may accumulate from the previous 2 

season. This accumulation most likely occurred because tides in the 3 

Mediterranean are not significant and because the bay is relatively closed. In 4 

future research, the concentrations of UV filters over several years in both 5 

Banyuls Bay and the lake should be monitored to determine whether UV filters 6 

accumulate in the sediments with time. 7 

 8 

4 Conclusions  9 

This study showed for the first time the presence of DBT, BEMT and MBBT in 10 

environmental matrixes (water, SML and sediment), which is interesting because 11 

these compounds, with high predicted log Kow values, are presumed insoluble in 12 

water. Indeed, substantial concentrations of these compounds were measured 13 

during peak tourist time in the surface water and SML in Villeneuve Lake. 14 

However, we hypothesize that lipophilic UV filters are adsorbed to suspended 15 

particulate matter and might not be fully solubilized in the water phase. We 16 

show, both by sampling efforts in the environment and laboratory experiments, 17 

that a large proportion of the hydrophobic UV filters predictably partitioned into 18 

the sediment phase. Further, although some of these compounds, such as BP3, 19 

degrade relatively quickly in sediment systems, many of the hydrophobic UV 20 

filters are most likely not easily biodegraded once sequestered in the sediment 21 

phase, although this has yet to be confirmed. Thus, future ecotoxicological 22 

evaluation of lipophilic UV filters should be performed on benthic marine species 23 

as it has already been done in freshwater systems (Kaiser et al. 2012). 24 

 25 



Overall, our work improves comprehension of the partitioning of three highly 1 

water insoluble UV filters (BEMT, MBBT and DBT). The fact that BP3 and other 2 

UV filters are found at various trophic levels in the literature suggests that some 3 

of these compounds can biomagnify. Further tests are required for a better 4 

understanding of their bioaccumulation and the potential toxicological risks to 5 

marine organisms, starting with the zoobenthos. Importantly, we must 6 

investigate whether the uptake of very lipophilic UV filters by benthic organisms 7 

(bioaccumulation) occurs for a full understanding of the potential risk of these 8 

compounds to ecosystems. 9 
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Figure Captions 22 

Fig. 1 Dynamics of selected UV filters in Villeneuve Lake and Banyuls Bay surface 23 

water (a and d), surface microlayer (b and e) and sediment (c and f). The UV 24 

filters are BMDBM (open inverse triangles), BP3 (triangles), MBBT (diamonds), 25 



BEMT (circles) and DBT (squares). Note that charts b and c have a log scale on 1 

the y-axis, but a, d, e and f do not. All points are the average of triplicate sampling 2 

points, and the standard error bars are shown 3 

 4 

Fig. 2 Box and whiskers plot of all values in the water phase (a), SML phase (b) 5 

and the sediment (c) for the two different sites. The median is shown by the bold 6 

line, the hinges are the 25th and 75th percentiles and the whiskers are roughly the 7 

95% confidence intervals; the other points shown are outliers.  Note, the axis in 8 

panel C is cut 9 

 10 
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Table 1: UV filters information 1 

Abbr. Chemical names CAS 
Molecular 

weight 
(g/mol) 

Log KOW Molecular structure 

Water solubility (ng/L) 

Experimentalb Predicted (tap 
water)a tap water sea water 

BP3 Benzophenone 3 131-57-7 228.2 3.79 

 

1.3E+08 8.7E+07 6.9E+07 

BMD
BM 

Butyl 
methoxydibenzoylmethane 

70356-09-1 310.4 4.51 

 

1.9E+07 4.7E+07 1.5E+06 

DBT 
Diethylhexyl butamido 

triazone 
154702-15-5 765.9 14.06 

 

2E+05 < 2E+05c 1.3E-05 

BEMT 
bis-ethylhexyloxyphenol 
methoxyphenyl triazine 

187393-00-6 627.8 9.29 

 

3E+05 < 6E+04c 1.5E-10 

MBBT 
methylene bis-

benzotriazolyl tetramethyl 
butylphenol 

103597-45-1 658.8 12.5 

 
 

< 4E+04c < 1E+05c 4.5E-04 

a Predicted by EPI SuiteTM (Ramos et al., 2016) 2 
b Values obtained by Intertek France 3 
c The water solubility was less than the quantification limit of the method used by Intertek4 



Table 2. Recoveries and method limits of detection of analysis of BP3, BMDBM, 1 
DBT, BEMT and MBBT in seawater and sediment samples. 2 
 3 

 Water samples Sediment samples 
Compound Recovery 

(%) 
LOD 

(ng/L) 
Recovery 

(%) 
LOD 

(ng/g) 
BP3 67 1.3 47 4.6 

BMDBM 10 2.3 2 6.8 
DBT 71 2.3 75 8.6 

BEMT 80 2.3 60 7.5 
MBBT 47 5.2 80 3.9 

 4 
 5 
Table 3. Distribution coefficients (L/kg) of UV filters determined experimentally 6 
and calculated from environmental samples 7 
 8 

 Exp.a  Lake Banyuls bay 

 Kd Kf R2  Kd sedb Kd SMLc Kd sedb Kd SMLc 

BMDBM 777±150 463 0.9777  N.D. 9.14 N.D. N.D. 

BP3 10±0.8 19.6 0.985  3765 1.23 N.D. N.D. 

MBBT 2212±453 1492 0.9921  N.D. N.D. N.D. N.D. 

BEMT 3506±641 3129 0.9837  9939 6.81 3756 2.76 

DBT 2829±467 1848 0.9870  N.D. N.D. 7678 1.26 
a= Kd determined experimentally from an average of triplicate tubes and 2 different concentrations 
(n=6), b= Kd determined from median concentrations in sediments and median concentrations in the 
water column with a minimum of 3 samples over LOD, c= Kd determined from median concentrations 
in the SML and median concentrations in the water column with a minimum of 3 samples over LOD, 
N.D.=not detected 
 9 
 10 
 11 
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Fig. 1 Dynamics of selected UV filters in Villeneuve Lake and Banyuls Bay surface 3 

water (a, d), surface microlayer (b, e), and sediment (c, f). The UV filters are 4 

BMDBM (open inverse triangles), BP3 (triangles), MBBT (diamonds), BEMT 5 

(circles), and DBT (squares). Note that charts b and c have a log scale on the y 6 

axis, but a, d, e, and f do not. All points are the average of triplicate sampling 7 

points, and the standard error bars are shown 8 
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 10 



 1 

Fig. 2 Box and whiskers plot of all values in the water phase (a), SML phase (b), 2 

and the sediment (c) for the two different sites. The median is shown by the bold 3 

line, the hinges are the 25th and 75th percentiles, and the whiskers are roughly 4 

the 95% confidence intervals; the other points shown are outliers. Note that the 5 

axis in c is cut 6 
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 8 


