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Abstract: 

Purpose: To assess the lymphatic transport of microparticles of 100nm, 1µm and 10µm 

subcutaneously injected into the breast area of healthy and tumor-bearing rabbits, and to analyze their 

location in lymph node (LN) in relation to malignant cells. 

Methods: Female rabbits (n=9) bearing a VX2 tumor in one thoracic mammary gland were 

subcutaneously injected at D15 with polystyrene fluorescent particles around the nipple, on the tumor 

and on the healthy sides. The tumor and the LN measured by ultrasound at D9, D15 and D20 were 

explanted at D20. The LN metastases were evaluated by cytokeratin staining. LN uptake of the 

particles was measured by quantifying the green fluorescence surface in hot spot regions of healthy 

and pathologic LN. 

Results: All animals developed mammary tumors. Metastases were found in 39 % of LN from the 

tumor side. LN invasion was significantly lower for the 10µm group versus the 100nm group 

(p<0.0348). The fully invaded area of metastatic LN contained significantly less 100nm and 1µm 

particles compared to the low and non-invaded regions and to the healthy LN. In the invaded LN, the 

1µm MS occupied more surface than the 100nm particles.  

Conclusions: 1µm MS arrived numerously into the areas low-invaded and non-invaded by the tumoral 

cells of the pathologic LN, but they were very rare in the fully invaded regions. Compared to the 

100nm nanospheres, the 1µm were better retained (20 times) into the sentinel LN, showing the 

advantage of micrometric particles for lymph-targeted chemotherapy when injected before complete 

invasion by metastases.  

Keywords: Chemotherapy, Lymph node, Lymphatic transport, Metastases, Microspheres 

Abreviations: 

LN: lymphnode 

SLN: sentinel lymph node 

DDS: drug delivery system  

NP: nanoparticles 

PLGA: poly(lactic-co-glycolic acid) 

MS: microspheres 
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PBS: phosphate buffered saline  

mAb : monoclonal antibody  

MW:  Mann-Whitney U test  

KW:  Kruskal Wallis test  

 
Introduction 

Most human cancers like breast, digestive tract, lung and prostate cancer, metastasize via the 

lymphatic way (1). Tumors facilitate distant metastases and tumor growth by inducing 

lymphangiogenesis and vessel expansion in the lymph node (LN) draining them (2,3). The LNs that 

drain solid tumors are a primary site of metastasis and are called sentinel lymph nodes (SLN). LN 

resident metastases have the potential to act as a reservoir for cancer cells, resulting in spreading 

beyond the initial metastatic site and advancement of the malignancy. 

In breast cancer, the current treatments for LN metastases involve surgical removal of the SLN 

associated with radiation and chemotherapy. These methods are invasive and not always successful 

since some metastatic LNs that don’t have an axillary location are difficult to access (4–6). 

Conventional adjuvant and neoadjuvant chemotherapy by intravenous infusion of nanoparticulate 

antineoplastic drugs Doxil® and Abraxane® could be efficient for the treatment of dispersed 

lymphatic metastases. However, they do not provide a great concentration of drug in the SLN, thus 

repeated administration are necessary (5) with the risk of causing systemic toxicity.  

Lymph-targeted chemotherapy could enhance delivery of chemotherapeutic drugs to the SLN or to 

lymphatic-resident metastases, and it reduces systemic exposure. Interstitial administration 

(subcutaneous, intramuscular, intradermic) of the drugs near the tumor site or direct intra-tumor 

injection allow to concentrate the drug into the local LN draining the site of injection (5). The local 

sustained delivery of drugs in SLN is interesting since a prolonged exposure of tumor cells to 

chemotherapy over multiple cell cycles has shown to be more cytotoxic than bolus delivery for most 

drugs that target pathways involved in cell replication (7).  
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The ideal drug delivery system (DDS) for lymph therapy of SLN metastases should have a good 

lymphatic transport, high LN uptake, and long residence time allowing a local prolonged drug release 

in a tumoricidal concentration.  

In preclinical and clinical studies it was demonstrated that DDS under the form of nanoparticles reach 

the LN freely or transported by inflammatory cells (8,9), but do not penetrate into the metastatic area 

(10,11). Nano-carriers have a good lymphatic transport but a poor LN uptake (12–14), so the drugs 

they carry can be found in circulation and other organs (15,16). To counter this effect studies were 

conducted to modify the surface of the nanoparticles (NP) in order to target cancer cells specifically 

[12] and to enhance the LN uptake (6,17). In clinical (18,19) and preclinical trials (16,20,21) for the 

treatment of LN metastases it was stated that nanocarriers have a limited loading capacity for drug 

delivery and a short period of drug release, therefore, repeated sessions of treatment are necessary to 

achieve an anti- tumor effect.  

Unlike nanocarriers, calibrated microspheres could be better candidates for lymphotherapy since their 

LN uptake and remanence are increased when injected via the submucosal (22,23) or subcutaneous 

route (24) in non-pathologic animal models. When they are loaded with anti-cancer drugs, 

microparticles provide a drug release and antitumor efficacy superior to nanoparticles, as observed in 

vitro and in vivo. For instance, in vitro paclitaxel delivery from 1µm microspheres was three times 

more cytotoxic to 4T1 cells compared to the drug delivered from nanospheres (25). When PLGA 

microparticles with different sizes (between 1-40µm) were injected in intra-tumor regions or near the 

tumors, the antitumor efficacy was enhanced (26) and a high drug concentration in the metastatic LN 

was obtained (27–29). As a result the local metastases are reduced, as well as the systemic 

concentration of the drug (29).  

The uptake mechanism and the distribution of the large particles through the metastatic nodal tissue of 

the SLN remain unclear. The lymphatic drainage of LN is modified during the tumor growth, the 

growth of metastatic tumor cells in regional LN may cause blockage of normal lymph flow and the 

destruction of the internal structure of the lymphatic capillaries (30). Moreover, LNs invaded by 

malignant cells may contain less macrophages, which could account for the decrease of particle uptake 

(1,12,31). On the other hand it was demonstrated that tumors induce lymphangiogenesis and vessel 
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expansion in their draining LN thus facilitating the distant metastases and tumor dissemination (2,3). 

That suggests that the lymphatic transport of the particles loaded with chemotherapeutic drugs might 

be facilitated in the same way as the tumor cells transport. Many studies on lymph therapy with 

microparticles provide information about the concentration of drugs in SLN and their effects on LN 

metastases (15,17,21,29). To the best of our knowledge, information about the location of micrometric 

DDS in relation to metastatic cells in the SLN is still lacking. 

The first objective of our work was to characterize the lymphatic transport of fluorescent polystyrene 

particles of 100nm, 1µm and 10µm subcutaneously injected into the breast area of healthy and VX2 

tumor-bearing rabbits.  

We choose the rabbit model for the current study because of the resemblances with humans regarding 

the lymphatic drainage of the mammary gland. In female rabbit the thoracic mammary gland is 

drained by two groups of axillary LN, dorsal accessory and ventral accessory. In woman, as in rabbit, 

the mammary gland is drained by two groups of axillary LN: pectoral and apical, which corresponds 

to axillary accessory ventral and dorsal LN in female rabbit (32).The VX2 tumor is an anaplastic 

squamous cell carcinoma highly malignant that metastasize mainly to LN and lung and rarely to other 

sites (33).   Despite the different origin compared to human breast carcinoma, VX2  tumors share 

some common characteristics such as:   the way to metastasize, chemosensitivity to the therapeutic 

drugs and tumor growth and angiogenesis. Both tumors spread  mainly by lymphatic way (11,33), 

which means that the first sites of metastasis are the LN that drained the tumors.  For these reasons the 

VX2 model is currently used to study nanoparticulate drugs and contrast media for imaging and 

therapy of sentinel LN in breast and oropharyngeal cancer (10,20,21,34).  VX2 cells are highly 

sensitive to doxorubicin (35), which is the classic drug in conventional adjuvant and neoadjuvant 

chemotherapy in breast cancer in women. 

Moreover, as in many human breast carcinoma (36), in VX2 tumors VEGF is an important factor 

promoting tumor growth and angiogenesis  (37). 

We further aimed to use the same methods as used in practice to diagnose the breast cancer in women. 

The routine checkup for the breast in women is currently performed by ultrasound. The setting up of 

the real diagnostic conditions in an animal model is difficult in rodents due to their small size. For 
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above mentioned reasons we considered that rabbit bearing breast tumors could be an appropriate 

model for lymphotherapy.  

 

This model will allow us to compare the lymphatic transport of the two types of microspheres (MS) to 

polystyrene nanospheres (100nm), which were used as positive control for LN uptake. Then, in both 

the healthy and metastatic LN, we quantified the area occupied by fluorescent material five days after 

the subcutaneous injection. During this work a particular attention was paid to investigate the location 

of microspheres in relation to the tumor cells in the invaded LN. We questioned whether the presence 

of metastases into the draining LN could influence the transport of the MS into the sentinel LN and in 

addition the distribution of MS into the LN. The comprehension of the kinetic of transport and 

location of the 1µm and 10µm MS into the SLN could help in the choice of an effective drug carrier 

for lymphatic therapy.  

 

Material and methods 

Fluorescent particles 

Carboxylated polystyrene microparticles conjugated with fluorescein (Fluoresbrite, Polyscience Inc, 

Warrington,USA Corporate) of different sizes: 100nm (Catalog # 16662-10), 1µm (Catalog#15702-

10), and 10µm (Catalog#18142-2) were used for LN tracking. Suspension of each particle size 

(100nm, 1µm and 10µm) contains 4.5x10
13

, 4.5x10
11

 and 4.5x10
7
 particles/mL, respectively. The 

experimental procedures were performed at the Center of Research in Interventional Radiology 

(Cr2i/APHP/ National Institute of Agronomic Research INRA; Jouy-en-Josas, France). Ethics 

approval number 08-008 was obtained from the Institutional Animal Care and Use Committee of the 

Center and was conducted according to European Community rules of animal care (Directive EC 

86/609). The research adhered to the ’’Principles of Laboratory Animal Care’’ (NIH publication #85-

23, revised in 1985).  

Animal and tumor growth 

Nine White New Zealand adult female rabbits (6 months age, weight 3.4kg±0.28) were selected for 

tumor implantation. Rabbit VX2 carcinoma, a squamous epithelioid carcinoma with rapid growth, was 
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used to create breast tumours (33). The VX2 tumor was serially passed into a hind paw of White New 

Zealand rabbits. A 15 days hind paw tumor was aseptically harvested in phosphate buffered saline 

(PBS) containing 1% fetal calf serum. Tumor was fragmented, cautiously pressed through a nylon 

sieve (mesh size 200 µm), collected in ice-cold RPMI 1640 medium, centrifuged, and the cellular 

depot was used as inoculum. The rabbits were pre-anesthetized with an intramuscular injection of 

30µg/kg Buprenorphine (Vetergesic®, Sogeval, Laval, France). General anesthesia was performed by 

a short flash mask anesthesia with 2-3% Isoflurane and 97-98% oxygen using a small animal 

anesthesia station (Hallowell EMC Model AWS, Pittsfield, USA). After randomization, animals were 

placed in a supine position and the thoracic area was carefully shaved and disinfected. A volume of 

0.2ml of cellular suspension corresponding to 50x10
6
cells was injected deep under the nipple of one 

thoracic mammary gland. The tumor was grown for 15 days. Tumor and LN size (length and width) 

was measured by ultrasound at D9, D15 and D20 with a 5-mHz abdominal transducer (Voluson E8 

Expert, GE Healthcare, CA, USA). The measurements of the LN were performed on the most 

superficial LN, the accessory dorsal axillary which was easily detectable by US thanks to its location 

into a mass of adipose tissue near the external flexion of dorsal thoracic vein (32). 

 

Subcutaneous injection of nanospheres and microspheres 

Fifteen days after the implantation of VX2 cells, the animals were anesthetized as described earlier. 

After randomization, 0.2ml of particle suspension of 100nm (group A, n=3), 1µm (group B, n=3) and 

10µm (group C, n=3) were injected subcutaneously in 4 points (50µl/point), around the nipple, in the 

healthy and tumor mammary gland in each animal.  

 

Tumors and lymph nodes recovery  

Five days after the particles injection animals were anesthetized as described before, by a short flash 

mask anesthesia with 2-3% Isoflurane and 97-98% oxygen. The axillary LN were tracked using 0.2ml 

Bleu Patenté V sodique (Guerbet, Roissy Charles de Gaulle Cedex, France) injected around the nipple 

of each thoracic mammary gland. Two LN could drain the mammary thoracic gland in rabbit: the first 

LN is the accessory dorsal axillary which is the most superficial and could be palpated and the second 
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LN is the accessory ventral axillar which is more profound and could not be palpated (32). Euthanasia 

was performed with 5ml Pentobarbital, 182.2mg/ml (Dolethal, Vetoquinol, Lure, France) injected into 

the marginal vein of the ear. Tumors and LN were carefully dissected and the length and the width 

were measured with a calliper. The LN and small pieces of skin at the injection site were embedded 

and snap-frozen in a matrix gel for cryostat sectioning (Sakura Finetek SAS, Villeneuved’Ascq, 

France) and the tumors were fixed in 4% formaldehyde solution. The volume was calculated according 

to the formula: V=Lxl
2
x π /6, were L stand for length and l for width. Specimen slices (6µm and 10 

thick) parallel to the long diameter of each LN and axial into the skin samples were performed with a 

cryostat Leica (CM3050S, Nussloch, Germany) and were fixed in cold methanol/acetone (1/1) for 20 

min. The slides were examined by epifluorescence microscopy to evaluate the distribution of particles 

into the LN. One slide from each LN was used for the metastases labeling by immunohistochemistry. 

 

Epifluorescence Microscopy 

Epifluorescence analysis was performed with a Leica Leitz DMBR microscope system to assess the 

distribution of the particles along the LN area and to observe the presence of the particles at the 

injection sites. Slides were stained with DAPI (4′,6-diamidino-2-phenylindole) (Thermo Fisher 

Scientific Inc), mounted with Vectashield mounting medium (Vector Laboratories, Burlingame, CA, 

USA) and examined under x100 magnification for particle detection.  

 

Immunohistochemistry for metastases detection in LN  

The slides were incubated with mouse IgG1anti-human cytokeratin monoclonal antibody (mAb) 

(clone AE1/AE3, Dako), diluted at 1/50 and then with a HRP horse anti-mouse IgG Ab (Vector 

Laboratories, Burlingham, CA, US) for 30 min at room temperature. Revelation was performed with 

3’3-diaminobenzidine substrate. Stained sections were then digitized with a slide scanner 

(NanoZoomer 2.0 HT; Hamamatsu, Hamamatsu City, Japan) at magnification ×20. The surface of 

cytokeratin staining was assessed on each digitized section using the NDP view2 U12388-01 viewing 

software (Hamamatsu Photonics, Hamamatsu City, Japan). Surface of metastasis was expressed as 

percentage of stained area from the total LN area. 
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Confocal microscopy for location and quantification of fluorescence in different regions of LN 

Slides of 10µm tick were used to quantify the area of fluorescent particles and to analyse the location 

of the particles into the metastatic, pathologic and healthy LN. The slices from LN identified as 

positives for metastases by IHC were stained with mouse IgG1 anti-human cytokeratin mAb, clone 

AE1/AE3 (Dako, Glostrup, Denmark), diluted at 1/50, or with irrelevant murine IgG1 (control), and 

then with goat anti-mouse IgG Alexa Fluor 647 conjugate at 1/200 dilution for 30 min. Slides from 

healthy LN were stained for actin to emphasize the cytoplasm with Phalloidin Alexa Fluor 594 

conjugate, diluted at 1/50, for 20 min. Secondary conjugate and control IgG1 Ab were purchased from 

Thermo Fisher Scientific Inc. Nuclei were stained with 1µM TO-PRO®3 (Thermo Fisher Scientific 

Inc) for 15min. Samples were mounted with Vectashield Mounting Medium and examined using a 

confocal laser-scanning microscope LSM 700 Axio Observer (Karl Zeiss Microscopy, Jena, 

Germany), using Plan Apochromat 20x/0.8 and  63x/1.4 Oil M27 objective lens. Green fluorescence 

and red fluorescence were excited with Argon laser lines at 488 and 639nm respectively and emissions 

were collected at 518 and 660nm. The images were captured in “hot spot” area of green particles in 

healthy LN, in tumor LN that were negative for cytokeratin (non metastatic LN) and in LN cytokeratin 

positives (metastatic LN). For the metastatic LN, images were captured in three different region of 

interest: in the non-metastatic area, in the border area between healthy and area invaded by malignant 

cells, and in the area completely invaded by tumor cells. Pictures were captured and analysed by ZEN 

2.3 software (Karl Zeiss Microscopy, Munchen, Germany). The pictures with autofluorescent 

macrophages were excluded and the surface of fluorescent particles was automatically quantified 

using Image J software (Image J, 1.42 s, National Institutes of Health, USA) and expressed as a ratio 

between the green fluorescent area and the total analysed area in each field (nm2/µm2). In order to 

validate the measurements of the fluorescent area and to exclude any bias introduced by the different 

intensities of fluorescence between particles, the diameter of the isolated particles and the intensity of 
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fluorescence were measured on five particles of 1µm and 10µm and on five isolated clusters of 0.1µm 

and 1µm by ZEN 2.3 software, into the healthy LN (Fig. S1 and S2, supplementary data). 

 

Statistics 

The statistical analyses (Stat View version 5.0; SAS Institute, Inc, Cary, North Carolina) included a 

nonparametric Mann-Whitney U test (MW) and Kruskal Wallis test (KW) to compare the tumor 

volume between the different time points, the LN volume between healthy and tumor side, and the 

fluorescent area occupied by particles in the LN. Results were considered significant when p < 0.05. 

The Spearman correlation test was used to determine if some parameters like LN volume and the 

percentage of the LN metastases are correlated. Results were considered significant when p<0.05 and 

Rho> 0.500. 

 

Results 

Tumor growth and LN volume  

All animals developed a tumor palpable and measurable by US starting with D9. Tumor volume was 

significantly higher at D9, D15 and D20 when compared each time point with the previous one 

(D15/D9, p<0.0003 and D20/D15, p<0.0380) (Fig. 1a). The accessory dorsal axillary LN could be 

palpated when its diameter was superior to 0.5 cm, usually from D9 on the tumor side. The 

contralateral LN, on the healthy side, had a diameter which in most cases was inferior to 5mm, thus it 

cannot be always palpated. 

LN volume measured by US was significantly higher for the LN located on tumor side compared to 

contralateral healthy LN at D9 (p<0.0090), D15 (p<0.0053) and D20 (p<0.0184) (Fig.1b). At the 

moment of the microspheres injection there were no significant differences between animals neither 

for tumor (p<0.4335, KW) nor for pathologic and healthy LN volume (p<0.4335, KW).  

Five days after the subcutaneous injection of fluorescent particles, 18 LN were collected during 

dissection on the tumor side and 12 on the healthy side. The first LN, accessory dorsal axillary was 

found in all animals on each side. The second LN (accessory ventral axillary) was collected on the 

healthy side only in two animals from the 100nm group and in one animal from 10µm group. On the 
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tumor side the second LN was found for all animals excepting one animal from 100nm group. The LN 

volumes determined by caliper were positively correlated with LN volumes measured by ultrasound at 

D20 (Rho=0.632, p<0.0092). No metastases in lungs or in abdominal organs/cavity were observed for 

any animals in the study. 

 

Immunohistochemistry for metastases evaluation into the LN 

Metastases (positive cytokeratin labelling) (Fig. 2a, 2b) were found in 7 LN over the 18 collected on 

the tumor side: 4 LN from 5 in the 100nm group, 2 LN from 6 in the 1µm MS group and one LN from 

7 in the 10µm MS group. 

Taken together these LN belong to 5 out of 9 primary breast tumors (55%). The metastases were 

systematically found into the first LN except for one animal of the 1µm MS group, for which only the 

second LN was positive for metastasis. For two animals (one from 100nm and one from 1µm group) 

the metastases invaded the first and the second LN. Variable ratios of metastases invasion were 

observed into the LN, from 0.05% to 100% of LN surface (Fig 2 and 3). Malignant cells invaded the 

cortex (LN weakly invaded) (Fig. 2c), or the cortex and medulla (LN strongly invaded) and replaced 

the normal structure of the LN (Fig. 2d). 

The surface of LN occupied by the metastases was significantly higher for the LN of the 100nm group 

(36.6 % ± 44) when compared to the 10 µm group (0.007 % ± 0.019, p < 0.0348) but not different for 

the 1 µm group (10.46 % ± 17.7, p < 0.2012) (Fig.3a).  

The volume of metastatic LN (0.565 ± 0.538 cm
3
) was significantly higher than the volume of 

pathologic non metastatic LN (0.326 ± 0.491 cm
3
) (p < 0.0463) and the volume of healthy LN (0.042 

± 0.035 cm
3
) (p< 0.0004) (Fig. 3b). The volume of healthy LN was smaller than the volume of 

pathologic LN non-invaded by tumor cells (p<0.0019). A positive correlation between the percentage 

of metastases and LN volume was found (Rho = 0.515, p = 0.0194). 

  

Distribution of the microparticles at the injection site and into the healthy LN 
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Microspheres and nanospheres were still present at the injection sites several days after injection. They 

are surrounded by an infiltrate of inflammatory cells suggesting that transport to the LN remained 

possible (Fig. S3, Supplementary data). 

Nanoparticles (100nm) were observed as clusters in the cortex, in subcapsular sinus and less frequent 

into the medulla of all LN from healthy side (5/5), associated to the cells with bean shaped nuclei (Fig. 

4a, b). The 1µm MS were present in all the LN from the healthy side, as rare single particle or small 

clusters composed of 2 to 5 MS and as large numerous clusters containing 5 to 20MS (Fig. 4c). The 

small clusters were observed mostly into the cortex in the vicinity of the cells with reniform nucleus. 

The large clusters were more frequently observed into the deep cortex and medulla and were 

associated with the cells having big round nuclei (Fig. 4c, d). The MS of 10µm diameter were rare into 

the healthy LN and distributed as single particles into the deep cortex and as small clusters (2-3MS) 

into the medulla of LN, associated to cells with big round nuclei (Fig.4 e, f).  

 

Location of fluorescent particles in invaded LN in relation to tumor cells by confocal microscopy.  

Into the healthy LN the nanoparticles (100nm) were distributed more or less densely according to the 

zone of the LN (Fig.5A), as described earlier. Into the metastatic LN the nanoparticles (100nm) were 

distributed numerously into healthy area (Fig. 5B), their presence seemed to diminish with the 

increasing number of tumor cells (Fig. 5C), so that into the fully invaded area they were absent or very 

rare (Fig. 5D).  The MS of 1µm are distributed into the healthy LN all over tissue slide (Fig. 6A) as 

described previously. At the opposite, into the metastatic LN they were numerous into the area without 

metastases (Fig. 6B) and into the area bordering the zone of metastases (Fig. 6C) but they were very 

rare or missing into the fully invaded area of the LN (Fig. 6D).  

 

Quantification of the fluorescence area in the LN in relation with the metastatic invasion 

In order to validate the measurements of the fluorescent area and to exclude any bias introduced by the 

different intensities of fluorescence between particles, the diameter of the isolated particles and the 

intensity of fluorescence were measured on five particles of 1µm and 10µm and on five isolated 

clusters of 0.1µm and 1µm by ZEN 2.3 software, into the healthy LN (Fig. S1 and S2, supplementary 
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data). The size of the particles measured by Zen Lite software was the same with the size indicated by 

the manufacturer (1.015±0.072µm for 1µm MS and 10.35±0.19µm for 10µm MS) (Fig. S1-

supplementary data). The intensity of the fluorescence was not different nor between 1µm and 10µm 

particles (252     vs 255)(p<0,1100, MW) (Fig. S1-supplementary data), neither between clusters of 

0.1µm and 1µm (222.6    vs 215.8 33)(p<0.1116, MW) (Fig. S2-Supplementary data). These data 

provethe accuracy of the measurements of the fluorescent area for the quantification of the particles of 

different sizes located in the lymph nodes  

In order to quantify the amount of particles located in the LNs 5 days after subcutaneous injection, the 

area occupied by fluorescent particles was measured into the healthy LN and into the LN collected 

from the tumor side: LN devoid of metastases and invaded LN. Into the invaded LN three regions 

were analyzed: area without tumor cells, area with scattered tumor cells bordering the fully invaded 

area and the fully invaded area (Fig. 7). In the 100 nm group, the fluorescent surface was higher in the 

healthy LN compared to the area fully invaded by tumor cells of the metastatic LN (p<0.0339, MW). 

Within the tumor LN, the surface of fluorescence measured in the area fully invaded by tumor cells 

was significantly lower than into the region free of metastases (p<0.0433, MW) or than in the tumor 

non-invaded LN (0.0433, MW). A similar distribution of fluorescence was measured in the LN 

regions for the 1µm MS. A small fluorescent surface was measured in the area fully invaded by tumor 

cells compared to the weakly invaded region (p<0.0143,MW) or to noninvaded region of the 

metastatic LN (p<0.0500,MW). In these two last regions of invaded LN, the surface occupied by MS 

was close to the value determined in the healthy LN (p<0.5637 and p<0.7728 respectively).The 

surface occupied by 1µm MS in the invaded LN (area without metastases and weakly invaded) was 22 

and 25 fold higher than the fluorescent surface measured in the 100nm group in the correspondent 

area. In the 10µm MS group, the effect of tumor cells invasion on MS distribution was not studied 

because only one LN was positive for metastases, the rate of invasion was very low (micrometasases) 

and in this LN no MS were detected. The surface occupied by 10µm MS in the tumor non-invaded LN 

was higher compared to the healthy LN (p<0.0209, MW), suggesting a better drainage and retention in 

the LN of the tumor side.  
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Discussion  

The aim of our study was to compare the lymphatic transport of fluorescent particles of different sizes 

in healthy and metastatic lymph nodes when injected subcutaneously, into the breast area of healthy 

and tumor-bearing rabbits. The second objective was to investigate the location of the particles in the 

LN in relation to tumor cells and to quantify the particle uptake in different regions of invaded LN. To 

this end, we use a VX2 model currently employed to study nanoparticulate contrast media for imaging 

and therapy of sentinel LN in breast and oropharyngeal cancer (10,20,21,34). We chose negatively 

charged polystyrene microspheres as they allow a better uptake and retention into the LN (2,31) and 

they represent a model for the negatively charged MS clinically used for local drug delivery (38). We 

demonstrate here that microspheres of 1µm and 10µm diameter were strongly drained by the 

pathologic LN. After LN uptake, the 1µm microspheres were located in close contact with metastatic 

regions but were very rare into the core of the tumoral zone. 

Tumor model and metastases invasion of LN 

After 20 days of tumor development we used a model of metastatic breast cancer from which we 

observed 18 LN for 9 breast tumors. From the 18 pathologic LN, 39 % (7/18) were metastatic and 

61% (11/18) were negative for metastases as detected by cytokeratin labeling. We found that the LN 

on the tumor side, metastatic or not, were significantly larger and 1.5 fold more numerous than those 

from the healthy side. Our results are in line with the reports of Junping and coworkers about a VX2 

breast tumor model (39). After 30 days of tumor development they reported that, out of 70 LN for 60 

tumors, 58% of the LN were metastatic and 42% were not metastatic, both types being enlarged 

compared to healthy LN. These findings are consistent with our results and suggest that the metastatic 

process could begin with the lymphatic changes in the structure of LN responsible for their 

enlargement, and is followed by the tumor cell migration to the LN (2). The metastatic potential could 

depend on many factors as tumor age (39), size of the tumors (40) and tumor capacity to produce 

vascular growth factors (3)(39). In our study the tumors were younger, which could explain the 

smaller percentage of metastatic LN (39%) compared to the Junping reports on VX2 breast tumor.  



15 

 

Unexpectedly, we observed that the type of the injected particle had an effect on the level of 

metastases in LN, being significantly higher in the nanoparticles group and almost absent in 10µm MS 

group. It seems that some factors interfered with the mechanism involved in the diffusion of the 

metastases toward the LN in the case of MS of 10µm and not in the case of nanoparticles and 1µm 

MS. It was speculated that the tumor-associated lymphatics and draining LNs are key modulators of 

tumor cell migration and invasion by mechanisms that remain unclear (41). Furthermore, the cells 

migrating to the LN could have an effect on lymphatic permeability in case of inflammatory 

conditions (42). We supposed that the injection of 10µm MS generated a local environment that 

hindered the metastatic process to the LN (inflammation, perturbed lymphatic permeability). 

 

Particle uptake by the healthy LN  

All the healthy LN contained the 100nm particles, but the surface occupied was almost three times less 

important than observed for the MS of 1µm diameter. Others have already noticed the poor LN uptake 

of the nanocarriers of size inferior to 100nm subcutaneously injected (12–14). These findings could be 

explained by a washout phenomenon of the nanoparticles that travel freely into the lymph and exit 

rapidly from the LN by efferent lymphatics into the first hours after injection. Unlike nanoparticles, 

the microspheres larger than 1µm injected via the submucosal (22,23) or subcutaneous route (24) are 

more efficiently retained by the LN than nanoparticles. Our results are in line with these observations, 

sustaining an enhanced LN uptake of the microspheres of 1µm and 10µm versus nanoparticles. We 

observed that the distribution of the nanoparticles and 1µm MS into the healthy LN is broadly similar 

to that described in other studies on lymphatic transport of the polystyrene particles after subcutaneous 

injection. Nanoparticles were concentrated into the subcapsular and follicular zone of the LN and 1µm 

MS preferentially located into the paracortex and medulla. Previous studies demonstrated that 

according to their size, particles target distinct populations of inflammatory cells and occupy distinct 

areas of the LN 8 days after subcutaneous injection into the mice foot pad (8). Small particles <200nm 

could be drained freely to the LN where they are associated with the resident macrophages and are 

found into the follicular area and subcapsular sinuses (8) (12) (13). The large particles (>200µm) are 
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almost exclusively transported to the LN by dendritic cells (DC) and are found into the DC-rich area 

of the LN such as paracortex and medulla (8). According to these previous studies we can assume that 

the cells with big round nuclei that transported the large clusters of 1µm MS and the 10µm MS are 

probably DC. The clusters of nanoparticles and the small clusters of 1µm MS were probably flowing 

freely across the lymphatics and were phagocytized by the cells with reniform, alongated nuclei that 

are the resident macrophages in the LN. The differentiated distribution of the nanoparticles, 1µm and 

10µm MS into the healthy LN in our study was expected.  

Size dependent LN uptake of microspheres after subcutaneous or submucosal injection was previously 

analyzed by others. Lymphatic capillaries measure 10-60µm in diameter (1) and the lymphatic 

transport through them depends exclusively on the extracellular matrix pressure, since they do not 

possess muscular fiber and valves that could aid in lymph propulsion (1). The upper size limit for 

lymphatic uptake after subcutaneous administration has not been strictly defined. It was reported that 

the maximal size for microspheres which could be drained into the LN after mucosal administration 

ranged between 5 to 10 µm, MS of 40µm were also found into the draining LN up to 6 months after 

the submucosal injection (22,43). According to these studies, the transport of negatively charged 

fluorescent 1µm and 10µm MS in healthy LN after subcutaneous injection around the nipple was 

expected.  

 

Microspheres uptake by the pathologic LN and location in relation to tumor cells in the invaded LN 

Five days after injection near the tumor, the LN uptake of the nanospheres and the microspheres and 

their distribution in the LN were analysed. We observed that the MS of 10µm diameter were better 

drained into the pathologic LN than into the healthy ones, but we have no information about their 

location relative to the tumor cells because the metastatic process was probably delayed or interrupted 

in these LN. Closer to the tumor, a better lymphatic drainage and LN dilation constitute favorable 

conditions for an accumulation of 10µm MS in the pathologic LN. Future long running studies will be 

performed to elucidate if particles of 10µm reach the same areas into the metastatic LN as 1µm 

particles did and if they interfere somehow with metastatic process.  
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Confocal microscopy observation indicates that the uptake of 100nm and 1µm particles by invaded LN 

was similar between the different regions of invaded LN whereas the 10µm MS were only observed in 

the non-invaded LN. We observed that the fluorescent nanoparticles were found in all pathologic LN, 

excepting one LN completely invaded by the metastases. Our observation is in accordance with the 

clinical and preclinical trials with MRI contrast media targeting sentinel LN in breast tumors 

(11,34,39). According to these studies the superparamagnetic iron nanoparticles (SPIO) were not 

observed into the metastatic area of axillary LN because the access of the macrophages that carry them 

is probably hindered in these areas whose structure is altered by the tumor cells.  

 

Unlike the healthy LN, where the MS of 1µm diameter were spread all over the LN slide, in the 

metastatic LN draining the tumors they were found in the area without metastases and weakly invaded 

by malignant cells. In the LN regions massively invaded by tumor cells, few 1µm MS diameter were 

observed. Compared to the 100nm nanospheres, the surface occupied by 1µm MS diameter in the area 

non-invaded or moderately invaded were 22 and 25 times more important. That suggests that 1µm 

particles were better retained by the LN, whereas a large amount of nanoparticles were probably 

washout from the LN. A drug delivery from 1µm MS which have a better coverage of the LN draining 

the tumor could impregnate a larger volume of tissue compared to nano-sized devices. Indeed, the 

efficiency of the drug delivery to tumor area increases with the particle size, particles of 1µm and 2µm 

could deliver anticancer drugs to the tumor cells more efficiently than nanoparticles did as 

demonstrated in vitro (25) and in vivo (26). The significant remanence of micrometric sized MS in 

invaded LN could explain the reduction of metastases invasion observed in pleural lymph nodes after 

intrapleural implantation of microspheres (≈ 3 µm diameter) loaded with paclitaxel in a lung cancer 

model in rat [29].  The optimal size of particles used in lymph-target chemotherapy should be defined: 

small enough to avoid remaining at the implantation sites around the tumor, but big enough to be well 

retained in the regional lymph nodes. In our study, the absence of fluorescence into the fully invaded 

LN, or in regions of the LN predominantly composed of metastases could be explained by a poor 

migration of inflammatory cells that could carry the 1µm MS. The invasion of LN by tumor cells 

probably changes locally the LN drainage precluding migration of cells containing the MS (1,12,31). 
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The location of the particles in relation to the metastasis density into the LN suggests that the 

subcutaneous injection of DDS around a tumor should be precocious so that the particles can reach the 

LN before metastasis invasion. If the tumor cells invasion of LN is too important, the particles would 

not be drained, which could compromise the effectiveness of an antitumor treatment. 

 

 

Conclusion 

The MS of 1µm and 10µm diameter were drained by the pathologic LN five days after injection 

around mammary tumor. MS were distributed according to the degree of metastases invasion, 

numerous in the area uninvaded by the tumor cells and rarely in the area completely invaded. MS of 

1µm diameter cover more LN surface than the nanospheres, suggesting a better retention in the 

sentinel LN. Microspheres arrive numerously close to the metastatic area but they poorly penetrate it. 

These findings are valuable in lymphotherapy since an improvement of the remanence of the drug-

loaded MS in LN could provide a sustained drug delivery around the metastatic area of LN, preventing 

the spread of tumor cells.  

 

Limitations  

The number of animals per group was low which limited the statistic interpretation for some 

parameters such as the particles uptake by healthy and pathologic LN, or metastasis development into 

the LN according to type of particles injected. The delay for tumor development (5 days) was probably 

too short for study simultaneously the metastases invasion and the drainage of the 10µm MS.  
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Legend to figures 

Fig. 1 Evolution of tumor volume (a) and LN volume (b) in time measured by ultrasound. The 

measures were made on accessory axillary dorsal lymph node 

 

Fig. 2 Cytokeratin staining of a lymph node (a, b) showing the tumor cells (cytokeratin positive) 

invading the cortex of a metastatic LN. Cytokeratin positive cells (black arrow) are larger than the 

normal cells of LN (black arrowhead) (a), and they have a dark brown cytoplasm and blue nuclei (b). 

Macroscopic view of cytokeratin stained LN (c, d) showing the tumor area in brown invading the 

cortex (C) and medulla (M) of metastatic LN. Pictures on digitized slides represent a weakly invaded 

LN (19%) that belongs to 100nm group (c) and a strongly invaded LN (65%) from 1µm group (d) 

 

Fig. 3 Cytokeratin positive area, expressed as percentage from total lymph node surface was 

significantly larger for the 100nm group compared to the 10µm group (a). At D20 the volume of 

metastatic LN measured with calliper was significantly larger than the volume of the non-metastatic 

and healthy LN (b) 

 

Fig. 4 Confocal images showing the details of particles in healthy LN slices stained with TO-PRO3 

for nuclei, in blue. Particles of 100nm were observed as patches in vicinity of bean shaped nuclei 

(arrow) into the cortex (a, b). MS of 1µm were observed as single MS or small clusters (white asterisk) 

in the vicinity of the cells with bean shaped nuclei. Large clusters (white star) were observed nearby 

the cells with big round nuclei; image captured into the deep cortex(c, d). MS of 10µm were 

surrounded by cells with big round nuclei; image captured into the deep cortex (e, f). Some cells are 

carrying the small parts of degraded MS (dotted arrow) (e) 

 

Fig. 5 Location of green fluorescent particles of 100nm into a healthy LN (a, b, c) and into a 

metastatic LN (d to l). In the healthy LN (A), the cytoplasm of the LN resident cells was stained with 

phalloidine-Alexa-594, in magenta color. The tumoral cells were stained in red with anti-cytokeratin-

antibodies and Alexa-fluor 647.Into the metastatic LN the particles were distributed according to the 
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degree of metastases invasion, numerous in the area non-invaded by the tumoral cells (B-d,e,f) and 

rarely or absent in the area weakly (C-g,h,i) or completely invaded by the tumoral cells (white arrows) 

(D-j,k,l). The red and green staining images are merged (f,i,l). Bar at 10µm 

 

Fig. 6 Location of green fluorescent microspheres of 1µm into a healthy LN (a, b, c) and into a 

metastatic LN (d to l). For details of labeling, see figure 5 legend. Into the metastatic LN, the MS were 

distributed according to the degree of tumoral cells invasion, MS were numerous in the non-invaded 

regions (B-d,e,f) and in the area weakly invaded (C-g,h,i) and rarely or absent in the area completely 

invaded by the tumoral cells (white arrows) (D-j,k,l). The red and green staining images are merged 

(f,i,l). Bar at 10µm 

 

Fig. 7 Quantification of fluorescent area in healthy (A) and tumoral LN (B to E). The images captured 

at 300x magnification (n=4/region of interest), were analysed in Image J and the surface of fluorescent 

events was measured and expressed as a ratio between total fluorescent events area and total area of 

the image analyzed, in nm
2
/µm

2
. A-healthy LN, B, C and D- invaded LN: B-area without metastases, 

C -area weakly invaded neighboring the metastatic zone, D-area fully invaded, E- tumoral noninvaded 

LN 

Fig. S1-supplementary data. The intensity of the fluorescence and the diameter of the particles  was 

analyzed with Zen Lite 2.3 Karl Zeiss Microscopy GmBH,2011  Software on 5 isolated 1µm (A, B) 

and 10µm (C,D) microspheres on confocal images from healthy lymphnodes stained with TO-PRO3 

for nuclei. The size of the particles measured was close to the size indicated by the manufacturer 

(1.015±0.072µm for 1µm MS and 10.35±0.19µm for 10µm MS) (B). The intensity of the fluorescence 

was not different between 1µm and 10µm particles (252     vs 255)(p<0,1100, MW) (D). 

Fig. S2-supplementary data. The nanoparticles were found into the LN only as clusters and not as 

single particles (A).The intensity of the fluorescence and the diameter of clusters  were analyzed with 

Zen Lite 2.3 Karl Zeiss Microscopy GmBH, 2011 Software on 5 isolated clusters of 0.1µm  (A,B) and 

1µm microspheres (C,D) on confocal images from healthy lymphnodes stained with TO-PRO3 for 

nuclei. The diameter of the  0.1µm clusters was 1.79±0.42 and that corresponded to almost 17 
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nanoparticles, each particle  visualized on the intensity profile as peak of fluorescence (white arrow, 

figure A, B). The diameter of the 1µm clusters was 5±3.19µm and corresponded to clusters formed by 

3-8 particles, each particle  visualized on the fluorescence intensity profile as peak of fluorescence 

(white arrow, figure B,C).  The intensity of the fluorescence was not different between the clusters of 

0.1µm and 1µm (222.6    vs 215.8 33)(p<0.1116, MW) (D).  

Fig. S3 At day 5 the skin was sampled and epifluorescence analysis was performed to observe the 

presence of the particles at the site of injection. Slides were stained with DAPI for nuclei and mounted 

with Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA) and examined 

under x100 magnification for particle detection.  

The particles were still observed at the sites of injection surrounding the depot (Inj). Many nuclei were 

observed around the clusters of particles (arrowhead), they probably belong to the inflammatory cells 

that infiltrate the injection site. The nanoparticles were rather distributed as large patches (white star) 

than small patches (white asterisk) at the site of injection. Huge clusters of 1µm MS (white star) were 

observed nearby the injection site. The small clusters and 1µm single particles (arrows) were 

numerously and were scattered more distant from the injection site. The particles of 10µm were 

distributed around the depot as single particle (arrow) or small clusters formed by 2 MS (empty 

arrow).  
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