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Abstract 

Graph theory enables the study of systems by describing those systems as a set of nodes and 

edges. Graph theory has been widely applied to characterize the overall structure of data sets in the 

social, technological, and biological sciences, including neuroscience. Modular structure 

decomposition enables the definition of sub-networks whose components are gathered in the same 

module and work together closely, while working weakly with components from other modules. 

This processing is of interest for studying memory, a cognitive process that is widely distributed. 

We propose a new method to identify modular structure in task-related functional magnetic 

resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation 

coefficients and thus retained information about both signs and weights. The method was applied to 

functional data acquired during a yes-no odor recognition memory task performed by young and 

elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) 

recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a 

function of response categories and age groups and calculated condition-based weighted correlation 

matrices. Overall, condition-based modular partitions were more homogeneous in young than 

elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we 

demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate 

gyrus, belonged to the same module more frequently during Hit than during all other conditions. 

Modularity values were negatively correlated with memory scores in the Hit condition and 

positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. 

We further demonstrated that the proportion of positive and negative links between areas of 

different modules (i.e., the proportion of correlated and anti-correlated areas) accounted for most of 

the observed differences in signed modularity. Taken together, our results provided some evidence 

that the neural networks involved in odor recognition memory are organized into modules and that 

these modular partitions are linked to behavioral performance and individual strategies. 

Keywords 

Graph theory, Functional connectivity, Neural network, Modularity, Olfactory memory, Signal 

detection theory 
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Introduction 

Most cerebral imaging functional studies have used univariate statistical analyses to localize 

brain regions involved in specific cognitive operations (Rissman et al., 2004). However, the concept 

of the brain as a large complex network of interconnected elements has become dominant in 

modern neuroscience (Mesulam, 1990; Varela et al., 2001). Understanding how brain regions 

specifically communicate with one another during a particular cognitive task remains challenging. 

The term “brain connectivity” is used at the functional level to describe the organization, 

interrelationships, and integrated performance of different brain regions (Horwitz, 2003). A 

distinction is made between methods that consider correlation or covariance between signals in 

different regions (functional connectivity) and methods that attempt to describe or make inferences 

about the direction of influence between regions (effective connectivity) (Friston, 1994; Rogers et 

al., 2007). Techniques for measuring functional connectivity during tasks include correlations 

between standardized regression coefficients (Rissman et al., 2004), principal and independent 

component analysis (PCA and ICA) (McKeown and Sejnowski, 1998; Calhoun et al., 2001), and 

graph theoretical methods (Bullmore and Sporns, 2009; Fornito et al., 2013). Techniques that 

measure effective connectivity include psychophysiological interaction (PPI) (Friston et al., 1997), 

structural equation modeling (SEM) (Mclntosh and Gonzalez‐Lima, 1994), Granger causal mapping 

(Roebroeck et al., 2011), and dynamic causal modeling (DCM) (Friston et al., 2003; Penny et al., 

2004). 

While several studies have explored the functional connectivity of the olfactory network in 

animals (e.g., Wilson and Yan, 2010; Wilson et al., 2011; Spors et al., 2012), very few human 

cerebral imaging studies have been performed, and most have used effective connectivity. Zald et 

al. (1998) used covariance matrices based on PET data to elucidate the functional connectivity 

between the amygdala and the orbitofrontal cortex (OFC) during emotional olfactory tasks. Plailly 

et al. (2008) combined functional magnetic resonance imaging (fMRI) with DCM to measure 

attention-dependent network coherence within olfactory pathways. Haase et al. (2011) used SEM to 
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test a functional connectivity model during recognition memory in individuals genetically at risk for 

Alzheimer’s disease. Karunanayaka et al. (2013) used whole-brain ICA decomposition to identify 

subcomponents involved in olfactory perception as well as SEM to study the directionality of 

interactions between these subcomponents. PPI analyses have also been used to demonstrate 

amplified functional connectivity between several olfactory-related regions, either in response to 

negative odors, particularly in anxiety (Krusemark and Li, 2012), or during passive smelling (Nigri 

et al., 2013). 

We recently investigated the neural basis of odor recognition in young and elderly adults (Royet 

et al., 2011) by exploring correct (Hit) and incorrect (false alarms, FA) recognition and correct (CR) 

and incorrect (Miss) rejection. To characterize the brain responses in terms of functionally 

connected systems, we examined the functional relationships between the main regional foci using 

multivariate analyses of covariance and canonical variate analyses. We observed that significant 

activity in the hippocampus and parahippocampal gyrus was associated with correct recognition of 

odors. In this study, we go a step further by incorporating graph theory to study the differences 

between the networks underpinning correct and incorrect olfactory memories and to demonstrate 

how the brain areas composing these networks interact with each other. 

Graph theory is used to quantify the overall properties of any system that can be described as a 

graph, i.e., a set of nodes and a set of edges representing interactions between nodes. Graph theory 

has been widely applied to research fields as varied as biology, sociology, and technology science 

(Barabási, 2003; Newman et al., 2006) and, more recently, to brain data (Bullmore and Sporns, 

2009). Graph theory has been used in fMRI to analyze both resting-state functional data (e.g., 

Achard et al., 2006; Achard and Bullmore, 2007) and task-related data (Shinkareva et al., 2008; 

Wang et al., 2010; Bassett et al., 2011; Ginestet and Simmons, 2011; Park et al., 2012). 

Among several analyses derived from graph theory, modular decomposition aims at partitioning 

a network into several modules (also referred to as communities or clusters). Modules are 

characterized by nodes that work tightly together and less tightly with nodes belonging to other 
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modules (Newman and Girvan, 2004). Modular decomposition is achieved by maximizing a quality 

function, called modularity, and by assessing how well the nodes fit to modules of a given partition 

of the network. Modular decomposition has previously been applied to resting-state fMRI (Chen et 

al., 2008; Fair et al., 2009; Meunier et al., 2009a; Power et al., 2012; Stevens et al., 2012). 

Several limitations of modular analysis can result in a loss of information. First, computing 

modularity over a range of thresholds may lead to issues concerning the independence of the 

considered samples (Langer et al., 2013). Second, modular analysis considers only positive 

correlations, which is inadequate for functional connectivity analysis because anti-correlated sub-

systems can work in opposition to each other (Fox et al., 2005). Third, statistical comparisons of 

graphs obtained from different experimental conditions is not straightforward, although some 

methods have been proposed to compare modular structures between two groups of subjects when 

data were acquired in the resting-state (Alexander-Bloch et al., 2012; Moussa et al., 2012). 

In this article, we investigated the functional networks involved in olfactory recognition 

memory. We overcame the limitations previously described by using modularity quality functions 

for weighted and signed graphs (Gómez et al., 2009; Traag and Bruggeman, 2009). We developed 

statistical validation methods using similarity-based tests to assess the significance of differences 

obtained at the modular level between young and elderly adults and between the four memory 

response categories (Hit, FA, CR, and Miss). We further correlated the modularity values with the 

behavioral performance of the subjects.  
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Materials and Methods 

The methodology was reported in detail previously (Royet et al., 2011) and is briefly described 

here. Only the distinct aspects are extensively described in the present study. 

Experimental task and behavioral analysis 

Subjects 

A total of 16 young [7 men; age: 27.14 ± 5.27 years (mean ± SD); range: 21.90-37.30] and 22 

elderly (11 men; age 68.64 ± 3.29 years; range: 65.00-74.76) right-handed subjects participated in 

the study. This experiment was conducted in accordance with the Declaration of Helsinki. All 

subjects provided written informed consent as required by the local Institutional Review Board 

according to French regulations on biomedical experiments with healthy volunteers [Ethical 

Committee of CPP-Sud Est II (n CPP A 06-024), DGS2006-0226, May 11, 2006]. 

Stimuli and experiment 

Subjects participated in a classical olfactory memory recognition task initially proposed by 

Engen and Ross (1973). A total of 100 odorants were used, comprising 50 target (old) and 50 

distractor (new) odorants. Stimuli were counterbalanced by quality and mean scores of intensity, 

hedonicity, and familiarity obtained from previous data (Royet et al., 1999). The odorants were 

presented using an airflow olfactometer, which allowed the stimuli to be synchronized with 

breathing (Vigouroux et al., 2005). Odorants were delivered through a standard oxygen mask 

positioned on the subject’s face. 

Two functional runs corresponding to encoding and retrieval sessions were performed, separated 

by the structural image acquisition sequence. The 50 target odorants were presented in the encoding 

session and then interleaved with the 50 distractor odorants in the retrieval session. Odorants were 

delivered according to an event-related fMRI design with a jittered interstimulus interval of ~15 s, 

depending on the participant’s respiration. The order of presentation of the odorants was 

randomized between participants for both sessions. During the encoding session, participants 
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indicated when they detected an odorant by pressing one button with their right hand. Participants 

were not instructed about the objective of the next session. During the retrieval session, the 

participants indicated whether or not they had already smelled the odorant in the first session. 

Behavioral data analysis 

Recognition memory performance was assessed using parameters issued from signal detection 

theory (Lockhart and Murdock, 1970). Hit, Miss, CR, and FA response categories were assigned 

based on the experimental conditions (old or new odorants) and the subjects’ behavioral answers 

(yes or no). Two parameters were calculated from the Hit and FA scores: a memory score (d’L) and 

a response bias score (CL). Corwin (1989) previously described these calculations as follows: 

  (1) 

 

 

  (2) 

 

where HR represents the Hit rate [(NHit + 0.5) / (N1 + 1)], FR represents the false-alarm rate [(NFA + 

0.5) / (N2 + 1)], and N1 and N2 represent the number of old and new odorants, respectively, for 

which the subjects provided an answer. As N1 = NHit + NMiss, and N2 =NCR + NFA, information about 

all 4 response categories are included in both d’L and CL. The memory scores were good or poor 

(positive and negative values, respectively). The response bias scores established three individual 

attitudes. Subjects could be conservative (tending to respond “no” to an odor), neutral (responding 

“yes” or “no” with equal probability), or liberal (tending to respond “yes”) (Snodgrass, 1988), 

corresponding to positive, null or negative values, respectively. 

Image acquisition 

Images were acquired with a 1.5-Tesla MAGNETOM Sonata whole-body imager (Siemens 

medical®, Erlangen, Germany) equipped with a 4-channel circularly polarized head coil. For 

functional imaging, we obtained 26 interleaved 4-mm-thick axial slices using a T2*-weighted echo-

planar sequence with the following parameters: repetition time (TR) = 2500 ms, echo time (TE) = 

50 ms, flip angle = 80°, file-of-view (FOV) = 240 x 240 mm, and imaging matrix = 64 x 64 (voxel 
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size: 3.8 x 3.8 x 4 mm). We collected 324 scans for the encoding session and 624 scans for the 

retrieval session. Between functional sessions, a high-resolution structural T1-weighted anatomical 

image (inversion-recovery 3D Gradient-Echo sequence, 1 x 1 x 1 mm) parallel to the bicommissural 

plane and covering the entire brain was acquired over ~10 min. 

fMRI data pre-processing and classical parametric statistical analyses 

Functional images were pre-processed using Statistical Parametric Mapping software (SPM2, 

Wellcome Department of Cognitive Neurology, London, UK) (Friston et al., 1995). Images were 

spatially realigned, slice-time corrected, normalized, and smoothed with an 8-mm kernel. Pre-

processed data were then statistically analyzed using a random-effects model. Regressors of 

interest, including the five experimental conditions of interest (Hit, FA, CR, Miss, and non-answer), 

were modeled using boxcar predictors convolved with both the canonical hemodynamic response 

function (hrf) and its time-derivative (Friston et al., 1998; Hopfinger et al., 2000). 

Random-effects analyses were performed to extrapolate statistical inferences at the population 

level. Voxel-by-voxel single sample t-tests were performed for the response categories [Hit], [FA], 

[CR], and [Miss] to highlight activation that differed significantly from zero. To distinguish areas 

preferentially activated as a function of the four response categories and both groups, 12 t-contrast 

maps were calculated by comparing the Hit, FA, CR, and Miss items to each other, i.e., [Hit vs. 

FA], [Hit vs. CR], [Hit vs. Miss], [FA vs. CR], [FA vs. Miss], and [CR vs. Miss], in both directions. 

The anatomic atlases created by Duvernoy and Bourgouin (1999) and Mai et al. (2008) were used to 

localize and describe activated brain regions. We kept uncorrected values at p < 0.005 and used an 

extent threshold greater or equal to five adjacent activated voxels. In addition, specific analyses 

were performed on brain regions known to play a role in olfactory and memory processing. 

Anatomical Volumes-Of-Interest (VOIs) were manually drawn from the MNI template using 

MRIcro (http://www.mricro.com) and the human brain atlases (Duvernoy and Bourgouin, 1999; 

Mai et al., 2008). 
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Modular structure analyses 

VOIs selection and time-series extraction 

We were interested in studying whether the brain areas identified as significantly activated 

during odor recognition (Royet et al., 2011) were organized as a network structure. Considering all 

possible contrasts, we identified a network of 22 structures in young subjects and 22 other structures 

in elderly participants for which activations (beta values) were significant. Among these structures, 

two anatomical VOIs (the right piriform and left perirhinal cortices) were common to both groups. 

Thus, 42 different structures (40 clusters + 2 anatomical VOIs) were considered in total. Because 

areas must be sufficiently spatially distinct, we considered two clusters identical when the interval 

between the coordinates of their activation peaks was less than 8 mm in a given direction. In this 

case, a new area with mean coordinates was considered instead of both original clusters. As a 

consequence, a set of 36 out of 42 structures was considered for subsequent analyses (Table 1; see 

also Supplementary Figure S1). This network represents only a part of the whole brain functional 

network but focuses on areas that specifically contributed to our task, i.e. the correct and incorrect 

recognitions and rejections of odors. From the activation peaks, cubes with a length of 8 mm were 

defined, and raw time series averaged over the voxels within a cube were extracted using the 

MarsBar toolbox (http://marsbar.sourcefourge.net) for each of the 38 participants. Head movement 

parameters (rotation and translation) were regressed, and residuals were high-pass filtered (> 0.01 

Hz) to remove the scanner drift component of the signal and normalized (Z-score) for each session. 

Table 1 

List of 36 brain structures used for analyses, with corresponding abbreviations 

and coordinates (x y z). 

N° Brain structure Abbreviation MNI Coordinates x y z 

1 Anterior cingulate aCing 15 4 28 

2 Angular gyrus Ang1 53 -57 40 

3 Angular gyrus Ang2 -46 -61 32 

4 Angular gyrus Ang3 -27 -57 40 

5 Caudate nucleus Caud -15 27 4 

6 Cerebellum Cere 40 -45 -30 

7 Hippocampus Hip1 -30 -38 0 

8 Hippocampus Hip2 19 -23 -12 

9 Inferior frontal gyrus IFg1 34 23 8 

10 Inferior frontal gyrus IFg2 44 21 22 

11 Inferior frontal gyrus IFg3 49 19 4 

http://marsbar.sourcefourge.net/
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12 Inferior lingual gyrus Iling -4 -78 -12 

13 Insula Ins 27 19 8 

14 Lateral orbital gyrus Log 38 27 -4 

15 Middle frontal gyrus MFg1 -23 27 40 

16 Middle frontal gyrus MFg2 42 -8 48 

17 Middle orbital gyrus Mog -42 -80 8 

18 Middle temporal gyrus MTg1 -42 -38 0 

19 Middle temporal gyrus MTg2 57 -67.5 0 

20 Middle temporal gyrus MTg3 49 -49 8 

21 Posterior cingulate gyrus pCing 4 -46 20 

22 Paracentral lobule PCL1 0 -42 56 

23 Paracentral lobule PCL2 11 -27 52 

24 Precuneus Pcun 11 -57 36 

25 Perirhinal gyrus Peri -22 0 -34 

26 Parahippocampal gyrus PHg -30 -34 -12 

27 Posterior piriform cortex pPC 15 4 -14 

28 Precentral gyrus Prec -46 -16 36 

29 Putamen Puta 23 0 4 

30 Superior frontal gyrus SFg1 -6 -2 51 

31 Superior frontal gyrus SFg2 8 4 48 

32 Superior lingual gyrus Sling 11 -72 -4 

33 Supramarginal gyrus SMg1 53 -42 40 

34 Supramarginal gyrus SMg2 -61 -46 36 

35 Thalamus Tha1 -14 -4 -1 

36 Thalamus Tha2 12 -8 -2 

MNI, Montreal Neurological Institute 

Condition-based correlation matrices 

To compute condition-based correlation matrices, we used the procedure described by Dodel et 

al. (2005). The specific regressors for each condition (i.e., the set of trials that were identified as 

belonging to a given condition on the basis of the subject’s response) were considered and 

convolved with a canonical hrf. Only the positive and null parts of the hrf were considered and used 

to compute weighted correlations of VOI structure time-series pairs. This resulted in a set of 

correlation matrices (36*36) for each one of the four response categories (Hit, FA, CR, and Miss). 

Weighted Signed Modularity 

In studies of modular structures in complex networks, modular decomposition is achieved by 

identifying the graph partitioning that optimizes a quality function known as modularity (Fortunato, 

2010). Initially, the quality function of modularity was defined for binary graphs (Newman and 

Girvan, 2004). However, applying such a method to correlation matrices, as usually conducted for 

fMRI data, raises several issues. 

First, the choice of a threshold over positive correlation coefficients to obtain binary links is 
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often arbitrary. One solution to this problem is to study network properties over a range of 

thresholds, but the problem of independency then arises for statistical validation (Langer et al., 

2013). Another solution is to use modular decomposition while retaining the information of the 

value of each correlation coefficient by using modular decomposition of weighted graphs 

(Newman, 2004). For a weighted graph G composed of N nodes and a weighted matrix W, with wij 

defining the strength of the edge between nodes i and j, the optimization process aims to maximize 

the quality value  , which reflects the goodness of a given partition              : 

  (3) 

 

where w is the total weight over all edges in the graph; wi is the sum of weights of edges that 

include node i; Ci is the module index whose node i belongs to; and δ is the Kronecker function 

δ(a,a) = 1 and δ(a,b) = 0, if a ≠ b. This measure of the modularity is based on the difference 

between weights joining nodes within the same module and the expected value of these same 

weights when they are distributed randomly between nodes. 

Second, negative values of a correlation coefficient are sometimes considered as positive values 

because some computations consider absolute values (Achard et al., 2006; Meunier et al., 2009a). 

However, in resting-state fMRI, subsystems may be anti-correlated with each other (Fox et al., 

2005), and considering the sign of correlations in graph analysis permits the segregation of anti-

correlated subsystems (Rubinov and Sporns, 2011). In addition, negative correlations between 

activities also play a strong role in explaining cognitive processes (Chaminade and Fonlupt, 2003; 

Caclin and Fonlupt, 2006; Kelly et al., 2008). Therefore, it is crucial to consider the sign of 

correlation coefficients. Recently, Gómez et al. (2009) and Traag and Bruggeman (2009) proposed 

a reformulation of modularity that enabled the analysis of modular structure in complex networks 

with weighted and signed links. The idea behind this extension is that a partition in a set of modules 

is relevant when modules gather nodes between which there are mostly positive correlations and 

when nodes belonging to different modules are negatively correlated. Two different quality 



Functional networks in Olfactory Memory  Meunier et al. 

12 

functions are computed by considering the networks of positive and negative values separately: 

  (4) 

 

  (5) 

 

where wij
+
 is max(0,wij) (resp. wij

- 
is max(0,-wij)); wi+ is the sum over all wij

+
, including node i 

(resp. wi
-
 is the sum over all wij

-
 including node i); and w

+
 if the total of all wij

+
 in the graph (resp. 

w
-
 if the total of all wij- in the graph). The quantity to maximize according to this principle is then 

obtained by weighting the difference of modularity for the positive and negative parts of the 

network: 

  (6) 

 

Modular decomposition is applied on each subject x condition-based correlation matrix. Modular 

decomposition was computed using a greedy algorithm from (Clauset et al., 2004), modified to take 

into account weighted signed modularity. Greedy algorithm has been shown to provide a good 

trade-off between time of computation and quality of the optimal partition (Blondel et al., 2008). 

Because even random networks may have a non-zero value for modularity (Guimerà et al., 2004), 

the values of the original networks must be compared with those of equivalent random networks 

obtained by randomly permuting values in the original matrices. Symmetry is conserved in the 

permutation process, and we ensured that each link was permuted with another link exactly once for 

every equivalent random network. We computed modularity on 100 randomized networks for each 

of the (16+22 subjects) x 4 (response categories) correlation matrices. We provided p-values, as 

assessed as the number of times a randomized networks achieved a higher modularity value than the 

original network, divided by the total number of randomized networks (most significant p-value is 

0.01). 

Individual modular partitions can be represented as binary co-classification matrices that have a 

value of one when two nodes belong to the same module. To assess a representative structure of a 
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given condition for a group of subjects, a mean co-classification matrix can be computed by 

averaging binary co-classification matrices (Sales-Pardo et al., 2007). The statistical reliability of a 

given subset of nodes of interest can be tested a posteriori by computing a normalized co-

classification density for each subject. This is achieved by first considering, for a given subject, the 

number of times two nodes belonging to a subset are co-classified out of all the pairs involving the 

nodes in the subset. This quantity is then normalized by the total number of co-classified pairs for 

the subject.  

N-uplets 

Although co-classification matrices are useful for representing average modular structures for a 

given condition, these matrices should not be misinterpreted. The areas of pairs A-B and A-C may 

be co-classified, but the triplet of areas A-B-C may not occur as frequently in the same module. To 

verify the shared belonging of co-classified node pairs, individual co-classification matrices were 

also employed to assess how frequently three nodes (triplets), four nodes (quadruplets), and five 

nodes (quintuplets) were found in the same module. These N-uplets were considered relevant and 

could be displayed when they were observed in 50% of the subjects within a group for a given 

response category. If a given N-uplet was found in more than 50% of the subjects, we indicated the 

exact percentage value in the text (see Supplementary Material). 

Normalized Mutual Information 

Similarity measures were used to assess differences between partitions obtained for different 

individuals and experimental conditions. For graph G (containing N nodes), we considered two 

partitions A and B, each of which contain cA and cB modules, respectively. Each module in A is 

denoted   ,    1  ,   .. 

Normalized Mutual Information (NMI), a similarity measure based on information theory 

(Danon et al., 2005), requires the definition of a confusion matrix M. The term             

represents the number of nodes in common between the communities    and   . The sum over the 
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row i of matrix M is denoted    and the sum over the column j is denoted   . NMI is defined as 

follows: 

  (7) 

 

If the two partitions are identical, the NMI value is maximum and equal to 1. If the partitions are 

totally independent, the NMI value is null. 

Statistical validation 

Similarity measures were computed between pairs of partitions obtained for the same response 

category in different subjects or between pairs of response categories obtained for the same subject. 

We wanted to show the differences between age groups for the similarity values obtained for pairs 

of subjects belonging to the same population (young or elderly groups). Determining these 

differences raises several issues. First, a similarity measure computed with partitions A and B is not 

independent of a similarity measure computed with partitions A and C because partition A is 

involved in both cases. It is thus necessary to use statistical measures with no hypothesis on the 

independency of samples. Second, another level of dependency between the data arises as the 

measurements of the four response categories were obtained for each subject (repeated 

measurements). 

Permutation tests and bootstrap methods are classically used to test differences in sets of 

dependent data (Good, 1994). However, their use for computing interactions in the non-parametric 

equivalent of two-way ANOVA remains controversial (Anderson and Ter Braak, 2003). In 

particular, it is unclear if the test should be computed on raw data (Manly, 1998) or on residuals 

after regression of both factors of interest (Ter Braak, 1992). Thus, interaction results computed 

with both raw data and residuals are presented in this study. Here, we chose to compute permutation 

tests by resampling subject-wise conditions (i.e., the values for different response categories were 

not mixed between subjects), followed by resampling the subject age-group attributions to assess 

the effect of age. Each permutation was performed on 1000 randomly sampled tests, allowing a 
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maximum significance level of α = 0.001 to be tested. 

Pipeline of processing 

A flowchart of processing steps including SPM pre-processing, SPM analysis, weighted 

correlation matrix, and modularity analysis was given in Supplementary Figure S2. 
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Results 

Modularity values and statistical validation 

Modularity values Q were computed for each correlation matrix representing a response category 

for a given individual, retaining both the sign and the value of the correlation coefficient. The 

modularity values showed neither an effect of age (p > 0.3) nor an effect of response category (p > 

0.2). To demonstrate that the modularity values obtained for individual functional networks were 

different than the values obtained with equivalent random networks, we computed 100 simulations 

of randomized networks from each of 152 networks (38 subjects x 4 response categories) by 

permuting the values of two pairs chosen randomly until the values of all pairs had been permuted. 

The modularity values were computed for each simulation, and their mean and standard deviation 

were calculated. Each original modularity value was then transformed to a Z-score using the 

parameters obtained from the 100 equivalent random networks (Figure 1A). The percentage of 

functional networks displaying a significant non-random modularity value at a significance level α 

of 0.05 for all response categories is shown in Figure 1B for both age groups. The percentages 

ranged from 54 to 81% (mean = 71.6). The number of modules per subject ranged from 2 to 5 

(mean = 2.88), and no effect of age (F1,108 = 0.20, p = 0.66) or response category (F3,108 = 0.99, p = 

0.400) was observed. 

 
Figure 1. A) Probabilities that randomized networks achieved higher modularity values than the 

original network for the four response categories (Hit, FA, CR, and Miss) and for each of 16 young 

(circle) and 22 elderly (triangle) subjects; the grey area determines the limits for which modularity 

values were obtained with p < 0.05. At p = .01, markers of 4 response categories are slightly shifted 
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to be more distinct between them. B) Percentage of networks obtained for each response category 

and age group showing a significant positive Z-score of functional network modularity at a level of 

α = 0.05. C) NMI similarity values as a function of response categories and age groups (means ± 

standard deviation). NMI, normalized mutual information. 

The NMI similarity values calculated between partitions of all functional networks for response 

categories Hit, FA, CR, and Miss in young and elderly subjects are shown in Figure 1C. 

Permutation tests applied to raw data (Manly, 1998) revealed a significant main effect of age group 

(p = 0.001) and response category (p = 0.001) and a significant age group x response category 

interaction (p = 0.001). Permutation tests performed on residual data also showed a significant age 

group x response category interaction (p = 0.001). When considering the difference between 

response categories and taking each group independently, permutation tests revealed a significant 

effect of response categories in the young (p = 0.001) and elderly (p = 0.001) groups. Permutation 

tests further revealed significant differences between Hit and FA and between Hit and Miss in the 

young group (p’s = 0.001). In elderly subjects, the mean value was significantly higher for Miss 

than for Hit, FA, and CR (p’s = 0.001). Significant differences were also observed between young 

and elderly subjects for Hit (p = 0.001), FA (p = 0.004), and CR responses (p = 0.001). 

Co-classification matrices 

Once a modular partition was obtained for each correlation matrix, all resulting partitions were 

summarized by a mean co-classification matrix. Using a hierarchical clustering method (Ward, 

1963), the nodes were reordered so that highly co-classified nodes were displayed close to each 

other, thus leading to a block diagonal matrix (Figure 2). For more details, see Supplementary 

Materials and Methods (hierarchical clustering). To facilitate comparisons between the eight 

matrices (4 response categories x 2 age groups), the matrices were reordered according to the order 

of the nodes (structures) obtained for the Hit condition in young subjects. 
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Figure 2. Mean co-classification matrices obtained for 36 structures for each response category (Hit, 

FA, CR, and Miss) in young and elderly subjects. The order of the structures in the matrices is 

based on that obtained for Hit in young subjects. Scale: percentage of individuals in the group in 

which a given pair of nodes belongs to the same module. 
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 The mean co-classification matrices obtained for the young group were more heterogeneous 

than those calculated for the elderly group (Kruskal-Wallis test, χ2 
= 5.17, df = 1, p = 0.023). The 

mean co-classification matrices in young subjects revealed a subset of nodes that were highly co-

classified in the Hit condition but not in the FA, CR, and Miss conditions. This set of eight nodes 

(indexes 13-20 on Fig. 2) was composed of Hip2 (19 -23 -12), PHg (-12, -28, -10), aCing (15 4 28), 

pCing (4 -46 20), PCL1 (0 -42 56), PCun (11 -57 36), MFg1 (-23 27 40), and Caud (-15 27 4). 

MTg1 (index 11 on Fig 2) and Hip1 (index 12 on Fig. 2) were not part of this subset because they 

were also co-classified in the FA and CR conditions. We computed normalized co-classification 

densities for the eight structures as a function of the Hit, FA, CR, and Miss response categories 

(Figure 3). One-way ANOVA with repeated measures revealed a significant effect of response 

category (F3,45 = 4.44, p = 0.007), with co-classification indexes that were significantly denser for 

Hit than for FA (post-hoc Tukey HSD test, padjusted = 0.048), CR (padjusted = 0.019), and Miss (padjusted 

= 0.027) responses. 

 
Figure 3. Mean normalized co-classification densities computed for eight 

structures (from indexes 13 to 20) in the Hit, FA, CR, and Miss conditions in 

young subjects. Vertical bars represent standard deviations. *, p < 0.05. 

The mean co-classification matrices reordered according to the order of nodes obtained for the 

FA, CR, and Miss response categories are shown in Figures S3, S4, and S5, respectively. The 

reordered matrices did not reveal specific sets of nodes that were more significantly co-classified in 
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each of these response categories. 

For sake of control, we further provided the co-classification matrices from data extracted during 

rest periods at the beginning of encoding and retrieval sessions, thus providing with several 

limitations the closest to ‘resting-state’ analysis (see sections “Functional connectivity analysis of 

rest periods” in Supplementary Materials and Methods, and Supplementary Results, and 

Supplementary Figure S6). 

N-uplets and behavioral performance 

Triplets and quadruplets (subsets of three or four nodes belonging to the same module in more 

than half of the subjects in a group) for the four response categories and the two age groups are 

shown in Figures S7 and S8, respectively. Overall, the number of triplets was higher in young than 

elderly subjects. For the Hit, FA, CR, and Miss response categories, we identified 36, 21, 22 and 50 

triplets, respectively, in the young group and 20, 4, 7, and 15 triplets, respectively, in the elderly 

group. The number of quadruplets in young subjects was limited to 5 for Hit, 1 for FA, and 12 for 

Miss. No quadruplet was identified in elderly subjects.  

Figure 4 focuses on the triplets and quadruplets for Hit and Miss in young subjects. In the Hit 

condition only, we found a triplet composed of Hip2, aCing, and Caud in 62.5% of the subjects. 

These same structures in association with MTg1 formed a quadruplet (in blue) in 56.25% of the 

subjects. Four other quadruplets were found: the first one (in green) was composed of LOg, IFg1, 

IFg3, and Ins (68.75% of the subjects); the second one (in light blue) associated LOg and IFg3 with 

Tha1 and Puta (50%); the third one (in cyan) joined Puta, Log, IFg1, and IFg3 (50%); and the last 

one (in purple) joined pPC, Ins, LOg, and IFg1 (50%). The quadruplet described above that was 

composed of Hip2, aCing, Caud, and MTg1 was also identified in three elderly subjects. We then 

determined that young and elderly subjects who presented this quadruplet had memory scores that 

were significantly higher than those of the subjects in which the four nodes did not belong to the 

same module (t1,36 = 2.69, p = 0.011). 
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Figure 4. Spatial co-classification representations obtained for 36 structures when three (triplets) 

and four (quadruplets) nodes belong to the same module in the Hit and Miss conditions in young 

subjects. Links of the same color are drawn between nodes belonging to a similar N-uplet. 

In the Miss condition for the young group, 10 of the 12 quadruplets were found between a subset 

of areas composed of Tha1, Puta, pPC, IFg1, IFg2, IFg3, Ins, and LOg. In addition to these areas 

(which were also connected, although less densely, in the Hit condition), an extra quadruplet (in 

green) included areas in the inferior and superior frontal gyri (IFg2, IFg3, SFg1, and SFg2). 

Another quadruplet (in blue) included two thalamus areas (Tha1 and Tha2) and Puta and LOg. We 

further determined that these structures [pPC, LOg, IFg1, IFg3, Ins, Puta, and Tha1] were 

particularly connected and formed two quintuplets in 50% of the subjects (see Figure S9). No other 

quintuplets were present in 50% of the subjects.  
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Correlations between modularity values and behavioral performances 

We computed the correlations between the modularity values obtained for each subject in the 

Hit, FA, CR, and Miss response categories and memory scores (d’L), and between the modularity 

values and bias scores (CL). A significant negative correlation with memory scores (r = -0.44; p = 

0.0052) was observed for the Hit condition only (Figure 5A). A trend effect of the CR condition 

was also noted (r = -0.30, p = 0.065). Strong significant positive correlations with bias scores were 

further observed for the Hit and FA responses (Figure 5B) (r = 0.62, p < 0.0001 and r = 0.51, p = 

0.001, respectively). 

 
Figure 5. Correlations between modularity values (Q) and A) memory scores d’L and B) bias scores 

CL when subjects provided Hit (in red) or FA (in dark blue) responses. Individual values are 

represented by circles for young subjects and triangles for elderly subjects. 

For each subject, we further computed the number of positive minus negative links between the 

modules, normalized by the total number of inter-module links. These data were negatively 

correlated with modularity values for all response categories taken together (r = -0.93; t150 = -31.6, 

p < 10
-15

), confirming that the high modularity value was mainly due to an increased number of 

negative links. Correlating these values with behavioral scores, we then demonstrated that memory 

scores were positively correlated with the normalized number of positive minus negative links 

found in the Hit condition (r = 0.50, t36 = 3.46, p = 0.0014; Figure 6A) and that the bias scores were 
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negatively correlated with the normalized number of positive minus negative links in the Hit and 

FA conditions (Hit: r = -0.63, t36 = -4.92, p < 10
-5

; FA: r = -0.45, t36 = -3.01, p = 0.0047; Figure 

6B). 

By way of illustration, we present examples of modular structures computed at the individual 

scale for extreme values of memory and bias scores (Figure 6). In the Hit condition, inter-modular 

links were almost exclusively positive when the memory score was high (subject 12, d’L = 1.705) 

and partly negative when the memory score was very low (subject 20, d’L = -1.266). In both Hit and 

FA, inter-modular links were exclusively positive when the bias scores were very low (subject 3 for 

Hit and FA, CL = -0.967) and partly negative when bias scores were high (subject 28 for Hit, CL = 

1.505; and subject 32 for FA, CL = 1.642). 

 
Figure 6. Correlations between the number of positive minus negative links between modules for 

each subject and A) memory scores dL and B) bias scores CL when subjects provided Hit or FA 

responses. Individual values are represented by circles for young subjects and triangles for elderly 

subjects and by red for the Hit condition and blue for the FA condition. Left and right sides: 

modular structures observed in four subjects for which memory or bias scores were the smallest or 

the strongest. Nodes are represented at the area coordinates given in Table 1. For each subject, 

nodes belonging to the same module are represented with the same color: yellow, orange, red, or 

blue. The same color does not indicate the same module for different subjects. The connections 
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corresponding to the first 100 highest correlations in absolute values are represented in blue or red 

according to whether nodes were positively or negatively correlated, respectively. Note that the 

connections are shown for representation purposes only; the modular decomposition was achieved 

using all correlation values with a weighted signed modularity algorithm. 
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Discussion 

Several studies, particularly resting-state fMRI studies, have shown that functional networks at 

the whole brain level have a modular architecture (Fair et al., 2009; He et al., 2009; Meunier et al., 

2009a; 2009b; Power et al., 2012). Hypotheses have been advanced to explain the benefits of 

modularity (Meunier et al., 2010), such as superior evolvability (Simon, 1962), the capacity to 

generate more complex dynamics (Shanahan, 2010), and better results when coping with different 

tasks simultaneously (Kashtan and Alon, 2005). The only study to provide some evidence that a 

task (working memory capacity) could influence the modular structure of functional networks was 

performed using resting-state fMRI (Stevens et al., 2012). To our knowledge, our study is the first 

to examine the modular structure of a neural network while the subjects were performing a specific 

cognitive task in the scanner. Here, we aimed to identify the modular structure of neural networks 

differentially involved in true and false odor recognition memory in young and elderly subjects. We 

proposed a new method that considers weighted and signed graphs and also developed statistical 

validation methods. We further validated and explained our modularity results by relating them to 

behavioral performance. 

Modularity values, co-classification matrices, and specific N-uplets as a function of 

conditions 

By applying modular decomposition algorithms, we were able to go beyond assigning a set of 

areas showing activation in specific contrasts as a “network”, as it is usually observed in studies 

using general linear model. Instead, we quantified how much these areas were working specifically 

within a network. Permutation tests were applied to assess significant differences among NMI 

similarity values computed after modular decomposition. We determined that the similarity values 

were differently modulated across response categories (Hit, FA, CR, and Miss), and the two age 

groups (Figure 1C). 

When comparing both groups, similarity values were significantly lower in elderly than young 
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subjects for Hit, FA, and CR, indicating that modular partitions in the elderly were less 

homogeneous than in young subjects. Concurrently, the patterns identified with co-classification 

matrices were more diffuse in elderly than young subjects for all response categories (Figure 2). 

This result may be explained by the fact that each elderly subject either used a personal strategy that 

was not representative of the group or answered at random for a portion of the trial due to an 

attention problem. In both cases, the neural networks involved in a given condition were likely not 

the same between the subjects. The results further showed that the subsets of highly co-classified 

nodes observed in the co-classification matrices obtained from rest period data were more diffuse 

(more heterogeneous) than those obtained for the task-related periods, thus providing some 

evidence that the task-related partitions were specific of the response categories. When considering 

the young subjects only, we observed an effect of response category on similarity values. The 

partitions obtained for the two response categories involving a correct memory process (Hit and 

CR) were more similar (i.e., the neural networks were more homogeneous) across young subjects 

than for the two response categories involving an incorrect memory process (FA and Miss) (Figure 

1C). In other words, there was one way to be right and several ways to be wrong. The co-

classification matrices provided some evidence that some modules were conserved for all response 

categories, while some areas were specifically co-classified for a given response category. This was 

particularly the case in the Hit condition (Figure 2). Thus, we were able to demonstrate that a 

specific subset of eight areas (areas 13-20) comprising the parahippocampal gyrus (PHg), 

paracentral lobule (PCL1), posterior cingulate gyrus (pCing), precuneus (pCun), middle frontal 

gyrus (MFg1), anterior cingulate gyrus (aCing), hippocampus (Hip2), and caudate nucleus (Caud) 

was statistically more often included in a similar module (i.e., they were working together in most 

subjects) during correct odor recognition (Hit) compared to other conditions. These results are of 

particular interest because these areas are known to be involved in recollection processes: 

hippocampal activity is reliably increased during retrieval for items that are recollected and is not 

modified for non-recollected items (Matthews and Gilliland, 1999; Savic et al., 2000; Stark and 
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Squire, 2000; Canli et al., 2001; Royet et al., 2001; Rose et al., 2002). Similar although less robust 

results were observed for the parahippocampal area (Canli et al., 2001; Kirwan and Stark, 2004; 

Eisenberger et al., 2005; Adelstein et al., 2011). In a meta-analysis study, Kim (2013) observed that 

the correct recognition of old items (Hit) versus the correct rejection of new items (CR) was 

consistently associated with several of the neural regions described above. The author categorized 

the regions into three types: the default-mode network (angular cortex, precuneus, and posterior 

cingulate cortex), which would support ecphory, i.e., the mental re-experiencing of an old event; the 

cognitive-control network (dorsolateral and dorsomedial prefrontal cortices, intraparietal sulcus), 

which would mediate memory and non-memory control functions; and the caudate nucleus, which 

would support the satisfaction tied to target detection.  

Among eight areas observed in young subjects for Hit responses, we further found that three 

areas, Hip2, aCing, and Caud, formed a specific quadruplet with the left MTg1 (Figure 4). The 

involvement of these three areas deserves some explanation. Recognition memory is not an ‘all-or-

none’ process but varies in the degree of subjective confidence that an event has been previously 

experienced (Kim and Cabeza, 2009). It emerges from previous studies that, along the medial 

temporal regions, the anterior cingulate gyrus is associated with an increase in confidence at 

recognition (Chua et al., 2006; Moritz et al., 2006; Kim and Cabeza, 2009). Moritz et al. (2006) 

questioned whether confidence-related activation of this region may be associated with the role 

proposed by Rushworth et al. (2004) in “guiding decisions about which actions are worth making”, 

particularly those involving reward expectancy (Shidara and Richmond, 2002; Matsumoto et al., 

2003). They suggested this association because, in many contexts, high confidence can be 

equivalent to the promise of reward. Consistently, Guitart-Masip et al. (2013), using 

magnetoencephalography, demonstrated that mnemonic guidance of nonspatial human decision 

making, beyond anticipation of the expected reward, is supported by theta synchronization between 

the hippocampus and several prefrontal regions, including the dorsal anterior cingulate gyrus. Here, 

we further demonstrated that aCing is co-activated with the Caud, a structure playing a key role in 
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the reward system with adjacent striatal regions (Kim et al., 2008) and whose activation may reflect 

the reward or satisfaction of successful target detection (Rauch et al., 2005). The left MTg1 

included in the quadruplet was excluded from our computations of mean co-classified indexes 

(Figure 3A) because it was also highly co-classified in the FA condition (index 11 on Figure 2). 

However, the finding that this area belonged to the same quadruplet for more than 56% of the 

young subjects (as well as three elderly subjects) highlights its crucial importance in the process of 

correct odor recognition. Indeed, subjects recruiting this quadruplet had significantly higher 

memory scores than those that did not. The left MTg1 was previously associated with the lateral 

intraparietal area during visual perceptual decision-making (Kayser et al., 2010). 

Four other quadruplets connecting areas located in the inferior frontal gyri (IFg1 and IFg3), the 

lateral orbital gyrus (LOg), the insula (Ins), the posterior piriform cortex (pPC), the thalamus 

(Tha1), the putamen (Puta), and the Caud were found in the Hit condition. These areas are closely 

associated with odor information processing (e.g., attention, semantics) (Savic et al., 2000; Royet et 

al., 2001; Gottfried and Zald, 2005; Zelano et al., 2005; Plailly et al., 2008) and have also been 

reported to play a role in reward-related decision-making (Balleine and O'Doherty, 2010; Liu et al., 

2011). However, these quadruplets were not specific to the Hit condition because they were also 

found in the FA and Miss conditions. They were particularly interconnected in the Miss condition, 

revealing two quintuplets in half of the subjects. Another quadruplet was observed in the Miss 

condition, connecting several areas of the inferior and superior frontal gyri (SFg1, SFg2, IFg2, and 

IFg3).  

Modularity and behavioral performance 

We demonstrated that modularity is negatively correlated with memory scores (d’L) in the 

conditions involving a correct response (Hit, with a trend for CR) but not in the other conditions. 

This result means that subjects with good memory scores involve functional networks that are less 

segregated than subjects with low memory scores. In fact, we determined that the number of 

modules was relatively stable (from 2 to 5), whatever the memory scores, but that the number of 
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positive minus negative links interconnecting modules was positively correlated with memory 

scores (Figure 6). In other words, the higher the memory scores, the more connected with positive 

correlations the modules were. Dehaene et al. (1998) proposed a hypothesis concerning the brain 

processes underlying effortful tasks such as the Stroop task. They showed by simulation that a 

unique global workspace composed of distributed neurons with long-distance connectivity can be 

mobilized in effortful tasks to interconnect multiple distributed and specialized areas when the 

modular perceptual, motor, memory, evaluative, and attentional processors do not suffice. Here, we 

observed that workspace neurons were present in each module, but we further observed that these 

modules were more or less positively or negatively intercorrelated depending on memory scores. 

When memory scores were high, modules were then positively correlated and usually included the 

specific quadruplet (Hip2, Caud, aCing, and MTg1). 

The number of positive minus negative links between modules was also negatively correlated 

with bias measures (CL) in the Hit and FA conditions. When facing a previously smelled odor, 

conservative subjects activated a set of modules that was more negatively interconnected than those 

activated in liberal subjects. This result was unexpected because it relates functional connectivity to 

the liberal or conservative attitudes of individuals, which reflects a trait of their personality. Several 

fundamental dimensions of personality have been proposed (Eysenck, 1967; Rose et al., 2002), 

including extraversion-introversion, which represents the degree to which an individual is outgoing 

and interactive with other people. Extraversion is correlated with the number of false alarms; in 

other words, extraverts adopt more liberal response criteria (Harkins and Geen, 1975; Rose et al., 

2002). As initially proposed by Eysenck (1967), it is now acknowledged that dimensions of 

personality have biological bases (Matthews and Gilliland, 1999). Recent cerebral imaging studies 

have demonstrated the differential involvement of brain structures as a function of personality 

dimensions (Canli et al., 2001; Eisenberger et al., 2005; Rauch et al., 2005; Kim et al., 2008), 

including functional connectivity studies based on resting-state and/or graph theoretical analysis 

(Adelstein et al., 2011; Gao et al., 2013).  
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Limitation of modularity analyses 

Modularity optimization has a resolution limit that may prevent it from detecting modules which 

are comparatively small with respect to the graph as a whole, even when they are well defined 

modules like cliques (Fortunato and Barthelemy, 2007). This limit is also true when weighted 

modularity algorithms (Berry et al., 2011) are used, but is more problematic for very large graphs 

(e.g. web graphs), as pointed out by Fortunato (2010). Due to the small size of the graphs 

considered here (36 nodes), missing the detection of modules composed of 2 or 3 nodes does not 

appear as a real issue. 

Another limitation is that a large value for the modularity maximum does not necessarily mean 

that a graph has a modular structure. Random graphs are supposed to have no modular structure, so 

there is a priori no bias towards special groups of nodes. Still, random graphs may have partitions 

with large modularity values (Guimerà et al., 2004; Reichardt and Bornholdt, 2006). This problem 

is due to fluctuations in the distribution of edges in the graph, which is not homogeneous even if the 

linking probability is constant as in Erdos-Renyi graphs (Fortunato, 2010). We have tried to tackle 

this limitation by computing permutations on each of the correlation matrices, thus disrupting any 

underlying structure, and testing the significance of the original correlation matrix. 

Another caveat is the difficulty to find the optimal partition using heuristics. This is particularly 

observed when the highest modularity values are composed of a plateau of relatively close values, 

each corresponding to different, close to optimum, partitions of the network (Good et al., 2010). 

All of our results have to be interpreted with these limitations in mind. As for any new analysis, 

the physiological relevance of the functional networks of olfactory memory would need replications 

based on similar or related protocols and involving other related clustering techniques (e.g. spectral 

or hierarchical clustering techniques). 

Conclusions 

We innovatively applied modular decomposition in the frame of a cognitive task, odor 



Functional networks in Olfactory Memory  Meunier et al. 

31 

recognition memory. We used, for the first time, a modularity quality function for weighted and 

signed graphs, allowing us to retain information about positive and negative correlations between 

structures. We further developed statistical methods to validate our results and correlated 

modularity values with behavioral performance. We demonstrated that 1) the functional networks 

during an odor recognition memory task are modular; 2) modular partitions of functional 

connectivity were more homogeneous in young than elderly subjects; 3) in young subjects, 

partitions were more homogeneous for correct recognition memory (Hit, CR) than for incorrect 

recognition memory (Miss, FA); 4) the Hit responses of subjects were concomitant with the 

activation of a module, including a set of eight specific areas (particularly the quadruplet of the 

hippocampus, caudate nucleus, and anterior cingulate and middle temporal gyri); 5) during a Hit, 

the higher the memory score, the more connected with positive correlations the modules were; 6) 

during a yes response (Hit or FA), the higher the bias score, the less connected with positive 

correlations the modules were: links were mainly positive when subjects were liberal and mainly 

negative when they were conservative. In brief, we provided evidence that the modular structure of 

functional networks is related to memory performance and personality traits. 
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