

An Organocatalytic Two-atom Ring Expansion Approach to Optically Active Glutarimides

Yun-Long Wei, Yajun Ren, Damien Mailhol, Michel Rajzmann, Jean Rodriguez, Yoann Coquerel

▶ To cite this version:

Yun-Long Wei, Yajun Ren, Damien Mailhol, Michel Rajzmann, Jean Rodriguez, et al.. An Organocatalytic Two-atom Ring Expansion Approach to Optically Active Glutarimides. Advanced Synthesis and Catalysis, 2019, 361, pp.2992-3001. 10.1002/adsc.201900159. hal-02331641

HAL Id: hal-02331641

https://hal.science/hal-02331641

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An Organocatalytic Two-atom Ring Expansion Approach to Optically Active Glutarimides

Yun-Long Wei, ^a Yajun Ren, ^a Damien Mailhol, ^a Michel Rajzmann, ^a Jean Rodriguez, ^a, * and Yoann Coquerel ^a, *

^a Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France fax: +33 491 289 187

E-mail: jean.rodriguez@univ-amu.fr; yoann.coquerel@univ-amu.fr

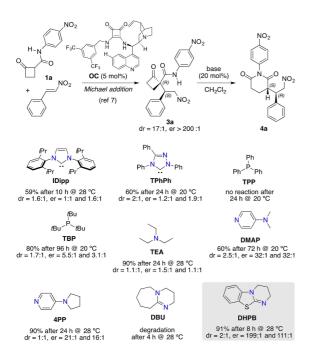
Abstract: An original two-step organocatalytic synthesis of optically active glutarimides from 2-oxocyclobutane carboxamides is described featuring an isothiourea-catalyzed two-atom ring-expansive rearrangement.

Keywords: Nitrogen heterocycles; Organocatalysis; Rearrangement; Ring expansion; Strained molecules

The glutarimide moiety, that is to say the piperidine-2,6-dione skeleton, can be found in many natural and non-natural products having various biological properties such as antibacterial, antitumoral and anti-inflammatory activities, and several marketed drugs contain a chiral glutarimide unit (Figure 1).^[1] While the synthesis of chiral glutarimides in the racemic series is now enabled at the industrial scale, there have been only few enantioselective methods reported to synthesize glutarimides in non-racemic forms.^[2] Actually, three approaches have been considered so far, relying either i) on the α -functionalization of preformed glutarimides,^[3] ii) on (3+3) annulation processes from secondary amides,^[4] and more originally iii) on the

Figure 1. Selected structurally simple natural (left) and non-natural (right) biologically active glutarimides.

two-atom ring contraction of eight-membered benzazocinones (Scheme 1).^[5] Herein we propose a complementary organocatalytic approach that relies on a basecatalyzed ring rearrangement of 2-oxocyclobutane carboxamides resulting in a two-atom ring expansion (Scheme 1)


In early experiments, it was observed that the 2-oxocyclobutane carboxamide 1 a could be catalytically rearranged into the corresponding glutarimide 2 a ensuing a two-atom ring expansion, using the N-heterocyclic carbene (NHC) IDipp as the catalyst (Scheme 2). Anecdotally, the four-membered ring substrate 1 a was conveniently prepared through the ring-contractive Wolff rearrangement of 2-diazo-cyclopentane-1,3-dione in the presence of 4-nitroaniline, [6] and the synthesis of glutarimide 2 a is thus based on a

$$\alpha$$
-functionalization (ref 3) α -functionalization (ref 4) α -functionalization α -functionalization α -functionalization α -functionalization α -functionalization α -functionalization α -functionalization (ref 5a) α -functionalization α -functionalization (ref 5b) α -functionalization α -funct

Scheme 1. Enantioselective synthetic approaches to glutarimides

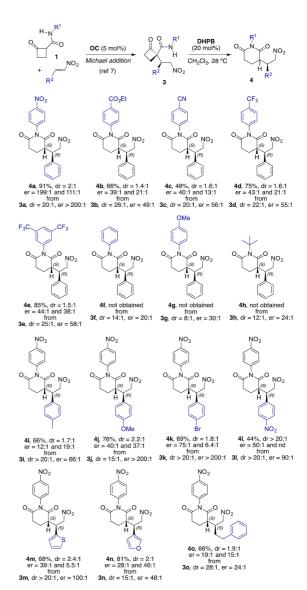
Scheme 2. Early observation of the base-catalyzed ring rearrangement of the 2-oxocyclobutane carboxamide 1 a into the glutarimide 2 a.

one-atom ring contraction/two-atom ring expansion sequence. From there, it was anticipated that a similar ring rearrangement would occur with the more complex and highly enantioenriched 2-oxocyclobutane carboxamide 3a derived from the enantioselective organocatalytic Michael addition of cyclobutanone 1a to nitrostyrene catalyzed by the bifunctional aminocatalyst OC, as described in a previous article. [7] Some representative basic catalysts were screened for the conversion of enantiopure 3a (er > 200:1) into the corresponding glutarimide 4a (Scheme 3). The NHCs **IDipp** and **TPhPh** afforded encouraging yields of the expected glutarimide product 4a as mixtures of the two possible diastereomers, albeit as nearly racemic materials, indicating a rapid racemization under these conditions. Similar observations resulted from the trials

Scheme 3. Screening of basic catalysts for the ring rearrangement of 2-oxocyclobutane carboxamide **3a**. The major diastereomer of glutarimide **4a** is depicted.

with tri-tert-butylphosphine (TBP) and triethylamine (TEA). Interestingly, DMAP and its analog 4PP afforded both diastereomers of 4a with this time relatively good retentions of optical purity. In contrast, catalytic triphenylphosphine (TPP) or DBU did not allow the isolation of 4a. Finally, it was found that 20 mol% of **DHPB**^[8] is optimum to promote this ring rearrangement efficiently, allowing the isolation of 4a (dr=2:1) without significant loss of optical purity, indicating negligible racemization processes in that case. It was briefly explored if the two-step sequence could be performed in one-pot conditions, without isolating the intermediate Michael adduct 3a. When 20 mol% DHPB were added to the product reaction mixture of the first step, the glutarimide 4a (dr = 2.4:1) was produced efficiently (quant. by ¹H NMR analysis) after 8 hours at 28 °C but with important racemization (er = 3.3:1 and 8.7:1), showing catalysts incompatibility and a preferred stepwise synthetic sequence.

The stereochemical outcome of the ring rearrangement reaction $3a \rightarrow 4a$ was questioned. The issue of racemization was attributed to catalytic retro-Michael/Michael processes of 3a involving the Brønsted base properties of the various achiral catalysts depicted in Scheme 3. This could be confirmed experimentally by a series of cross-experiments in the case of catalyst **IDipp** (Scheme 4).


Indeed, when the racemic glutarimide **4a** was allowed to react with the nitroolefin having an extra 4-methyl group on the benzene ring in the presence of **IDipp** or **DHPB**, no reaction occurred and **4a** was recovered quantitatively. This indicates that no retro-Michael/Michael process is occurring on the glutarimide product **4a** under these conditions. In contrast, when the racemic 2-oxocyclobutane carboxamide **3a**

Scheme 4. Cross-experiments probing retro-Michael/Michael racemization processes of **3a** with **IDipp** and not with **DHPB**. The major diastereomers are depicted.

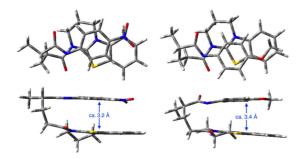
was employed as the substrate with the IDipp catalyst under similar conditions, the glutarimide 4a (43%) could be obtained together with the cross-product glutarimide incorporating the nitroolefin having an extra 4-methyl group (12%). These experiments demonstrate that **IDipp**-catalyzed retro-Michael/Michael processes occurred prior to the ring rearrangement of 3 a. [9] Similar cross-experiments were performed with DHPB instead of IDipp and, as expected, no crossproduct could be detected in these cases showing that DHPB do not catalyze retro-Michael/Michael processes from 3a at a significant rate. The low diastereoselectivity of the transformation 3a-4a is seemingly governed by thermodynamics due to relatively rapid DHPB-catalyzed epimerization at the imide enolizable position in product 4a as recently observed in closely related cases. [5b,10] Supportive to this hypothesis, the relative Gibbs free energies of (S,R)-4 a and its diastereomer (R,R)-epi-4 a were calculated using several density functional theory (DFT) methods, indicating that 4a is the thermodynamic diastereomer, though by only 2.2–3.6 kJ.mol⁻¹ corresponding to a 2.4–4.3:1 ratio at equilibrium (see Supporting Information).

The scope and functional group tolerance of the glutarimides accessible by this approach were explored, first focusing on the electronics of the secondary amide group cyclobutanones in (Scheme 5). It turned out that the two-atom ringexpansive rearrangement is only operative with electron-withdrawing N-aryl amide R¹ substituents, affording the glutarimides 4a-e in good yields and high enantioselectivities. In contrast, cyclobutanones 3f-h having electron-donating amide substituents were unreactive toward DHPB. Then, some representative nitroolefins were screened, which afforded the glutarimides **4i–o** having various aryl, heteroaryl or alkyl R² substituents. The observed slight erosions of er in products 4b-e and 4i-o were attributed to DHPBcatalyzed retro-Michael/Michael processes from the 2oxocyclobutane carboxamides 3b-e and 3i-o, respectively, as demonstrated above for 3a with IDipp (see Scheme 4). Overall, an original enantioselective twostep approach to synthesize optically active glutarimides from 2-oxocyclobutane carboxamides has been discovered based on a two-step Michael/ring rearrangement sequence resulting in a two-atom ring expansion. Using this method, the glutarimide products described herein were generally obtained in good yields and high enantioselectivities, albeit generally as ca. 2:1 mixtures of the two possible diastereomers.

Mechanistically, two distinct scenarios are plausible to account for the observed ring rearrangement $3\rightarrow 4$: i) the basic catalyst is acting as a Brønsted base **BB** generating the corresponding amide isothiouronium salt of 3 to trigger an anionic ring closing/ring expansion sequence leading to 4 (Scheme 6, left), or ii)

Scheme 5. Scope of the reaction. The major diastereomers are depicted. nd=not determined.

the basic catalyst is acting as a nucleophilic Lewis base **LB** promoting a ring opening/ring closing sequence to give **4** (Scheme 6, right). With the intention to gain insight in the intimate mechanism of this original transformation with **DHPB** as the catalyst, we investigated these two scenarios by computational modelization using DFT methods at an appropriate level of theory (see Supporting Information for details). The model transformations $I \rightarrow V$ ($R = NO_2$ and OMe) were selected for this part of the study, and the mechanism involving **DHPB** as a Brønsted base was first considered (Scheme 7). As it could be anticipated,


Scheme 6. Plausible mechanistic scenarios with the catalyst acting as a Brønsted base **BB** (left) or a nucleophilic Lewis base **LB** (right).

Scheme 7. Calculated energy profile for the model transformation $I \rightarrow V$ ($R = NO_2$) with **DHPB** employed as a catalytic Brønsted base [DFT, M06-2X-D/6-311 + + G(d,p) including a solvation model for dichloromethane]. Energies are Gibbs free energies expressed in kJ.mol⁻¹.

the ring rearrangement of the anion II directly derived from I into the anion IV precursor of V was found a two-step process proceeding via the bicyclic intermediate III. The reaction barrier of the overall rearrange-

Scheme 8. Calculated energy profile for the model transformation $I \rightarrow V$ ($R = NO_2$ and R = OMe) with **DHPB** employed as a catalytic Lewis base [DFT, M06-2X-D/6-311 + + G(d,p) including a solvation model for dichloromethane]. Energies are Gibbs free energies expressed in kJ.mol⁻¹, and significant interactions are highlighted in brown color with inter atomic distances provided for the $R = NO_2$ series.

ment was calculated at $+113.7 \text{ kJ.mol}^{-1}$ from the substrate I with $R = NO_2$ (see Supporting Information for details). The alternative mechanism involving **DHPB** as a catalytic nucleophilic Lewis base was then examined (Scheme 8). In this case it was found that the reaction is initiated by the formation of the ephemeral tetrahedral intermediate VI resulting from the addition of **DHPB** to the ketone carbonyl group with relatively low barriers. The fragmentation of VI into the acyl isothiouronium intermediate VII was computed as the rate limiting step in both the $R = NO_2$ and R = OMe series, with reaction barriers at +86.7 and +111.5 kJ.mol⁻¹, respectively. Then, a thermodynamically favored tautomery can afford intermediate VIII with this time the negative charge located on the nitrogen atom of the amide group. The relatively important stabilization energies in the zwitterionic intermediates VIII (R=NO2 and OMe) was attributed, at least in part, to strong π donor-acceptor stabilizing interactions between the negatively charged N-aryl amide planar moiety and the positively charged acyl isothiouronium planar moiety, with interplanar distances of ca. 3.2 Å for $R = NO_2$ and 3.4 Å for R = OMe(Figure 2). Finally, intermediate VIII can cyclize in an irreversible manner to afford the glutarimide product V and regenerate the catalyst. Overall, these calculations with DHPB as the catalyst indicate i) that both

Figure 2. Top and side views of optimized geometries for intermediates **VIII** with R = NO2 (left) and R = OMe (right).

mechanisms are energetically possible, ii) that the mechanism involving the catalyst as a nucleophilic Lewis base is kinetically favored, and iii) that the reaction with R=OMe would proceed at an extremely slow rate under the reaction conditions, which is in perfect agreement with the experimental results (see compound 4g not obtained in Scheme 5). In order to confirm this substituent effect, the analog of 1 a having a OMe substituent in place of the NO2 group was allowed to react with DHPB (20 mol%) in dichloromethane without promoting a detectable reaction after 14 h. Overall, it seems that the ring rearrangement of 2-oxocyclobutane carboxamides into glutarimides catalyzed by **DHPB** described herein proceeded via acyl isothiouronium intermediates of type VII/VIII.[11] Of course, these conclusions are only valid for DHPB, and it cannot be excluded that the other operative catalysts depicted in Scheme 3 behave otherwise. [12]

In summary, an original approach was discovered for the synthesis of optically active glutarimides. It is based on a two-step organocatalytic approach involving an enantioselective Michael addition of 2-oxocyclobutane carboxamides to nitroolefins using a chiral bifunctional aminocatalyst, followed by a two-atom ring-expansive rearrangement catalyzed by an achiral isothiourea catalyst. The glutarimide products prepared by this approach were generally obtained as mixtures of the two possible diastereomers in good yields and high enantioselectivities. Stereochemical outcomes were rationalized, and a computational mechanistic study showed that the ring rearrangement step is seemingly promoted by the nucleophilicity and Lewis basicity of the isothiourea catalyst.

Experimental Section

General Information

See the Supporting Information.

Synthesis of 2-oxocyclobutane Carboxamides 3

The syntheses and characterization data of optically active $\bf 3\,a$, $\bf 3\,e$ – $\bf h$, and $\bf 3\,j$ – $\bf o$ were reported in a previous article. [7] Optically active $\bf 3\,b$ – $\bf d$ and $\bf 3\,i$ were prepared following the same procedure and their characterization data are provided below. All racemic 2-oxocyclobutane carboxamides $\bf 3\,a$ – $\bf o$ were prepared from the corresponding unsubstituted 2-oxocyclobutane carboxamides $\bf 1^{[6a]}$ and the corresponding nitroolefins using the polystyrene-supported phosphazene catalyst known as P-BEMP. [13]

Compound 3 b: Following the general procedure, ^[7] the reaction between the 2-oxocyclobutane carboxamide 1 (R1=4-CO₂Et-C₆H₄, 100 mg, 0.36 mmol) and nitrostyrene (45 mg, 0.30 mmol) in anhydrous dichloromethane (2 mL) with catalyst OC (9 mg, 0.015 mmol) for 14 h afforded the 2-oxocyclobutane carboxamide **3b** (94 mg, 76% yield, dr=26:1, er=49:1) as a white solid. $R_f = 0.40$ (petrol ether/ethyl acetate, 2:1). Mp = 182–184 °C (amorphous). $[\alpha]_D^{25} = -153.3$ (c = 1.0, CHCl₃). **HRMS** (ESI+) m/z calcd for $C_{22}H_{23}N_2O_6^+$ [M+H]⁺= 411.1551, found=411.1551. ¹**H** NMR (400 MHz, CDCl₃) major diastereomer: δ 8.26 (br s, 1H), 8.02 (d, J=8.4 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.40 - 7.31 (m, 3H), 7.30 - 7.26 (m, 2H), 4.97 (dd, J = 14.0, 10.6 Hz, 1H), 4.86 (dd, J = 14.0, 5.0 Hz, 1H), 4.36 (q, J=7.1 Hz, 2H), 4.23 (dd, J=10.6, 5.0 Hz, 1H), 2.82 (ddd, J=15.1, 10.2, 4.1 Hz, 1H), 2.63-2.45 (m, 1H), 2.40-2.17 (m, 2H), 1.38 (t, J=7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 208.7 (C), 166.0 (C), 165.7 (C), 140.9 (C), 133.4 (C), 130.9 (2CH), 129.4 (2CH), 129.1 (CH), 128.5 (2CH), 127.0 (C), 119.4 (2CH), 76.2 (C), 74.7 (CH₂), 61.1 (CH₂), 47.0 (CH), 44.5 (CH₂), 17.9 (CH₂), 14.4 (CH₃). HPLC: Chiralpak IE eluted with 1:1 heptane/ ethanol at 1 mL/min at 25 °C, UV detection at 270 nm, retention times: major enantiomer 7.88 min, minor enantiomer 10.00 min.

Compound 3c: Following the general procedure, $^{[7]}$ the reaction between the 2-oxocyclobutane carboxamide 1 (R¹=4-CN-C₆H₄, 77 mg, 0.36 mmol) and nitrostyrene (45 mg, 0.30 mmol) in anhydrous dichloromethane (2 mL) with catalyst OC (9 mg, 0.015 mmol) for 14 h afforded the 2-oxocyclobutane carboxamide 3c (72 mg, 66% yield, dr=20:1, er=56:1) as a white solid. $R_f = 0.51$ (petrol ether/ethyl acetate, 2:1). Mp = 136-138 °C (amorphous). $[\alpha]_{D}^{25} = -127.4$ (c = 1.0, CHCl₃). **HRMS** (ESI+) m/z calcd for $C_{20}H_{18}N_3O_4^+$ $[M+H]^+=$ 364.1292, found = 364.1290. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.32 (br s, 1H), 7.61 (br s, 4H), 7.40-7.32 (m, 3H), 7.29–7.26 (m, 2H), 4.96 (dd, J=14.0, 10.2 Hz, 1H), 4.85 (dd, J=14.0, 5.2 Hz, 1H), 4.24 (dd, J=10.2, 5.2 Hz, 1H), 2.82 (ddd, J=15.1, 10.2, 4.5 Hz, 1H), 2.63–2.44 (m, 1H), 2.43–2.18 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 208.5 (C), 165.9 (C), 140.8 (C), 133.3 (2CH), 133.3 (C), 129.4 (2CH), 129.1 (C), 128.4 (2CH), 120.1 (2CH), 118.6 (CH), 108.1 (C), 77.1 (C), 74.6 (CH₂), 46.8 (CH), 44.5 (CH₂), 17.8 (CH₂). HPLC: Chiralpak IA eluted with 1:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 240 nm, retention times: major enantiomer 6.07 min, minor enantiomer 9.23 min.

Compound 3 d: Following the general procedure, $^{[7]}$ the reaction between the 2-oxocyclobutane carboxamide **1** (R^1 =4- CF_3 - C_6 H₄, 93 mg, 0.36 mmol) and nitrostyrene (45 mg, 0.30 mmol) in anhydrous dichloromethane (2 mL) with catalyst

OC (9 mg, 0.015 mmol) for 14 h afforded the 2-oxocyclobutane carboxamide 3 d (100 mg, 82% yield, dr = 22:1, er = 55:1) as a white solid. $R_f = 0.60$ (petrol ether/ethyl acetate, 2:1). Mp= 131-133 °C (amorphous). $[\alpha]_{\mathbf{D}}^{25} = -124.6$ (c = 1.0, CHCl₃). **HRMS** (ESI+) m/z calcd for $C_{20}H_{18}F_{3}N_{2}O_{4}^{+}$ [M+H]⁺= 407.1213, found=407.1213. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.25 (br s, 1H), 7.56–7.64 (m, 4H), 7.42– 7.32 (m, 3H), 7.28 (dd, J=7.7, 1.7 Hz, 2H), 4.97 (dd, J=14.0, 10.4 Hz, 1H), 4.87 (dd, J=14.0, 5.1 Hz, 1H), 4.24 (dd, J=10.3, 5.1 Hz, 1H), 2.82 (ddd, J=15.1, 10.2, 4.1 Hz, 1H), 2.60– 2.46 (m, 1H), 2.41-2.19 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 208.7 (C), 165.9 (C), 139.9 (C), 133.4 (C), 129.4 (2CH), 129.1 (CH), 128.5 (2CH), 126.9 (q, $J_{C-F} = 28 \text{ Hz}$, C), 126.4 (q, $J_{C-F} = 4 \text{ Hz}$, 2CH), 123.9 (q, $J_{C-F} = 4 \text{ Hz}$ 270 Hz, C), 120.0 (2CH), 76.1 (C), 74.7 (CH₂), 47.0 (CH), 44.5 (CH₂), 17.9 (CH₂). ${}^{19}F{}^{13}C$ NMR (282 MHz, CDCl₃): δ -62.3. HPLC: Chiralpak IA eluted with 7:3 heptane/ethanol at 1 mL/ min at 25 °C, UV detection at 254 nm, retention times: major enantiomer 6.33 min, minor enantiomer 12.95 min.

Compound 3i: Following the general procedure, [7] the reaction between the 2-oxocyclobutane carboxamide 1 (R1=4-NO₂-C₆H₄, 76 mg, 0.33 mmol) and (E)-1-methyl-4-(2-nitrovinyl)benzene (45 mg, 0.27 mmol) in anhydrous dichloromethane (2 mL) with catalyst OC (8 mg, 0.013 mmol) for 16 h afforded the 2-oxocyclobutane carboxamide 3i (70 mg, 65% yield, dr > 20:1, er = 66:1) as a white solid. R_f = 0.50 (petrol ether/ethyl acetate, 2:1). Mp = 81-83 °C (amorphous). $[\alpha]_{\rm p}^{25}$ = -85.5 (c=0.5, CHCl₃). **HRMS** (ESI+) m/z calcd for $C_{20}H_{20}N_3O_6^+$ $[M+H]^+ = 398.1347$, found = 398.1345. NMR (400 MHz, CDCl₃) major diastereomer: δ 8.43 (br s, 1H), 8.24 (d, J=9.0 Hz, 2H), 7.69 (d, J=9.0 Hz, 2H), 7.23–7.11 (m, 4H), 4.94 (dd, J=13.9, 10.1 Hz, 1H), 4.84 (dd, J=13.9, 5.3 Hz, 1H), 4.21 (dd, J=10.1, 5.3 Hz, 1H), 2.84 (ddd, J=18.2, 10.1, 4.3 Hz, 1H), 2.61-2.51 (m, 1H), 2.43-2.23 (m, 2H), 2.33 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 208.9 (C), 166.3 (C), 144.3 (C), 142.6 (C), 139.3 (C), 130.2 (2 CH), 130.1 (C), 128.4 (2CH), 125.3 (2CH), 119.8 (2CH), 76.3 (C), 74.8 (CH₂), 46.7 (CH), 44.7 (CH₂), 21.2 (CH₃), 17.8 (CH₂). HPLC: Chiralpak IG eluted with 7:3 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 254 nm, retention times: major enantiomer 11.23 min, minor enantiomer 20.37 min.

General Procedure for the Ring Rearrangement

To a solution of 2-oxocyclobutane carboxamide **3** (ca. 0.2 mmol) in anhydrous dichloromethane (ca. 2 mL) was added the catalyst **DHPB** (20 mol%). The reaction was stirred at 28 °C for the time indicated below with periodical monitoring by TLC analysis, concentrated under vacuum and directly purified by flash chromatography to give the glutarimide product **4**.

Compound 4a: Following the general procedure, **3a** (43 mg, 0.11 mmol, dr=20:1, er >200:1) reacted with **DPHB** (4 mg, 0.021 mmol) for 8 h to provide **4a** (39 mg, 91%, dr=2:1, er=199:1 and 111:1) as a white solid. R_f =0.30 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{19}H_{18}N_3O_6^+$ [M+H]⁺=384.1190, found=384.1190. ¹H **NMR** (400 MHz, CDCl₃) major diastereomer: δ 8.32 (d, J=9.0 Hz, 2H), 7.44–7.33 (m, 3H), 7.29–7.21 (m, 3H), 7.17 (d, J=8.9 Hz, 1H), 5.22 (dd, J=13.4, 7.6 Hz, 1H), 5.02 (dd, J=13.3, 7.6 Hz, 1H), 4.06

(ddd, J=7.6, 7.6, 3.5 Hz, 1H), 3.18 (ddd, J=12.0, 5.1, 3.6 Hz,1H), 2.84 (ddd, J = 17.4, 4.2, 4.2 Hz, 1H), 2.79–2.63 (m, 1H), 2.22-2.10 (m, 1H), 2.03 (dd, J=12.4, 4.7 Hz, 1H); minor diastereomer: δ 8.32 (d, J=9.0 Hz, 2H), 7.44–7.33 (m, 3H), 7.29–7.21 (m, 3H), 7.17 (d, J=8.9 Hz, 1H), 5.14 (dd, J=13.5, 7.4 Hz, 1H), 4.77 (dd, J = 13.5, 7.3 Hz, 1H), 4.17 (ddd, J = 7.5, 7.5, 7.5 Hz, 1H), 3.07 (ddd, J = 8.9, 8.9, 4.9 Hz, 1H), 2.92 (ddd, J=17.9, 6.8, 4.8 Hz, 1H), 2.79–2.63 (m, 1H), 1.97 (dd, J=12.7, 4.6 Hz, 1H), 1.71–1.83 (m, 1H). ¹³C{¹H} NMR (100 MHz, d8-tetrahydrofuran) major diastereomer: δ 172.6 (C), 170.7 (C), 147.5 (C), 142.0 (C), 137.7 (C), 130.1 (2CH), 128.7 (2CH), 128.6 (2CH), 127.7 (CH), 123.6 (2CH), 76.4 (CH₂), 45.9 (CH), 44.7 (CH), 32.2 (CH₂), 20.6 (CH₂); minor diastereomer: 8 172.7 (C), 170.7 (C), 147.5 (C), 142.0 (C), 137.5 (C), 130.1 (2CH), 128.6 (2CH), 127.7 (CH), 123.6 (2CH), 77.6 (CH₂), 44.7 (CH), 43.1 (CH), 31.0 (CH₂), 20.1 (CH2). HPLC: Chiralpak IC eluted with 1:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 205 and 230 nm, retention times: major diastereomer 8.10 min (major enantiomer) and 6.38 min (minor enantiomer), minor diastereomer 6.98 min (major enantiomer) and 9.13 min (minor enantiomer).

Compound 4b: Following the general procedure, 3b (65 mg, 0.16 mmol, dr = 26:1, er = 49:1) reacted with **DPHB** (6 mg, 0.032 mmol) for 48 h to provide **4b** (43 mg, 66%, dr = 1.4:1, er = 39:1 and 21:1) as a white solid. R_f = 0.35 (petrol ether/ethyl acetate, 3:1). HRMS (ESI+) m/z calcd for $C_{22}H_{23}N_2O_6^+$ [M+ H]⁺=411.1551, found=411.1552. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.14 (d, J=8.9 Hz, 2H), 7.44– 7.20 (m, 5H), 7.05 (d, J=8.9 Hz, 2H), 5.20 (dd, J=13.5, 7.1 Hz, 1H), 5.05 (dd, J = 13.5, 8.1 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 4.02 (ddd, J=7.6, 7.6, 3.6 Hz, 1H), 3.16 (ddd, J=12.0, 5.1, 3.7 Hz, 1H), 2.78 (ddd, J=12.5, 8.4, 4.3 Hz, 1H), 2.74– 2.59 (m, 1H), 2.15–1.67 (m, 2H), 1.39 (t, J=7.1 Hz, 3H); minor diastereomer: δ 8.14 (d, J=8.9 Hz, 2H), 7.44–7.20 (m, 5H), 7.12 (d, J=8.9 Hz, 2H), 5.16 (dd, J=13.3, 6.9 Hz, 1H), 4.78 (dd, J=13.3, 8.0 Hz, 1H), 4.39 (q, J=7.1 Hz, 2H), 4.16 (dd, J=15.3, 8.0 Hz, 1H), 3.03 (ddd, J=9.3, 9.3, 4.9 Hz, 1H),2.88 (ddd, J = 17.9, 6.5, 4.8 Hz, 1H), 2.74–2.59 (m, 1H), 2.15– 1.67 (m, 2H), 1.39 (t, J=7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 172.8 (C), 171.2 (C), 165.7 (C), 139.0 (C), 136.0 (C), 130.9 (C), 130.6 (2CH), 129.2 (2CH), 128.8 (2CH), 128.7 (CH), 128.5 (2CH), 78.1 (CH₂), 61.2 (CH₂), 45.4 (CH), 44.8 (CH₂), 32.3 (CH₂), 21.5, (CH₂) 14.3 (CH₃); minor diastereomer: δ 172.9 (C), 171.2 (C), 165.7 (C), 139.0 (C), 136.3 (C), 130.9 (C), 129.4 (2CH), 128.6 (2CH), 128.7 (CH), 128.6 (2CH), 128.2 (2CH), 77.2 (CH₂), 61.2 (CH₂), 44.8 (CH), 43.7 (CH₂), 31.2 (CH₂), 20.5 (CH₂), 14.3 (CH₃). **HPLC**: Chiralpak IA eluted with 1:1 heptane/ethanol at 1 mL/ min at 25 °C, UV detection at 220 nm, retention times: major diastereomer 22.26 min (major enantiomer) and 35.51 min (minor enantiomer), minor diastereomer 41.26 min (major enantiomer) and 32.57 min (minor enantiomer).

Compound 4c: Following the general procedure, **3c** (50 mg, 0.14 mmol, dr=20:1, er=56:1) reacted with **DPHB** (5 mg, 0.026 mmol) for 72 h to provide **4c** (24 mg, 48%, dr=1.6:1, er=40:1 and 13:1) as a white solid. R_f =0.28 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{20}H_{21}N_4O_4^+$ [M+NH₄]⁺=381.1557, found=381.1556. ¹H **NMR** (400 MHz, CDCl₃) major diastereomer: δ 7.74 (d, J=8.7 Hz, 2H), 7.42–7.32 (m, 3H), 7.26–7.20 (m, 2H), 7.11 (d, J=8.7 Hz, 2H), 5.20

(dd, J=13.4, 7.5 Hz, 1H), 5.02 (dd, J=13.3, 7.7 Hz, 1H), 4.05(ddd, J=7.6, 3.6, 3.6 Hz, 1H), 3.16 (ddd, J=12.0, 5.1, 3.6 Hz,1H), 2.81 (ddd, J = 17.4, 4.3, 4.3 Hz, 1H), 2.77–2.64 (m, 1H), 2.19-2.09 (m, 1H), 2.06-1.92 (m, 1H); minor diastereomer: δ 7.75 (d, J = 8.7 Hz, 2H), 7.44–7.32 (m, 3H), 7.24–7.20 (m, 2H), 7.18 (d, J = 8.7 Hz, 2H), 5.14 (dd, J = 13.5, 7.3 Hz, 1H), 4.76 (dd, J=13.5, 7.4 Hz, 1H), 4.16 (ddd, J=7.5, 7.5, 7.5 Hz, 1H), 3.05 (ddd, J=8.9, 8.9, 4.9 Hz, 1H), 2.90 (ddd, J=17.9, 6.8, 4.8 Hz, 1H), 2.77-2.64 (m, 1H), 2.06-1.92 (m, 1H), 1.79-1.70 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 172.7 (C), 171.1 (C), 139.2 (C), 136.1 (C), 133.2 (2CH), 129.8 (2CH), 129.4 (2CH), 128.9 (CH), 128.8 (2CH), 118.1 (C), 113.0 (C), 77.3 (CH₂), 45.8 (CH), 45.5 (CH), 32.4 (CH₂), 21.5 (CH₂); minor diastereomer: δ 172.9 (C), 171.2 (C), 139.2 (C), 136.3 (C), 133.2 (2CH), 129.8 (2CH), 129.6 (2CH), 128.8 (CH), 128.3 (2CH), 118.2 (C), 113.0 (C), 78.0 (CH₂), 45.0 (CH), 43.6 (CH), 31.1 (CH₂), 20.5 (CH₂). HPLC: Chiralpak IC eluted with 7:3 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 220 nm, retention times: major diastereomer 17.05 min (major enantiomer) and 11.83 min (minor enantiomer), minor diastereomer 13.49 min (major enantiomer) and 19.19 min (minor enantiomer).

Compound 4d: Following the general procedure, 3d (72 mg, 0.18 mmol, dr = 22:1, er = 55:1) reacted with **DPHB** (7 mg, 0.037 mmol) for 72 h to provide 4d (54 mg, 75%, dr=1.6:1, er = 43:1 and 21:1) as a white solid. R_f = 0.45 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{20}H_{18}F_3N_2O_4^+$ [M +H]⁺=407.1213, found=407.1213. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 7.75 (d, J=8.7 Hz, 2H), 7.43– 7.38 (m, 3H), 7.24–7.33 (m, 2H), 7.14 (d, J=8.7 Hz, 2H), 5.23 (dd, J=13.4, 7.3 Hz, 1H), 5.07 (dd, J=13.4, 7.9 Hz, 1H), 4.05(ddd, J=7.6, 7.6, 3.6 Hz, 1H), 3.19 (ddd, J=12.0, 5.1, 3.6 Hz,1H), 2.83 (ddd, J = 17.4, 4.3, 4.3 Hz, 1H), 2.76–2.62 (m, 1H), 2.14 (ddd, J = 17.5, 9.1, 5.2 Hz, 1H), 2.06-1.93 (m, 1H); minordiastereomer: δ 7.75 (d, J = 8.7 Hz, 2H), 7.43–7.38 (m, 3H), 7.24–7.33 (m, 2H), 7.21 (d, J=8.7 Hz, 2H), 5.17 (dd, J=13.4, 7.1 Hz, 1H), 4.79 (dd, J = 13.4, 7.7 Hz, 1H), 4.19 (dd, J = 15.4, 7.6 Hz, 1H), 3.08 (ddd, J=9.2, 9.2, 4.9 Hz, 1H), 2.93 (ddd, J=17.9, 6.7, 4.8 Hz, 1H), 2.76–2.66 (m, 1H), 2.06–1.93 (m, 1H), 1.77 (ddd, J=14.2, 9.6, 4.7 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 172.9 (C), 171.2 (C), 138.3 (C), 136.1 (C), 131.1 (q, J_{C-F} =32.6 Hz, C), 129.4 (2CH), 129.1 (2CH), 128.9 (2CH), 128.8 (CH), 126.6 (q, J_{C-F} = 3.7 Hz, 2CH), 123.8 (q, J_{C-F} =270 Hz, CF₃), 77.4 (CH₂), 45.9 (CH), 45.5 (CH), 32.4 (CH₂), 21.6 (CH₂); minor diastereomer: δ 173.0 (C), 171.3 (C), 138.2 (C), 136.4 (C), 131.1 (q, J_{C-F} =32.6 Hz, C), 129.5 (2CH), 129.2 (2CH), 128.7 (CH), 128.3 (2CH), 126.5 (q, J_{C-F} = 3.7 Hz, 2CH), 123.7 (q, J_{C-F} = 270 Hz, CF₃), 78.1 (CH₂), 45.0 (CH), 43.7 (CH), 31.2 (CH₂), 20.6 (CH₂). ¹⁹F{¹³C} NMR (282 MHz, CDCl₃) major diastereomer: δ –62.7; minor diastereomer: δ -62.7. **HPLC**: Chiralpak IC eluted with 8:2 heptane/ ethanol at 1 mL/min at 25 °C. UV detection at 235 nm. retention times: major diastereomer 11.67 min (major enantiomer) and 8.25 min (minor enantiomer), minor diastereomer 9.46 min (major enantiomer) and 15.33 min (minor enantiomer).

Compound 4e: Following the general procedure, **3e** (91 mg, 0.19 mmol, dr=25:1, er=58:1) reacted with **DPHB** (7 mg, 0.037 mmol) for 24 h to provide **4e** (77 mg, 85%, dr=1.5:1, er=44:1 and 38:1) as a colorless oil. R_f =0.60 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{21}H_{20}$

 $F_6N_3O_4^+$ [M+NH₄]⁺=492.1353, found=492.1350. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 7.92 (s, 1H), 7.53-7.35 (m, 5H), 7.26–7.19 (m, 2H), 5.21 (dd, J=13.4, 7.5 Hz, 1H), 5.03 (dd, J=13.4, 7.8 Hz, 1H), 4.03 (ddd, J=7.6, 7.6, 3.5 Hz, 1H), 3.18 (ddd, J=11.9, 5.2, 3.5 Hz, 1H), 2.82 (dd, J=17.4, 4.2, 4.2 Hz, 1H), 2.77-2.61 (m, 1H), 2.23-2.12 (m, 1H), 2.07-1.90 (m, 1H); minor diastereomer: δ 7.92 (s, 1H), 7.53-7.35 (m, 5H), 7.26–7.19 (m, 2H), 5.14 (dd, J=13.4, 7.3 Hz, 1H), 4.78 (dd, J=13.4, 7.6 Hz, 1H), 4.19 (ddd, J=7.6, 7.6, 7.6 Hz, 1H), 3.06 (ddd, J=9.7, 8.1, 4.9 Hz, 1H), 2.91 (ddd, J=17.9, 6.2, 4.7 Hz, 1H), 2.77-2.61 (m, 1H), 2.07-1.90 (m, 1H), 1.77 (dddd, J=14.4, 10.1, 10.1 4.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 172.8 (C), 171.0 (C), 136.5 (C), 135.8 (C), 132.8 (q, J_{C-F} =34.3 Hz, 2CF₃), 129.5 (2CH), 129.3 (2CH), 128.9 (CH), 128.8 (2CH), 122.8 (q, J_{C-F} = 273.7 Hz, 2CF₃), 122.8 (q, J_{C-F} =3.7 Hz, CH), 77.2 (CH₂), 45.9 (CH), 45.5 (CH), 32.2 (CH₂), 21.4 (CH₂); minor diastereomer: δ 172.9 (C), 171.1 (C), 136.5 (C), 136.1 (C), 132.8 (q, J_{C-F} = 34.3 Hz, 2CF₃), 129.4 (2CH), 129.3 (2CH), 128.7 (2CH), 128.7 (CH), 132.7 (q, J_{C-F} =272.7 Hz, 2CF₃), 122.8 (q, J_{C-F} =3.7 Hz, CH), 78.0 (CH₂), 44.9 (CH), 43.7 (CH), 31.3 (CH₂), 20.4 (CH₂). $^{19}F\{^{13}C\}$ NMR (282 MHz, CDCl₃) major diastereomer: δ -62.8; minor diastereomer: δ -62.9. **HPLC**: Chiralpak IF eluted with 9:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 210 nm, retention times: major diastereomer 13.26 min (major enantiomer) and 6.20 min (minor enantiomer), minor diastereomer 7.38 min (major enantiomer) and 8.19 min (minor enantiomer).

Compound 4i: Following the general procedure, 3i (65 mg, 0.16 mmol, dr = 26:1, er = 49:1) reacted with **DPHB** (6 mg, 0.032 mmol) for 48 h to provide 4i (43 mg, 66%, dr = 1.7:1, er = 12:1 and 19:1) as a white solid. R_f = 0.30 (petrol ether/ethyl acetate, 2:1). HRMS (ESI+) m/z calcd for $C_{20}H_{20} N_3 O_6^+$ [M+ $H]^{+} = 398.1347$, found = 398.1345. ${}^{1}H$ NMR (400 MHz, CDCl₃) major diastereomer: δ 8.32 (d, J=8.7 Hz, 2H), 7.25– 7.09 (m, 6H), 5.20 (dd, J=13.3, 7.6 Hz, 1H), 4.99 (dd, J=13.3, 7.7 Hz, 1H), 4.00 (ddd, J=7.7, 7.7, 3.6 Hz, 1H), 3.15 (ddd, J=11.8, 5.2, 3.5 Hz, 1H), 2.82 (ddd, J=17.5, 4.4, 4.4 Hz,1H), 2.72-2.63 (m, 1H), 2.36 (s, 3H), 2.20-2.12 (m, 1H), 2.08-1.94 (m, 1H); minor diastereomer: δ 8.32 (d, J = 8.7 Hz, 2H), 7.25–7.10 (m, 6H), 5.11 (dd, J=13.4, 7.4 Hz, 1H), 4.74 (dd, J=13.4, 7.4 Hz, 1H), 4.13 (ddd, <math>J=7.6, 7.6, 7.6 Hz, 1H), 3.04(ddd, J=8.7, 7.6, 4.9 Hz, 1H), 2.91 (ddd, J=18.0, 7.0, 4.7 Hz,1H), 2.78-2.72 (m, 1H), 2.36 (s, 3H), 2.08-1.94 (m, 1H), 1.77 (dddd, J = 14.0, 9.3, 9.3, 4.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz. CDCl₃) major diastereomer: δ 173.4 (C), 171.4 (C), 148.2 (C), 142.8 (C), 138.2 (C), 135.3 (C), 130.9 (2CH), 130.0 (2CH), 129.4 (2CH), 124.4 (2CH), 77.4 (CH₂), 46.7 (CH), 45.3 (CH), 32.9 (CH₂), 21.4 (CH₂), 20.9 (CH₃); minor diastereomer: δ 173.5 (C), 171.5 (C), 148.2 (C), 142.8 (C), 138.1 (C), 135.1 (C), 130.9 (2CH), 130.0 (2CH), 129.2 (2CH), 124.4 (2CH), 78.5 (CH₂), 45.5 (CH), 43.6 (CH), 32.6 (CH₂), 20.9 (CH₂), 20.8 (CH₃). HPLC: Chiralpak ID eluted with 1:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 260 nm, retention time: major diastereomer 17.06 min (major enantiomer) and 9.31 min (minor enantiomer), minor diastereomer 13.02 min (major enantiomer) and 11.14 min (minor enantiomer).

Compound 4j: Following the general procedure, **3j** (50 mg, 0.12 mmol, dr = 15:1, er > 200:1) reacted with **DPHB** (5 mg, 0.026 mmol) for 18 h to provide **4j** (38 mg, 76%, dr = 2.2:1,

er = 40:1 and 37:1) as a white solid. R_f = 0.28 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{20}H_{20} N_3O_7^+$ [M+ $H_1^+ = 414.1296$, found = 414.1300. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.31 (d, J=8.7 Hz, 2H), 7.17 (d, J=8.7 Hz, 2H), 7.16 (d, J=8.7 Hz, 2H), 6.89 (d, J=8.7 Hz, 2H), 5.18 (dd, J = 13.3, 7.5 Hz, 1H), 5.00 (dd, J = 13.3, 7.8 Hz, 1H), 3.97 (ddd, J=7.7, 7.7, 3.6 Hz, 1H), 3.82 (s, 3H), 3.14 (ddd, J=11.8, 5.1, 3.6 Hz, 1H), 2.82 (ddd, J=17.4, 4.3, 4.3 Hz,1H), 2.72 (dddd, J = 12.6, 9.0, 5.8, 5.8 Hz, 1H), 2.22–2.08 (m, 1H), 2.07–1.93 (m, 1H); minor diastereomer: δ 8.31 (d, J= 8.7 Hz, 2H), 7.24 (d, J=8.7 Hz, 2H), 7.14 (d, J=8.7 Hz, 2H), 6.91 (d, J=8.7 Hz, 2H), 5.09 (dd, J=13.3, 7.4 Hz, 1H), 4.73 (dd, J=13.3, 7.5 Hz, 1H), 4.13 (ddd, J=7.6, 7.6, 7.6 Hz, 1H),3.81 (s, 3H), 3.02 (ddd, J=9.0, 9.0, 4.9 Hz, 1H), 2.91 (ddd, J=17.9, 6.8, 4.8 Hz, 1H), 2.72 (dddd, J=12.6, 9.0, 5.8, 5.8 Hz, 1H), 2.07–1.93 (m, 1H), 1.77 (dddd, J=14.1, 9.5, 9.0, 4.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) major diastereomer: δ 172.8 (C), 171.1 (C), 159.9 (C), 147.8 (C), 140.8 (C), 130.0 (2CH), 129.9 (C), 127.7 (2CH), 124.6 (2CH), 114.7 (2CH), 77.7 (CH₂), 55.5 (CH₃), 45.5 (CH), 45.4 (CH), 32.4 (CH₂), 21.7 (CH₂); minor diastereomer: δ 172.9 (C), 171.2 (C), 159.8 (C), 147.8 (C), 140.8 (C), 130.0 (2 CH), 129.4 (C), 127.9 (2CH), 124.6 (2CH), 114.9 (2CH), 78.1 (CH₂), 55.5 (CH₃), 45.1 (CH), 42.9 (CH), 31.2 (CH₂), 20.4 (CH₂). HPLC: Chiralpak IF eluted with 1:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 260 and 280 nm, retention time: major diastereomer 31.31 min (major enantiomer) and 16.87 min (minor enantiomer), minor diastereomer 21.34 min (major enantiomer) and 25.29 min (minor enantiomer)

Compound 4k: Following the general procedure, 3k (54 mg, 0.12 mmol, dr > 20:1, er > 200:1) reacted with **DPHB** (5 mg, 0.026 mmol) for 15 h to provide 4k (37 mg, 69%, dr=1.8:1, er = 75:1 and 6.4:1) as a white solid. R_f = 0.30 (petrol ether/ ethyl acetate, 3:1). HRMS (ESI+) m/z calcd for $C_{19}H_{20}BrN_4O_6^+$ [M+NH₄]⁺=479.0561, found=479.0562. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.32 (d, J=8.7 Hz, 2H), 7.52 (d, J=8.7 Hz, 2H), 7.17 (d, J=8.8 Hz, 2H), 7.15 (d, J = 8.8 Hz, 2H), 5.17 (dd, J = 13.5, 7.2 Hz, 1H), 5.04 (dd, J=13.4, 8.0 Hz, 1H), 4.01 (ddd, J=7.6, 7.6, 3.6 Hz, 1H),3.16 (ddd, J = 12.6, 4.9, 3.7 Hz, 1H), 2.98 - 2.84 (m, 1H), 2.82 -2.68 (m, 1H), 2.18-2.11 (m, 1H), 2.08-1.88 (m, 1H); minor diastereomer: δ 8.32 (d, J=8.7 Hz, 2H), 7.53 (d, J=8.7 Hz, 2H), 7.24 (d, J=8.8 Hz, 2H), 7.13 (d, J=8.8 Hz, 2H), 5.12 (dd, J=13.4, 7.3 Hz, 1H), 4.75 (dd, J=13.4, 7.6 Hz, 1H), 4.18 (ddd, J=7.5, 7.5, 7.5, 7.5 Hz, 1H), 3.03 (ddd, J=10.0, 7.8, 4.8 Hz,1H), 2.98–2.84 (m, 1H), 2.73 (dd, J=12.9, 4.9 Hz, 1H), 2.07– 1.90 (m, 1H), 1.76 (dddd, J=14.7, 10.2, 10.2, 4.7 Hz, 1H). ¹³C {¹H} NMR (100 MHz, d8-tetrahydrofuran) major diastereomer: δ 173.3 (C), 171.4 (C), 148.3 (C), 142.7 (C), 137.8 (C), 132.5 (2CH), 131.6 (2CH), 130.9 (2CH), 124.4 (2CH), 122.4 (C), 77.0 (CH₂), 44.6 (CH), 45.0 (CH), 33.0 (CH₂), 21.4 (CH₂); minor diastereomer: δ 173.3 (C), 171.4 (C), 148.3 (C), 142.7 (C), 134.5 (C), 132.5 (2CH), 131.5 (2CH), 130.9 (2CH), 124.4 (2CH), 122.4 (C), 78.0 (CH₂), 45.3 (CH), 43.3 (CH), 32.0 (CH₂), 20.8 (CH₂). HPLC: Chiralpak IC eluted with 7:3 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 280 nm, retention times: major diastereomer 12.64 min (major enantiomer) and 9.45 min (minor enantiomer), minor diastereomer 10.38 min (major enantiomer) and 15.81 min (minor enantiomCompound 41: Following the general procedure, 31 (50 mg, $0.12 \text{ mmol}, \text{ dr } > 20:1, \text{ er} = 39:1) \text{ reacted with } \mathbf{DPHB} \text{ (5 mg,}$ 0.026 mmol) for 15 h to provide 41 (22 mg, 44%, dr > 20:1, er = 50:1) as a white solid. R_f = 0.36 (petrol ether/ethyl acetate, 25 = +21.7 (c=0.5, CHCl₃). **HRMS** (ESI+) m/z calcd for $C_{19}H_{20}N_5O_8^+$ $[M+NH_4]^+=446.1306$, found=446.1307. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, J=8.8 Hz, 2H), 8.25 (d, J=8.8 Hz, 2H), 7.50 (d, J=8.8 Hz, 2H), 7.19 (d, J=8.8 Hz8.8 Hz, 2H), 5.17 (dd, J = 10.8, 3.2 Hz, 1H), 5.14 (dd, J = 10.8, 2.8 Hz, 1H), 4.21 (ddd, J=7.4, 3.8, 3.8 Hz, 1H), 3.23 (ddd, J= 8.6, 4.6, 4.6 Hz, 1H), 2.97 (ddd, J = 17.7, 4.4, 2.9 Hz, 1H), 2.80 (ddd, J=17.7, 13.5, 5.3 Hz, 1H), 2.18 (dddd, J=13.1, 5.1, 5.1,2.9 Hz, 1H), 1.94 (dddd, J = 13.3, 13.3, 13.3, 4.5 Hz, 1H). ¹³C 1 H 1 NMR (100 MHz, d6-acetone): δ 173.7 (C), 172.2 (C), 148.5 (C), 148.4 (C), 146.7 (C), 143.2 (C), 131.4 (2CH), 131.1 (2CH), 124.8 (2CH), 124.6 (2CH), 77.2 (CH₂), 46.9 (CH), 44.9 (CH), 33.2 (CH₂), 21.1 (CH₂). HPLC: Chiralpak IC eluted with 2:2:1 heptane/ethanol/chloroforme at 1 mL/min at 25 °C, UV detection at 254 nm, retention time: major enantiomer 10.63 min, minor enantiomer 8.03 min.

Compound 4 m: Following the general procedure, 3 m (60 mg, 0.16 mmol, dr = 28:1, er = 100:1) reacted with **DPHB** (6 mg, 0.032 mmol) for 15 h to provide 4m (41 mg, 68%, dr = 2.4:1, er = 39:1 and 5.5:1) as a white solid. $R_f = 0.30$ (petrol ether/ ethyl acetate, 3:1). HRMS (ESI+) m/z calcd for $C_{17}H_{19}N_4O_6S^+$ $[M + NH_4]^+ = 407.1020,$ found = 407.1019. 1H (400 MHz, CDCl₃) major diastereomer: δ 8.33 (d, J=8.7 Hz, 2H), 7.33-7.30 (m, 1H), 7.24 (d, J=8.7 Hz, 2H), 7.04-6.94 (m, 2H), 5.23 (dd, J = 13.5, 7.3 Hz, 1H), 4.99 (dd, J = 13.5, 7.4 Hz, 1H), 4.32 (ddd, J=7.4, 7.4, 3.3 Hz, 1H), 3.20 (ddd, J=12.4, 5.2, 3.3 Hz, 1H), 3.01-2.85 (m, 1H), 2.83-2.73 (m, 1H), 2.22-2.14 (m, 1H), 2.08–2.00 (m, 1H); minor diastereomer: δ 8.32 (d, J = 8.7 Hz, 2H), 7.33 - 7.30 (m, 1H), 7.22 (d, J = 8.7 Hz, 2H),7.04–6.94 (m, 2H), 5.03 (dd, J=13.1, 8.3 Hz, 1H), 4.83 (dd, J = 10.2, 6.8 Hz, 1H), 4.69 (dd, J = 14.6, 6.5 Hz, 1H), 3.08–3.02 (m, 1H), 3.00-2.88 (m, 1H), 2.83-2.73 (m, 1H), 2.13-2.09 (m, 1H), 1.95-1.85 (m, 1H). ¹³C{¹H} NMR (100 MHz, d8-tetrahydrofuran) major diastereomer: δ 173.4 (C), 171.4 (C), 148.3 (C), 142.6 (C), 140.0 (C), 130.9 (2CH), 128.2 (CH), 127.4 (CH), 126.3 (CH), 124.4 (2CH), 79.1 (CH₂), 45.8 (CH), 41.9 (CH), 33.0 (CH₂), 22.2 (CH₂); minor diastereomer: δ 173.0 (C), 171.4 (C), 148.3 (C), 142.8 (C), 139.8 (C), 130.9 (2CH), 127.4 (CH), 127.3 (CH), 126.0 (CH), 124.4 (2CH), 78.1 (CH₂), 46.0 (CH), 39.3 (CH), 32.3 (CH₂), 20.1 (CH₂). HPLC: Chiralpak IC eluted with 3:2 heptane/ethanol at 1 mL/min at 25 °C. UV detection 254 nm, retention time: major diastereomer 9.82 min (major enantiomer) and 7.46 min (minor enantiomer), minor diastereomer 8.88 min (major enantiomer) and 12.51 min (minor enantiomer).

Compound 4n: Following the general procedure, **3n** (70 mg, 0.19 mmol, dr=15:1, er=48:1) reacted with **DPHB** (7 mg, 0.037 mmol) for 15 h to provide **4n** (57 mg, 81%, dr=2:1, er=28:1 and 46:1) as a white solid. R_f =0.28 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{17}H_{19}N_4O_7^+$ [M+NH₄]⁺=391.1248, found=391.1248. ¹**H NMR** (400 MHz, CDCl₃) major diastereomer: δ 8.31 (d, J=8.8 Hz, 2H), 7.43 (br s, 1H), 7.37 (br s, 1H), 7.19 (d, J=8.8 Hz, 2H), 6.30 (br s, 1H), 5.12 (dd, J=13.3, 7.5 Hz, 1H), 4.91 (dd, J=13.3, 7.6 Hz, 1H), 3.89 (ddd, J=7.5, 7.5, 3.0 Hz, 1H), 3.11 (ddd, J=12.2, 5.6, 3.1 Hz, 1H), 3.00–2.90 (m, 1H), 2.85–2.71 (m, 1H), 2.14–1.98

(m, 2H); minor diastereomer: δ 8.30 (d, J = 8.8 Hz, 2H), 7.45 (br s, 1H), 7.35 (br s, 1H), 7.21 (d, J = 8.8 Hz, 2H), 6.28 (br s, 1H), 4.89 (dd, J = 12.9, 8.4 Hz, 1H), 4.71 (dd, J = 12.9, 7.1 Hz, 1H), 4.35 (dd, J = 13.5, 7.5 Hz, 1H), 2.99 (dd, J = 10.4, 4.8 Hz, 1H), 2.97-2.87 (m, 1H), 2.85-2.71 (m, 1H), 2.14-1.98 (m, 1H), 1.92–1.81 (m, 1H). $^{13}C\{^{1}H\}$ NMR (100 MHz, d8-tetrahydrofuran) major diastereomer: δ 173.7 (C), 171.4 (C), 148.2 (C), 144.3 (CH), 142.7 (CH), 142.2 (CH), 130.9 (2CH), 124.4 (2CH), 122.0 (CH), 111.1 (CH), 78.3 (CH₂), 45.7 (CH), 37.6 (CH), 33.0 (CH₂), 22.2 (CH₂); minor diastereomer: δ 173.3 (C), 171.4 (C), 148.2 (C), 144.2 (CH), 142.7 (CH), 141.9 (CH), 130.9 (2CH), 124.4 (2CH), 121.6 (CH), 110.7 (CH), 77.4 (CH₂), 45.1 (CH), 35.2 (CH), 32.3 (CH₂), 19.8 (CH₂). HPLC: Chiralpak IC eluted with 4:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 254 nm, retention times: major diastereomer 24.80 min (major enantiomer) and 17.08 min (minor enantiomer), minor diastereomer 18.98 min (major enantiomer) and 43.32 min (minor enantiomer).

Compound 40: Following the general procedure, 30 (89 mg, 0.22 mmol, dr = 28:1, er = 24:1) reacted with **DPHB** (8 mg, 0.042 mmol) for 24 h to provide 4o (59 mg, 66%, dr = 1.9:1, er = 19:1 and 15:1) as a white solid. R_f = 0.43 (petrol ether/ethyl acetate, 3:1). **HRMS** (ESI+) m/z calcd for $C_{21}H_{25}N_4O_6^+$ [M+ NH_4]⁺ = 429.1769, found = 429.1770. ¹H NMR (400 MHz, CDCl₃) major diastereomer: δ 8.30 (d, J=9.0 Hz, 2H), 7.35– 7.14 (m, 7H), 4.76 (dd, J=12.6, 6.8 Hz, 1H), 4.57–4.48 (m, 1H), 3.03-2.61 (m, 6H), 2.17-1.64 (m, 4H); minor diastereomer: δ 8.31 (d, J=9.0 Hz, 2H), 7.35–7.14 (m, 7H), 4.62–4.48 (m, 2H), 3.15-3.05 (m, 1H), 3.03-2.61 (m, 5H), 2.17-1.64 (m, 4H). ¹³C{¹H} NMR (100 MHz, d8-tetrahydrofuran) major diastereomer: δ 173.6 (C), 171.6 (C), 148.2 (C), 142.8 (C), 142.2 (C), 130.9 (2CH), 129.0 (2CH), 129.0 (2CH), 126.7 (CH), 124.3 (2CH), 77.9 (CH₂), 44.3 (CH), 38.9 (CH), 34.2 (CH₂), 33.3 (CH₂), 31.7 (CH₂), 20.6 (CH₂); minor diastereomer: δ 173.5 (C), 171.6 (C), 148.2 (C), 142.9 (C), 142.2 (C), 130.9 (2CH), 128.9 (2CH), 128.8 (2CH), 126.6 (CH), 124.3 (2CH), 77.0 (CH₂), 44.7 (CH), 38.2 (CH), 34.2 (CH₂), 33.1 (CH₂), 32.2 (CH₂), 19.2 (CH₂). HPLC: Chiralpak IE eluted with 1:1 heptane/ethanol at 1 mL/min at 25 °C, UV detection at 260 nm, retention times: major diastereomer 9.27 min (major enantiomer) and 13.88 min (minor enantiomer), minor diastereomer 11.56 min (major enantiomer) and 19.83 min (minor enantiom-

Computational Work

See the Supporting Information.

Acknowledgements

Financial support from the Agence Nationale de la Recherche (ANR-07-BLAN-0269), Aix-Marseille Université, Centrale Marseille, and the Centre National de la Recherche Scientifique (CNRS) is gratefully acknowledged. Y.-L.W. and Y.R. thank the China Scholarship Council for PhD grants (no. 201508330296 and 201204490081, respectively). We thank Dr. Nicolas Vanthuyne and Ms. Marion Jean (Aix-Marseille Université and CNRS) for HPLC analyses.

References

- [1] (R)-Sesbanine: a) R. G. Powell, C. R. Smith, Jr., D. Weisleder, D. A. Muthard, J. Clardy, J. Am. Chem. Soc. 1979, 101, 2784; b) K. Tomioka, K. Koga, Tetrahedron Lett. 1980, 21, 2321. (S)-Julocrotine: c) L. L. Silva, A. C. Joussef, J. Nat. Prod. 2011, 74, 1531. (±)-Pomalidomide: marketed under the trade name Imnovid (Europe and Russia) or Pomalyst (USA) by Celgene. (±)-Lenalidomide: marketed under the trade name Revlimid (Europe) by Celgene. (±)-Aminoglutethimide: marketed under the trade name Cytraden by Novartis. For novel promising analogs of pomalidomide and lenalidomide: d) J. D. Hansen, K. Condroski, M. Correa, G. Muller, H. Man, A. Ruchelman, W. Zhang, F. Vocanson, T. Crea, W. Liu, G. Lu, F. Baculi, L. LeBrun, A. Mahmoudi, G. Carmel, M. Hickman, C.-C. Lu, J. Med. Chem. 2018, 61, 492. For more complex glutarimide-containing natural products: e) T. Kagata, S. Saito, H. Shigemori, A. Ohsaki, H. Ishiyama, T. Kubota, J. Kobayashi, J. Nat. Prod. 2006, 69, 1517; f) G.-B. Xu, L.-M. Li, T. Yang, G.-L. Zhang, G.-Y. Li, Org. Lett. 2012, 14, 6052.
- [2] Selected syntheses of glutarimides in the racemic series:
 a) H. Takaya, K. Yoshida, K. Isozaki, H. Terai, S.-I. Murahashi, Angew. Chem. Int. Ed. 2003, 42, 3302;
 b) H.-W. Chen, R.-T. Hsu, M.-Y. Chang, N.-C. Chang, Org. Lett. 2006, 8, 3033;
 c) J. Zhang, M. Senthilkumar, S. C. Ghosh, S. H. Hong, Angew. Chem. Int. Ed. 2010, 49, 6391
- [3] a) D. A. Greenhalgh, N. S. Simpkins, Synlett 2002, 12, 2074; b) T. A. Moss, D. M. Barber, A. F. Kyle, D. J. Dixon, Chem. Eur. J. 2013, 19, 3071; c) N. B. Bennett, D. C. Duquette, J. Kim, W. B. Liu, A. N. Marziale, D. C. Behenna, S. C. Virgil, B. M. Stoltz Chem. Eur. J. 2013, 19, 4414.
- [4] a) M. d. M. Sanchez Duque, O. Baslé, N. Isambert, A. Gaudel-Siri, Y. Génisson, J.-C. Plaquevent, J. Rodriguez, T. Constantieux, Org. Lett. 2011, 13, 3296; b) S. Goudedranche, X. Bugaut, T. Constantieux, D. Bonne, J. Rodriguez, Chem. Eur. J. 2014, 20, 410; c) K. Zhang, M. Meazza, V. Dočekal, M. E. Light, J. Veselý, R. Rios, Eur. J. Org. Chem. 2017, 1749; d) S. Mondal, A. Ghosh, S. Mukherjee, A. T. Biju Org. Lett. 2018, 20, 4499. e) A. Moyano, R. Rios Chem. Rev. 2011, 111, 4703.
- [5] a) G. Kang, M. Yamagami, S. Vellalath, D. Romo, Angew. Chem. Int. Ed. 2018, 57, 6527; b) Y. Zhou, Y.-L. Wei, J. Rodriguez, Y. Coquerel, Angew. Chem. Int. Ed. 2019, 58, 456.
- [6] a) M. Presset, Y. Coquerel, J. Rodriguez, J. Org. Chem. 2009, 74, 415. For a recent review on the Wolff rearrangement: b) Y. Coquerel, J. Rodriguez in Molecular Rearrangements in Organic Synthesis (Ed.: C. Rojas), Wiley, Hoboken, 2015, Chap. 3, p. 59.
- [7] D. Mailhol, M. d. M. Sanchez Duque, W. Raimondi, D. Bonne, T. Constantieux, Y. Coquerel, J. Rodriguez, Adv. Synth. Catal. 2012, 354, 3523.
- [8] M. Kobayashi, S. Okamoto, Tetrahedron Lett. 2006, 47, 4347.

- [9] a) T. Boddaert, Y. Coquerel, J. Rodriguez, *Adv. Synth. Catal.* 2009, *351*, 1744–1748 (corrigendum: Adv. Synth. Catal. 2009, 351, 2541).
 b) T. Boddaert, Y. Coquerel, J. Rodriguez, *Chem. Eur. J.* 2011, *17*, 2266–2271.
- [10] Enantiopure thalidomide and analogs undergo rapid racemization at physiological pH, see: S. K. Teo, W. A. Colburn, W. G. Tracewell, K. A. Kook, D. I. Stirling, M. S. Jaworsky, M. A. Scheffler, S. D. Thomas, O. L. Laskin Clin. Pharmacokinet. 2004, 43, 311.
- [11] For related postulated acyl isothiouronium intermediates, see: D. G. Stark, L. C. Morrill, D. B. Cordes, A. M. Z.
- Slawin, T. J. C. O'Riordan, A. D. Smith, *Chem. Asian J.* **2016**, *11*, 395.
- [12] For the relative nucleophilicities of the catalysts depicted in Scheme 3, see: https://www.cup.lmu.de/oc/mayr/reaktionsdatenbank. Regrettably, the pKa and Lewis basicities of these catalyst in dichloromethane are essentially unknown.
- [13] D. Bensa, T. Constantieux, J. Rodriguez, Synthesis 2004,