Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges

Anissia Ait Saada, Ana Teixeira-Silva, Ismail Iraqui, Audrey Costes, Julien
Hardy, Giulia Paoletti, Karine Fréon, Sarah Lambert, Anissia Ait Saada

To cite this version:

Anissia Ait Saada, Ana Teixeira-Silva, Ismail Iraqui, Audrey Costes, Julien Hardy, et al.. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges. Molecular Cell, 2017, 66 (3), pp.398-410.e4. 10.1016/j.molcel.2017.04.002 . hal-02331509

HAL Id: hal-02331509

https://hal.science/hal-02331509

Submitted on 29 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Unprotected replication forks are converted into mitotic sister chromatid bridges

Anissia Ait Saada ${ }^{1,2,3}$, Ana Teixeira-Silva ${ }^{1,2,3}$, Ismail Iraqui ${ }^{1,2,3}$, Audrey Costes ${ }^{1,2,3}$, Julien Hardy ${ }^{1,2,3}$, Giulia Paoletti ${ }^{4}$, Karine Fréon ${ }^{1,2,3}$ and Sarah AE Lambert ${ }^{1,2,3}{ }^{*}$.

${ }^{1}$ Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France.
${ }^{2}$ University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France.
${ }^{3}$ Fondation Recherche Médicale team.
${ }^{4}$ Institut Curie, PSL Research University, CNRS, UMR144, F-75248, Paris, France.
*corresponding author: Sarah Lambert

E-mail: sarah.lambert@curie.fr

Phone: 0033169867191

Lead contact: Sarah Lambert, sarah.lambert@curie.fr

Running title: Rad51-mediated protection of terminal forks prevents mitotic catastrophe

Keywords: Homologous recombination, aneuploidy, anaphase bridges, replication fork, genome stability.

Abstract

Replication stress and mitotic abnormalities are key features of cancer cells. Temporarily paused forks are stabilised by the intra-S phase checkpoint and protected by the association of Rad51, which prevents Mre11-dependent resection. However, if a fork becomes dysfunctional and cannot resume, such terminally-arrested forks are rescued by a converging fork to avoid unreplicated parental DNA during mitosis. Alternatively, dysfunctional forks are restarted by homologous recombination. Using fission yeast, we report that Rad52 and the DNA binding activity of Rad51, but not its strand exchange activity, act to protect terminally-arrested forks from unrestrained Exo1-nucleolytic activity. In the absence of recombination proteins, large ssDNA gaps, up to 3 kb long, occur behind terminally-arrested forks preventing efficient fork merging and leading to mitotic sister chromatid bridging. Thus, Rad52 and Rad51 prevent temporarily and terminally-arrested forks from degradation and, despite the availability of converging forks, conversion to anaphase bridges causing aneuploidy and cell death.

Introduction

The completion of eukaryotic DNA replication requires the sequential activation of replication origins and the merging of converging forks. A failure to complete DNA replication before mitosis results in the nondisjunction of sister chromatids and the formation of anaphase bridges through a variety of poorly defined mechanisms (Magdalou et al., 2014; Mankouri et al., 2013). DNA replication completion is continuously threatened by a broad spectrum of unavoidable replication fork barriers (RFBs). RFBs are caused by intrinsic chromosomal features (such as DNA sequence and chromatin), endogenous stress linked to cellular metabolism (such as transcription) and environmental factors including DNA damage (Lambert and Carr, 2013). RFBs interrupt replication fork elongation, often causing multiple temporary pauses to a single replisome and occasionally causing terminal fork arrest. To avoid these perturbations creating chromosomal aberrations, additional replication-based pathways have evolved to ensure DNA replication completion and thus genome stability maintenance.

Stressed replication forks can be either temporarily or terminally-arrested. When a fork initially slows-down or arrests, it is immediately subject to regulation by the intra-S phase checkpoint. The Sphase checkpoint acts to maintain both replisomes and fork structures in a replication-competent state, for example by limiting Exo1 nuclease activity (Berti and Vindigni, 2016; Cotta-Ramusino et al., 2005; Tsang et al., 2014). Thus, the majority of forks can resume replication after the initial blockage is resolved. In some instances, a replication fork will not be able to resume. For example, if the intraS phase checkpoint fails, replication forks become dysfunctional and eventually terminally-arrested; such forks referring to as collapsed forks. To accommodate the problems caused by replication stress, cells thus exploit several mechanisms to ensure replication is completed in a timely manner (Berti and Vindigni, 2016). First, eukaryotic genomes contain a large excess of replication origins which buffer the consequences of fork arrest: a converging fork can arise from an adjacent dormant origin and merge with an arrested fork (Blow et al., 2011; Ge et al., 2007; Kawabata et al., 2011; Sabatinos et al., 2015; Woodward et al., 2006). Alternatively, when a converging fork is not timely available, terminally-arrested forks can be reactivated by DNA repair pathways such as homologous recombination (HR). These compensatory mechanisms are crucial for cellular resistance to replication stress and prevent the persistence of unreplicated parental DNA into mitosis.

When replication is perturbed experimentally, the mitotic consequences are expressed most obviously at common fragile sites (CFSs). CFSs were initially defined as genomic loci prone to chromosome breakage when cells are exposed to mild replication stress (Glover et al., 1984). CFSs have subsequently been shown to be hotspots for chromosomal rearrangement in cancer cells (Le Tallec et al., 2011; Le Tallec et al., 2013). Many CFSs replicate late in S-phase and it has been
demonstrated that their replication can be further delayed by mild replication stress (Debatisse et al., 2012). To date, it has not been possible to define a common cause for all fragile sites. Recent models suggest that CFS instability results from paucity of replication origins combined with difficult to replicate features such as refractory DNA sequences or extremely long transcriptional units (Helmrich et al., 2011; Letessier et al., 2011; Ozeri-Galai et al., 2011). In this interpretation, CFS loci cannot compensate for temporarily paused or terminally-arrested forks by activating dormant origins. Thus, cells are prone to enter mitosis with partially replicated DNA at these loci (Debatisse et al., 2012; Mankouri et al., 2013). Attempting mitosis with unreplicated DNA regions results in the formation of ultrafine bridges (UFBs) during anaphase (Chan et al., 2009; Naim and Rosselli, 2009). UFBs consist of stretched DNA structures coated with PICH (PIk1-interaction checkpoint helicase) and the singlestranded DNA protein RPA (replication protein A) (Chan et al., 2007). Thus, replication-stress induced UFBs are thought to contain ssDNA originating from incomplete replication of CFSs. UFBs-like structures have been also described in yeast models, as a consequence of disturbed DNA replication (Germann et al., 2014; Sabatinos et al., 2015; Sofueva et al., 2011).

Maintaining replication fidelity relies on close links between the replication machinery and HR. The core of HR is the Rad51 recombinase, which forms filaments on ssDNA and mediates invasion of the ssDNA into a homologous duplex. In yeasts, Rad51 association with ssDNA requires the Rad52 loader, while in mammalian cells, this role is primarily performed by the tumour suppressor BRCA2 (Costes and Lambert, 2013). Historically, HR has been studied in the context of double strand break (DSB) repair but, more recently, HR proteins have been shown to play critical roles in maintaining genome integrity during DNA replication; these replicative functions being independent of DSB repair (Carr and Lambert, 2013; Petermann et al., 2010; Schlacher et al., 2011). HR proteins contribute to the robustness of DNA replication in several ways: 1) BRCA2, Rad52 and Rad51 protect nascent strands of stalled forks, checkpoint-stabilised, from Mre11-dependent resection (Hashimoto et al., 2010; Higgs et al., 2015; Schlacher et al., 2011); 2) in some circumstances, Rad51 participates in the remodelling of stressed forks to promote fork reversal, a process that is proposed to promote DNA lesions bypass or replication resumption (Zellweger et al., 2015); 3) when forks become dysfunctional, HR proteins restart forks that likely results in the construction of a new replisome (Hashimoto et al., 2011; Iraqui et al., 2012; Miyabe et al., 2015; Mizuno et al., 2013; Petermann et al., 2010).

Using a site-specific RFB in fission yeast, we followed in vivo the fate of a single terminally-arrested fork in the absence of HR. Contrary to our expectations, we found that, despite the apparent progression of converging forks, this single terminally-arrested fork is converted into an anaphase bridge resembling a UFB. We show that the binding of Rad51, but not its strand exchange activity, is
required to restrict Exo1-mediated fork resection. This function is independent of the previously described roles for Rad51 in replication fork restart. We further demonstrate that the excess ssDNA at terminally-arrested forks is the cause of sister chromatid bridging which subsequently results in aneuploidy. We propose that the merging of a converging fork with an unprotected terminallyarrested fork results in termination failure and subsequent UFB formation during mitosis. Our data reveal a new role for Rad51-mediated fork-protection that ensures the rescue of arrested forks by an incoming converging fork.

Results

To assess the role of arrested forks in replication stress-induced mitotic abnormalities, we exploited a conditional RFB, RTS1, to block the replisome in a polar manner at a defined locus (Figure 1A and Figure S1A). In the RTS1 system, fork arrest is mediated by the RTS1-bound protein Rtf1, the expression of which is regulated by the nmt41 promoter. Rtf1 induction results in $>90 \%$ of forks becoming blocked at the RTS1-RFB (Lambert et al., 2005). Arrested forks are resolved by a converging fork or restarted by HR within 20 minutes (Miyabe et al., 2015; Nguyen et al., 2015). Restart occurs through the generation of a ssDNA gap, which is subsequently coated with Rad51 recombinase (through its loader Rad52) which, following strand invasion, restarts replication (Mizuno et al., 2013; Tsang et al., 2014). The restarted replisome is associated to a non-processive DNA synthesis, with polymerase delta replicating both strands, and is thus likely mechanistically different from an unperturbed replisome and insensitive to the RFB (Miyabe et al., 2015). In the absence of either Rad52 or Rad51, forks arrested at the RTS1-RFB cannot restart and thus remain irreversibly arrested (Lambert et al., 2010; Mizuno et al., 2009).

Rad52 prevents a single terminally-arrested fork generating an anaphase bridge and aneuploidy

We have previously demonstrated that the t>ura4<ori construct blocks the two replisomes converging on the ura4 locus ($t=$ telomere proximal; chevrons represent the presence and directionality of the RTS1 barrier; ori indicates the location of the closest origin). Wildtype (wt) cells overcome the potential inability to replicate the 1.7 Kb ura4 locus by restarting one or both forks via HR. Because the two RTS1 sequences are present in an inverted orientation on either side of ura4, occasional erroneous (ectopic) strand invasion events result in aberrant chromosome configurations: specifically acentric and dicentric chromosomes (Lambert et al., 2010; Mizuno et al., 2009). Visualizing mitosis in these cells reveals abnormal chromosome segregation events expected from dicentric chromosome segregation (Figure S1). Our initial expectation was thus that, when HR was prevented by the deletion of rad52, acentric/dicentric chromosomes would not be present and thus these structural mitotic abnormalities would be lost. However, in rad52-d cells, we still observed DNA bridges with multiple discontinuities, suggesting breakage, and uneven segregation of nuclei, resulting in aneuploidy (Figure S1).

In rad51-d or rad52-d cells, replication cannot restart from blocked replisomes (Iraqui et al., 2012; Lambert et al., 2010). Thus, mitotic defects presumably reflect the persistence of unreplicated parental DNA at the ura4 locus when cells enter mitosis, a situation reminiscent of human CFSs. Therefore, our prediction was that, if replication could be completed by a converging fork, the remaining single terminally-arrested fork would not prevent the completion of replication and
correct mitotic segregation would be restored. To allow the fork moving towards the centromere to reach the terminally-arrested fork at the centromere-proximal RTS1-RFB, the telomere-proximal RTS1-RFB was deleted (t-ura4<ori locus) (Figure S1A). Surprisingly, mitotic abnormalities, including discontinuous DNA bridges, were still observed in both rad52-d and rad51-d cells, whereas these defects were not present in wt cells, in which acentric/dicentric chromosomes no longer formed (Figure S1C).

Dynamic of anaphase bridges containing the active RTS1-RFB

To investigate whether the mitotic bridges contained the active RFB site, we integrated a lacO array telomere-proximal to the RFB (t-LacO-ura<ori, Figure 1A). We tracked the fate of the single terminally-arrested fork locus in vivo by visualizing LacO-bound GFP-Lacl. Because Lacl binding to LacO arrays can impede fork progression, we exploited a Lacl variant with which fork perturbation is avoided but Lacl foci can be detected (Dubarry et al., 2011). In the absence of an active RTS1-RFB, LacO mitotic bridges were observed in <2\% of wt and rad52-d cells. Thus, Lacl binding had a minimal impact on fork progression (Figure 1B). In contrast, RTS1-RFB induction resulted in the formation of mitotic LacO-positive bridges in $\sim 20 \%$ of post-mitotic cells, in rad52-d but not wt cells (Figure 1B, top panel). Thus, mitotic bridges contain the site of fork arrest surrounded by dsDNA. A proportion of the LacO-bridges were long-lived, persisting through cytokinesis (Figure 1B, middle panel). Interestingly, $\sim 14 \%$ of post-mitotic cells displayed uneven Lacl focus segregation in rad52-d cells, suggesting breakage of LacO -bridges (Figure 1B, bottom left panel).

We confirmed that a converging fork could reach the terminally-arrested fork at the RTS1-RFB by monitoring the duplication of the LacO arrays by analyzing single and sister Lacl-foci in G2 cells (Figure 1C-D). Similar frequencies of sister Lacl-foci were observed regardless of RFB activity and HR status. Thus, LacO-bridges resulting from terminally-arrested forks were not a consequence of the failed progression of converging forks. Thus, Rad52 prevents the aberrant segregation of a replication stress site and ensures its balanced transmission to daughter cells.

To investigate the dynamics of LacO-bridge formation and resolution, we performed time-lapse microscopy. In wt cells, LacO-bridges were transient and resolved within 10 minutes of anaphase onset (Figure 2A-B). This rapid dynamics likely accounts for low levels of LacO-bridges as observed by snapshot microscopy. Furthermore, the t-LacO-ura<ori locus is $\sim 700 \mathrm{~kb}$ from the rDNA locus and the LacO-bridges in wt cells may thus reflect the late mitotic segregation of rDNA units (Granot and Snyder, 1991; Win et al., 2005). In contrast, in rad52-d cells, $\sim 90 \%$ of anaphases displayed a LacObridge with 67% of these remaining unresolved 10 minutes after anaphase onset. Analysis of
individual LacO-bridges showed that $\sim 20 \%$ broke either before or at the onset of cytokinesis (Figure 2B-C, Figure S2A and movie 1).

GFP-Lacl binds LacO-arrays when double stranded. We tried to stain LacO-bridges with DNA dye. Surprisingly, stretched LacO-bridges were not positively stained with Hoechst whereas broken LacObridges showed positive Hoechst staining (Figure S2B). Possibly, LacO-arrays are refractory to DNA dye staining because of stretching which is relaxed when bridges break. Thus, the discontinuous bridges observed by Dapi staining were likely broken bridges (Figure S1).

We conclude that, without Rad52, a single terminally-arrested fork is converted into an anaphase bridge, resembling human UFB, which often breaks during mitosis. This occurs despite the availability of converging forks and an apparent absence of unreplicated parental DNA downstream from the site of replication stress.

Rad52 protects the integrity of arrested forks by restricting Exo1 activity

To determine the integrity of forks terminally-arrested, we defined the extent of ssDNA exposed in the vicinity of the RTS1-RFB. We have previously shown that replication restart at the RTS1-RFB is not initiated by a DSB but by a ssDNA gap formed in an Exo1-dependent, and Mre11 nuclease activityindependent manner (Figure 3A) (Tsang et al., 2014). Consistent with this, RPA recruitment extended ~1 kb upstream from the arrested fork and RPA recruitment was significantly reduced in exo1-d cells. (Figure 3B, blue and black lines). When Rad52 was deleted, RPA recruitment extended further upstream from the RTS1-RFB (>3kb), suggesting an accumulation of ssDNA compared to wt (Figure 3B, red line). Importantly, the excess RPA recruitment in rad52-d cells occurred exclusively upstream from the site of fork arrest. Using a qPCR assay to directly monitor ssDNA, we confirmed that excess RPA recruitment reflected the accumulation of ssDNA (Figure 3C). In wt cells, ssDNA was enriched 110 and 450 bp upstream from the RTS1-RFB, but no enrichment above background levels (RFB OFF condition) was observed at 1.8 and 2.2 kb . Consistent with the RPA ChIP data, ssDNA enrichment at 450 bp, but not at 110 bp, was Exo1-dependent. This suggests that additional nucleases are able to generate small ssDNA gaps at terminally-arrested forks. Due to technical problems related to primer design and efficiency, we were unable to assess ssDNA amount between 450 bp and 1.8 kb . In the absence of Rad52, the enrichment in ssDNA was clearly observed 1.8 and 2.2 kb upstream from the RTS1-RFB. The difference in ssDNA accumulation between wt and rad52-d cells was specific to the active RTS1-RFB, since no significant differences were observed at the control locus (Figure 3C).

To establish that ssDNA enrichment corresponded to arrested replication forks containing large ssDNA gaps, we analyzed replication intermediates using two-dimensional gel electrophoresis
(2DGE). A tail emanating from the fork-arrest signal and descending towards the linear arc was observed in wt cells and was absent in exo1-d cells (Figure 3D-F). Alkaline 2DGE confirmed that this tail signal corresponded to Exo1-mediated resection of newly replicated strands (Figure S3A-B). Thus, this replication intermediate was generated by the resection of unbroken forks. Consistent with the RPA ChIP and ssDNA enrichment assays, more resected forks were present in rad52-d cells (Figure 3E-F). Thus, Rad52 has the replication-specific function of limiting resection of nascent DNA at terminally-arrested forks, primarily by restricting the formation of large ssDNA gaps. This terminal fork protection function of Rad52 likely allows replication termination, thus preventing subsequent anaphase bridges formation and chromosome breakage. Taken together, our data suggest that the progression of a converging fork towards an unprotected terminally-arrested fork creates failure in termination, which cannot be resolved before the onset of mitosis.

Failed merging of unprotected terminally-arrested and converging forks drives mitotic sister chromatid bridging

If converging forks cannot effectively merge with unprotected terminally-arrested forks, large ssDNA gaps at such forks should persist into mitosis and correlate with LacO-bridges formation. We used fluorescence microscopy to monitor RPA recruitment to the RTS1-RFB during cell cycle. GFP-Lacl and RPA focus mark dsDNA downstream and ssDNA upstream from the RFB, respectively. A RPA focus is thus expected adjacent or in close proximity to a GFP-Lacl focus. We considered RPA being recruited to the RTS1-RFB when a RPA focus is touching or merging fully or partially a GFP-Lacl focus (Figure 4A and Figure S4A). In wt cells, RPA was transiently recruited to active RFBs in S-phase cells, in an Exo1dependent manner, and then evicted in G2 cells (Figure 4A-B). We interpret this as reflecting transient RPA recruitment to resected forks, followed by efficient replication restart or merging with the converging fork. Without Rad52, we observed an increased number of cells showing RPA recruitment to active RFBs, in S and G2 phase. This is consistent with ssDNA gaps at terminallyarrested forks remaining unrepaired during the transition from S to $G 2$ phase. Furthermore, $>90 \%$ of mitotic LacO-bridges were positively stained for RPA, consistent with RPA recruited in S-phase remaining associated with large ssDNA gaps at terminally-arrested forks when cells enter mitosis (Figure 4C and Figure S4B).

We followed the dynamic RPA recruitment to terminally-arrested forks by time-lapse microscopy. $\sim 50 \%$ of LacO-bridges arose in cells in which RPA and Lacl were co-recruited in the preceding G2 phase. Furthermore, $\sim 60 \%$ of LacO-bridges arose in cells which displayed RPA foci at the nexus of the two nuclei in early anaphase (with or without merging with a Lacl focus) (Figure 4E-F and Figure S4 and movie 2). We conclude that UFB-like LacO-bridges result from and contain unprotected
terminally-arrested forks. Thus, terminally-arrested forks, that are not protected by Rad52, are subsequently converted into UFB-like structures in mitosis.

In most cases, RPA staining of anaphase bridges was symmetric, covering almost all LacO-bridges (Figure 4C and Figure S4B). This suggests that both sister chromatids had undergone resection upstream from the RFB and remain physically associated in mitosis. Thus, LacO-bridges are apparently formed of unresolved intertwined sister chromatid: each chromatid contains dsDNA marked by LacO-arrays and ssDNA marked by RPA (Figure 4F). Our data indicate that converging forks are able to reach unprotected forks, with an apparent absence of unreplicated parental DNA downstream from the RFB. Thus, we propose that intertwined sister chromatid arise from termination failure rather than failure in completing replication. Furthermore, Hoechst staining failed to detectably stain telomere-proximal regions at the metaphase plan in mitosis showing LacObridges (Figure S2B). Altogether, our data suggest that unprotected terminally arrested-fork cannot merge accurately with converging fork. This failure in fork merging results in intertwined sister chromatid resembling UFBs.

Excess ssDNA at terminally-arrested forks causes lethal UFBs and enhanced genetic instability

We asked whether excess ssDNA is responsible for termination failure. We reported that Rad52 recruitment to the RTS1-RFB requires the MRN complex (Tsang et al., 2014). We analyzed the resection of terminally-arrested forks in the rad52-d rad50-d double mutant and found that the lack of Rad50 was not sufficient to fully abolished fork-resection (Figure S3C). We thus focus on the role of Exo1.

The deletion of exo1 in rad52-d cells was sufficient to alleviate extended RPA recruitment, ssDNA formation upstream from the active RTS1-RFB and fully abolished fork-resection (Figure 3B, green line and C-F). Consistent with this, RPA foci were not co-recruited to the RTS1-RFB in either S or G2phase in exo1-d rad52-d cells (Figure 4B). Surprisingly, the short ssDNA gaps of less than 450 bp that are not Exo1-dependent in wt cells were not observed in rad52-d exo1-d cells (Figure 3B-C). Our interpretation of this is that Rad52-dependent HR processes restrict Exo1 activity at terminallyarrested forks, while also acting to promote limited resection by additional nucleases. Thus, the absence of Exo1 restores the integrity of terminally-arrested forks, although they remain unable to restart replication. If the RPA-coated ssDNA gaps at terminally-arrested forks are responsible for sister chromatid non-disjunction, concomitant rad52 and exo1 deletion should be sufficient to alleviate the formation of UFB-like structures.

The high frequency of UFB-like structures (mitotic LacO-bridges) observed upon activation of the RTS1-RFB was greatly reduced in double mutant cells (Figure 5A, left panel), confirming the interdependency of ssDNA gaps and subsequent anaphase bridges formation. This suppression effect did not result from an inability of cells to enter mitosis (Figure S3D). Interestingly, the unbalanced segregation of Lacl foci observed in rad52-d cells, while also decreased upon concomitant exo1 deletion, was reduced by only 34\% (Figure 5A, right panel). Thus, terminally-arrested forks, even if protected against Exo1 activity, remain unstable. We tested the genetic instability of ura4 ${ }^{+}$, located upstream from the RFB. Loss of rad52 resulted in an increase RFB-dependent rate of ura4 loss which was relieved by the concomitant loss of Exo1 (Figure 5B-C). Thus, excess RPA-coated ssDNA at stressed forks is responsible for sister chromatid nondisjunction and elevated genetic instability, immediately upstream from the site of fork arrest. We also observed that activation of the RTS1-RFB decreased the viability of rad52-d cells and that this loss of viability was rescued by deleting exo1 (Figure 5D). These data indicate that pathological termination between unprotected terminallyarrested forks and converging forks result in lethal UFB-like structures which contribute to genomic instability.

Rad51 binding activity is sufficient to prevent pathological termination at terminally-arrested forks

Our data, together with previously published work, suggest that dysfunctional forks can either be rescued by a converging fork or restarted. Both processes require Rad52. To investigate the interdependence of fork-protection and fork-restart functions, we replaced rad51+ with the mutated rad51-3A form (R152A-R324A-K334A). The mutant protein can bind ssDNA and dsDNA, form stable nucleoprotein filaments on ssDNA, but cannot perform the strand exchange reaction (Cloud et al., 2012). Rad51-3A was expressed to the same level as Rad51 (Figure S5A). rad51-3A cells were defective for spontaneous gene conversion and were equally sensitive to bleomycin and MMS treatments, as rad51-d cells (Figure 6A and Figure S5B-C). Rad51-3A formed foci in response to MMS and was recruited to the active RTS1-RFB, similarly to Rad51 (Figure S5D-E).

To investigate the impact of Rad51-3A on replication restart, we exploited a reporter gene (ura4$s d 20$) (Iraqui et al., 2012). In this assay, the ura4-sd20 allele is downstream from the RTS1-RFB and can be used to monitor the frequency of forks restarted at the RTS1-RFB based on the restoration of a functional ura4 gene (Figure 6B). The effectiveness of replication slippage was decreased by $\sim 60 \%$ in both rad51-3A and rad51-d cells, demonstrating the requirement of Rad51 strand-exchange activity to promote fork restart (Figure 6C). Thus, Rad51 foci can occur in response to replication stress, without effective homologous recombination event at the site of fork arrest.

To investigate the impact of Rad51-3A on fork-protection, we utilized the 2DGE resection assay described in figure 3 E , the frequency of LacO -bridge and the uneven segregation of the LacO locus. As previously observed for rad52-d cells, terminally-arrested forks were extensively resected and converted into UFB-like structures in the absence of Rad51 (Figure 6D-E). Thus, fork protection to prevent pathological termination requires both the recombinase Rad51 and its loader Rad52. In contrast, cells expressing Rad51-3A displayed none of these pathological features upon activation of the RTS1-RFB, demonstrating the requirement of Rad51 binding activity, but not its strand-exchange activity, for fork-protection (Figure 6D-E). Thus, extensive degradation of terminally-arrested forks in the absence of Rad52/Rad51 proteins is not simply a consequence of defective fork restart: the role of Rad51 in protecting terminally-arrested replication forks is genetically separable from its function in restarting forks.

Discussion

The resolution of replication stress is vital to suppress a wide range of tumor-initiating events including mis-segregation of chromosomes during mitosis. Rad51-mediated recombination processes at replication forks have been shown to be central to this. Global alteration of fork progression previously identified a role for HR proteins at temporarily arrested forks through fork remodeling and prevention from Mre11 or Dna2-dependent resection of nascent strands (Hashimoto et al., 2010; Higgs et al., 2015; Schlacher et al., 2011; Schlacher et al., 2012; Zellweger et al., 2015). By studying a well-controlled site-specific RFB, we had previously characterized a separate role for Rad51 in promoting HR-mediated restart of dysfunctional forks (Lambert et al., 2010; Miyabe et al., 2015). Here, by following the fate in vivo of the RTS1-RFB, we have revealed a novel link between replication arrest and mitotic mis-segregation events. Our main unexpected findings are: 1) terminally-arrested forks require Rad52/Rad51-mediated fork protection if they are to be resolved by the arrival of a converging fork (Figure 7, left panel); 2) If terminally-arrested forks are not protected by Rad52/Rad51, fork merging fails. The result is manifested in mitosis as an anaphase bridge (Figure 7, right panel). Mechanistically, we demonstrate that Rad51 DNA binding, but not Rad51 strandexchange activity, is required for terminally-arrested fork protection. Loss of Rad51 DNA association results in excess Exo1-dependent ssDNA formation upstream from the site of terminal fork arrest. This excess of ssDNA causes the subsequent conversion of the unprotected fork into a UFB-like structure that is further damaged as cells progress through mitosis.

Rad52/Rad51 restrict Exo1 activity at terminally-arrested forks in a recombination-independent manner

Temporarily-arrested forks are subject to regulation by the intra-S phase checkpoint which includes the nucleolytic processing of nascent strands and architectural changes, such as fork reversal, to facilitate the resumption of replication (Berti and Vindigni, 2016). However, uncontrolled resection at these stably stalled forks is detrimental to genome stability. Recombination factors (Rad52 and Rad51 in yeasts; BRCA2 and FANCD2 in higher eukaryotes) prevent excessive nascent strand degradation at forks that have been temporarily stalled by hydroxyurea (HU) or damaged by methylmethane sulfonate (MMS) treatment. DNA fiber-based approaches and analyses of fork structures by electronic microscopy have demonstrated that uncontrolled resection ($\sim 1.8 \mathrm{~kb} / \mathrm{hour}$) generates short gaps (<300 nt) both close to and further away from the fork junction (Hashimoto et al., 2010; Higgs et al., 2015; Schlacher et al., 2011; Schlacher et al., 2012).

If replication forks are not stabilized by the intra-S phase checkpoint, they become dysfunctional. Such forks cannot simply resume replication and must either be resolved by an incoming converging
fork or, if this does not occur in a timely manner, be restarted by the action of HR. Using an allele of rad51 that cannot initiate strand exchange, but able to bind DNA, we have separated the function of Rad51 in terminally-arrested forks restart from a new function in protecting terminally-arrested forks from excessive Exo1-dependent nascent strand degradation. While restart of dysfunctional forks requires the strand exchange functions of Rad51, fork-protection depends only on the initial association of Rad51 with DNA. Given the potential deleterious outcomes of Rad51-mediated fork repair and restart on genome stability, our data suggest that protection and restart of dysfunctional forks are separate Rad51 functions with different requirements for the maintenance of genome stability (Carr and Lambert, 2013).

Unprotected forks are converted into anaphase bridges

A second important observation we made was that a terminally-arrested replication fork, which is not protected from Exo1-dependent resection by Rad52/Rad51, cannot effectively merge with a converging fork. The consequence of this failed merger is the formation in the subsequent mitosis of a sister chromosome bridge that resembles the structure of a UFB: two intertwined sister chromatids harboring dsDNA and ssDNA (Figure 7, right panel). Since these bridges arise at site of fork arrest, we equate them to a potential subset of UFBs that characterize human CFS. In yeasts and mammals, the induction of artificial bidirectional fork barriers (LacO arrays bound by the repressor Lacl) results in UFBs formation, further supporting a scenario in which the irreversible arrest of converging replisomes results in the persistence of unreplicated parental DNA, generating UFB in mitosis (Beuzer et al., 2014; Germann et al., 2014; Jacome and Fernandez-Capetillo, 2011; Sofueva et al., 2011). While our data do not rule out this hypothesis, we speculate that the bridges we observe here may reflect a novel route to the formation of UFBs. This would be consistent with observations in human cells that RAD51 is required to prevent CFS instability and the formation of anaphase bridges, including PICH-positive UFBs (Laulier et al., 2011; Schwartz et al., 2005; Wilhelm et al., 2014).

Our data suggest that the progression of unperturbed converging forks towards an unprotected terminally-arrested fork results in a pathological termination event, the exact nature of which remains to be determined. However, in considering the potential nature of such events, it is of note that replication termination has recently been proposed to occur when the CMG helicase (CDC45/MCM2-7/GINS) of one replisome encircles dsDNA from the lagging strand of the adjacent converging replicon (Dewar et al., 2015). If unprotected forks have excessive ssDNA gaps, the CMG helicase of the converging replisome may encounter difficulties in reaching the dsDNA. Possibly, concatenation or premature condensation of ssDNA may also challenge topoisomerase activity and compromise fork merging.

The rescue of terminally-arrested forks by origin firing requires Rad51-mediated fork protection
We have revealed a previously unknown role for Rad52/Rad51-mediated fork protection in preventing sister chromatid bridging at replication stress site. Our data reveal that terminally arrested forks can be rescued through the firing of dormant origins only in the presence of Rad51 binding and, thus, fork-protection. We previously reported the frequent formation of Rad52 and Rad51 foci in both S and G2 phases, following RFB activation (Lambert et al., 2005). Using an analogous RFB, Nguyen et al. recently showed that Rad52 remains associated with arrested forks at the time point at which fork merging probably occurs (Nguyen et al., 2015). These observations suggest a time-window for the association of Rad52/Rad51 with dysfunctional forks exceeding the ~20 minutes required for successful replication restart (Miyabe et al., 2015). We suggest that Rad51/Rad52 facilitates accurate termination at sites of prolonged fork arrest, as well as offering the potential to restart the fork, should an incoming converging, fork fail to appear at a timely manner.

Replication stress and structural mitotic abnormalities are common features of cancer cells. By showing that unprotected dysfunctional forks drive the formation of UFB-like structures, mitotic chromosome breakage and aneuploidy, we have established a novel genome instability pathway linking replication stress and mitotic defects. We suggest that unprotected fork-associated mitotic defects contribute to the genomic instability of neoplastic lesions early in cancer development.

Author contributions: A.A.S, A.T.S, I.I., A.C. J. H. and K.F. performed the experiments. A.A.S., A.T.S. and S.A.E.L. contributed to experimental design and data analysis. A.A.S. and S.A.E.L. wrote the manuscript.

Acknowledgements: We thank P. Pasero, B. Lopez and AM Carr for critical reading of the manuscript and helpful discussions. We thank the laboratory of A. Paoletti (Institut Curie, Paris) for assistance with time-lapse microscopy. We also thank the PICT-IBiSA@Orsay Imaging Facility of the Institut Curie. None of the authors of this manuscript have a financial interest related to this work.

Financial disclosure: AAS, ATS, AC and II were funded by a French governmental fellowship, the Institut Curie international PhD program, Association pour la Recherche sur le Cancer (ARC), and the Fondation pour la Recherche Medicale (FRM), respectively. This work was supported by the Institut Curie, the CNRS, the fondation ARC, the Ligue (comité Essone), l'Agence Nationale de la Recherche ANR-14-CE10-0010-01, the Institut National du Cancer INCA 2013-1-PLBIO-14, and the Fondation pour la Recherche Médicale "Equipe FRM DEQ20160334889". The funders had no role in study design, data collection and analysis, the decision to publish, or preparation of the manuscript.

Supplemental items

Movie 1: Time-lapse movie of LacO-bridges breaking at cytokinesis (related to Figure 1).

Movie 2: Time-lapse movie of RPA-positive LacO-bridge showing RPA being recruited to the RFB in the previous G2 phase (related to Figure 4).

References

Berti, M., and Vindigni, A. (2016). Replication stress: getting back on track. Nature structural \& molecular biology 23, 103-109.
Beuzer, P., Quivy, J.P., and Almouzni, G. (2014). Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell cycle 13, 1607-1616.
Blow, J.J., Ge, X.Q., and Jackson, D.A. (2011). How dormant origins promote complete genome replication. Trends in biochemical sciences 36, 405-414.
Brewer, B.J., Lockshon, D., and Fangman, W.L. (1992). The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71, 267-276.
Carr, A.M., and Lambert, S. (2013). Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. Journal of molecular biology 425, 47334744.

Chan, K.L., North, P.S., and Hickson, I.D. (2007). BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. The EMBO journal 26, 3397-3409.
Chan, K.L., Palmai-Pallag, T., Ying, S., and Hickson, I.D. (2009). Replication stress induces sisterchromatid bridging at fragile site loci in mitosis. Nature cell biology 11, 753-760.
Cloud, V., Chan, Y.L., Grubb, J., Budke, B., and Bishop, D.K. (2012). Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222-1225.
Costes, A., and Lambert, S.A.E. (2013). Homologous Recombination as a Replication Fork Escort: ForkProtection and Recovery. Biomolecules 3, 39-71.
Cotta-Ramusino, C., Fachinetti, D., Lucca, C., Doksani, Y., Lopes, M., Sogo, J., and Foiani, M. (2005). Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Molecular cell 17, 153-159.
Debatisse, M., Le Tallec, B., Letessier, A., Dutrillaux, B., and Brison, O. (2012). Common fragile sites: mechanisms of instability revisited. Trends in genetics : TIG 28, 22-32.
Dewar, J.M., Budzowska, M., and Walter, J.C. (2015). The mechanism of DNA replication termination in vertebrates. Nature 525, 345-350.
Dubarry, M., Loiodice, I., Chen, C.L., Thermes, C., and Taddei, A. (2011). Tight protein-DNA interactions favor gene silencing. Genes \& development 25, 1365-1370.
Ge, X.Q., Jackson, D.A., and Blow, J.J. (2007). Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes \& development 21, 3331-3341.
Germann, S.M., Schramke, V., Pedersen, R.T., Gallina, I., Eckert-Boulet, N., Oestergaard, V.H., and Lisby, M. (2014). TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability. The Journal of cell biology 204, 45-59.
Glover, T.W., Berger, C., Coyle, J., and Echo, B. (1984). DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Human genetics 67, 136-142.
Granot, D., and Snyder, M. (1991). Segregation of the nucleolus during mitosis in budding and fission yeast. Cell motility and the cytoskeleton 20, 47-54.
Hashimoto, Y., Puddu, F., and Costanzo, V. (2011). RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nature structural \& molecular biology 19, 17-24.
Hashimoto, Y., Ray Chaudhuri, A., Lopes, M., and Costanzo, V. (2010). Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nature structural \& molecular biology 17, 1305-1311.
Helmrich, A., Ballarino, M., and Tora, L. (2011). Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Molecular cell 44, 966977.

Higgs, M.R., Reynolds, J.J., Winczura, A., Blackford, A.N., Borel, V., Miller, E.S., Zlatanou, A., Nieminuszczy, J., Ryan, E.L., Davies, N.J., et al. (2015). BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Molecular cell 59, 462-477.

Iraqui, I., Chekkal, Y., Jmari, N., Pietrobon, V., Freon, K., Costes, A., and Lambert, S.A. (2012). Recovery of arrested replication forks by homologous recombination is error-prone. PLoS genetics 8, e1002976.
Jacome, A., and Fernandez-Capetillo, O. (2011). Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO reports 12, 1032-1038.
Kawabata, T., Luebben, S.W., Yamaguchi, S., Ilves, I., Matise, I., Buske, T., Botchan, M.R., and Shima, N. (2011). Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Molecular cell 41, 543-553.
Lambert, S., and Carr, A.M. (2013). Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 122, 33-45.
Lambert, S., Mizuno, K., Blaisonneau, J., Martineau, S., Chanet, R., Freon, K., Murray, J.M., Carr, A.M., and Baldacci, G. (2010). Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Molecular cell 39, 346-359.
Lambert, S., Watson, A., Sheedy, D.M., Martin, B., and Carr, A.M. (2005). Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689-702.
Laulier, C., Cheng, A., and Stark, J.M. (2011). The relative efficiency of homology-directed repair has distinct effects on proper anaphase chromosome separation. Nucleic acids research 39, 5935-5944.
Le Tallec, B., Dutrillaux, B., Lachages, A.M., Millot, G.A., Brison, O., and Debatisse, M. (2011). Molecular profiling of common fragile sites in human fibroblasts. Nature structural \& molecular biology 18, 1421-1423.
Le Tallec, B., Millot, G.A., Blin, M.E., Brison, O., Dutrillaux, B., and Debatisse, M. (2013). Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell reports 4, 420-428.
Lea, D.E., and Coulson, C.A. (1949). The distribution of the numbers of mutants in bacterial populations. Journal of genetics 49, 264-285.
Letessier, A., Millot, G.A., Koundrioukoff, S., Lachages, A.M., Vogt, N., Hansen, R.S., Malfoy, B., Brison, O., and Debatisse, M. (2011). Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470, 120-123.
Magdalou, I., Lopez, B.S., Pasero, P., and Lambert, S.A. (2014). The causes of replication stress and their consequences on genome stability and cell fate. Seminars in cell \& developmental biology 30, 154-164.
Mankouri, H.W., Huttner, D., and Hickson, I.D. (2013). How unfinished business from S-phase affects mitosis and beyond. The EMBO journal 32, 2661-2671.
Miyabe, I., Mizuno, K., Keszthelyi, A., Daigaku, Y., Skouteri, M., Mohebi, S., Kunkel, T.A., Murray, J.M., and Carr, A.M. (2015). Polymerase delta replicates both strands after homologous recombinationdependent fork restart. Nature structural \& molecular biology 22, 932-938.
Mizuno, K., Lambert, S., Baldacci, G., Murray, J.M., and Carr, A.M. (2009). Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes \& development 23, 2876-2886.
Mizuno, K., Miyabe, I., Schalbetter, S.A., Carr, A.M., and Murray, J.M. (2013). Recombinationrestarted replication makes inverted chromosome fusions at inverted repeats. Nature 493, 246-249.
Moreno, S., Klar, A., and Nurse, P. (1991). Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods in enzymology 194, 795-823.
Naim, V., and Rosselli, F. (2009). The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nature cell biology 11, 761-768.
Nguyen, M.O., Jalan, M., Morrow, C.A., Osman, F., and Whitby, M.C. (2015). Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse. eLife 4, e04539.
Ozeri-Galai, E., Lebofsky, R., Rahat, A., Bester, A.C., Bensimon, A., and Kerem, B. (2011). Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Molecular cell 43, 122-131.

Petermann, E., Orta, M.L., Issaeva, N., Schultz, N., and Helleday, T. (2010). Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Molecular cell 37, 492-502.
Pietrobon, V., Freon, K., Hardy, J., Costes, A., Iraqui, I., Ochsenbein, F., and Lambert, S.A. (2014). The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1. PLoS biology 12, e1001968.
Sabatinos, S.A., Ranatunga, N.S., Yuan, J.P., Green, M.D., and Forsburg, S.L. (2015). Replication stress in early S phase generates apparent micronuclei and chromosome rearrangement in fission yeast. Molecular biology of the cell 26, 3439-3450.
Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529-542.
Schlacher, K., Wu, H., and Jasin, M. (2012). A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer cell 22, 106-116.
Schwartz, M., Zlotorynski, E., Goldberg, M., Ozeri, E., Rahat, A., le Sage, C., Chen, B.P., Chen, D.J., Agami, R., and Kerem, B. (2005). Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes \& development 19, 2715-2726.
Sofueva, S., Osman, F., Lorenz, A., Steinacher, R., Castagnetti, S., Ledesma, J., and Whitby, M.C. (2011). Ultrafine anaphase bridges, broken DNA and illegitimate recombination induced by a replication fork barrier. Nucleic acids research 39, 6568-6584.
Terenna, C.R., Makushok, T., Velve-Casquillas, G., Baigl, D., Chen, Y., Bornens, M., Paoletti, A., Piel, M., and Tran, P.T. (2008). Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Current biology : CB 18, 1748-1753.
Tsang, E., Miyabe, I., Iraqui, I., Zheng, J., Lambert, S.A., and Carr, A.M. (2014). The extent of errorprone replication restart by homologous recombination is controlled by Exo1 and checkpoint proteins. Journal of cell science 127, 2983-2994.
Velve-Casquillas, G., Costa, J., Carlier-Grynkorn, F., Mayeux, A., and Tran, P.T. (2010). A fast microfluidic temperature control device for studying microtubule dynamics in fission yeast. Methods in cell biology 97, 185-201.
Watson, A.T., Garcia, V., Bone, N., Carr, A.M., and Armstrong, J. (2008). Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407, 63-74.
Wilhelm, T., Magdalou, I., Barascu, A., Techer, H., Debatisse, M., and Lopez, B.S. (2014). Spontaneous slow replication fork progression elicits mitosis alterations in homologous recombination-deficient mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 111, 763-768.
Win, T.Z., Mankouri, H.W., Hickson, I.D., and Wang, S.W. (2005). A role for the fission yeast Rqh1 helicase in chromosome segregation. Journal of cell science 118, 5777-5784.
Woodward, A.M., Gohler, T., Luciani, M.G., Oehlmann, M., Ge, X., Gartner, A., Jackson, D.A., and Blow, J.J. (2006). Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. The Journal of cell biology 173, 673-683.
Zellweger, R., Dalcher, D., Mutreja, K., Berti, M., Schmid, J.A., Herrador, R., Vindigni, A., and Lopes, M. (2015). Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. The Journal of cell biology 208, 563-579.
Zierhut, C., and Diffley, J.F. (2008). Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. The EMBO journal 27, 1875-1885.

Figure Legends

Figure 1: A single terminal fork arrest requires Rad52 for rescue by the opposite fork
A. Diagram of the t-LacO-ura4<ori construct containing a single RTS1-RFB (< and blue bars) blocking the progression of replication forks moving in the main replication direction, from the centromere towards the telomere. Main replication origins (ori, black circles) located upstream and downstream from the RTS1-RFB are indicated. GFP-Lacl (green ellipses) bound to LacO arrays (green bars) are integrated $\sim 7 \mathrm{~kb}$ away from the RTS1-RFB, on the telomere-proximal side of ura4 gene (red bar). When Rtf1 is expressed, $>90 \%$ of forks emanating from the strong centromere-proximal replication origin, and moving towards the telomere, are blocked. In the absence of homologous recombination, forks blocked at the RTS1-RFB are irreversibly-arrested. The replication of LacO arrays, either through the progression of forks restarted by homologous recombination or by opposite forks, results in sister Lacl-foci in G2 cells. A failure of opposite forks to progress would result in a lower frequency of sister Lacl-foci. See Extended Data Fig. 1 for more details.
B. Quantification and representative examples of mitotic abnormalities (indicated by a white arrow). Values are means of at least three independent experiments \pm the standard error of the mean (SEM). Statistical analysis was performed with Mann-Whitney U tests.
C. Example of cells showing a single Lacl-focus (green arrow) and sister Lacl-foci (red arrow).
D. Quantification of cells with sister Lacl-foci in G2. Values are means of at least three independent experiments \pm SEM. No statistical differences were observed between wt and rad52-d cells upon induction of the RTS1-RFB, indicating a similar efficiency and timing of LacO arrays replication. These data demonstrate that replication forks traveling from the telomere-proximal side of the RTS1-RFB towards the centromere are not altered in the absence of homologous recombination.

Strains used: $w t=$ AA23, $r a d 52-d=$ AA1.

Figure 2: Upon activation of the RTS1-RFB, anaphase bridges containing terminal polar fork arrests break during progression through mitosis
A. Temporal kinetics of mitotic bridge formation and resolution in the first 30 minutes after early anaphase, from time-lapse movies.
B. Tracking of individual LacO-bridges during mitotic progression and cytokinesis from time-lapse movies.
C. Example of anaphase bridges (white arrow) breaking during cytokinesis. See Extended Data Fig. 2 for additional examples.

Strains used: $w t=$ AA23, rad52-d $=$ AA1.

Figure 3: Rad52 restricts Exo1-mediated resection of unbroken forks
A. Diagram of the t-ura4<ori construct containing a single RTS1-RFB. See Figure 1 for details.
B. Analysis of RPA recruitment to the active RTS1-RFB, based on chromatin immunoprecipitation (ChIP). The fold-enrichment in RPA in the ON condition (RFB active) relative to the OFF condition (RFB inactive) is shown. Upstream and downstream distances from the RFB are indicated in kilobases (kb). Values are means of at least three independent experiments \pm SEM. Statistical analysis was performed using Mann-Whitney U tests. Strains used: wt=YC219, rad52-d=YC223, exo1- $d=Y C 221$, rad52-d exo1-d=AC434.
C. Analysis of ssDNA levels upstream from the active RTS1-RFB, by qPCR. The data shown are the fold-enrichment in ssDNA in ON condition (RFB active) relative to OFF condition (RFB inactive). Distances upstream from the RFB are indicated in base pairs (bp). A locus located on chromosome II is used as a control. Values are means of at least three independent experiments \pm SEM. Statistical analysis was performed with Mann-Whitney U tests. Strains used: wt=YC13, rad52-d=YC90, exo1$d=\| 258$, rad52-d exo1- $d=A$ A15.
D. Scheme of replication intermediates (RIs) observed in a neutral-neutral 2DGE analysis of the Asel restriction fragment upon activation of the RTS1-RFB. See Extended Data Fig.3A-B for neutral-alkaline 2DGE analysis demonstrating that the tail signal contains newly replicated strands undergoing Exo1mediated degradation.
E. Representative RI analysis by 2DGE in the absence (RFB OFF) or presence of fork blockade (RFB ON). A DNA fragment corresponding to ura4 gene was used as probe. Numbers indicate the efficiency of the RFB for each strain analyzed; values are means of at least three independent experiments \pm standard deviation (SD). Strains used: $w t=\mathrm{YC13}$, rad52- $d=\mathrm{YC90}$, exo1- $d=\| 258$, rad52- d exo1- $d=A A 15$. See Extended Data Fig. 3C for the rad52-d rad50-d double mutant.
F. Quantification of \% of fork undergoing resection (tail signals) relative to the number of blocked forks. Values are means of at least three independent experiments \pm the 99% confidence interval (99\% CI).

Figure 4: Anaphase bridges are RPA-positive and unresolved intertwined sister chromatids at the site of terminal fork arrest
A. Representative images showing RPA foci (labeled with Ssb3-mcherry) merging/touching GFP-Lacl foci cells harboring the t-LacO-ura4<ori construct shown in Fig. 1A. Of note, rad52-d strains have a number of cells with multiple RPA foci. To avoid biases toward a random localization of GFP-Lacl and RPA foci, cells with ≥ 3 RPA foci were excluded from the analysis. See Extended Data Fig. 4 for additional examples.
B. Quantification of cells showing RPA recruited to the RTS1-RFB, according to cell cycle phase. G2 and S-phase cells are mononucleated cells and binucleated cells with a septum, respectively. Values are means of at least three independent experiments \pm SEM. Statistical analysis was performed with Mann-Whitney U tests.
C. Representative example of mitotic RPA-positive LacO-bridges (left panel) and their quantification (right panel).
D. Example of a mitotic RPA-positive LacO-bridge emanating from an early anaphase in which a single RPA focus is located at the nexus of the two nuclei, in a rad52-d cell. See Extended Data Fig. 4 for additional examples.
E. Classification and quantification of mitotic LacO-bridges in rad52-d cells, according to their origin, from time-lapse movies. $\mathrm{RPA}^{+} / \mathrm{Lacl}^{+}$and $\mathrm{RPA}^{+} /$Lacl $^{-}$denote an RPA focus touching/merging, or not, a GFP-Lacl focus, respectively.
F. Schematic interpretation of LacO -bridges at unprotected forks.

Strains used: $w t=A S 39$, rad52- $d=S L 1190$, exo1- $d=$ AA46, rad52- d exo1- $d=$ SL1194.

Figure 5: Excess RPA-coated ssDNA gaps at terminal fork arrest causes a failure of mitotic sister chromatid disjunction and genome instability
A. Quantification of mitotic defects. Values are means of at least three independent experiments \pm SEM. Statistical analysis was performed with Mann-Whitney U tests. Strains used: rad52-d=AA1, exo1-d=AA39, rad52-d exo1-d=AA42. See Extended Data Fig. 3 for mitotic index and cell cycle distribution.
B. Diagram of the $t<u r a 4$-ori construct. A loss of ura4 function was selected on 5-fluoroorotic acid (5-FOA)-containing plates, following several generations, with or without induction of the RTF1-RFB.
C. Rate of ura4 loss (number of 5FOA-resistant colonies/cell/division). Values are the median rate \pm 95 Cl . Statistical analysis was performed with the Mann-Whitney U test. Strains used: wt=SL504, rad52-d=AA95, exo1-d=AA91, rad52-d exo1- $d=\mathrm{AA} 98$.
D. Cell survival after spreading onto minimal medium without thiamine (RFB ON), expressed relative to the survival of the same strains spread onto minimal medium containing thiamine (RFB OFF). Values are means of at least three independent experiments \pm the $95 \% \mathrm{Cl}$. Strains used: $w t=\mathrm{YC266}$, rad52- $d=\mathrm{YC270}$, exo1- $d=I I 558$, rad52- d exo1- $d=\mathrm{YC274}$.

Figure 6: Rad51 binding to DNA is sufficient to ensure the rescue of terminal fork arrest by opposite forks
A. Tenfold serial dilution of indicated strains on plates containing indicated doses of bleomycin and MMS. See Extended Data Fig. 5 for the characterization of the rad51-3A mutant. Strains used: $w t=A \mathrm{~A} 109, \operatorname{rad} 51-3 A=\mathrm{AA} 118, \operatorname{rad} 51-d=\mathrm{SL} 1010$.
B. Diagram of the t-ura4-sd20<ori construct containing a single RTS1-RFB. The non-functional ura4$s d 20$ allele harbors a 20-nucleotide duplication flanked by micro-homology. Cells are thus auxotroph for uracil. HR-mediated fork restart is associated to a non-processive DNA synthesis, liable to replication slippage at micro-homology. When forks are restarted at the RTS1-RFB, the ura4-sd20 gene is replicated by a restarted fork which the non-processive DNA synthesis undergoes replication slippage. This results in the deletion of the duplication and the restoration of a functional ura4 ${ }^{+}$gene. C. Frequency of replication slippage. "No RFB" indicates conditions in which strains harbor the t -ura4-sd20-ori construct without the RTS1-RFB. Values are means of at least three independent experiments \pm the $95 \% \mathrm{Cl}$. Strains used: $w t$ noRFB=AA124, wt RFB ON=AA129, rad51-d no RFB=YC76, rad51-d RFB ON=YC80, $r a d 51-3 A$ no $\mathrm{RFB}=\mathrm{AA} 139, ~ r a d 51-3 A ~ R F B ~ O N=A A 133 . ~$
D. Representative RI analysis by 2DGE, in the absence (RFB OFF) or presence (RFB ON) of fork blockade. A DNA fragment corresponding to ura4 gene was used as probe. The numbers indicate the efficiency of the RTS1-RFB for each strain analyzed; values shown are means of at least three independent experiments \pm SD. The bottom histogram shows $\%$ of fork undergoing resection (tail signals) relative to the number of blocked forks. Values are means of at least three independent experiments \pm the $99 \% \mathrm{CI}$. Strains used: $w t=A \mathrm{~A} 129$, rad51- $d=\mathrm{YC80}$, rad51-3A=AA133.
E. Quantification of mitotic defects. Values are means of at least three independent experiments \pm SEM. Statistical analysis was performed with the Mann-Whitney U test. Strain used: wt=AA23, rad51$d=A C 409, r a d 51-3 A=A A 158$.

Figure 7: Model of unprotected fork-induced anaphase bridges Rad51-dependent fork restart and protection are genetically separable.

STAR Methods

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr Sarah AE Lambert (sarah.lambert@curie.fr)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains were freshly thawed from frozen stocks and grown at $30^{\circ} \mathrm{C}$ using standard yeast genetics practices.

METHOD DETAILS

Standard yeast genetics

The yeast strains used in this work are listed in supplemental Table 1. Gene deletion and tagging were performed with classical and molecular genetics techniques (Moreno et al., 1991). Strains carrying the replication fork barrier RTS1 were grown in supplemented EMM-glutamate. The RTS1 barrier was kept inactive by adding $60 \mu \mathrm{M}$ thiamine to the media (RFB OFF conditions). The RTS1 barrier was activated by transfer into thiamine-free medium and incubation for 24 hours, in most experiments. The rad51-3A mutant was obtained by recombinase-mediated cassette exchange, as previously described (Watson et al., 2008). For cell sensitivity to genotoxic drugs, MMS (Sigma, 129925) and Bleomycin (Bellon, 525709) were added to the media on plates.

Analysis of replication intermediates by 2DGE

Replication intermediates (RIs) were analyzed by 2 DGE , as follows: 2.5×10^{9} cells were washed in water, resuspended in 20 ml of cold water and transferred to a glass/Pyrex Petri dish on ice. Genomic DNA was crosslinked with trimethyl psoralen (TMP, Sigma, T6137) as follows: cell suspensions were mixed with 1 ml TMP ($0.2 \mathrm{mg} / \mathrm{ml}$ in ethanol) and incubated in the dark for 5 minutes, with occasional swirling. Cells were exposed to UVA (365 nm) for 90 seconds, at a flow rate of $50 \mathrm{~mW} / \mathrm{cm}^{2}$. Cells were treated with $0.625 \mathrm{mg} / \mathrm{ml}$ lysing enzyme (Sigma, L1412) and $0.5 \mathrm{mg} / \mathrm{ml}$ zymolyase 100T (Amsbio, 120493-1). The resulting spheroplasts were then embedded in low-melting point agarose (InCert Agarose, Lonza) plugs, incubated in a digestion buffer containing proteinase K (Euromedex, EU0090) and stored in TE (50 mM Tris, 10 mM EDTA). DNA was digested with 60 units per plug of the restriction enzyme Asel (NEB, R0526M) and then treated with RNase (Roche, 11119915001) and beta-agarase (NEB, M0392L). Melted Plugs were equilibrated with 0.3 M NaCl and RI enrichment was
achieved on BND cellulose (Sigma, B6385) embedded in columns (Biorad, 731-1550), as described (Lambert et al., 2010). RIS were enriched in the $1 \mathrm{M} \mathrm{NaCl} 1.8 \%$ caffeine (Sigma, C-8960). After precipitation with glycogen (Roche, 10901393001), RIs were separated by electrophoresis in 0.35\% and 0.9% (+ EtBr) agarose gels in 1X TBE for the first and second dimensions (Brewer et al., 1992). For 2DGE in denaturing conditions, the second dimension involved migration in alkaline buffer (5 mM $\mathrm{NaOH}, 1 \mathrm{mM}$ EDTA). DNA was transferred to a nylon membrane (Perkin Elmer, NEF988001PK) in 10X SSC and probed with a ${ }^{32} \mathrm{P}$-radiolabeled ura4 sequence (GE healthcare rediprime II, RPN1633, and alpha-32P dCTP, Perkin Elmer, BLU013Z250UC) in Ultra-Hyb buffer (Invitrogen, AM8669) at $42^{\circ} \mathrm{C}$. Quantitative densitometric analysis of the Southern-blots was carried out using ImageQuant software (GE healthcare).

Live cell imaging

Cells were prepared as previously described (Pietrobon et al., 2014). Cells were cultured in glutamate-supplemented EMM, with or without thiamine, washed twice and resuspended in fresh filtered medium. A 1-2 μ l drop of exponentially growing culture was deposited on the well of a microscope slide (Thermo Scientific, ER-201B-CE24) covered with 1.4% agarose in filtered EMM. Images were acquired with a 3D microscope (LEICA DMRXA) equipped with a CooISNAP monochromic camera (Roper Scientific). Cells were visualized with a 100X oil immersion objective with a numerical aperture of 1.4 and Z-stack images were captured with METAMORPH software. Image acquisition and analysis were performed on the workstations of the PICT-IBiSA Orsay Imaging facility of Institut Curie.

For time-lapse movies, cells were injected into dedicated 4-5 μ m-thick poly-dimethyl-siloxane (PDMS) microfluidic chambers on glass coverslips, as previously described (Terenna et al., 2008) (Velve-Casquillas et al., 2010). Images were acquired with a Nikon Eclipse Ti-E microscope equipped with the perfect Focus System, a 100X/1.45-NA PlanApo oil immersion objective, a Mad City Lab piezo stage, a Yokogawa CSUX1 confocal unit, a Photometrics HQ2 CCD camera and a laser bench (Errol) with 491 and 561 nm diode lasers, 100 mX each (Cobolt). Images were acquired every 5 minutes. For M-cherry and GFP fluorescence, images were acquired with an acquisition time of 300 ms at 12% power and 500 ms at 17% power. Movies were constructed with METAMORPH software and analyzed with ImageJ software.

Analysis of ssDNA by qPCR

2×10^{8} cells were mechanically lysed by vortexing with glass beads (425-600 $\mu \mathrm{m}$, Sigma ${ }^{\circledR}$). Genomic DNA was extracted by the classical phenol/chloroform method. We incubated $5 \mu \mathrm{~g}$ of DNA with or without 100 units of the restriction enzyme Msel (NEB, R0525M) which cuts dsDNA within the PCR
amplicon to discriminate between ds and ssDNA. We then subjected 30 ng of the digested or mockdigested DNA to amplification by qPCR (iQ SYBR green supermix, Biorad, 1708882), using primers annealing on either side of the Msel restriction site (primers listed in table 2). We quantified ssDNA as previously described (Zierhut and Diffley, 2008), using the formula: ssDNA $=100 /\left(\left(1+2^{\Delta c t}\right) / 2\right)$, in which $\Delta C t$ is the difference between the threshold cycles of digested and undigested DNA. A control locus (II-150) with no Msel restriction sites, for which the Ct values for digested and undigested DNA would be expected to be similar, was used to correct the $\Delta \mathrm{Ct}$ values of other primers and to normalize the results relative to the amount of DNA initially loaded onto the plate.

Chromatin immunoprecipitation of RPA

RPA enrichment at RTS1-RFB was performed using strains expressing a tagged RPA subunit, Ssb3-YFP. ChIP experiments were performed as previously described (Tsang et al., 2014). Samples were crosslinked with 10 mM DMA (dimethyl adipimidate, thermos scientific, 20660) and 1\% formaldehyde (Sigma, F-8775). Chromatin was sonicated with a Diagenod Bioruptor set on high for 10 cycles of 30 seconds ON +30 seconds OFF. Immunoprecipitation was performed with an anti-GFP antibody (rabbit polyclonal, Molecular probe, A11122) at 1:300 and Protein G Dynabeads (Invitrogen, 10003D) for the detection of Ssb3-YFP. The DNA associated with RPA was purified with a Qiaquick PCR purification kit (Qiagen, 28104) and eluted in 200μ l of water. The relative amount of DNA was determined by qPCR (iQ SYBR green supermix, Biorad, 1708882, primers listed in Table 2). RPA enrichment was normalized relative to an internal control locus (ade6). RPA enrichment in the ON condition is shown relative to enrichment in the OFF condition.

Replication slippage assay

Replication slippage was assessed with the ura4-sd20 allele (initially named ura4-dup20), as previously described (Iraqui et al., 2012). 5FOA (Euromedex, 1555)-resistant colonies were grown on uracil-containing plates without thiamine for 2 days at $30^{\circ} \mathrm{C}$, and were then used to inoculate uracilcontaining medium without thiamine, in which they were incubated for 24 h . Cells were appropriately diluted and plated on YE plates (for survival counting) and uracil-free plates supplemented with thiamine. After 5 days of incubation at $30^{\circ} \mathrm{C}$, colonies were counted to determine the frequency of replication slippage.

RFB-induced loss of ura4 function

The loss of ura4 marker was performed as previously described (Iraqui et al., 2012). Single Ura4 ${ }^{+}$ colonies were streaked on plates containing uracil, with or without thiamine. At least 11 independent single colonies for each strain and condition were used to inoculate medium containing uracil, with or without thiamine, and the culture was incubated until stationary phase was reached. Appropriate
dilutions were plated on supplemented YE plates (to determine cell survival) and YE plates containing 0.1% 5-FOA (Euromedex, 1555). Colonies were counted after 5-7 days of incubation at $30^{\circ} \mathrm{C}$. The rates of ura4 loss were calculated as described in (Lea and Coulson, 1949). Each fluctuation test was repeated two or three times. Statistical analysis was performed with the Mann-Whitney U test.

Cell viability

Cells were grown on supplemented EMM without thiamine for 14 hours. They were then used to prepare appropriate dilutions for plating on EMM plates with (RFB OFF) or without (RFB ON) thiamine. Colonies were counted after 5-7 days of incubation at $30^{\circ} \mathrm{C}$ and viability was calculated as the ratio of the number colonies growing in ON conditions relative to the number growing in OFF conditions.

Rad51 foci detection by immunofluorescence

Exponentially growing cells were treated or not with 0.3% MMS (Sigma 129925) for 1 hour. Cells were fixed with 4\% paraformaldehyde (Alfa Aesar 30525-89-4) in PEM (100mM PIPES, 1 mM EGTA, 1 mM MgSO4, pH 6.9) for 5 min at $30^{\circ} \mathrm{C}$, then washed in PBS and then with PEM. Cells were digested in $1.25 \mathrm{mg} / \mathrm{ml}$ Zymolyase 20 T (amsbio 120491-1) in PEMS (1.2M sorbitol in PEM) at $37^{\circ} \mathrm{C}$ for 70 minutes. After washing 3 times in PEMS, cells were treated with 1\% triton 100X in PEMS for 5 min at room temperature. Cells were washed twice with PEMBAL (1\% BSA, 0.1% sodium azide, 100 mM lysine monohydrate (Sigma L-5626) in PEM) and incubated for 1 hour on the wheel in PEMBAL. Cells were resuspended in 300μ I of PEMBAL containing anti-Rad51 (Thermo Scientific PA1-4968) at 1/500 and then incubated overnight on the wheel at room temperature. After several quick washes with PEMBAL followed by one wash of 30 minutes, cells were resuspended in $300 \mu \mathrm{l}$ of PEMBAL containing anti-Rabbit Alexa Fluor ${ }^{\circledR} 555$ (Molecular Probes A21428) at 1/1000 for 4 hours at room temperature. After several washes with PBS, cells were re-suspended in 1 ml of PBS containing $100 \mu \mathrm{M}$ of sodium azide. For microscopy, cells were spread on a regular slid, dried and then covered with a drop of ProLong ${ }^{\circledR}$ Gold antifade reagent with DAPI (Molecular Probes P36935) before to place a cover slip.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative densitometric analysis of the Southern-blots (2DGE) was performed using ImageQuant software. The "tail signal" was normalized to the total signal of arrested forks.

Cell images were collected using METAMORPH software and analyzed using ImageJ software.
The definitions of values and errors bars are mentioned in the figures legend. For most experiments, the number of sample is $n>3$ obtained from independent experiments to ensure biological reproducibility. Statistical analysis was performed using using Mann-Whitney U tests and the student
t-test. When no statistics are mentioned, errors bars correspond to the 99 or 95% confidence interval (Figure, 3F, 5B and 6D).

DATA AND SOFTWARE AVAILABILITY

Data have been deposited to Mendeley data and are available at http://dx.doi.org/10.17632/j745gb53ys. 1

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-Rad51	Thermo-scientific	PA1-4968
Anti-PCNA	Santa Cruz	Pc10:Sc56
Anti-GFP	Molecular probe	A11122
Alexa fluor 555 goat anti-rabbit	Molecular probe	A21428
Bacterial and Virus Strains		
Biological Samples		
Chemicals, Peptides, and Recombinant Proteins		
Trioxsalen (Tri-methyl psoralen)	Sigma	T6137
Proteinase K	Euromedex	EU0090
RNase A DNase-free	Roche	11119915001
Incert agarose	Lonza	50123
Lysing enzymes	Sigma	L1412
Zymolyase 20T	Amsbio	120491-1
Zymolyase 100T	Amsbio	120493-1
Benzoylated Naphthoylated DEAE-cellulose (BND)	Sigma	B6385
Gene Screen Plus nylon membrane	Perkin Elmer	NEF988001PK
Dynabeads protein G	Invitrogen	10003D
Mse1	New England Biolabs	R0525M
CutSmart buffer	New England Biolabs	B7204S
Ase1 High concentration	New England Biolabs	R0526M
NEB Buffer 3.1	New England Biolabs	B7203S
Beta agarase	New England Biolabs	M0392L
Slide for microscopy 8 wells 6 mm	Thermo Scientific	ER-201B-CE24
5-FOA	Euromedex	1555
Bleomycine	Bellon	525709
Methyl methane sulfonate MMS	sigma	129925
Ultra-Hyb buffer	Invitrogen	AM8669
DMA	Thermo Scientific	20660
Glycogen	Roche	10901393001
Caffeine	Sigma	C-8960
Poly-prep Chromatography columns	Biorad	731-1550
ProLong® ${ }^{\circledR}$ Gold antifade reagent with DAPI	Molecular Probes	P36935
Lysine monohydrate	Sigma	L-5626
Paraformaldehyde	Alfa Aesar	30525-89-4
DEOXYCYTIDINE 5'-triphosphate [alpha-32P]	Perkin Elmer	BLU0132250UC
Formaldehyde	Sigma	F-8775
Critical Commercial Assays		
Rediprime II	GE healthcare	RPN1633
iQ SYBR green supermix	Biorad	1708882
Qiaquick PCR purification	Qiagen	28104
Deposited Data		
Mendeley Data	https://data.mendeley. com/	$\begin{aligned} & \text { http://dx.doi.org/10.1 } \\ & \hline 7632 / 745 \mathrm{gb} 53 \mathrm{ys} .1 \\ & \hline \end{aligned}$

Experimental Models: Cell Lines		
Experimental Models: Organisms/Strains		
See Table S1 for a list of yeast strains used in this study	Lambert's lab	Strain number
Oligonucleotides		
See Table S2 for a list of oligonucleotides used in this study	Sigma	N/A
Recombinant DNA		
Software and Algorithms		
Image processing and analysis in Java	Image J	https://imagej.nih.go v/ij/
Image Quant TL	GE healtcare	http://gelifesciences. com
MetaMorph Microscopy Automation and Image Analysis Software	Molecular devices	https://www.molecul ardevices.com
Other		

A $\begin{gathered}\text { \% post-mitotic cells showing } \\ \text { LacO-bridges }\end{gathered}$

\% post-mitotic cells showing uneven segregation of Lacl foci

D

 \downarrow
RFB induction upon several cell divisions

Survival

C

A

Figure S1: A single dysfunctional replication fork is sufficient to induce mitotic abnormalities in the absence of homologous recombination (related to Figure 1).
A. Diagram of the t>ura4<ori construct containing two RTS1-RFBs (> and <, blue bars) blocking the progression of forks converging towards the ura4 locus (red bars), and of the t-ura4<ori construct containing a single RTS1-RFB (<, blue bars), which blocks the progression of replication forks moving in the main replication direction. At the $t>u r a 4<o r i ~ l o c u s ~(l e f t ~ p a n e l), ~ r e p l i c a t i o n ~ r e s t a r t ~ o c c u r s ~ e i t h e r ~$ on the initial template or through a faulty template switch of nascent strands initiating DNA synthesis on a non-contiguous template (Lambert et al. Mol Cell 2010). Faulty template restart results in abnormal chromosomal structures, such as acentric and dicentric isochromosomes and inversion of the ura4 marker. In cells defective for homologous recombination (HR deficiency), converging forks are blocked and not restarted, resulting in the ura4 marker remaining unreplicated. At the t-ura4<ori locus (right panel), replication restart occurs on the initial template. In HR-deficient cells, the blocked fork is left irreversibly arrested.
B. Examples mitotic abnormalities observed with Dapi staining.
C. Quantification mitotic abnormalities observed in the strains and conditions indicated. For each genetic condition, it is indicated if acentric/dicentric chromosomes are expected to form (+) or not (), and if the ura4 gene is expected to be left unreplicated (+) or not (-). Strains used: for $t>u r a 4<o r i$, $w t=S L 337$, rad52-d=SL363; for t-ura4<ori, $w t=S L 350$, rad52-d=SL680, rad51-d=SL395.

Figure S2: Examples of LacO-bridges and DNA staining (related to Figure 2)
A. Examples of LacO-bridges. Tracking of individual LacO-bridges in rad52-d cells from time-lapse movies: example of LacO-bridges resolved before cytokinesis, with (red arrow) and without (white arrow) breakage. Strain used: rad52-d=AA1.
B. Examples of Hoechst-negative stretched LacO-bridges (top and middle panel) and Hoechst-positive and broken LacO-bridges (Bottom panel). The white arrows indicate the part of the broken LacObridge positively stained with Hoechst. Strain used: rad52-d=AA1.
A

B

C

D

\% mitotic cells	rad52- d	exo1-d	rad52-d exo1-d
RFB OFF	2.1	2.1	2.4
RFB ON	2	1.3	2.3

Figure S3: unprotected terminally-arrested forks contain newly replicated strands undergoing Exo1-mediated degradation (related to Figure 3 and 5)
A. Diagram of the t-ura4<ori containing a single RTS1-RFB (<, blue bars) blocking the progression of replication forks moving in the main replication direction, from the centromere towards the telomere. The locations of Ava1 restriction sites are indicated on the figure. Newly replicated strands at the active RTS1-RFB are 2.2 kb long, whereas the parental strands are 6.5 kb long. Electrophoresis was performed in neutral conditions in the first dimension, making it possible to separate the monomer ($M, 6.5 \mathrm{~kb}$) from the blocked fork ($B F, 8.7 \mathrm{~kb}$). The second dimension was performed in alkaline conditions, allowing the separation of parental strands from newly replicated strands, with discrimination on the basis of size.
B. Example of neutral-alkaline 2DGE at the active (RFB ON) or inactive (RFB OFF) RST1-RFB in the strains indicated. Hybridization with the ura4-probe detected no newly replicated strands, as expected, whereas hybridization with the cen-probe revealed newly replicated strands forming a smear indicating that they had been resected in an Exo1-dependent manner. Strains used: wt=YC13, exo1-d=||258.
C. Top panel: Representative RI analysis by 2DGE in the rad50-d rad52-d mutant in the absence (RFB OFF) or presence of fork blockade (RFB ON). A DNA fragment corresponding to the ura4 gene was used as the probe. Numbers indicate the efficiency of the RTS1-RFB. Values correspond to the mean of at least three independent experiments \pm standard deviation (SD).
Bottom panel: Quantification of \% of fork undergoing resection (tail signals) relative to the number of blocked forks, in the strains indicated. The values shown are the means of at least three independent experiments \pm the 99% confidence interval ($99 \% \mathrm{CI}$). Strains used: rad52-d=YC90, rad50-d rad52$d=$ SL817.
D. Top panel: cell cycle distribution analyzed by FACS in indicated strains and conditions. Bottom panel: \% of mitotic cells in indicated strains and conditions in an asynchronous population. Strains used: $w t=A A 23, r a d 52-d=A A 1$, exo1- $d=A A 39$, rad52-d exo1-d=AA42. (related to Figure 5).

Figure S4: Examples of RPA focus co-recruited to the RTS1-RFB and RPA-positive LacO-bridges (related to Figure 4)
A. Examples of RPA focus touching/merging a GFP-Lacl focus, with the respective line scans analysis done with image J. Top panel: Example of a RPA focus touching a GFP-Lacl focus in the same Z-stack. Middle: Example of a RPA focus partially merging with a GFP-Lacl focus in the same Z-stack. Bottom panel: Example of a RPA focus fully merging with a GFP-Lacl focus in the same Z-stack.
B. Tracking of individual RPA-positive LacO-bridges in rad52-d cells from time-lapse movies. Examples of RPA-coated intertwined sister chromatid. White and red arrows represent two distinct events.

Extended Data Figure 5: Characterization of the rad51-3A mutant (related to Figure 6)

A. Top panel: expression of wt and mutated forms of Rad51 (rad51-3A) by immunoblotting with an anti-Rad51 antibody. For integration of the rad51-3A allele, the rad51 ${ }^{+}$gene was first replaced with a ura4 ${ }^{+}$marker flanked by loxP and loxM3 sites (rad51::loxP:ura4:loxM3) (Watson et al. Gene 2008).

Upon expression of the site-specific Cre recombinase, the $u r a 4^{+}$marker was replaced by either the rad51 ${ }^{+}$or rad51-3A allele, generating the following strains: rad51::loxP:rad51:loxM3 and rad51::loxP:rad51-3A:IoxM3. Two independent clones were tested for each genotype. Bottom panel: quantification of Rad51 levels in the strains indicated, normalized with respect to PCNA levels. The values shown are the means of four experiments \pm the $95 \% \mathrm{Cl}$. Strains used: wt=AA109, rad51$3 A=A A 118$, rad51- $d=$ SL1010.
B. Diagram of the direct ade6 repeats used to monitor spontaneous recombination. Gene conversion events result in Ade+ Ura+ cells whereas deletion events result in Ade+ Ura- cells.
C. Top panel: Rate of Ade+ colony (event/cell/division) in indicated strains. Values are the median rate $\pm 95 \mathrm{Cl}$. For each strain, 11-15 independent colonies grown on non-selective media (YEA) were re-suspended in water. Appropriate dilutions were plated on selective media (EMM --Ade and EMM -Ade -Ura) and non-selective media to score viability. Colonies were counted after 5-7 days of incubation at $30^{\circ} \mathrm{C}$. Each fluctuation test was repeated two times. Statistical analysis was performed with the Mann-Whitney U test. Bottom panel: \% of deletion (Ade+ Ura-) and conversion type (Ade+ Ura+) in indicated strains. Strains used: wt=AA223, rad51-3A=AA237, rad51-d=AA241.
D. Top panel: examples of Rad51 foci detected by immunofluorescence, using an anti-Rad51 antibody, in indicated strains. The rad51-d strain was used as control of antibody specificity. Cells were treated for 1 hour with 0.3 \% MMS. Bottom panel: quantification of Rad51 foci in indicated strains and conditions. Strains used: wt=AA109, rad51-3A=AA118, rad51-d=SL1010.
E. Recruitment of Rad51 to the RTS1-RFB, 150 bp downstream the RFB and 110bp upstream the RFB, in indicated strains and conditions. Strains used: wt=AA129, rad51-3A=AA133.

Table S1: Strains used in this study (related to Key resources table of the STAR method section).

Strain number		Genotype	Reference
SL337	h-smt0	t>ura4 ${ }^{+}$<ori rtf1:nmt41:sup35 ade6-704 leu1-32	Lambert et al. 2005
SL350	h-smt0	t-ura4 ${ }^{+}$<ori (uraR) rtf1:nmt41:sup35 ade6-704 leu1-32	Lambert et al. 2005
SL363	h-smt0	rad52::Kan t>ura4 ${ }^{+}$<ori rtf1:nmt41:sup35 ade6-704 leu132	Lambert et al. 2005
SL680	h-smt0	Rad52::Kan t-ura4 ${ }^{+}$<ori (uraR) rtf1:nmt41:sup35 ade6-704 leu1-32	Lambert et al. 2010
SL382	$h+$	Rad51 ::Kan t>ura4 4^{+}cori (RuraR) rtf1:nmt41:sup35 ade6704 leu1-32	Lambert et al. 2010
SL395	$h+$	```Rad51 ::Kan t-ura4+<ori (uraR) rtf1:nmt41:sup35 ade6-704 leu1-32```	Lambert et al. 2010
AA23	h-smto	arg3::psv40-GFP-Lacl** LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AA1	h-smt0	rad52::nat arg3::psv40-GFP-Lacl** LacO 7,9Kb:kan tura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
YC219	$h+$	ssb3:YFP:Nat rtf1:nmt41:sup35 t<ura4-SD20-ori ade6-704 leu1-32	This study
YC223	$h+$	ssb3:YFP:Nat rad52::Nat rtf1:nmt41:sup35 t<ura4-SD20ori ade6-704 leu1-32	This study
YC221	$h+$	ssb3:YFP:Nat exo1::Nat rtf1:nmt41:sup35 t<ura4-SD20-ori ade6-704 leu1-32	This study
AC434	$h+$	ssb3:YFP:Nat rad52::Kan exo1::Nat rtf1:nmt41:sup35 t<ura4-SD20-ori ade6-704 leu1-32	This study
YC13	h-smt0	t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	Iraqui et al. 2012
YC90	h-smt0	rad52::Nat t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	Iraqui et al. 2012
11258	h -	exo1::Nat t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	Iraqui et al. 2012
AA15	$h+$	rad52::Nat exo1::Nat t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
SL817	h-smto	rad52::Nat rad50::kan t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
AS39	$h+$	arg3::psv40-GFP-Lacl** ssb3-mCherry:kan LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
SL1190	h-smto	rad52::nat ssb3-mCherry:kan arg3::psv40-GFP-Lacl** ssb3-mCherry:kan LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AA46	$h+$	exo1::hygro ssb3-mCherry:kan arg3::psv40-GFP-Lacl** ssb3-mCherry:kan LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
SL1194	h-smto	rad52::nat exo1::hygro ssb3-mCherry:kan arg3::psv40-GFP-Lacl** ssb3-mCherry:kan LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AA39	$h+$	exo1::hygro arg3::psv40-GFP-Lacl** LacO 7,9Kb:kan tura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AA42	h-smto	rad52::nat exo1::hygro arg3::psv40-GFP-Lacl** LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
SL504	h+	$r t f: n m t 41: s u p 35$ t<ura4 ${ }^{+}$-ori ade6-704 leu1-32	Iraqui et al. 2012
AA91	h-smt0	rad52::kan rtf:nmt41:sup35 t<ura4 ${ }^{+}$-ori ade6-704 leu1-32	This study
AA95	h-smt0	exo1::nat rtf:nmt41:sup35 t<ura4 ${ }^{+}$-ori ade6-704 leu1-32	This study
AA98	h-smto	rad52::kan exo1::nat rtf:nmt41:sup35 t<ura4 ${ }^{+}$-ori ade6704 leu1-32	This study

YC266		rtf1:nmt41:sup35 ade6-704 ura5::hygro t-13xter-ura4SD20-ura5<ori leu1-32	This study
11558		rad52::kan rtf1:nmt41:sup35 ade6-704 ura5::hygro t-13xter-ura4SD20-ura5<ori leu1-32	This study
YC270	$h+$	exo1::nat rtf1:nmt41:sup35 ade6-704 ura5::hygro t-13xter-ura4SD20-ura5<ori leu1-32	This study
YC274	$h+$	rad52::kan exo1::nat rtf1:nmt41:sup35 ade6-704 ura5::hygro t-13xter-ura4SD20-ura5<ori leu1-32	This study
AA109	$h+$	loxP:rad51 ${ }^{+}$LoxM3 ura4-D18 ade6-704 leu1-32	This study
AA118	$h+$	loxP:rad51 R152A-R324A- K334A:LoxM3 (rad51-3A) ura4D18 ade6-704 leu1-32	This study
SL1010	$h+$	rad51::loxP:ura4+:loxM3 ura4-D18ade6-704 leu1-32	This study
AA124	h-smt0	loxP:rad51 ${ }^{+}$:LoxM3 t-ura4-SD20-ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
AA129	h-smt0	loxP:rad51 ${ }^{+}$:LoxM3 t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
YC76	h-smt0	Rad51::Kan t-ura4-SD20-ori rtf1:nmt41:sup35 ade6-704 leu1-32	Iraqui et al. 2012
YC80	h-smt0	Rad51::Kan t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	Iraqui et al. 2012
AA133	h-smto	loxP:rad51 R152A-R324A- K334A:LoxM3 (rad51-3A) t-ura4-SD20<ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
AA139	h-smt0	loxP:rad51 R152A-R324A- K334A:LoxM3 (rad51-3A) t-ura4-SD20-ori rtf1:nmt41:sup35 ade6-704 leu1-32	This study
AA158	$h+$	loxP:rad51 R152A-R324A-K334A:LoxM3(rad51-3A) arg3::psv40-GFP-Lacl** LacO 7,9Kb:kan t-ura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AC409	h-smt0	rad51::kan trp2::psv40-GFP-Lacl** LacO 7,9Kb:kan tura4 ${ }^{+}$<ori nmt41:rtf1:sup35 ade6-704 leu1-32	This study
AA223	h-smto	loxP:rad51+:loxM3 ade6M-375int:puc8/ura4+/ade6-469 ura4D18 leut	This study
AA237	h-smt0	loxP:rad51-3A:loxM3 ade6M-375int:puc8/ura4+/ade6469 ura4D18 leu+	This study
AA241	h-smto	```rad51::kan ade6M-375int:puc8/ura4+/ade6469 ura4D18 leu+```	This study

Table S2: Primers used in this study (related to Key resources table of the STAR method section).

Name	Distance (pb) from the RTS1-RFB position	Sequence ($5^{\prime}-3^{\prime}$)	Experiment
L3F	110	TTTAAATCAAATCTTCCATGCG	ssDNA qPCR
L3R		TGTACCCATGAGCAAACTGC	ssDNA qPCR
L400F	450	ATCTGACATGGCATTCCTCA	ssDNA qPCR
L400R		GATGCCAGACCGTAATGACA	ssDNA qPCR
L1800F	1800	GGCAAAGTAGATCCGACAGC	ssDNA qPCR
L1800R		TGAATACGCCGTTACTCCTAAAG	ssDNA qPCR
L2200F	2200	AAGGCAAGAAACGCTGAGAC	ssDNA qPCR
L2200R		GGCATGCATACTACCCGATAA	ssDNA qPCR
II50F	Locus control (Chrll)	CACCGCAGTTCTACGTATCCT	ssDNA qPCR
II50R		CGATGTAACGGTATGCGGTA	ssDNA qPCR
II150F	Chromosome II	ATCGTCAATCCATTCCGTCT	ssDNA qPCR
II150R		AACCATCTAACATACGATATGAATCCT	ssDNA qPCR
R1800F	-1800	TTACATTGCTCAATGCTGACG	ChIP RPA
R1800R		AACGTGGTAGTACGACAAGGTACA	ChIP RPA
Ura4-1F	-1100	GACTCCACGACCAACAATGA	ChIP RPA
Ura4-1R		CTGGTATCGGCTTGGATGTT	ChIP RPA
R400F	-600	CACACTTGCTCTGTACACGTATTCT	ChIP RPA
R400R		AGGATCCATGATGCACAGATT	ChIP RPA
R5F	-210	TTGCCAAACATCCTCCTACC	ChIP RPA
R5R		GAAACACAAGCCAAAGTTGC	ChIP RPA
R3F	160	TTCTGTTCCAACACCAATGTTT	ChIP RPA
R3R		TGTACAAAGCCAATGAAAGATG	ChIP RPA
Ura4-1F	600	GACTCCACGACCAACAATGA	ChIP RPA
Ura4-1R		CTGGTATCGGCTTGGATGTT	ChIP RPA
Ura4-2F	950	TGATATGAGCCCAAGAAGCA	ChIP RPA
Ura4-2R		CAAATTCGCAGACATTGGAA	ChIP RPA
L5F	1500	AGGGCATTAAGGCTTATTTACAGA	ChIP RPA
L5R		TCACGTTTAATTTCAAACATCCA	ChIP RPA
L3F	1850	TTTAAATCAAATCTTCCATGCG	ChIP RPA
L3R		TGTACCCATGAGCAAACTGC	ChIP RPA
L400F	2200	ATCTGACATGGCATTCCTCA	ChIP RPA
L400R		GATGCCAGACCGTAATGACA	ChIP RPA
L600F	2500	CCATTGACTAGGAGGACTTTGAG	ChIP RPA
L600R		CCCTGGCGGTTGTAGTTAGT	ChIP RPA
L1400F	3100	AACATCGGTGACCTCGTTCT	ChIP RPA
L1400R		CTCTTCGCTCCAAGCGTTAT	ChIP RPA
Ade6-23	Chromosome III	GGCTGCCTCTACCATCATTC	ChIP RPA
Ade6-25		TTAAGCTGAGCTGCCAAGGT	ChIP RPA

