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Competition between co-existing electronic phases in first-order phase transitions can lead to a sharp 

change in the resistivity as the material is subjected to small variations in the driving parameter, e.g., 

the temperature. One example of this phenomenon is the metal-insulator transition (MIT) in perovskite 

rare-earth nickelates. In such systems, reducing the transport measurement area to dimensions 

comparable to the domain size of insulating and metallic phases around the MIT should strongly 

influence the shape of the resistance-temperature curve. Here, we measure the temperature dependence 

of the local resistance and the nanoscale domain distribution of NdNiO3 areas between Au contacts 

gapped by 260 down to 40 nm. We find that a sharp resistance drop appears below the bulk MIT 

temperature at ~105 K, with an amplitude inversely scaling with the nanogap width. By using X-ray 

photoemission electron microscopy, we directly correlate the resistance drop with the emergence and 

coalescence of individual metallic domains at the nanogap. Our observation provides a direct insight 

into percolation at the MIT of rare-earth nickelates.  
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Percolative electronic transport naturally occurs in heterogeneous media but can also arise in 

disordered systems or as a result of electronic phase separation in strongly correlated materials1,2. The 

electronic phase separation typically occurs in systems displaying a first-order metal-insulator 

transition (MIT)3, as in several classes of transition metal oxides (VO2,
4-10 V2O3

11 or perovskite rare-

earth nickelates12). 

Recently, with an abundant availability of fabrication, lithography and spectroscopy techniques at 

length scales of nanometers, the MIT behavior of transition metal oxides have been intensively 

investigated13. In the work of Sharoni et al.14, multiple resistance drops or jumps within the resistance-

temperature (R-T) curve were observed in VO2 nanodevices. The maximal resistance jump size was 

herein found to scale inversely with device length with so-called avalanche events following a 

stochastic power law dependence. Another vanadium oxide compound, V2O3, was studied by Wang et 

al.15 who found a similar first-order percolation driven MIT in patterned nanodevices. In nanogaps of 

the phase-separated ferromagnet (La, Pr, Ca)MnO3, G. Singh-Bhalla et al.16 observed multiple step-

like changes of resistance and proposed the presence of possible intrinsic tunnel barriers based on a 

magnetic-field effect. Kumar et al.17 reported a stochastic resistance switching process between two 

coplanar electrodes deposited on a polycrystalline NdNiO3 (NNO) pellet. 

Although the previous studies have suggested that the step-like resistance changes could originate 

from domain distribution based on the R-T characteristic, the direct correlation between domain 

distribution and resistance change still remains elusive, particularly, in perovskite rare-earth nickelates. 

Here, we have analyzed the device-size-dependent R-T curves of NNO nanogaps and then measured 

their domain evolution by utilizing an X-ray photoemission electron microscope (X-PEEM), thereby 

correlating the microscopic domain percolation with the macroscopic resistance change. 

NNO belongs to perovskite rare-earth nickelates, a family of materials displaying a phase diagram 

where the MIT temperature can be tuned by the size of a rare-earth cation18. The MIT of NNO is first 

order and accordingly, the material shows a phase separation between a metallic/paramagnetic phase 

and an insulating/antiferromagnetic phase19,20; the nucleation size of metallic domains inside an 

insulating matrix domains has been observed to be ~100-300 nm upon warming up across the MIT 

transition of NNO20. Therefore, when the size of NNO nanogaps becomes comparable to the nucleation 

size of NNO metallic domains, the R-T curve is expected to differ significantly from the bulk one due 

to the appearance of discernible resistance drops. 
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Figure 1. (a) An atomic force microscopy image of an as-grown NNO film. The scale bar represents 

1 m. (b) The RHEED intensity and pattern during the growth of film. (c) The resistivity of  

unpatterned NNO film as a function of temperature. 

 

Figure 2. (a) Optical microscopy image of a NNO nanogap device. (b) AFM zoom in of the nanogap 

area within the white box shown in (a) where the distance between the two Au electrodes (d) is 80 nm. 

The scale bar represents 100 nm. (c-j) A series of R2pt-T curves with d = 40 - 260 nm. 

Figure 1(a) shows an atomically flat surface of the NNO film. For all devices studied, the films 
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are 10 unit cells thick, as determined by monitoring the intensity oscillations of the specular spot in 

RHEED pattern, cf (IRHEED) displayed in Fig. 1(b). The streak lines in the RHEED pattern confirm the 

two-dimensional nature of the film surface after the growth. The bare NNO film clearly undergoes a 

first-order MIT characterized by four orders of magnitude change in its resistivity [Fig. 1(c)], which 

confirms the high quality of the film20. 

An optical microscopy image of a NNO nanogap device is shown in Fig. 2(a). Since the Au 

electrodes are constricted in the center of the nanogap, the measured resistance of the nanogaps mostly 

originates from the area between the electrodes [see the AFM image in Fig. 2(b)], where the width and 

length of this area is defined as d (nm) and 2d (nm), respectively. A series of R2pt-T curves (here, R2pt 

stands for the two-point resistance) from the nanogaps are obtained for d ranging between 40 - 260 

nm, as shown in Figs. 2(c-j). All curves contain multiple R drops or jumps below the MIT temperature 

except the device for d = 260 nm that mimics the macroscopic behavior of NNO. In order to capture 

the delicate relation between d and domain evolution, we have performed two types of analysis. First, 

the two-exponent phenomenological percolation model21 is applied by fitting both the insulating- and 

metallic-phase (I- and M-phase, respectively) regime of R2pt-T heating curves with the equations from 

the Mott variable range hopping model and the non-Fermi liquid model, respectively, cf. below [also 

see the fit result in Fig. 3(a)]: 

1/4

I-phase 0 1 1 2 2( ) exp( / ) exp( / )G T G G E T G E T        (1) 

M-phase 1 2( )G T A A T         (2) 

where I-phaseG  and M-phaseG correspond to the conductance of I-phase and M-phase, and 0,1,2G , 1,2E  

and 1,2A  are fitting parameters. With the two fit curves obtained, the volume fraction of I-phase, i.e., 

FI-phase, as a function of T [Fig. 3(b)] can be calculated by using the Bruggeman symmetric media 

equation22: 
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where fullG   corresponds to the full heating curve obtained from the experiment, and D is the 

dimension of our system set to be 2. This two-dimensional approximation seems reasonable since the 

film thickness is only ~4 nm23 and the size of M-phase domains is about two orders of magnitude 

higher19,20. In Fig. 3(c), the maximum amplitude of FI-phase drops, i.e., (FI-phaseFI-phase)max is extracted 
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from each R2pt-T heating curve of Figs. 2(c-j), which shows that the shorter the distance between the 

electrodes becomes, the larger the FI-phase drops are observed. The second analysis exhibits the same 

trend by comparing the maximum R drop, i.e., (R/R)max, with electrode gap d as shown in Fig. 3(d),. 

Only two devices with d = 140 and 150 nm slightly deviate from this trend. This may arise from the 

local variation of the M-phase nucleation size in these two particular nanogaps. 

 

Figure 3. (a) The fit curves of I-phase and M-phase regime in the heating curve of the d = 80 nm case. 

(b) The extracted fraction of I-phase (FI-phase) from the fit curves in (a). The nanogap-size-dependent 

(c) FI-phase and (d) R drops. 

In order to tackle the question of whether the domain percolation inferred from the above analyses 

can be directly correlated with the actual domain distribution in the NNO nanogaps, we collected X-

PEEM images from the nanogap of d = 80 nm at four different temperatures across the MIT. The 

images were obtained at two different energies of the Ni L3 edge, where the two energies show the 

largest change when we plot the difference between X-ray absorption spectra (XAS) of I-phase (80 K) 

and M-phase (130 K): 851.6 eV (Ia) and 852.9 eV (Ib) [also see Refs. 19 and 20 for the typical shape 

of the low temperature XAS on NNO]. In addition, since the number of photoelectrons escaping from 

the nanogap was ~40% less compared with that from the outside region (probably due to a shadowing 

effect), the normalized intensity ratio between the two selected energies (Ia/Ib) of each pixel is obtained 

by removing the intensity offset between the nanogap and the surrounding region and then normalizing 

the Ia/Ib difference between I-phase and M-phase. The normalized full view images are displayed in 

Figs. 4(a-d) while Fig. 4(e) corresponds to zoomed-in view of Fig. 4(b) around the region of interest. 
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Since the M-phase has a relatively higher Ia compared to the case of the I-phase, the green and yellow 

pixels between two electrodes correspond to the domain nucleation and evolution of the M-phase. 

Accordingly, the blue pixels indicate the I-phase. Far below the MIT temperature [see Fig. 4(a)] the I-

phase domains dominate most of the studied area, which matches well with the insulating R2pt-T 

behavior at the same temperature in Fig. 3(a). As shown in Fig. 4(b), the nucleation and growth of the 

M-phase domains are observed at 100 K. More importantly, Fig. 4(e) shows that the very first metallic 

percolation occurs at the nanogap and this result can be related to the starting point of R drops in the 

R2pt-T heating curve at ~105 K. Figs. 4(c) and (d) show that most of the area in the view becomes 

metallic after 110 K although the volume fraction of the M-phase still increases between 110 K and 

120 K, which may correspond to the beginning of the bulk-like R decrease at ~125 K in the R2pt-T 

curve. 

 

Figure 4. (a-d) The X-PEEM images showing the contrast of normalized Ia/Ib at four different 

temperatures, i.e., 57, 100, 110 and 120 K. The scale bar in (a) represents 200 nm. (e) The zoomed-in 

image of the black-dashed box in (b). The red-dashed box indicates the first metallic percolation in 

between two Au electrodes. The scale bar represents in (e) 100 nm. 

In summary, we have directly correlated the R drops appearing at the MIT of NNO nanogaps with 

the domain percolation behavior by combining electronic transport measurement and X-PEEM. The 

comparative analysis between the R2pt-T curve and the X-PEEM images clearly illustrates that the 

observed R drops below the MIT temperature in the electronic transport measurement of NNO 

originates from the percolating behavior of the M-phase domains at the nanogaps. Based on our 
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observations, future studies such as visualizing a current-injection-driven or light-pulse-induced 

domain switching24 processes in NNO nanogaps will extend our knowledge on the first-order MIT and 

phase separation. More generally, our finding offers a deeper understanding on the electronic transport 

in the nanodevices of first-order MIT materials where the domain nucleation is comparable to the size 

of the devices. 

 

MATERIALS AND METHODS 

10-unit-cell-thick NNO films were epitaxially grown by using pulsed laser deposition and 

monitored with reflection high-energy electron diffraction (RHEED) during the growth of the films. 

The detailed growth conditions can be found in previous references20,25. Following the NNO film 

deposition, a PMMA A6 resist soft-mask was prepared with e-beam lithography. To ensure good 

electrical contact between the Au electrodes and the NNO film, the NNO surface was cleaned by in-

situ oxygen plasma exposure prior to dc magneton sputtering of 25-nm-thick Au at room temperature. 

Subsequently, the residual Au film was removed by lift-off leaving an area between two coplanar Au 

electrodes of varying size, i.e., d  2d nm2. The R-T curves of the prepared NNO nanogaps were 

obtained by the current pulse measurement in the resistivity module of a Quantum Design Dynacool. 

The van der Pauw geometry was used to obtain the resistivity () of the bare NNO films before 

fabrication of the NNO nanogaps. The two-point resistance of the NNO nanogaps was performed with 

a temperature sweeping rate of 2 K/min. In order to image the local distribution of metallic (M-phase) 

or insulating (I-phase) domains around the NNO nanogaps, the spatially-resolved and temperature-

dependent X-PEEM was performed at the UE49 PGM beamline of the BESSY II in the Helmholtz-

Zentrum Berlin26, 27.  

 

ACKNOWLEDGMENTS 

This work received support from the ERC Consolidator grant no. 615759 “MINT”, the French 

Research Agency (ANR) as part of the “Investissement d’Avenir” program (LABEX NanoSaclay, ref 

ANR-10-LABX-0035) through project “AXION”, and by the Region Ile-de-France DIM OXYMORE 

program through project “NEIMO”. F.T. acknowledges support by research grant VKR023371 

(SPINOX) from VILLUM FONDEN. We thank HZB for the allocation of neutron/synchrotron 

radiation beamtime. The research leading to this result has been supported by the project 



8 

 

CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research 

and Innovation HORIZON 2020.  



9 

 

REFERENCES 

[1] Isichenko, M. B. Rev. Mod. Phys. 1992, 64 (4), 961–1043. 

[2] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (Revised Second Edition). CRC 

Press, 1994. 

[3] Imada, M.; Fujimori, A.; Tokura, Y. Rev. Mod. Phys. 1998, 70 (4), 1039–1263. 

[4] Qazilbash, M. M.; Brehm, M.; Chae, B.-G.; Ho, P.-C.; Andreev, G. O.; Kim, B.-J.; Yun, S. J.; 

Balatsky, A. V.; Maple, M. B.; Keilmann, F.; Kim, H.-T.; Basov, D. N. Science 2007, 1750–

1753. 

[5] Qazilbash, M. M.; Brehm, M.; Andreev, G. O.; Frenzel, A.; Ho, P.-C.; Chae, B.-G.; Kim, B.-J.; 

Yun, S. J.; Kim, H.-T.; Balatsky, A. V.; Shpyrko, O. G.; Maple, M. B.; Keilmann, F.; Basov, D. 

N. Phys. Rev. B 2009, 79, 075107. 

[6] Qazilbash, M. M.; Tripathi, A.; Schafgans, A. A.; Kim, B.-J.; Kim, H.-T.; Cai, Z.; Holt, M. V.; 

Maser, J. M.; Keilmann, F.; Shpyrko, O. G.; Basov, D. N. Phys. Rev. B 2011, 83, 165108. 

[7] Kawatani, K.; Takami, H.; Kanki, T.; Tanaka, H. Appl. Phys. Lett. 2012, 100, 173112. 

[8] Liu, M. K.; Wagner, M.; Abreu, E.; Kittiwatanakul, S.; McLeod, A.; Fei, Z.; Goldflam, M.; Dai, 

S.; Fogler, M. M.; Lu, J.; Wolf, S. A.; Averitt, R. D.; Basov, D. N. Phys. Rev. Lett. 2013, 111, 

096602. 

[9] Stinson, H. T.; Sternbach, A.; Najera, O.; Jing, R.; Mcleod, A. S.; Slusar, T. V.; Mueller, A.; 

Anderegg, L.; Kim, H. T.; Rozenberg, M.; Basov, D. N. Nat. Commun. 2018, 9, 3604. 

[10] Lee, D.; Chung, B.; Shi, Y.; Kim, G.-Y.; Campbell, N.; Xue, F.; Song, K.; Choi, S.-Y.; 

Podkaminer, J. P.; Kim, T. H.; Ryan, P. J.; Kim, J.-W.; Paudel, T. R.; Kang, J.-H.; Spinuzzi, J. 

W.; Tenne, D. A.; Tsymbal, E. Y.; Rzchowski, M. S.; Chen, L. Q.; Lee, J.; Eom, C. B. Science 

2018, 362, 1037–1040. 

[11] McLeod, A. S.; Heumen, E. V.; Ramirez, J. G.; Wang, S.; Saerbeck, T.; Guenon, S.; Goldflam, 

M.; Anderegg, L.; Kelly, P.; Mueller, A.; Liu, M. K.; Schuller, I. K.; Basov, D. N. Nat. Phys. 

2017, 13, 80–86. 

[12] Post, K. W.; McLeod, A. S.; Hepting, M.; Bluschke, M.; Wang, Y.; Cristiani, G; Logvenov, G.; 

Charnukha, A.; Ni, G. X.; Radhakrishnan, P.; Minola, M.; Pasupathy, A.; Boris, A. V.; Benckiser, 



10 

 

E.; Dahmen, K. A.; Carlson, E. W.; Keimer, B.; Basov, D. N. Nat. Phys. 2018, 14, 1056–1062. 

[13] Wei, J; Natelson, D. Nanoscale 2011, 3, 3509–3521. 

[14] Sharoni, A.; Ramirez, J. G.; Schuller, I. K. Phys. Rev. Lett. 2008, 101, 026404. 

[15] Wang, S.; Ramirez, J. G.; Schuller, I. K. Phys. Rev. B 2015, 92, 085150. 

[16] Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F. Phys. Rev. Lett. 2009, 102, 

077205. 

[17] Kumar, D.; Rajeev, K. P.; Alonso, J. A. Appl. Phys. Lett. 2018, 112, 133103. 

[18] Varignon, J.; Grisolia, M. N.; Íñiguez, J.; Barthélémy, A.; Bibes, M. npj Quantum Materials 

2017, 2, 21. 

[19] Mattoni, G.; Zubko, P.; Maccherozzi, F.; Torren, A. J. H. V. D.; Boltje, D. B.; Hadjimichael, M.; 

Manca, N.; Catalano, S.; Gibert, M.; Liu, Y.; Aarts, J.; Triscone, J.-M.; Dhesi, S. S.; Caviglia, 

A. D. Nat. Commun. 2016, 7, 13141. 

[20] Preziosi, D.; Lopez-Mir, L.; Li, X.; Cornelissen, T.; Lee, J. H.; Trier, F.; Bouzehouane, K.; 

Valencia, S.; Gloter, A.; Barthélémy, A.; Bibes, M. Nano Lett. 2018, 18, 2226−2232. 

[21] McLachlan, D. S.; Sauti, G.; J. Nanomat. 2007, 30389. 

[22] Granados, X.; Fontcuberta, J.; Obradors, X.; Manosa, L; Torrance, J. B. Phys. Rev. B 1993, 48 

(16), 666–672. 

[23] Catalan, G.; Bowman, R. M.; Gregg, J. M. Phys. Rev. B 2000, 62, 7892−7900. 

[24] Caviglia, A. D.; Forst, M.; Scherwitzl, R.; Khanna, V.; Bromberger, H.; Mankowsky, R.; Singla, 

R.; Chuang, Y.-D.; Lee, W. S.; Krupin, O.; Schlotter, W. F.; Turner, J. J.; Dakovski, G. L.; 

Minitti, M. P.; Robinson, J.; Scagnoli, V.; Wilkins, S. B.; Cavill, S. A.; Gibert, M.; Gariglio, S.; 

Zubko, P.; Triscone, J.-M.; Hill, J. P.; Dhesi, S. S.; Cavalleri, A. Phys. Rev. B 2013, 88, 

220401(R). 

[25] Preziosi, D.; Sander, A.; Barthélémy, A.; Bibes, M. AIP Advances 2017, 7, 015210. 

[26] Arora, A.; Phillips, L. C.; Nukala, P.; Hassine, M. B.; Unal, A. A.; Dkhil, B.; Balcells, L.; 

Iglesias, O.; Barthélémy, A.; Kronast, F.; Bibes, M.; Valencia, S. Phys. Rev. Materials 2019, 3, 

024403. 



11 

 

[27] Kronast, F.; Valencia, S. J. large-scale Res. Facil. 2016, A90, 1-6; 

 


	Word Bookmarks
	OLE_LINK1
	OLE_LINK2


