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Descartes, Paris, France; 4Institute of Biogeochemistry and Pollutant Dynamics, ETH
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Abstract Microbial colonies are fascinating structures in which growth and internal organization

reflect complex morphogenetic processes. Here, we generated a microfluidics device with arrays of

long monolayer yeast colonies to further global understanding of how intercellular metabolic

interactions affect the internal structure of colonies within defined boundary conditions. We

observed the emergence of stable glucose gradients using fluorescently labeled hexose

transporters and quantified the spatial correlations with intra-colony growth rates and expression

of other genes regulated by glucose availability. These landscapes depended on the external

glucose concentration as well as secondary gradients, for example amino acid availability. This work

demonstrates the regulatory genetic networks governing cellular physiological adaptation are the

key to internal structuration of cellular assemblies. This approach could be used in the future to

decipher the interplay between long-range metabolic interactions, cellular development and

morphogenesis in more complex systems.

DOI: https://doi.org/10.7554/eLife.47951.001

Introduction
Structured cellular populations are complex, dynamic systems and their composition, expansion and

internal structure are the result of interactions between the cells and their microenvironment. Cells

absorb and metabolize nutrients and also produce and secrete metabolites, creating spatial gra-

dients of nutrients and metabolites. Thus, cells at the outskirts of a multicellular assembly do not

experience the same microenvironment as the cells deeply buried within. Reciprocally, cellular physi-

ology is dependent on the cell’s position within a colony. Such variations in cellular physiology are

consistently observed in a variety of multicellular systems – from bacterial and yeast colonies

(Vulin et al., 2014; Cáp et al., 2012) to biofilms (Nadell et al., 2016) and tumors (Carmona-

Fontaine et al., 2013; Delarue et al., 2014) – and are reflected by altered gene expression levels

and cellular phenotypes as growth rates, nutrient uptake rates and metabolic activity. Such variations

presumably emerge because of long-range metabolic interactions between cells, in that the cellular

microenvironment at one position depends on the nutrient uptake rate at another position.

Notably, multicellular communities (Shapiro, 1998; Shou et al., 2007; Xavier and Foster, 2007)

exhibit various adaptive benefits, including higher cell proliferation, improved access to resources

and niches (Koschwanez et al., 2011), collective defence (e.g., against antagonists, drugs, antibiot-

ics) (Nadell et al., 2016) resulting in optimization of population survival when confronted with averse

physical, chemical, nutritional or biological challenges (Palková and Váchová, 2006). These
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examples indicate the importance of understanding the emergence and maintenance of complex

spatial multicellular structures from ecological (Antwis et al., 2017; Gonzalez et al., 2012;

Widder et al., 2016), medical (Bryers, 2008; Gilbert et al., 2018; Estrela and Brown, 2018) and

evolutionary (Ratcliff et al., 2012; Nadell et al., 2010; Kim et al., 2008) perspectives. Yet, despite

the obvious contrast between homogeneous environments and the pronounced environmental het-

erogeneity of microbial cellular assemblies, the majority of scientific research to date has either

focused on single cells in homogeneous environments or populations of cells grown in batch or con-

tinuous liquid cultures. This is mostly due to the complexity of designing an experiment that would

allow monitoring, over long time, the development of a spatially defined extended multicellular

assembly. This is in particular the case for the widely used eukaryotic model organism yeast Saccha-

romyces cerevisiae, despite the numerous calls in recent reviews to study its nutrient sensing, signal-

ing, and related growth and development control within the natural colony context. (Conrad et al.,

2014; Broach, 2012; Horák, 2013).

As microorganisms in nature tend to live in multicellular communities, devising an experimental

approach that captures this complexity while being easy to use and amenable to different experi-

mental needs and conditions should further our understanding of complex gene regulatory networks

in the context of microbial evolution and ecology.

Current direct observations of three-dimensional colonies and biofilms are cumbersome and often

constrained by existing technologies (Nadell et al., 2016). For example, two-photon microscopy of

sliced agarose-encapsulated yeast colonies was required to show that yeast cells may adopt different

physiologies – and possibly different cell types – depending on their position within a colony

(Cáp et al., 2012). In another example, nanospray desorption electrospray ionization mass spec-

trometry (nanoDESI MS) was used to study growing bacterial colonies on agar plates and showed a

wide diversity and complexity of compounds that characterize microbial chemical ecology

(Watrous et al., 2012; Traxler and Kolter, 2012). Such complex methodologies are not amenable

to time-lapse imaging, nor to observation of the temporal variations in gene expression and growth

rates of single cells over relevant time and length scales. An alternative is to grow microbial cells in

microfluidic devices to spatially constrain the growth of the cells and to control the delivery of

nutrients (Bennett and Hasty, 2009; Cookson et al., 2005; Robert et al., 2010; Ni et al., 2012;

Llamosi et al., 2016). Microfluidic experimental research is typically designed to ensure that the cells

being studied experience a homogeneous environment. This can be done at the single cell level, as

it has been demonstrated in studies of aging of yeast (Jo et al., 2015) and bacteria (Yang et al.,

2019) where single cells had to be trapped and kept under constant nutrient flow for long term

observations to capture their death. Alternatively, a small cell assembly can be trapped in dead-end

chambers under assumption that a quick diffusion of nutrients will keep the environment in chambers

homogeneous. With that approach cell lineages were tracked for bacteria (Wang et al., 2010) (the

widely used ‘mother machine’) and yeast (Xu et al., 2015), cells were subjected to fluctuating envi-

ronments of different carbon sources to study non-genetic memory in bacteria (Lambert et al.,

2014), and bacterial colonies were synchronized through quorum sensing and gas-phase redox sig-

nalling over centimeter-length scales to produce oscillating colony ‘biopixels’ (Prindle et al., 2011).

Although effective for their specific applications, unfortunately, such devices do not fully capture

emerging properties at a colony level, that is spatial variations in growth rates, microenvironments

and phenotypes. Recently, there have been a few attempts to use microfluidics to study collective

properties of bacterial colonies grown as a microcolony. Hornung et al. (2018) grew two-dimen-

sional bacterial microcolonies in a 75 mm long device perfused with a very low concentration (up to

585 mM) of protocatechuic acid as the only carbon source from both sides of the cell chamber. They

observed heterogeneous growth in agreement with a combination of a reaction-diffusion model and

particle-based simulations. In a similar setup, a 60 mm long device perfused with a very low concen-

tration of glucose (up to 800 mM) from one side was used to study the emergence of microscale gra-

dients that resulted in metabolic cross-feeding between glucose-fermenting and acetate-respiring

subpopulations of bacteria and antibiotic tolerance by slow growing subpopulation (Co et al.,

2019). Wilmoth et al. used microwells up to 100 mm in diameter to look at spatial patterns of H1-

Type VI secretion system (T6SS) mutants of Pseudomonas aeruginosa accompanied with an agent-

based model depicting the two observed subpopulations (Wilmoth et al., 2018). They found that

spatial constraints and local concentrations of growth substrates affect the spatial organization of

cells. Finally, Liu et al. grew Bacillus subtilis biofilms perfused with glycerol and glutamate media.
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They discovered collective oscillations which emerge as a consequence of long-range metabolic co-

dependence between cells in the interior and cells at the periphery of a biofilm, presumably to maxi-

mize the availability of nutrients and survival of interior cells (Liu et al., 2015). While the use of

microfluidics gave rise to the discovery of collective properties of microbial assemblies and facili-

tated quantitative observations, such attempts are currently limited by inherent difficulties tied to

fabrication of efficient microfluidic devices and choice of model organism. These limitations include

small device dimensions (<100 mm) (Hornung et al., 2018; Co et al., 2019; Wilmoth et al., 2018),

use of low nutrient concentrations (<1 mM) (Hornung et al., 2018; Co et al., 2019), limited scope of

nutrient types (Hornung et al., 2018; Co et al., 2019; Liu et al., 2015) and in some cases inability

to access single cell level measurements (Wilmoth et al., 2018). Therefore, it is challenging to apply

such devices for the general case of the study of a large monolayer of cells in standard range and

scope of nutrients, often used in biological research in liquid cultures. Additionally, it is tempting to

reconstruct the emergence of gene expression landscapes on a global scale (e.g., within structured

populations) from local (e.g., single cell) properties, given the extensive knowledge accumulated on

single-cell gene regulatory networks. However, the variations in the microenvironment within a multi-

cellular assembly and their interconnections with gene expression and cell metabolism are rather

poorly known.

In attempt to overcome the above limitations in current methodologies and observe emerging

properties at a colony level in larger dimensions and standard nutrient conditions, we developed a

microfluidic device to grow thin, extended arrays of yeast cell monolayers that are perfused with

nutrients from a single direction. We demonstrate the emergence of heterogeneous microenviron-

ments and quantify spatial variation in cellular growth rate and the formation of gene expression

landscapes for key metabolic genes involved in glucose transport and utilization, across the nascent

2D microcolony in 800 mm long cell chambers and up to 444 mM glucose concentration. Interest-

ingly, the gene expression landscapes exhibited a high degree of spatial correlation over a wide

range of glucose concentrations. Notably, we show that a growing extended assembly of cells

presents a robust, steady state spatial structure, transitioning between fermentative (high glucose

environment, fast growth, rapid glucose utilization) and respiratory (low glucose environment, slow

growth, slow but efficient glucose utilization [Pfeiffer and Morley, 2014; Hagman and Piškur,

2015]) regimes, located close to and far from the nutrient source, respectively. This spatial structure

emerges from the interplay between how cells individually adapt to the microenvironment and, at

the same time, alter their surroundings as a result of their metabolic activity. Said differently, struc-

tured cells create and experience a spatially structured micro-environment through the interplay of

nutrient diffusion and uptake without any obvious inherent biological program that would imply cell-

cell communication and coordinated community action.

Results

Growing extended yeast monolayers
Microfluidic systems are usually designed to ensure a homogeneous microenvironment for all cells

(Bennett and Hasty, 2009). In contrast, in this study, we designed a microfluidic device – dubbed

the ‘yeast machine’ – to grow long, narrow yeast monolayers with the aim of observing the emer-

gence of nutrient gradients and spatial variations in cellular growth and gene expression landscapes.

We used soft lithography techniques to fabricate a multi-layered microfluidic device composed of a

large channel (to flow nutrients) and an array of perpendicular, extended (800 mm-long), narrow (50

mm-wide), flat (4.5 mm-high) dead-end chambers in which yeast cells can grow as monolayers while

the media is supplied by a pressure pump-based system with flow control (Figure 1, Figure 1—fig-

ure supplement 1). The length of the dead-end chambers was optimized to induce significant varia-

tions in the nutrient concentrations within the chambers due to cellular nutrient uptake. The

chamber width was large enough to avoid jamming during cell growth due to geometric constraints

and small enough to avoid generation of complex, cell-recirculating flows induced by cell growth

(Boyer et al., 2011). The chamber height was comparable to – but slightly larger than – the average

size of a yeast cell, so the cells were vertically constrained to facilitate single-cell imaging and time-

lapse fluorescence microscopy (Figure 1—figure supplement 2).
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The cells were injected into the main channel of the ‘yeast machine’ and then forced into the

dead-end chambers by centrifugation using a homemade 3D-printed holding device attached to a

spin coater (see Figure 1—figure supplement 1; Materials and methods). The main channel was

washed with yeast synthetic complete growth medium to remove excess cells; cells that were

trapped in the dead-end chambers by centrifugation were not removed by the washing step.

Nutrients were flowed through the main channel and could passively diffuse into the array of dead-

Figure 1. Microfluidic device setup and design. (a) Media reservoirs are pressurized with the help of Fluigent MFCS pressure pump resulting in flow

through the flow sensors, into the chip and then to waste. Flow sensors and pressure pump are connected to the flow-rate control module, which

maintains a constant flow through the system. Nutrient supply and media conditions can be changed in real time. (b) Each single ‘yeast machine’ has

two sets of cell chambers of various widths (5 mm, 10 mm, 25 mm and 50 mm). The Cell chambers are connected perpendicularly to a large flow channel

(1 mm wide, 25 mm high). This design facilitates adaptation for different model systems (e.g. bacteria, yeast, mammalian cells) and high-throughput

depending on the of predefined flexible length, width and height flexible adapted dimensions. (c) A close-up sketch of a set of cell chambers used in

our experiments. They are 800 mm long, 50 mm wide, and 4.5 mm high. A single cell chamber fits a monolayer of up to 2500 yeast cells. The whole setup

is mounted on a microscope for time-lapse fluorescent imaging.

DOI: https://doi.org/10.7554/eLife.47951.002

The following figure supplements are available for figure 1:

Figure supplement 1. Experimental Details.

DOI: https://doi.org/10.7554/eLife.47951.003

Figure supplement 2. Detailed cell chamber view.

DOI: https://doi.org/10.7554/eLife.47951.004
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end chambers. The cells formed growing monolayers that extended from the closed end of the

chamber and collectively progressed towards the nutrient source (i.e. the open end of the chamber)

as the cells pushed each other while growing (Figure 2a,b; Video 1). Cells eventually filled each

chamber, forming an extended two-dimensional colony composed of about 2500 cells (Figure 2b,

Figure 1—figure supplement 2), typically ~10 cells wide and ~200 cells long. Cells could be

observed locally at high magnification (100 � objective), while the whole assembly could be seen at

low magnification (10 � objective). We recorded the cellular expansion and subsequent internal

dynamics of these long monolayers, as well as the landscape of expression of key fluorescently

tagged endogenous genes, over time and over an almost 1000-fold range of glucose concentrations

(from 0.01% to 8% w/vol).

Figure 2. Expansion and dynamics of extended cellular monolayers. (a) The microfluidic device is perfused with nutrients using a pressure-driven

system (see Figure 1). Yeast monolayers extend within the long chambers: front velocity (VF) and local velocity (Vz) are determined by cellular growth

and division. (b) Example of a time-lapse collage of yeast monolayer expansion along an 800 mm-long chamber (2% w/vol. glucose, 5 � amino acid

concentration). Front velocity increases and reaches a plateau (indicated by flattening of the slope of the green curve). When the front approaches

close to the open end of the chamber (i.e., 0 mm), the over-spilling cells are constantly washed away by the nutrient flow within the main channel. (c)

Front velocity reaches a maximum when the position of the front becomes close to the open end of the chamber indicating that after expanding by a

typical distance (~400 mm here for 2% w/vol. glucose), the maximal number of cells that receive glucose and can participate in expansion has been

reached. 340 velocity data points binned into 10 equally spaced position points were extracted from n = 12 colony front trajectories (2% w/vol. glucose).

The error bars denote standard deviations of each bin (~15–30 velocity data points). (d) Front velocity as function of external glucose concentration.

Data comes from the bin closest to the open end of the chamber as measured in Figure 2c for each glucose concentration (n > 5). Error bars denote

standard deviations. (e) Local cellular motion can be assessed by computing the standard deviation of pixel intensities across a stack of time-lapse

images. Here, white areas indicate variations in movement across the time-lapse for cells below 400 mm, while the cells above do not move. Averaging

over several channels (n = 9), we obtained an indicator of cell motion and thus an estimate of the glucose penetration distance, H (~400 mm for 2%

glucose). (f) Local velocity decreases for cells deeper within the chamber. Local velocity also increases with external glucose concentration. Velocity

Data, that were binned into 16 equally spaced position, comes from the analysis of >100 cell trajectories. Error bars denote standard deviations.

DOI: https://doi.org/10.7554/eLife.47951.006

The following figure supplements are available for figure 2:

Figure supplement 1. Comparison of front velocity and local velocity under low and high amino acid concentrations.

DOI: https://doi.org/10.7554/eLife.47951.007

Figure supplement 2. Local velocity and front velocity over a range of external glucose concentrations, C0.

DOI: https://doi.org/10.7554/eLife.47951.008
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Monolayer in expansion displays
regions of fast and slow growth
Expansion of the monolayers of cells was

observed by microscopy at low magnification

(10� objective). Under standard glucose-rich

conditions (2% w/vol; 111 mM) and excess amino

acids (5� CSM, see Materials and methods), the

front velocity, VF, increased during the first 2-4 h

and eventually reached a steady-state close to

100 mm.h�1 (Figure 2c,d, Video 1). Front veloc-

ity is the sum of the contribution of every cell to

colony expansion. Therefore, VF depends on the

quantities of glucose and other nutrients that

penetrate inside the yeast monolayer, which

impact both the number of cells that grow and

their growth rates. Initially, the monolayer is sparsely populated and sufficient glucose is expected

to reach all cells. After growth and division, a larger number of cells can participate in global expan-

sion of the population. Thus, the front velocity is expected to quickly increase over time. However,

at some point, as the size of the monolayer increases, the cells close to the dead end of the chamber

will stop growing (due to absorption and metabolism of available nutrients by cells closer to the

nutrient source/chamber opening) and the front velocity will plateau. Hence, after the cell chamber

populates with cells completely, a steady-state is reached where a constant number of cells with

access to glucose continue to divide and move passively towards the nutrient source, while the num-

ber of cells at the dead end of the chamber deprived of glucose (and other nutrients) remains

unchanged. If we consider the ideal case in which yeast cells are 4 mm-wide and divide every 90 min

in the presence of glucose, each cell layer leads to an expansion of 4 mm every 90 min, or 2.6 mm.

hr�1. The observed terminal front velocity of 94 ± 8 mm.hr�1 (Figure 2) can be attributed to the first

36 ± 3 layers of cells, that is the first 140 mm of the colony. The glucose penetration distance can be

approximated by assuming (Vulin et al., 2014) that glucose – of which the concentration is main-

tained at C0 at the front of the monolayer – freely diffuses within the assembly with a diffusion coeffi-

cient D ~ 100 mm (Cáp et al., 2012).s�1 and is absorbed by cells at a constant rate, q0, of ~ 1 mM.

s�1. Diffusion law dictates that the glucose concentration is expected to decrease significantly after

a typical distance, H, that scales with
ffiffiffiffiffiffiffi

DC0

q0

q

~ 100 mm. Our direct observation (Figure 2e) showed

that for a layer of growing cells, H is around 400 mm at 2% w/vol glucose. Notably, both estimations

are in agreement, albeit they underestimate the observed size of the growing layer. These discrep-

ancies result from discarding the decay in the cellular growth rate at decreasing glucose concentra-

tions and the variation in the specific cellular uptake rate, q, with glucose concentration. Indeed, the

interplay between glucose diffusion and uptake is central to structuration of the colony as it affects

both the number of cells that have access to glucose and the glucose concentration in the microenvi-

ronment of each region, and thus determines which cells actually participate in colony expansion

and by how much (Vulin et al., 2014). The true glucose penetration distance is therefore likely to be

larger than the above ‘guesstimate’. Yet, inferring the true penetration distance would require a

detailed model of the dependency of both cellular glucose absorption and the growth rate on the

glucose concentration, as well as experimental measurements of the glucose concentrations within

the monolayer. This outlines the difficulty of predicting the internal structure of a simple yeast mono-

layer due to our limited understanding of how yeast cells interact with nutrients and the difficulty of

obtaining quantitative details of the microenvironment landscapes within a yeast monolayer. In the

following text, we quantify the expression of different glucose concentration-dependent transporters

as a possible proxy for intra-colony glucose concentration. We even ventured further, to study how

landscapes of cellular growth and expression of key genes involved in glucose transport self-emerge

from long-range metabolic interactions within the yeast colony.

Front velocity increases with glucose concentration
Increasing the glucose concentration (from 0.01% to 8% w/vol) led to higher terminal front velocities

(Figure 2d), in agreement with the fact that at higher concentrations, glucose will penetrate further

Video 1.

DOI: https://doi.org/10.7554/eLife.47951.005
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by diffusion in the colony (Figure 2a). Thus, increasing the concentration allows a larger number of

cells to access glucose and participate in the growth of the colony. Yet, the front velocity does not

increase linearly with glucose concentration, and plateaus at very high glucose concentrations (>4%

w/vol). One interpretation is that at this concentration range, sufficient glucose reaches the dead

end of the chamber, allowing all cells to participate in the growth of the assembly. However, based

on VF ~ mL, where L is the length of the dead-end chamber and m is the average cell growth rate,

one would expect a saturating front velocity of 368 mm.h�1, much larger than the measured value of

100 mm.h�1.

Glucose is not the only nutrient required for cellular growth; amino acids can be a limiting factor

for auxotrophic strains such as the one employed in this study (S288C background). This is why we

used an excess of amino acids (5 � CSM) compared to classic SC medium for yeast cell cultures.

Indeed, using standard amino acid concentrations in the media resulted in significantly lower termi-

nal front velocities, even at high glucose concentrations (Figure 2—figure supplement 1). This sug-

gests that amino acid availability can limit cellular growth, which is especially visible in the presence

of high glucose concentrations, where glucose is no longer limiting but amino acids are. As all

experiments were performed under 5-fold higher amino acid concentrations than normal SC

medium, other metabolites that are consumed are likely to form gradients within colony and might

become rate-limiting for growth. Taken together, we conclude that the spatial variations in all meta-

bolic components of the microenvironment need to be taken into account in order to fully under-

stand microbial colony growth. With that in mind, building a mathematical model to account for the

observed expansion of a spatially structured colony is barely achievable, and we will not address this

question here. Rather, we opted to further characterize the development of glucose gradients as a

specific and critical component of the emergence of the metabolic landscape of the colony.

Local expansion rate decreases with distance from the nutrient source
Once the dead-end chambers were filled with cells, we found that similar growth pattern emerged

across parallel chambers, specific to each glucose concentration. The cells closer to the open end of

the chambers continued to divide, pushing cells out that were washed away by the flow in the nutri-

ent channel. Cells closer to the dead end (y ~ 800 mm) did not move, grow nor divide. At standard

glucose conditions (2% w/vol) and a high amino acid concentration (5 � CSM), significant cell motion

was not observed after y ~ 400 mm, indicating that very limited glucose is available to the cells that

are beyond this region. By tracking single cell trajectories, we measured the velocity field within the

yeast monolayers over a range of glucose concentrations. We extracted >100 single cell trajectories

per concentration, resulting in thousands of velocity data points (see Materials and methods). As

expected, increasing the glucose concentration in the nutrient channel (from 0.01% to 8% w/vol) led

to higher local velocities deeper in the colony (Figure 2f, Figure 2—figure supplement 2). Concom-

itantly, velocity also increased closer to the chamber opening when cells experienced a higher glu-

cose concentration.

In summary, our setup captures the essence of structured colonies, with the emergence of a land-

scape of growth divided into a non-growing area and actively growing area. This spatial separation

is the result of the formation of glucose (and other nutrient) gradients. These gradients emerge as a

result of cellular metabolic activity, which in turn affects the cellular growth rate and physiology at

the local scale.

Cellular metabolic activity creates gene expression landscapes
The emerging glucose (and other nutrient) gradients are expected to both trigger and be governed

by differential gene expression landscapes. To this end, we studied the expression of seven key glu-

cose transporters (HXT1-7) whose expressions are regulated by the extracellular glucose concentra-

tion. We employed yeast strains in which these endogenous glucose transporters were tagged with

GFP (Materials and methods), and recorded the fluorescence signals at the global scale using a low-

magnification objective (10�) and local cellular scale using a high-magnification objective (100�).

Cells were loaded into the chambers as described above and observed after the establishment of a

quasi-steady state (starting 10 hr after the chamber was filled with cells, Figure 3—figure supple-

ment 1). We observed the formation of different landscapes of gene expression for each of the

seven transporters, each with marked territories of low and high expression (Figures 3 and
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Figure 3. Landscapes of gene expression self-emerge in extended yeast monolayers. (a) Expression profile of

HXT7-GFP along the chamber (average fluorescence levels, n = 9; standard deviation shown as the envelope) for

an external concentration of 2% w/vol glucose. Membrane localization of HXT7 was only observed in the cells

surrounding the area of peak HXT7 expression, localized at ~500 mm at 2% w/vol. glucose. (b) FACS

measurements of HXT7-GFP expression in batch culture (average of three replicates) showing a single intensity

peak at C0 = 0.016%. This peak value can be mapped back to the spatial landscape of 3a to infer the glucose

concentration in the region of peak HXT7-GFP fluorescence. n = 3–6 per glucose concentration (c) On varying the

glucose concentration in the nutrient channel, we observed a transition in peak HXT7-GFP fluorescence within the

2D colony. At a concentration of 4% w/vol and above, the peak was located close to the dead end of the chamber

or not visible, indicating sufficient glucose was available throughout the chamber (color code normalized to

maximal expression level). Data obtained from n = 8–17 replicates per glucose concentrations (see also

Figure 3—figure supplement 2). (d) Compared with 3b, it is possible to roughly define areas of glucose presence

in the monolayer for a range of glucose concentrations (n = 8–17, per glucose concentrations, error bars

denote ± one standard deviation). (e) Landscape of HXT1-GFP gene expression over a range of glucose

concentrations (color code normalized to maximal expression); n = 8–9 per glucose concentrations (Figure 3—

figure supplement 3). (f) FACS measurements of HXT1-GFP over a range of glucose concentrations; n = 3

replicates. 3 g. Overlay of HXT1 (red) and HXT7 (green) gene expression landscapes at three external glucose

concentrations, showing that the expression landscapes of these transporters were inversely correlated, in

agreement with their different glucose-dependent expression patterns (compare 3b and 3 f).

DOI: https://doi.org/10.7554/eLife.47951.009

The following figure supplements are available for figure 3:

Figure supplement 1. HXT1 and HXT7 landscape dynamics.

Figure 3 continued on next page
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4; Materials and methods). In particular, HXT1 and HXT7 displayed inversely correlated landscapes

of gene expression (e.g., Figure 3a and g for 2% w/vol glucose). Both patterns demonstrate the for-

mation and maintenance of a glucose gradient that emerges from cellular metabolic activity. HXT1 is

a low-affinity glucose transporter mainly expressed under high-glucose conditions, while HXT7 is a

high-affinity glucose transporter expressed under low-glucose conditions only (Figure 3b and f)

(Reifenberger et al., 1997; Diderich et al., 1999; Maier et al., 2002). Concomitantly, HXT1 was

expressed at the highest levels in the cells close to the chamber opening (i.e., in the highest glucose

concentration), while HXT7 expression peaked further away in the chamber, indicating a transition to

a low-glucose region. We examined the cells at higher magnification (60�) to assess the localisation

of HXT7 gene expression. As expected, in the cells expressing the highest levels of this gene, the

fluorescence was localized to the cell membrane, indicating HTX7 played an active role in glucose

transport in these cells. In contrast, deeper in the colony, we observed lower levels of HTX7 fluores-

cence due to the long lifetime of GFP-fused proteins and absence of dilution through cell division,

though this fluorescence was localized in vacuoles, indicating the transporter had been targeted for

degradation by the cells (Hovsepian et al., 2017) (Figure 3a). Assuming the observed peak of HXT7

fluorescence matches the peak fluorescence observed in batch culture at a glucose concentration of

0.016% w/vol. (Figure 3b,c, Figure 3—figure supplement 2), we could locate the position in the

yeast monolayer at which the glucose concentration reached 0.016% w/vol. This position was around

Hf ~ 500 mm from the front, in good agreement with the transition in cell motion (Figure 2, Hm ~400

mm).

Gene expression landscapes depend on the glucose source
concentration
Increasing the glucose concentration in the nutrient channel changed the gene expression landscape

of all seven glucose transporters (Figures 3 and 4). In particular, at 1% w/vol glucose, HXT1 was only

expressed at low levels at the growing front of the colony (y < 60 mm). In contrast, at the highest glu-

cose concentration (8% w/vol; Figure 3e, Figure 3—figure supplement 3), HXT1 was expressed at

high levels throughout the whole colony, demonstrating glucose was available throughout the cham-

ber. As HXT1 is mainly expressed under high-glucose conditions (>1% w/vol glucose) in batch cul-

ture (Diderich et al., 1999), this observation indicated the glucose penetration distance (within the

chamber) increased with the external glucose concentration. This is in agreement with the increase

in local velocity with the external glucose concentration in Figure 2, with the size of the growing

area also increasing with the external glucose concentration.

In contrast, HXT7 exhibited a peak-like expression pattern, and was repressed under both high-

glucose conditions and when no glucose was present. At low-glucose concentrations (0.1% w/vol), a

peak in HXT7 expression was observed at the very beginning of the colony (y ~ 20 mm), indicating

glucose was quickly absorbed by the cells closest to the chamber opening, thus these were the only

cells with access to sufficient carbon resources to grow and divide. The peak of HXT7 expression

moved deeper into the colony as the glucose concentration increased and disappeared completely

at 8% w/vol glucose, again indicating sufficient glucose could diffuse to the end of the chamber

under high-glucose conditions (Figures 3 and 4).

Reconstructing glucose concentration landscapes using glucose
transporter gene expression levels
We assessed the expression profiles of HXT1-7 in batch culture as a function of glucose concentra-

tion (see Materials and methods) to obtain a qualitative idea of the glucose concentrations within

the microfluidic device. The data for HXT7 was particularly revealing: its rather sharp, well-defined

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.47951.010

Figure supplement 2. Extended figure of Figure 3c.

DOI: https://doi.org/10.7554/eLife.47951.011

Figure supplement 3. Extended figure of Figure 3e.

DOI: https://doi.org/10.7554/eLife.47951.012
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Figure 4. Using the fluorescence landscapes of glucose transporter gene expression to infer glucose

concentration gradients. (a) FACS measurements for HXT1-GFP to HXT7-GFP in batch culture over a range of

glucose concentrations. The expression levels of each HXT show a specific dependence on glucose concentration

(n = 3–6 replicates per glucose concentration). (b) Landscapes of gene expression for all HXTs-GFP at an external

glucose concentration of 2% w/vol. HXTs are ordered by their relative glucose specificity: HXT1 is expressed under

high-glucose conditions, while HXT5 is only expressed at very low-glucose conditions. Assuming a progressive

spatial decay in the glucose concentration away from the chamber opening, all maps of gene expression are in

perfect agreement with the intensity profiles observed in batch culture (n = 8–10 replicates per glucose

concentration). (c-d) Method of glucose gradient reconstruction. The fluorescence landscape of HXT7 (resp. HXT1)

shows a peak Fmax (resp. a minimum, Fmin) at a given location. The fluorescence intensity at the opening of the

chamber, F0, corresponds to the external glucose concentration, C0. Using the FACS measurements of HXT7 (resp.

HXT1) as a function of glucose concentration, one can define the concentration of glucose that matches the peak

Fmax (respective to the minimum Fmin), and the fluorescence intensity that corresponds to C0. This allows us to

linearly map all other fluorescence intensities for a given glucose concentration from the batch culture to the

fluorescence intensities inside the colony, allowing the glucose concentration across the entire cellular monolayer

to be reconstructed. Data comes from previously mentioned HXT1 and HXT7 microfluidics and flow cytometry

measurements. (e-f) Reconstruction of glucose concentration obtained from HXT7 (e, f) and HXT1 (f) fluorescence

data and various external glucose concentrations.

DOI: https://doi.org/10.7554/eLife.47951.013
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expression peak at 0.016% w/vol allowed to define the distance in the microfluidic device at which

the glucose concentration is close to that value (Figure 3a,c). This concentration boundary separates

the yeast monolayer into two regions with different properties, that is actively dividing and growth

arrest. The position of this boundary moved deeper into the colony as the external glucose concen-

tration increased (Figure 3d).

We extended this idea further and used the complete HXT7 expression profile to infer the glu-

cose concentrations at all positions within the chambers. Assuming that the local level of HXT7

expression is only set by the local glucose concentration, we can use batch culture measurements of

HXT7 expression (based on flow cytometry) to determine the glucose concentration at a given cham-

ber position (Figure 4c and d). However, this only allows us to reconstruct the glucose concentration

gradient up to 0.016% w/vol., that is in the domain where cells are actively dividing. The idea is sim-

ply to linearly map the two sets of measurements (in batch culture and in the microfluidic device)

based on the fluorescence levels that correspond to the maxima Fmax and F’max and HXT7-GFP fluo-

rescence levels at the chamber entry F0 and F’0. Using the data for HXT7 in Figure 3, we were able

to reconstruct the glucose gradient for different initial glucose concentrations (Figure 4e). When

applied to HXT1, the same inference led to very similar results (Figure 4f). In both cases, glucose

concentrations decay very quickly moving away from the chamber opening and then exhibit a rela-

tively long tail moving deeper into the colony.

Gene expression landscapes of other genes and transcription factor
activity confirm the inferred glucose gradients
The fact the seven glucose transporters exhibited varied, robust spatial expression patterns under

identical conditions (e.g., Figure 4a), together with the observed growth rate landscapes (Figure 2),

suggests cellular metabolic state varies significantly across the longitudinal axis of the yeast mono-

layers. This variation was further assessed by mapping the expression and localisation of additional

key genes involved in glucose metabolism.

MIG1 is a key transcription factor involved in glucose repression that localizes to the nucleus in

the presence of glucose, to repress genes that participate in parallel carbon metabolic pathways (e.

g., galactose) (Conrad et al., 2014; Broach, 2012). Observing the cells at high magnification, we

quantified the distance after which MIG1 fluorescence was not present in the nucleus of the cells

(Figure 5b). This distance, around 400 mm at C0 = 2% w/vol glucose, was in excellent agreement

with the data obtained by HXT7 profiling. Interestingly, the spatial transition from nuclear MIG1 to

cytoplasmic MIG1 localisation was very sharp and occurred over just a few cells.

In agreement with the batch culture observations, we found HXT5 was only expressed in regions

with very low or no glucose concentrations where the cells did not seem to divide over several hours

(Figure 5a). Therefore, HXT5 appears to be an excellent marker of growth arrest in this context

(Verwaal et al., 2002).

The expression landscapes of two hexokinases involved in glucose metabolism, HXK1 and HXK2

(Figure 5c) that are expressed when cells are grown on non-glucose carbon sources, were also con-

sistent with the batch measurements (Figure 5d, Figure 5—figure supplement 3) and further vali-

dated the existence of a glucose gradient. For each profile, we extracted the position of maximal

expression and inferred the glucose concentration at this position from the FACS measurements of

batch cultures. The batch measurements indicated maximal HXK1 and HXK2 expression were

observed at a glucose concentration of about 0.016% w/vol. As expected, neither enzyme was

expressed at very high glucose concentrations. The HXK1 and HXK2 expression maxima were similar

at the two other glucose concentrations studied, around 300 mm at C0 = 1% and 500 mm at 2% w/

vol. Again, these data are in very good agreement with the positions of HXT7 peak expression at

the same glucose concentrations.

Finally, we examined the expression of PDC1 and SDH2, which are overexpressed in fermenting

and respiring cells, respectively (Otterstedt et al., 2004; Bonander et al., 2008; Ohlmeier et al.,

2004). Their expression landscapes were inversely correlated (Figure 6a, Figure 6—figure supple-

ment 1), indicating a transition from fermentative metabolic activity at the nutrient front of the col-

ony to respiratory metabolic activity towards the dead end of the chamber where glucose is scarce.

These expression maps are in good accordance with our previous results (Figures 2, 3 and 5) and

the levels of PDC1 and SDH2 expression in batch culture (Figure 6b and c).
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Figure 5. Other landscapes of genes involved in glucose metabolism. (a) Landscape of HXT5 expression. HXT5 is

expressed under very low and no glucose conditions and appears to be a good marker of growth arrest. At

C0 = 2% w/vol, HXT5 expression is in good agreement with the observed absence of cellular division (see

Figure 2, Figure 5—figure supplement 1). (b) Landscape of MIG1 activity. MIG1 fluorescence was located in the

nucleus in the presence of glucose, with a sharp transition in nuclear localization observed (middle picture, at 2%

w/vol glucose in the nutrient channel), confirming the existence of a glucose gradient (n = 3 replicates). Total

number of cells and cells with nuclear localization of fluorescence were annotated manually and binned into 25 mm

bins (see also Figure 5—figure supplement 2). (c) HXK1 and HXK2 are hexokinases involved in glucose

metabolism. Their landscape of expression exhibited peaks that indicate a transition from high to very low glucose

levels (n = 8–9 replicates per glucose concentration). (d) FACS measurements of HXK1 and HXK2 expression over

a range of glucose concentrations (n = 3–6 replicates per glucose concentration).

DOI: https://doi.org/10.7554/eLife.47951.014

The following figure supplements are available for figure 5:

Figure supplement 1. Extended figure of Figure 5a.

DOI: https://doi.org/10.7554/eLife.47951.015

Figure supplement 2. Extended figure of Figure 5b.

DOI: https://doi.org/10.7554/eLife.47951.016

Figure supplement 3. Fluorescence intensity of key glucose metabolism genes measured by FACS over a range

of glucose concentrations in batch culture.

DOI: https://doi.org/10.7554/eLife.47951.017
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Multiple gene expression landscapes are spatially correlated
We decided to compare the landscapes of gene expression for the entire set of reporter genes by

aligning the different landscapes across varied nutrient conditions (Figure 7a). Strikingly, all land-

scapes showed a high level of spatial correlation. Two major landscapes emerged: peaking (e.g.,

HXT7) and switching (e.g., HXT1 or MIG1). We defined and extracted the typical lengths of the

peaking and switching landscapes (Figure 7b) and plotted them as function of the external glucose

concentration (Figure 7c). The typical lengths of all of these landscapes for different reporter genes

were remarkably close, despite the fact that we looked at different cellular components: a transcrip-

tion factor (MIG1), glucose transporters (HXTs), metabolic enzymes (HXKs) and metabolic state

reporters (SDH2, PDC1). Notably, we gained a global view of gene expression landscapes and their

interrelationships along a monolayer colony. All data showed the colonies were structured into two

regions with very different properties (Figure 7d): an actively growing region, where cells divide

abundantly and ferment glucose, and a quiescent area, where cells do not divide much and have

switched to respiratory metabolism to compensate for the very low glucose availability. While it is

not surprising to see the expression levels of metabolic genes vary with the glucose concentration,

our approach demonstrates genetic programs not only allow individual cells to adapt to changes in

the nutrient environment, but also enable multicellular assemblies to spatially self-organize through

long-range metabolic interactions governed by physical rules of diffusion and uptake. This sheds

new light on the coordinated actions of these genes in individual cells in a biologically relevant

Figure 6. Impact of the glucose gradient on yeast physiology and the emergence of a landscape of phenotypes.

(a) Overlay of the landscapes of gene expression of PDC1 (blue) and SHD2 (pink). PDC1 is known to be expressed

when yeast cells ferment, SDH2 is mainly expressed in respiring cells (see also Figure 6—figure supplement 1).

(b) FACS measurements of PDC1 expression over a range of glucose concentrations in batch culture (n = 3). (c)

FACS measurements of SDH2 expression over a range of glucose concentrations in batch culture. The inverse

correlation between PDC1 and SDH2 expression observed in batch culture is in good agreement with the inversely

correlated spatial expression patterns within yeast cell monolayers (n = 3).

DOI: https://doi.org/10.7554/eLife.47951.018

The following figure supplement is available for figure 6:

Figure supplement 1. Extended figure of Figure 6a.

DOI: https://doi.org/10.7554/eLife.47951.019
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multicellular context that has impact on ecology, evolution, development and emergence of

multicellularity.

Overall, we studied how cells within a monolayer colony collectively shape their microenviron-

ment through long-range metabolic interactions. This is a complex process, in which individual cells

adapt locally, and shape a spatial landscape of gene expression as a global phenotype. As a whole,

the structure of an assembly of cells and the microenvironment landscapes emerge as the result of

local cellular metabolic activity of individual cells.

Discussion
Here, we took an alternative point of view compared to traditional systems and single-cell biology.

Rather than studying single-cell metabolic properties in a well-mixed, homogeneous environment,

we designed a microfluidic chip to force yeast cells to grow and shape their microenvironment,

solely by fixing the properties of the microenvironment at the boundary of the monolayer. This

Figure 7. Global view of the emergence of landscapes of gene expression. (a) The different landscapes of gene

expression presented in this study are aligned, regrouped and displayed over a range of glucose concentrations.

This simple view sheds light on the macroscopic spatial correlations between these different landscapes, which are

both setting and traces of the establishment of glucose gradients. (b) For each gene expression landscape, we

identified the fluorescence peak (HXT7, HXK1, HXK2) or the position of the transition between low and high

expression (HXT1, HXT5, SDH2, PDC1) or activity of the transcription factor (MIG1). (c) Landscapes of gene

expression delimit two regions in which cells are physiologically different. Phase I indicates active growth by

fermentation in the presence of glucose; Phase II indicates growth arrest or very limited growth via respiratory

metabolism at zero or close to zero glucose concentrations. The transition between the two phases typically takes

place relatively sharply, over a hundred micrometers or ~20 cells.

DOI: https://doi.org/10.7554/eLife.47951.020
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approach allowed us to measure simultaneously properties at both the single-cell scale and struc-

tured population scale and holds potential for establishing a quantitative link between these scales.

In standard batch culture, as cells exhaust the media, their adaptation time, limited by sensing,

transcription and translation, may lag behind the decrease of glucose in the media. In contrast, in

our 2D colony device, once steady-state gradient is settled, cells’ residence time within a given

range of glucose that corresponds to stable HXT expression is significantly longer, assuring that

even though cells are continuously pushed away, they spend sufficient time within a given concentra-

tion to equilibrate their response to the gradient and therefore faithfully report the glucose concen-

tration in their environment. As example, at 1% glucose the mean velocity at Hxt7 expression peak,

spanning over >200 mm (Figure 3a, varies between 5–15 mm/hour (Figure 2f), suggesting cells’ resi-

dence time of >10 hr, pointing to the advantage of working in this setup.

Specifically, we showed that cells self-generate nutrient landscapes that in turn influence cellular

metabolism and gene expression profiles. This behavior, based on nutrient uptake adaptation, is

generic and feeds back on the behavior of other cells through what we call non-specific long-range

metabolic interactions. Indeed, the microenvironment sensed by cells a few hundred micrometres

inside a colony is very different from the microenvironment experienced by the cells at periphery.

The resulting patterns may emerge from the individual adaptive properties of the cells without the

need to evoke specific higher-level community properties as cell-cell communication. Notably, gra-

dients emerge over relatively short distances, and this process may possibly affect studies of cellular

populations within microfluidics settings. More importantly, quantitative description of gene expres-

sion landscapes is critical if one wants to understand the establishment and behavior of cellular pop-

ulations, whether these are as simple as yeast colonies or more complex, such as biofilms and

complex microbial ecosystems in which several types of cells cohabit and may specifically communi-

cate and interact. Indeed, in addition to the described long-range metabolic interactions, many

other environmental and genetic determinants such as intercellular communication, cell surface

properties, cell-cell adhesion strength and secretion of extracellular matrix components have been

shown to participate in the emergence of the complex morphology (Nadell et al., 2016;

Granek and Magwene, 2010; Flemming et al., 2016) and internal structure of microbial colonies in

such complex situations. The nature of many of these interactions could also be studied using similar

microfluidic devices to identify the relative contribution and relationship of environmental and

genetic determinants to the metabolically generated microenvironment.

We have made notable advances in the study of emerging properties of yeast colony growth,

microenvironment formation and gene expression compared to previously published studies

(Cáp et al., 2012; Maršı́ková et al., 2017; Palková et al., 2014). These studies have shown fascinat-

ing differentiation and diversity within yeast colonies grown on agar but their relevance to study the

dynamical emergence of complexity in microbial colonies is limited by their methodology (e.g.,

growth on a single specific medium with no dynamic control of environmental changes, two-photon

microscopy, unsuitable for live time-lapse microscopy, obligation to section colonies etc.) which

does not allow detailed spatiotemporal analysis of cellular growth, microenvironment and gene

expression landscapes at a relevant single-cell scale. Our approach is designed to access the dynam-

ics of large microbial colonies, and while we did not report it here, it is straightforward with micro-

fluidics to dynamically change in frequency and composition the external environment, and as such

to analyse how colonies adapt their internal organization to such stresses.

Our results are in most part in line with the knowledge of glucose metabolism obtained in batch

culture. Yet, our methodology sheds quantitative description of the spatial expression of genes

involved in the glucose metabolism and its correlation with the cell local growth rates. Our results

show that even in the simple context studied here, reconstructing the microenvironment spatial

structure from single-cell measurement is not trivial. A proper model should take into account how

the growth rate and specific absorption rate vary with the glucose concentration and the microenvi-

ronment. Modeling the entire complexity of the microenvironment is hardly possible, even with

today’s knowledge. Thus, we decided to take a different approach and use key genes involved in

glucose metabolism to infer the glucose concentration gradient. We showed that different reporter

genes consistently reported the same glucose gradient. We envision that the data extracted from

relevant fluorescent reporters could be fed into an agent-based or mean-field models that take cell-

cell interactions, mechanics and spatial diffusion of metabolites into account to fill the gap between

data generated from single cells to data that is relevant to evolution and ecology, that is at the
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colony scale. We anticipate that linking local properties to macroscopic, global behavior will help to

understand the architecture of microbial communities and how evolution shapes the development of

these architectures through long-range metabolic interactions and possible inherent biological pro-

grams that coordinate it. Of note, in another rare attempt to study emergence of population level

phenomena in yeast S. cerevisiae Campbell et al. (2015) looked at the synthetic ‘self-establishing

communities’ that were able to cooperatively exchange metabolites. They inoculated on agar plate

auxotrophic S. cerevisiae strain that had different auxotrophic markers on plasmids. As cells were

dividing, some of the plasmids that complemented yeast auxotrophy and therefore rescued their

growth were lost, resulting in a colony which is composed of yeast that are auxotrophic for a certain

amino acid. However, they were able to grow because they used amino acids that were released in

the environment by other yeast that were producing it, effectively generating a very heterogeneous

colony that sustained growth through metabolite exchange. Interestingly, previous efforts to co-cul-

ture complementary auxotrophs had limited effectiveness in supporting co-growth in liquid cultures,

indicating the importance of spatial structure in facilitating cooperation and makes our system very

attractive for study of such phenomena (Wintermute and Silver, 2010).

Furthermore, while the spatial microenvironment is not fully characterized, we have shown that

the emergence of gradients, and simultaneously gene expression landscapes, are robust and repro-

ducible features of the colony. Moreover, the landscapes can be compared to extract correlation

patterns and infer how gene regulatory networks act in synchronicity to establish the microenviron-

ment within the colony. This approach may provide a relatively simple, yet effective method of

screening for ‘organismic’ properties that have been shaped by evolution and are only relevant in a

multicellular context.

Our future efforts to extend the application of this setup will be dedicated to the study of how

the microenvironment dynamically changes when external conditions are altered, an uncharted terri-

tory at the scale of a multicellular assembly that is central to the understanding of microbial ecosys-

tem resistance to stress, environmental fluctuations and adaptation. We anticipate that similar

approaches could be used to study aging, cooperation and competition, cell memory or evolution-

ary dynamics, as well as quantitative characterization of (synthetic) ecological systems and mixtures

of cells relevant to ecology and chemical biology.

Materials and methods

Yeast strains
All experiments were performed using haploid S. cerevisiae strains derived from the S288C back-

ground - BY4741: MATa his3D1 leu2D0 met15D0 ura3D0. See Supplementary file 1 for a detailed

list of the yeast strains used in this study.

Microscopy
We used an inverted fluorescence microscope (IX81, Olympus) equipped with an EMCCD camera

(Evolve 512, Photometrics) and X-Cite exacte fluorescence light source (Lumen Dynamics). Optical

filters from Chroma Technology Corporation ET-EGFP (U-N49002; Ex 470/40 nm Di495 Em 525/50

nm) and ET-DsRed (U-N49005; Ex 545/30 nm Di570 Em620/60 nm) were used to observe GFP and

RFP fluorescence. Cells were observed using Olympus 10� (Plan 10x/0.25 NA), 60� (PlanApo N

60x/1.42 NA Oil) and 100� (UPlanFL N 100x/1.3 NA Oil) objectives. Open-source mManager

(Edelstein et al., 2014) microscopy software was used to control all of these components and setup

multi-dimensional acquisition. The temperature inside the microscope incubation chamber that con-

tained the media and cells was maintained at 30˚C (Life Imaging Services). Fluorescence intensity

was set to 10% of maximum output, fluorescence exposure was set to 1000 ms and camera gain was

set at maximum. The time interval between each acquisition cycle was 6 min.

Microfluidics and cell loading
Microfluidic devices were constructed using soft lithography techniques. Photomasks were drawn

using L-Edit software (Tanner) and printed on a high-resolution glass substrate (Delta Mask). A mas-

ter wafer was created using SU-8 2000 (MicroChem) epoxy-based photoresist that was spin-coated

to the appropriate thickness and exposed to UV light using an appropriate photomask to create the
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desired pattern. Multi-layered patterns were aligned and exposed to UV light using a MJB4 manual

mask aligner (SUSS MicroTec) and the dimensions of the master wafer were checked using a Dektak

150 surface profiler (Veeco). The master wafer was treated with 95% (3-mercaptopropyl)-trimethoxy-

silane (Sigma) for 1 hr in the vapor phase. Microfluidic chips were created by casting a degassed

10:1 mix of polydimethylsiloxane (PDMS) and curing agent (Sylgard 184 kit; Dow Corning) on the

master wafer, followed by at least 2 hr curing at 65˚C. Each chip was gently cut and peeled off the

master wafer; the entry/exit ports were punched out. The chip and a glass coverslip (24 � 50 mm

#1; Menzel-Gläser) were treated with O2 plasma for 1 min in a plasma cleaner (Harrick Plasma),

bonded together and incubated at 65˚C for 10 min. Before loading cells, the chips were coated with

1% Pluronic F-127 (Sigma) for 30 min. Cells were precultured overnight in 5 mL of synthetic com-

plete (SC) medium containing 2% w/vol glucose in a shaking incubator at 30˚C, diluted 50-fold into

50 mL of SC +2% w/vol glucose, cultured for 5–6 hr in a shaking incubator at 30˚C to an OD600 of

0.2–0.4, collected by centrifugation, and loaded into the microfluidic system with a pipette. The

microfluidic system was centrifuged for 2 min at 1000 rpm using 3D-printed adaptors (Laurell WS-

650 spin coater) to force the cells into the dead-end cell chambers. Liquid media was flowed rapidly

through the flow channel to remove excess cells and the flow rate was set to 5 mL/min. A pressure-

based microfluidic flow control system (MFCS; Fluigent) coupled with a flow rate platform (Fluigent)

and a flow rate control module (Fluigent) that measured the flow rate and kept it constant by adjust-

ing the pressure through a feedback loop was used to push liquid media through the flow channel.

The output was kept at a constant pressure of 100 mbar above atmospheric pressure to minimize

formation of air bubbles inside the flow channel.

Flow cytometry
Flow cytometry experiments were performed on a Gallios Flow Cytometer (Beckman Coulter) using

a 488 nm excitation laser and 530/30 nm FL1 emission filter to detect GFP fluorescence. Data analy-

sis was performed using Kaluza Flow Cytometry Analysis Software (Beckman Coulter). Approximately

104 cells were inoculated in 10 mL of SC medium containing various glucose concentrations (log2

dilutions from 8% to 0.0078125%, and 0% w/vol glucose) and cultured in a shaking incubator at 30˚C

to an OD600 of ~0.02–0.2 depending on the starting glucose concentration. Cells were then diluted

10-fold into 10 mL of fresh SC media containing the same starting glucose concentration and grown

for 4–5 hr in a shaking incubator at 30˚C, centrifuged at 4000 rpm for 10 min, re-suspended in 300

mL of PBS pH 7.4 buffer (Gibco) and fluorescence was measured using the flow cytometer. The

supernatant of each sample was collected, and the glucose concentration was measured using the

Glucose (HK) Assay Kit (Sigma) to confirm that the glucose concentration remained at similar levels

during the growth phase (Figure 5—figure supplement 3). This is a modification of a previously

published protocol (Youk and van Oudenaarden, 2009) for measuring expression of glucose trans-

porters in different glucose concentrations modified to minimize glucose depletion in batch culture

prior to expression measurements by working with sufficiently diluted batch populations. We thus

expect that these measures represent expression levels that correspond to the starting glucose con-

centration, and would therefore be close to the measure within the 2D colonies (see discussion).

Image analysis
Image analysis was performed using open-source ImageJ 1.51 p software (Schneider et al., 2012).

To obtain front velocity, we applied a threshold (Otsu) to detect the bottom frontier over time after

flattening the background using a FFT band-pass filter. The image signal is decomposed by FFT into

a spectrum of its constituent frequencies. Because some operations can be more easily performed

on the spectrum than on the original image, the FFT bandpass algorithm filters out large structures

(shading correction) and small structures (smoothing) of the specified size by gaussian filtering in

Fourier space. The default parameters are set at 40 pixels for large structure and five pixels for small

ones. To compute the local speed of the cells inside the cell assembly, we used the plugin Track-

Mate (Tinevez et al., 2017) v3.5.1 to track cell trajectories. TrackMate was set to DoG detector with

estimated blob diameter of 4 mm and threshold of 4, while tacking was set to linear motion LAP.
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Palková Z, Wilkinson D, Váchová L. 2014. Aging and differentiation in yeast populations: elders with different
properties and functions. FEMS Yeast Research 14:96–108. DOI: https://doi.org/10.1111/1567-1364.12103,
PMID: 24119061
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