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a b s t r a c t 

Quantifying stability properties of ecosystems is an important problem in ecology. A common approach 

is based on the recovery from pulse perturbations, and posits that the faster an ecosystem return to 

its pre-perturbation state, the more stable it is. Theoretical studies often collapse the recovery dynamics 

into a single quantity: the long-term rate of return, called asymptotic resilience. However, empirical stud- 

ies typically measure the recovery dynamics at much shorter time scales. In this paper we explain why 

asymptotic resilience is rarely representative of the short-term recovery. First, we show that, in contrast 

to asymptotic resilience, short-term return rates depend on features of the perturbation, in particular on 

the way its intensity is distributed over species. We argue that empirically relevant predictions can be 

obtained by considering the median response over a set of perturbations, for which we provide explicit 

formulas. Next, we show that the recovery dynamics are controlled through time by different species: 

abundant species tend to govern the short-term recovery, while rare species often dominate the long- 

term recovery. This shift from abundant to rare species typically causes short-term return rates to be 

unrelated to asymptotic resilience. We illustrate that asymptotic resilience can be determined by rare 

species that have almost no effect on the observable part of the recovery dynamics. Finally, we discuss 

how these findings can help to better connect empirical observations and theoretical predictions. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ecosystem stability, in particular, the way ecosystems respond

o perturbations, is a longstanding topic of interest in ecology

 May, 1973; Pimm, 1984; Tilman and Downing, 1994 ). Ecologists

ave used a variety of procedures to quantify this type of ecosys-

em stability, differing in the characteristics of perturbations and in

he way the system response is measured. A perturbation can con-

ist of a change in an environmental parameter lasting for short or

ong times. It can correspond to biomass addition or removal, ap-

lied once or repeatedly. The ecosystem response can be assessed

oon after the perturbation or much later, measuring the overall

tate of the ecosystem or an ecosystem variable of specific inter-

st. This multitude of procedures has led to an overabundance of

tability measures, whose relationships are often unclear ( Donohue

t al., 2013; Grimm and Wissel, 1997; Ives and Carpenter, 2007 ). 
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We focus here on measures based on an ecosystem’s response

o pulse perturbations, i.e., perturbations of relatively short dura-

ion ( Bender et al., 1984 ). We assume that after a sufficiently long

ime following a perturbation the ecosystem returns to the pre-

erturbed state, which we call equilibrium. We posit that the faster

he return the more stable the ecosystem is. Several stability mea-

ures can then be defined, differing in the time at which, and the

cosystem variable of which, the return to equilibrium is assessed.

erms used for these measures include return time, recovery rate,

nd resilience. 1 

Quantifying ecosystem stability using the return to equilibrium

s a common approach in both empirical and theoretical studies.

ndeed, pulse perturbations are an appropriate model for many

atural disturbances, such as floods, forest fires and disease out-

reaks, and have been widely applied in experimental ecosystems.

n the latter, it is typically the short-term return to equilibrium

hat is studied, due to practical difficulties of collecting long time

eries (e.g., Steiner et al., 2006; Downing and Leibold, 2010; Hoover

t al., 2014; Wright et al., 2015 ). This stands in sharp contrast
1 The term resilience might lead to confusion, because it is also used for a rather 

ifferent set of stability measures ( Gunderson, 20 0 0; Holling, 1973 ). 
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with theoretical work, in which the return to equilibrium is mainly

studied at long time scales (e.g., Rooney et al., 2006; Loeuille, 2010;

Thébault and Fontaine, 2010; Gellner and McCann, 2016 ). This is

due to the fact that the long-term rate of return to equilibrium,

known as asymptotic resilience, can directly be computed from the

dominant eigenvalue of the community matrix (we revisit this the-

ory in the next section). 

The problem that ecological theory and data do not neces-

sarily address the same time scales has been emphasized be-

fore (reviewed in Hastings, 2010 ). In particular, Neubert and

Caswell (1997) argued that the initial response of an ecosystem

to a pulse perturbation can strongly differ from its long-term re-

sponse. They described ecosystems that eventually return to equi-

librium for any perturbation but initially move away following

some perturbations. Our work can be seen as an extension of

Neubert and Caswell ’s theory. Specifically, while their work dealt

with the perturbation that causes the strongest response, we shall

study the ecosystem average, or typical, response, and extend the

analysis over all time scales. 

We begin with a precise definition of return rates and return

times covering the range between initial to asymptotic response

to a perturbation. We show that short- and long-term return rates

differ in their dependence on the perturbation direction, i.e., the

way its intensity is distributed over species. This dependence can

be strong for short times, but vanishes in the limit of very long

times (i.e., asymptotic resilience). To compare short- and long-term

return rates on an equal footing, we propose to summarize the

distribution of return rates following different perturbations by its

median, for which we present a simple and accurate approxima-

tion. Using this approach, we find that species abundance can play

a predominant role in the recovery dynamics. In particular, rare

species (that is, those with low abundance) often have a strong

effect on the long-term response, while their effect on the short-

term response is typically very weak. We describe the underly-

ing mechanism, and illustrate its generality using a random model

of many-species competitive communities. 2 Our results show that

asymptotic resilience and short-term return rates are typically dis-

connected. While asymptotic resilience provides only a partial view

on the recovery dynamics, empirically relevant predictions can be

obtained from short-term return rates, such as those introduced

and studied in this paper. 

2. Defining return rates and return times 

The study of the recovery dynamics starts by specifying the

state from which the ecosystem is perturbed and to which it re-

turns after the perturbation. Empirically, this reference state is a

dynamic equilibrium, characterized by relatively small fluctuations

around a fixed average. The pulse perturbation then induces a

much larger displacement, such that the ecosystem leaves its ref-

erence state, thus initiating the recovery dynamics. 

It is practically impossible to study the recovery once the dis-

placement induced by the perturbation has become indistinguish-

able from the fluctuations of the dynamic equilibrium. This is a

common problem in the analysis of empirical time series. Yet, al-

most all theoretical work focuses on the long-term return, which

is, in principle, observable only if equilibrium fluctuations are ab-

sent. In other words, theory typically assumes the reference state

to be a static equilibrium ( May, 1973, 1974 ), a fixed point of a de-

terministic dynamical system. We also make this assumption, em-

phasizing however that our results on the short-term recovery also

hold for a fluctuating reference state. 
2 Note, however, that our theory does not require any assumptions on interaction 

types. 

r  

f

Denoting the vector of dynamical variables (e.g., the biomass of

he species in the ecosystem) by N ( t ) and the equilibrium point

y N 

∗, we focus on the dynamics for the displacement vector

 (t) = N (t) − N 

∗. A pulse perturbation applied at time t = 0 to the

cosystem previously at equilibrium (i.e., x (t) = 0 for t < 0) is char-

cterized by a vector u and describes the ecosystem’s state im-

ediately after the perturbation (i.e., x (0 + ) = u ). For pulse per-

urbations that are not too strong, a linearization of the dynamics

round the equilibrium yields a qualitatively accurate, yet analyt-

cally tractable, picture of the recovery dynamics (we come back

o this assumption and its limitations in the discussion). These lin-

arized dynamics are governed by the community matrix A , that

s, the Jacobian of the non-linear dynamical equations evaluated at

 

∗, 

d x 

d t 
= A x . (1)

q. (1) yields the recovery trajectory x ( t ) following the pulse per-

urbation, 

 (t) = e At u for t > 0 , (2)

here e A denotes the matrix exponential of A . We assume the

quilibrium to be stable in the sense of the stability criterion, so

hat the system returns to equilibrium following any sufficiently

mall displacement, so that lim t→∞ 

x (t) = 0 . 

We are interested in quantifying how stable the system is,

ased on the idea that a more stable system returns faster to equi-

ibrium. This general idea can be implemented in several ways.

ere we introduce one classic measure that will serve as a ref-

rence throughout. It is based on the asymptotic return to equilib-

ium, 

 ∞ 

= lim 

t→∞ 

− ln ‖ x (t) ‖ 

t 
, (3)

here the Euclidean norm ‖ x (t) ‖ = 

√ ∑ 

i x 
2 
i 
(t) measures the

hase-space distance to equilibrium. Eq. (3) states that ‖ x ( t ) ‖ de-

ays asymptotically as e −R ∞ 

t . In principle, R ∞ 

could depend on the

erturbation vector u . However, R ∞ 

is in fact the same for virtually

ny perturbation u (see Appendix A ). This common value, called

symptotic resilience, is equal to −� e (λdom 

(A )) , where λdom 

(A ) is

he eigenvalue of A with the largest real part. 3 

eturn rates. While the asymptotic return yields a stability mea-

ure with elegant mathematical properties, only the finite-time re-

overy is of practical interest. We define two finite-time return

ates: the instantaneous return rate at time t , 

 

ins 
t = − 1 

‖ x (t) ‖ 

d ‖ x (t) ‖ 

d t 
= − d 

d t 
ln ‖ x (t) ‖ , (4)

nd the average return rate over the interval [0, t ], 

 

avg 
t = − ln ‖ x (t) ‖ − ln ‖ x (0 

+ ) ‖ 

t 
. (5)

Definitions (4) and (5) are illustrated in Fig. 1 , where we ap-

ly a pulse perturbation to a two-species community at equilib-

ium. From the recovery dynamics of variables N 1 ( t ) and N 2 ( t ), we

educe the distance to equilibrium ‖ x ( t ) ‖ as a function of time

panel A). To construct the return rates R 

ins 
t and R 

avg 
t , we plot this

istance on a logarithmic scale (panel B). The instantaneous return

ate R 

ins 
t at time t is the slope (with opposite sign) of this curve

t time t . The average return rate R 

avg 
t at time t is the slope (with

pposite sign) of the segment connecting the distances to equilib-

ium at times 0 and t . Those rates can substantially differ; they
3 The stability criterion is equivalent to � e (λdom (A )) < 0 , so that R ∞ is positive 

or stable systems. 
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Fig. 1. Definition of return rates. The response of an ecological system to a pulse perturbation contains information about the system’s stability, as illustrated here for a 

system of two interacting species. Panel A: We apply a pulse perturbation after which the species biomass N 1 ( t ) (blue) and N 2 ( t ) (green) return to their equilibrium values 

N ∗1 and N ∗2 . We monitor the recovery dynamics by the distance to equilibrium (red), ‖ x (t) ‖ = 

√ 

x 2 
1 
(t) + x 2 

2 
(t) with x i (t) = N i (t) − N ∗

i 
. Panel B: The relative rate at which the 

distance to equilibrium diminishes is a commonly used stability measure (note the logarithmic scale on the y -axis). Here we distinguish between the average rate of return 

R 

avg 
t over the period [0, t ], and the instantaneous rate of return R 

ins 
t at time t . These two measures can largely differ, and can even have opposite sign. Parameter values: 

N ∗� = (1 . 8 , 1 . 2) , A = 

(−1 −4 
0 −2 

)
and u � = (0 . 9 , 0 . 4) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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an even have opposite sign. For example, in Fig. 1 , at time t ≈ 1.2,

e have R 

ins 
t < 0 and R 

avg 
t > 0 meaning that the trajectory moves

way from equilibrium at that time, while having come closer to

quilibrium since the end of the perturbation. 

It is instructive to compare the behavior of return rates R 

ins 
t 

nd R 

avg 
t for very small and very large times t . It holds generally

hat R 

ins 
0 

= lim t→ 0 R 

avg 
t and that lim t→∞ 

R 

avg 
t = R ∞ 

. However, the

nalogous relationship lim t→∞ 

R 

ins 
t = R ∞ 

does not always hold.

t does for the example of Fig. 1 , but does not for the one of

ig. A.1 ( Appendix A ). In the latter, return rate R 

ins 
t continues to

scillate between positive and negative values for large time t , so

hat R 

ins 
t does not tend to a steady value. This is avoided when

onsidering a time-average of R 

ins 
t , such as R 

avg 
t . This is one rea-

on why we shall focus on average return rates R 

avg 
t . Finally, it

hould be noted that while the theory in this paper is based on

he distance to equilibrium, it can be extended to other ecosystem

ariables (see Appendix B ). 

eturn times. While return rates measure the speed at which an

cosystem approaches equilibrium, it might be more interesting

o consider the time it takes for an ecosystem to recover from a

erturbation, i.e., its return time. Return rates and return times

re clearly related. Return time is defined as the amount of time

etween the perturbation and the instant at which the distance

o equilibrium becomes smaller than a prespecified bound. In

ppendix C we show that this yields a family of return times

arameterized by this bound, and we describe how these return

imes are related to average return rates R 

avg 
t . This provides an-

ther reason why we shall mainly focus on the latter. If the bound

s chosen as the typical extent of the fluctuations in the equilib-

ium state, then the return time corresponds to the time during

hich the ecosystem response is distinguishable from equilibrium

uctuations. 

In theoretical studies the return time is often approximated as

he reciprocal of asymptotic resilience. This approach, initiated by

imm and Lawton (1977, 1978) , is not self-evident as it uses the

symptotic regime to describe the entire recovery dynamics. It im-

licitly assumes that the asymptotic return rate is a good proxy for

he return rates at shorter times. As we argue extensively below,

his need not be the case. It is in fact more appropriate to quantify

he return time as the reciprocal of a finite-time return rate. For

his matter the average return rate R 

avg 
is particularly well suited,
t 
s it is based on the same part of the recovery that controls return

imes. 

. Return rates depend on perturbation direction 

As mentioned above, virtually any pulse perturbation leads to

he same asymptotic rate of return to equilibrium. Due to this re-

arkable property, asymptotic resilience has been called an intrin-

ic stability measure ( Arnoldi et al., 2016 ). In contrast, finite-time

eturn rates do depend on features of the perturbation; they are

ot fully determined by the system dynamics. Restricting to linear

ystems, we now investigate this qualitative difference. 

A pulse perturbation along a perturbation vector u causes a dis-

lacement x (0 + ) = u . By linearity, the perturbation intensity, quan-

ified by the norm ‖ u ‖ , has a trivial effect: when the perturbation

s multiplied by a constant factor, the response is multiplied by the

ame factor, which therefore does not affect return rates. We may

hus restrict our attention to normalized vectors ‖ u ‖ = 1 , i.e., per-

urbation directions . In ecological terms, the direction u defines the

ay the perturbation intensity is distributed over the constituent

pecies of the ecosystem. 

We focus on the average return rates R 

avg 
t but the results are

imilar for the other stability measures introduced in the previous

ection. Recall that lim t→∞ 

R 

avg 
t = R ∞ 

, and let us denote the initial

eturn rate by R 0 = lim t→ 0 R 

avg 
t . 

We start with a simple example of two non-interacting species

 Fig. 2 ). The community matrix A = 

(−4 0 
0 −1 

)
indicates that the

rst species responds four times faster to a displacement than

he second. The species with the slowest recovery determines

symptotic resilience R ∞ 

= 1 , thus following an arbitrary pertur-

ation the system eventually returns to equilibrium with unit rate

 Fig. 2 B). This asymptotic rate is, however, not informative about

he short-term recovery. In particular, the system absorbs a per-

urbation that mainly affects the first species (perturbation ‘a’ in

ig. 2 ) much faster than a perturbation that mainly affects the sec-

nd species (perturbation ‘b’ in Fig. 2 ). 

As a result, at small t , the distribution of possible return rates

 

avg 
t (associated to all possible perturbation directions) is quite

road, but becomes increasingly narrow at longer times t (see

ig. 2 D). Asymptotic resilience, which is the lower limit of each of

hese distributions, is not a good predictor of the short-term return

ate for an arbitrary perturbation. 
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Fig. 2. Return to equilibrium depends on perturbation direction - non-reactive case. Two-species system with community matrix A = 

(−4 0 
0 −1 

)
, that is, species 1 responds four 

times faster than species 2. Panel A: phase-plane trajectories (lines) for several perturbations u = x (0 + ) (dots). For instance, perturbation ‘a’ (red) affects mostly species 1, 

while perturbation ‘b’ (green) affects mostly species 2. Note that all perturbations have the same intensity ‖ u ‖ = 1 . Panel B: dynamics of distance to equilibrium ‖ x ( t ) ‖ for 

the perturbations of panel A. Perturbation ‘a’ in red, perturbation ‘b’ in green and the other perturbations in black (several of them coincide). The return to equilibrium is 

faster for perturbation ‘a’ than for perturbation ‘b’. For all perturbations the distance to equilibrium eventually decays at a rate given by asymptotic resilience R ∞ . Panel C: 

return rate R 

avg 
t as a function of time for the perturbations of panel A. As expected, the return rates are initially almost four times larger for perturbation ‘a’ than for 

perturbation ‘b’. Panel D: statistics of return rate R 

avg 
t for random perturbations (fixed intensity, uniformly distributed). Full line: median computed from simulations; × - 

marks: analytical approximation for median; shades of gray: 5%, 10%, 25%, 75%, 90% and 95% percentiles. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Consider now the asymmetric community matrix A =(−1 −4 
0 −2 

)
. Although all trajectories eventually return to equi-

librium at a rate R ∞ 

= 1 , the short-term return to equilibrium

has a much richer behavior ( Fig. 3 B). Many trajectories have

short-term return rates either well above asymptotic resilience, or

much smaller and even negative return rates (thus moving away

from equilibrium). The latter phenomenon occurs because the

system is reactive ( Neubert and Caswell, 1997 ), which guarantees

that there exist trajectories for which R 0 < 0 . However, it does not

exclude that other trajectories display positive initial return rates.

In fact, for the system in Fig. 3 the distribution of R 0 is mainly

concentrated on positive values ( Fig. 3 D). 

In general, the distribution of return rates R 

avg 
t over time has a

funnel shape: a broad distribution for small times t and an increas-

ingly narrow distribution for larger times. This can be understood

from the initial and asymptotic return rates R 0 and R ∞ 

. The distri-

bution of R 0 depends on all the eigenvalues of the symmetric part

of the community matrix ( Appendix D ). Because these eigenvalues

can span a large range, the distribution of R 0 is typically wide.

In contrast, R ∞ 

only depends on one eigenvalue of the commu-

nity matrix. The distribution of return rates R 

avg 
t for 0 < t < ∞ con-

nects these two extremes, yielding the characteristic funnel shape.

In Appendix D we show that other stability measures based on re-

turn rates exhibit similar patterns. 

M  
. Averaging over perturbation directions 

In practice, we can rarely know how a perturbation, whether

atural or experimentally induced, will displace the ecosystem

tate variables. Here we propose a minimalistic way to deal with

his uncertainty. We model the perturbation direction as a random

ariable, so that the return trajectories are also random. Each re-

lization corresponds to a particular perturbation, which initiates

 single return trajectory. To obtain a relevant prediction, we aver-

ge the system response over the perturbation directions. Specif-

cally, we construct a ‘typical’ return trajectory by taking, at each

ime after the perturbation, an average over the perturbation di-

ections. This typical trajectory is not necessarily the response to a

articular perturbation. Rather, it is the composition of the average

isplacements through time. 

In Appendix D we derive simple and accurate formulas for the

edian system response, given a community matrix A and statis-

ics of the random perturbation u encoded in a covariance matrix

 . Component C ii of this matrix is the variance of initial displace-

ent u i of species i . Component C ij is the covariance of u i and u j ;

his covariance accounts for the fact that species i and j may un-

ergo similar initial displacements. These formulas for median dis-

ance to equilibrium and return rate are 

 

(‖ x (t) ‖ 

)
≈

√ 

Tr 
(
e At C e A � t 

)
(6a)
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Fig. 3. Return to equilibrium depends on perturbation direction - reactive case. Two-species system with community matrix A = 

(−1 −4 
0 −2 

)
. Panel A: phase-plane trajectories 

for several perturbations u . Panel B: dynamics of distance to equilibrium. For some perturbations the system initially moves away from the equilibrium, but for all perturba- 

tions the distance to equilibrium eventually decays at a rate equal to asymptotic resilience R ∞ . Panels C and D: statistics of distance to equilibrium and of return rate R 

avg 
t 

for random perturbations (fixed intensity, uniformly distributed). Full line: median computed from simulations; × -marks: analytical approximation for median; shades of 

gray: 5%, 10%, 25%, 75%, 90% and 95% percentiles. 
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4 One could also integrate additional information, such as a higher or lower vul- 

nerability to perturbations of particular species, and positive or negative correla- 

tions in the responses of certain pairs of species. 
 

(
R 

avg 
t 

)
≈ −

ln Tr 
(
e At C e A 

� t 
)

− ln Tr (C) 

2 t 
, (6b) 

here the symbol M stands for the median over the ensemble of

erturbation directions. 

To illustrate their accuracy, we apply equations (6) to a few

xamples, first revisiting those of Figs. 2 and 3 . We assume here

hat the perturbation directions are uniformly distributed. This as-

umption corresponds to setting the perturbation covariance ma-

rix C proportional to the identity matrix ( C ii = 1 /n and C i j = 0 ,

ith n the number of species in the system; see Appendix E ). The

greement between the numerically computed medians (full line)

nd their analytical approximations ( × -marks) is excellent (see

igs. 2 D, 3C and 3D). 

In the absence of additional information, the uniform distribu-

ion is an appropriate model for the perturbation randomness. As

reviously explained, in the linear regime, only the perturbation

irections affect return rates and there is no reason to prefer one

irection over another. However, additional information does ex-

st in the form of the equilibrium biomasses N 

∗
i 

. When species

iomasses substantially differ, the distribution over perturbation

irections should be non-uniform. 

To make this point clear, let us take a numerical exam-

le. Suppose a perturbation acts on a two-species system, in

hich the first species is ten times more abundant than the sec-

nd ( N 

∗
1 = 10 N 

∗
2 ). Compare perturbation ‘a’ that mostly displaces

pecies 1 (e.g., u 1 = 10 u 2 ) and perturbation ‘b’ that mostly dis-

laces species 2 (e.g., u 1 = 0 . 1 u 2 ) as depicted in Fig. 2 . Perturba-

ion ‘a’ affects both species equally in relative terms, while pertur-

ation ‘b’ has a very strong effect on the rare species (in relative
ut also in absolute terms). Clearly, perturbation ‘a’ is more likely

han perturbation ‘b’. This implies that the distribution over per-

urbations directions should assign a larger weight to perturbation

a’ than to perturbation ‘b’. This requirement disqualifies the uni-

orm distribution as a suitable perturbation model. 

There is no unique perturbation model in the case of an un-

ven abundance distribution. Here we propose to take the ex-

ected displacement u i of species i proportional to its equilibrium

iomass N 

∗
i 

. That is, all species are perturbed equally in relative

erms. In Appendix E we prove that this assumption corresponds

o setting the perturbation covariance matrix C to C ii = (N 

∗
i 
) 2 / �

nd C i 	 = j = 0 , with � = 

∑ 

i (N 

∗
i 
) 2 . If all species have the same equi-

ibrium biomass, we recover the formula for uniformly distributed

erturbation directions. We use this biomass-dependent perturba-

ion model in all the examples below. 4 

In Fig. 4 we revisit the example of Fig. 2 , assuming that species

ave different equilibrium biomass. The biomass of species 1,

hich recovers four times faster than species 2, is ten times larger

han the biomass of species 2. Due to its larger biomass, species 1

s typically displaced more strongly than species 2. Hence, the per-

urbations are no longer uniformly distributed (as was the case

reviously, see Fig. 2 A), but are concentrated close to the x 1 -axis

orresponding to species 1 (see Fig. 4 A). This implies that the fast

ecovery of species 1 has a much larger contribution to the aver-

ge system recovery than in the previous scenario. For example,

he median distance to equilibrium drops to about 5% of the ini-

ial displacement at the fast return rate of species 1 ( Fig. 4 C, for
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Fig. 4. Return to equilibrium for biomass-dependent perturbations. Same system as Fig. 2 , but here we take into account that perturbations affect abundant and rare species 

differently. Specifically, we assume that the equilibrium biomass of species 1 (the species with the fastest response) is ten times larger than the equilibrium biomass of 

species 2. Panel A: phase-plane trajectories for several perturbations u . Perturbations are no longer spread out on the unit circle (dashed line), but tend to be directed along 

the x 1 -axis corresponding to species 1 (dots). Panel B: dynamics of distance to equilibrium. For most perturbations the distance to equilibrium becomes small (below 10% 

of the pulse perturbation) at a rate equal to the return rate of species 1 (rather than the return rate of species 2, which is equal to asymptotic resilience). Panels C and 

D: statistics of distance to equilibrium and of return rate R 

avg 
t , taking into account that perturbations tend to displace species 1 more strongly than species 2. As a result, 

perturbations like the one labeled ‘a’ in Fig. 2 contribute more strongly to the statistics than perturbations like the one labeled ‘b’ in Fig. 2 . 
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times t < 1). The slow return rate of species 2, equal to asymptotic

resilience, governs the ecosystem response only later. 

5. Effect of rare species on recovery dynamics 

As illustrated in Fig. 4 , rare species can dominate the ecosys-

tem response in the long term. This happens because rare species

have the potential to introduce slow return rates in the system

dynamics, and hence to determine asymptotic resilience. Here we

explain why we expect this phenomenon to be common in real-

world communities. 

We emphasize that there is no mathematically inevitable link

between species rarity and long-term return rates. This can eas-

ily be shown by considering a system of non-interacting species,

whose biomasses N i obey logistic growth with intrinsic growth rate

r i and carrying capacity K i : 

d N i 

d t 
= r i N i 

(
1 − N i 

K i 

)
, (7)

In the absence of interactions, each eigenvalue λi of the lin-

earized community dynamics can be attributed to a different

species as λi = −r i . Hence different parameters determine equilib-

rium biomass ( K i ) and eigenvalue ( −r i ). By choosing parameters

appropriately, any species can provide the dominant eigenvalue, ir-

respective of its abundance. 

Thus, the claim that rare species govern the long-term recov-

ery cannot hold in full generality. However, it can be expected as

a common trend. To show this, we focus our attention on a par-

ticular type of rare species, namely those that play a minor role in
he community. We call these species satellite , in opposition to core

pecies, which constitute the bulk of the community biomass. This

erminology is borrowed from Hanski (1982) , who introduced it to

escribe the regional distribution of species, whereas we apply it

o the local level. Removing satellite species does not impinge on

ommunity functioning. Satellite species do not affect core species,

r only weakly, but can be strongly affected by them. In particular,

ompetition with core species prevents them from reaching higher

bundances. Natural communities almost always contain numerous

are species, and while some of them might be an essential part of

he community, a large majority can be expected to be satellite. 

Despite their minor role in the community, satellite species

an be predominant in the long-term return dynamics. To under-

tand why this is the case, consider the following thought exper-

ment, illustrated in Fig. 5 . Suppose that all core species are ag-

regated into a single biomass variable coupled to a single satel-

ite species (see Appendix F for details). If the satellite species is

bsent or cannot persist, the return rate is constant and deter-

ined by the core species ( Fig. 5 , green line, case A). If the satel-

ite species can persist, however, it modifies the recovery dynam-

cs ( Fig. 5 , red line, case B). The short-term recovery is not af-

ected, but once the distance to equilibrium has decayed to a small

raction ( ≈ 5%) of the initial displacement, the return to equilib-

ium becomes much slower, corresponding to the asymptotic re-

ilience of the coupled core-satellite system. In natural communi-

ies species are often maintained by immigration, especially rare

nes. Thus, suppose that the satellite species is now maintained

n the community by immigration (i.e., a sink population). As be-
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Fig. 5. Effect of rare species on the long-term return to equilibrium. We study a simplified core-satellite competitive system, describing the introduction of a satellite 

species into an established community. Case A: if the introduced species has invasion fitness just below the invasibility threshold, it cannot persist and the dynamics are 

those of the core species alone (green line in right-hand panel). Case B: if the introduced species has invasion fitness just above the invasibility threshold, it persists at a 

small equilibrium biomass. Compared to the community without the satellite species, the short-term return to equilibrium does not change, but the long-term return to 

equilibrium becomes much slower (red line in right-hand panel). Case C: we assume weak immigration, maintaining the introduced species at a small equilibrium biomass 

(source-sink dynamics). As in case B, the long-term return to equilibrium is much slower (blue line in right-hand panel). Model details and parameter values are given in 

Appendix F . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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5 This occurs for 23% of the model realizations. 
ore, the presence of the satellite species does not affect the short-

erm recovery, but it drastically slows down the long-term recov-

ry ( Fig. 5 , blue line, case C). Again, the part governed by asymp-

otic resilience sets in only very close to equilibrium, and is there-

ore of limited practical interest. 

This thought experiment can be formalized in terms of the

igenvalues of the linearized dynamics, before and after introduc-

ng the satellite species. Because the satellite species has a negli-

ible effect on the core community, the dynamics of the latter are

ssentially unaffected, and the eigenvalues of the core community

lone are still eigenvalues of the coupled system. The latter has one

dditional eigenvalue, associated with the dynamics of the satellite

pecies. This eigenvalue can introduce a slow return rate (i.e., have

mall negative real part), especially if the satellite species is close

o the invasibility threshold (see Fig. 5 and Appendix F ), and thus

ield the dominant eigenvalue of the whole system. In this case,

symptotic resilience is determined by a single rare species and

ontains limited information about community stability. 

Each satellite species can provide the dominant eigenvalue, and

e expect that real-world communities contain many such species.

ence, the influence of rare species on the long-term recovery dy-

amics should be widespread. We provide support for this claim

sing a random model of many-species competitive communities.

e impose that the equilibrium community has a realistic (log-

ormal) abundance distribution, with numerous rare species. The

ynamics of species biomasses N i are governed by Lotka–Volterra

quations, 

d N i 

d t 
= N i 

( 

a i −
n ∑ 

j=1 

b i j N j 

) 

for i = 1 , . . . , n . (8) 

arameter values of the n = 10 species are chosen as follows. First,

e randomly generate the species biomasses N 

∗
i 

using a broken-

tick model ( MacArthur, 1957; Sugihara, 1980 ). We divide the total

iomass 
∑ 

i N 

∗
i 

= 1 over the species by first allocating a random

raction (uniformly in the interval [0, 1]) of the total biomass to

he first species, then by allocating a random fraction (uniformly in

he interval [0, 1]) of the remaining biomass to the second species,

nd so on. Second, we randomly draw the competition coefficients
 ij : the intraspecific competition coefficients b ii from the uniform

istribution on the interval [0.5, 1], and the interspecific competi-

ion coefficients b ij with i 	 = j from the uniform distribution on the

nterval [0, 0.5]. Third, we determine the intrinsic growth rates a i 
uch that the species biomasses N 

∗
i 

correspond to an equilibrium,

hat is, a i = 

∑ 

j b i j N 

∗
j 
. We check whether this equilibrium is stable,

nd discard the model realization if this is not case 5 . 

The distribution of the recovery trajectories are shown in

ig. 6 A. At time t = 100 most trajectories have decayed to a small

raction ( ≈ 5%) of the initial displacement. This level of displace-

ent is typically no longer observable in noisy time series. How-

ver, the return rate continues to decrease, from R 

avg 
100 

with median

.02 to R ∞ 

with median 0.0 0 02 ( Fig. 6 B; note that the median R ∞ 

orresponds to a horizontal line in Fig. 6 A). By inspecting individ-

al model realizations, we see that the disparity between R 

avg 
100 

and

 ∞ 

is often associated with a rare species. In particular, when re-

oving this species, the recovery dynamics up to time t = 100 do

ot change, while asymptotic resilience does ( Fig. F.1 ). This is con-

istent with case B of Fig. 5 . Hence, asymptotic resilience is deter-

ined by the specificities of rare species, which have almost no

ffect on the observable part of the recovery dynamics. This is fur-

her illustrated in Fig. 6 C, where we show that, surprisingly, return

ates R 

avg 
100 

and R ∞ 

have a weakly negative correlation. Although

his negative correlation is due to the particular model parameteri-

ation (and is not generally valid), it clearly illustrates that asymp-

otic resilience is an unreliable predictor for empirically relevant

eturn rates. 

. Discussion 

The theory of ecosystems’ response to pulse perturbations de-

eloped in this article reveals a fundamental and generic interplay

etween time-scales and species abundances. While short-term re-

overy is typically governed by the more abundant species, the

eturn dynamics for longer times tend to be determined by rare

pecies. This shift from abundant to rare species follows from two
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Fig. 6. Return to equilibrium in a random community model. We analyze a Lotka–Volterra model with random competitive interactions. The equilibrium species biomass 

distribution is generated by the broken-stick model (see main text). Panel A: statistics of distance to equilibrium for random model realizations (averaged over perturbation 

direction). Black line: median; shades of gray indicate 5%, 10%, 25%, 75%, 90% and 95% percentiles. Median asymptotic resilience R ∞ corresponds to a virtually horizontal 

line (represented in the top-right part of the panel). Panel B: probability distribution of return rates R 

avg 
1 

, R 

avg 
100 

and R ∞ . Asymptotic resilience R ∞ is orders of magnitude 

smaller than the finite-time return rates. Panel C: joint probability distribution of return rates R 

avg 
100 

and R ∞ . Black cross: maximum; shades of gray indicate regions of 50%, 

80% and 90% probability (corresponding to contour lines of the probability distribution). Asymptotic resilience R ∞ is unreliable as a proxy for return rate R 

avg 
100 

. For this 

random community model there is even a (weakly) negative correlation between R 

avg 
100 

and R ∞ . The probability distributions in panels B and C were reconstructed using 

kernel density estimation on 10 4 simulations. 
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6 In fact we show in Appendix D that the median initial return rate is always 

positive and larger than asymptotic resilience, both for non-reactive and reactive 
observations. First, a pulse perturbation is expected to initially gen-

erate the largest biomass changes in the abundant species, sim-

ply because they have larger biomass to begin with. Second, af-

ter sufficiently long time, the recovery process becomes indepen-

dent of the perturbation; it is then determined by the least stable

species (in the sense of being closest to the invasibility threshold,

see Fig. 5 ), which is often rare. The fact that distinct sets of species

determine the short-term and long-term return rates implies that

these two types of return rate are often unrelated, and that the

asymptotic response can be determined by the specificities of rare

species, which have almost no effect on the observable part of the

recovery dynamics. 

As a corollary, the asymptotic rate of return to equilibrium,

or asymptotic resilience, should not be used as a proxy for the

short-term recovery. Nevertheless, theoretical work on the return

to equilibrium has focused almost exclusively on asymptotic re-

silience. For example, return time is often defined as the recipro-

cal of asymptotic resilience (a practice that dates back to Pimm

and Lawton, 1977, 1978 ). But this theoretical construct need not

be related to the actual return time, that is, the time it takes for

the system to recover from a perturbation, which is mainly deter-

mined by the short-term response. Many ecologists seem to have

built an intuition about the return to equilibrium based on very

simple systems, such as single species, for which the return rate is

constant over time. However, as illustrated by the examples in this

paper, only slightly more complex systems exhibit much richer re-

turn dynamics, during which the return rate can change dramati-

cally. We showed that in large, complex communities, due to the

presence of species with very different abundances, asymptotic re-

silience need not even be a good predictor of return rates at longer

times. Similarly, because asymptotic resilience does not depend on

the perturbation direction, many ecologists seem to assume that

the same holds for the entire recovery process. This intuition is er-

roneous because, as we have shown, the short-term return rates

can, and often do, strongly depend on the perturbation direction. 

Previous work has stressed that the asymptotic regime is of-

ten not representative of the short-time dynamics ( Hastings, 2004,

2010 ). This issue has been particularly well studied in population

ecology. It is generally recognized that depending on initial con-

ditions the population dynamics can be governed by transient ef-

fects, which are missed out when analyzing the asymptotic regime

alone ( Caswell, 2001; Ezard et al., 2010 ). Practical tools are avail-

s

ble to systematically investigate the transient dynamics of popu-

ation models, and to incorporate these transient effects into pre-

ictions of future population dynamics ( Caswell, 2007; Stott et al.,

011 ). Clearly, there are close parallels with the findings reported

n this paper. It would be worthwhile to scrutinize whether theo-

etical insights and practical tools developed by population ecolo-

ists can enrich the study of ecosystem stability. 

Because our work emphasizes the importance of the short-

erm recovery, it is closely related to the work of Neubert and

aswell (1997) . They studied the instantaneous return rate imme-

iately after a pulse perturbation, and showed that it can be neg-

tive even if the system is stable. They coined the term ‘reactive’

o denote systems for which this phenomenon occurs, and argued

hat many real-world systems can be expected to be reactive. How-

ver, we have shown that the initial return rate displays a partic-

larly strong dependence on the perturbation direction. Therefore,

he existence of a perturbation with a negative initial return rate

oes not imply that the initial return rate is negative for all or even

ost perturbations. For instance, in Fig. 3 , the vast majority of per-

urbations are met with positive initial return rates, despite the

ystem being reactive 6 . This suggests that the system property of

eing reactive does not provide much information about the ini-

ial return rate for an actual perturbation. The theory of reactive

ystems deals with the initial return rate for the worst-case per-

urbation, but does not tell us how the system typically responds

o a perturbation. By studying this typical response, our paper can

e interpreted as an extension of Neubert and Caswell ’s theory. 

This paper strives to develop theory for empirically relevant sta-

ility measures. The long-term return to equilibrum is of limited

ractical interest, because it corresponds to small displacements,

hich are often indistinguishable from inevitable fluctuations at

he equilibrium state. Also, especially in field studies, the asymp-

otic response to a first perturbation might be concealed by the

ccurrence of a second one. Therefore, available empirical data are

ften restricted to the short-term recovery, which is explicitly ad-

ressed by our theory. Short-term responses depend on the pertur-

ation direction, and we argued that the most relevant predictions

re obtained by averaging over the perturbation distribution. We
ystems. 
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erived accurate formulas for the median return rate as a function

f the time elapsed since the perturbation. These formulas can be

valuated as easily as asymptotic resilience, to which the median

eturn rate converges in the limit of very long times. Thus, our

ork provides a theoretical framework to study the transient re-

overy following perturbations and to predict return times to equi-

ibrium in community and ecosystem models. 

This theoretical framework depends on a number of technical

ssumptions. First, we assumed that the reference state, i.e., the

tate in which the ecosystem settles at the end of the recovery pro-

ess, is an equilibrium point. Alternatively, and more realistically,

e could consider a fluctuating reference state. If the fluctuations

re small compared with the displacement induced by the pulse

erturbation, then they do not affect the analysis of the short-term

ecovery. More generally, we assumed that the recovery trajectories

emain close to equilibrium. This allowed us to rely on the theory

f linear dynamical systems, which are widely used by both the-

rists and empiricists to describe and interpret ecological dynam-

cs ( Caswell, 2001; Gurney and Nisbet, 1998 ). For sufficiently weak

erturbations, the non-linear part of ecosystem dynamics is often

n additional source of discrepancy between short-term and long-

erm responses. Indeed, non-linearities can have a strong effect on

he short-term response, but leave the long-term response essen-

ially unchanged, because the latter corresponds to small displace-

ents for which the linear approximation is accurate. When allow-

ng for stronger perturbations, the ecosystem might be pushed to

 different state (e.g., to another equilibrium), and the notion of

cosystem recovery itself becomes meaningless (for concrete pro-

osals of how to deal with this case, see Menck et al., 2013 and

undström, 2017 ). Finally, it should be noted that ecosystem sta-

ility has also been analyzed in the absence of perturbations. For

xample, many studies have quantified stability based on the am-

litude of endogenous oscillations (such as predator-prey cycles;

.g., Brose et al., 2006; McCann et al., 1998 and McCann, 2011 ), for

hich our work does not seem directly relevant. 

The integration of theoretical and empirical approaches has

een identified as one of the main challenges for research on eco-

ogical stability ( Ives and Carpenter, 2007 ) and Donohue et al.,

016 . This article attempts to make the theory of how ecosystems

ecover from pulse perturbations more practically relevant by em-

hasizing short-term responses. Future work could address how

o translate our findings into concrete recommendations. While

estricted to pulse perturbations, our paper might inspire analo-

ous studies for other stability measures, such as the response to

ress perturbations and the temporal variability of ecosystems (see

rnoldi et al., 2016 and Haegeman et al., 2016 for first steps in this

irection). 
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ppendix 

“Bra-ket” notation In the appendices we use special notation

o deal with column vectors, row vectors and their products. The

orrespondence between this notation, which is borrowed from

heoretical physics, and the more standard one is: 
column vector x | x 〉 
row vector w 

� 〈 w | 
scalar product w 

� x 〈 w | x 〉 
rank-one matrix x w 

� | x 〉〈 w | 
For example, the equality w 

� A x = w 

� (A x ) = (A 

� w ) � x corre-

ponds to 〈 w | A | x 〉 = 〈 w | A x 〉 = 〈 A 

� w | x 〉 in the new notation. 

ppendix A. Generic perturbations lead to the same asymptotic

eturn rate 

Here we show that the asymptotic return rates are essentially

ndependent of the perturbation direction u and of the observation

irection w . 

We begin by investigating the long-term behavior of 〈 w , x (t) 〉 =
 w , e At u 〉 . We assume that A has no degenerate eigenvalues, which

s generically the case. This ensures that its spectral decomposi-

ion exists, constructed using the eigenvalues λi and corresponding

right) eigenvectors v R 
i 

and left eigenvectors v L 
i 

(i.e., eigenvectors

f A 

� ). For simplicity we assume that the dominant eigenvalue is

eal; we discuss the case of a complex conjugate pair of dominant

igenvalues at the end of this appendix. We order the eigenvalues

uch that 

1 > � e (λ2 ) ≥ � e (λ3 ) ≥ . . . 

sing the spectral decomposition, we have 

 = 

∑ 

i 

λi | v R i 〉〈 v L i | and e At = 

∑ 

i 

e λi t | v R i 〉〈 v L i | , 

o that 

 w | x (t) 〉 = 〈 w | e At u 〉 = 

∑ 

i 

e λi t 〈 w | v R i 〉〈 v L i | u 〉 . 

f 〈 w | v R 
1 
〉〈 v L 

1 
| u 〉 	 = 0 and for sufficiently large t (more precisely, for

 

−(λ1 −� e (λ2 )) t  1) , the sum in the right-hand side is dominated

y the i = 1 term, 

 w | x (t) 〉 ≈ e λ1 t 〈 w | v R 1 〉〈 v L 1 | u 〉 , 
o that (see also Appendix B ), 

ln |〈 w | x (t) 〉| 
t 

≈ −λ1 −
ln |〈 w | v R 1 〉〈 v L 1 | u 〉| 

t 
≈ −λ1 

 

ins 
t ( w ) = − d 

d t 
ln |〈 w | x (t) 〉| ≈ −λ1 − d 

d t 
ln |〈 w | v R 1 〉〈 v L 1 | u 〉| = −λ1

 

avg 
t ( w ) = − ln |〈 w | x (t) 〉| − ln |〈 w | x (0) 〉| 

t 
≈ −λ1 . 

hese approximations, valid for large t , become exact in the limit

 → ∞ . Hence, 

 ∞ 

( w ) = lim 

t→∞ 

R 

ins 
t ( w ) = lim 

t→∞ 

R 

avg 
t ( w ) = −λ1 . 

ence, the asymptotic return rates do not depend on the pertur-

ation direction u (as long as 〈 v L 
1 
| u 〉 	 = 0 ) and on the observation

irection w (as long as 〈 w | v R 1 〉 	 = 0 ). 

Similarly, for sufficiently large t and if 〈 v L 1 | u 〉 	 = 0 , 

 x (t) ‖ ≈ e λ1 t ‖ v R i ‖ 〈 v L i | u 〉 . 
ubstituting this expression into the defintion of return rates R ∞ 

,

 

ins 
t and R 

avg 
t , we get 

 ∞ 

= lim 

t→∞ 

R 

ins 
t = lim 

t→∞ 

R 

avg 
t = −λ1 . 

The case of a complex conjugate pair of dominant eigenvalues is

ore subtle. In this case also the asymptotic return to equilibrium

s governed by the dominant pair of eigenvalues (and correspond-

ng eigenvectors). The asymptotic regime has persistent oscillations

f decreasing amplitude. The rate of decrease of the amplitude is

qual to asymptotic resilience (equal to minus the real part of the

https://doi.org/10.13039/501100000781
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Fig. A.1. Return to equilibrium depends on perturbation direction - case of complex conjugate pair of dominant eigenvalues. Same figure as Fig. 3 , but for different commu- 

nity matrix, A = 

(−0 . 5 −1 
5 −1 

)
. The oscillatory behavior leaves a clear imprint on the decay of the distance to equilibrium (panel C) and on the convergence of return rate R 

avg 
t 

to asymptotic resilience (panel D). 
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dominant eigenvalues). However, because the return rates are com-

puted on the oscillating variables (rather than on the amplitude

of the oscillations), the return rates for large t can also oscillate,

without converging to a proper limit. The distribution of instanta-

neous return rates R 

ins 
t remains wide for large time t ( Fig. A.1 ). In

contrast, the average return rates R 

avg 
t have a distribution that be-

comes narrow for large time t , converging to asymptotic resilience.

Appendix B. Direction of observation 

In the main text we defined return rates using the Euclidean

norm ‖ x ( t ) ‖ to measure the extent of the dynamical displacement

from equilibrium, see Eqs. (3) –(5) . To compute the associated re-

turn rates, all dynamical variables x i ( t ) have to be observed. When

this is not practical or even possible, it is more convenient to use

return rates that require a limited number of dynamical variables.

Here we introduce return rates of a particular ecosystem variable

of function (e.g., total biomass, nutrient uptake). After lineariza-

tion such a variable becomes a linear combination 

∑ 

i w i x i (t) =
w 

� x = 〈 w | x 〉 , where the vector w can be interpreted as an ob-

servation direction. For instance, the direction of total biomass is

w 

� = (1 , 1 , . . . , 1) . The corresponding return rates are 

R ∞ 

( w ) = lim 

t→∞ 

− ln |〈 w | x (t) 〉| 
t 

(B.1)

R 

ins 
t ( w ) = − d 

d t 
ln |〈 w | x (t) 〉| (B.2)

R 

avg 
t ( w ) = − ln |〈 w | x (t) 〉| − ln |〈 w | x (0 

+ ) 〉| 
. (B.3)
t −  
ote that we have added the dependence on the observation direc-

ion w to distinguish these return rates (e.g., R 

avg 
t ( w ) ) from those

ased on the Euclidean norm (e.g., R 

avg 
t ). 

ppendix C. Return times 

As explained in the main text, return time can be defined as

he amount of time it takes for the system to return, and remain

ithin, a specified distance to equilibrium. We denote the allowed

istance to equilibrium by c . Then, the return time T ( c ) is defined

s 

 (c) = min 

{
t 
∣∣ ‖ x (t + s ) ‖ ≤ c for all s ≥ 0 

}
. (C.1)

ig. C.1 illustrates how the requirement that the displacement re-

ains within this bound for all times t ≥ T ( c ) allows us to deal

ith non-monotonous return to equilibrium. It is interesting to

ote that the inverse function T ( c ) has a simple interpretation. It

s the maximal displacement C ( t ) that occurs after time t , 

(t) = max 
s ≥t 

‖ x (s ) ‖ . (C.2)

he relationship between T ( c ) and C ( t ) is explained graphically in

ig. C.1 . 

Neither T ( c ) nor C ( t ) are directly comparable to return rates

 

ins 
t and R 

avg 
t . To see this, note that T ( c ) has units of time, while

 ( t ) is unitless (recall that R 

ins 
t and R 

avg 
t have units of recipro-

al time). This shortcoming can be overcome by applying an ap-

ropriate transformation to T ( c ) and C ( t ). To find this transforma-

ion, we consider a single-species system, for which A = −α with

> 0 and R 

ins 
t = R 

avg 
t = α. We find C(t) = x (0 + ) e −αt and T (c) =(

ln c − ln x (0 + ) 
)
/α, suggesting the following transformed quanti-
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Fig. B.1. Return to equilibrium depends on perturbation direction - displacement measured along a particular observation direction. Same figure as Fig. 3 , but the displace- 

ment from equilibrium is measured as the deviation of total biomass from its equilibrium value. This corresponds to projecting the trajectories on the observation direction 

w 

� = (1 , 1) (dashed line in panel A). The patterns are qualitatively the same as those in Fig. 3 , but the variation around the median is larger. 

Fig. C.1. Definition of return times. Panel A: same as Fig. 1 , but for a return to equilibrium with damped oscillations. Panel B: we define the return time T ( c ) as the smallest 

time starting from which the distance to equilibrium remains smaller than a factor c of the initial displacement ‖ x (0 + ) ‖ . To construct the return time, it is convenient to 

introduce the quantity C ( t ) as the largest displacement after time t relative to the initial displacement. The function C ( t ) is monotonously decreasing; its inverse is the return 

time T ( c ). Parameter values: N ∗� = (2 . 4 , 1 . 6) , A = 

(−0 . 5 −1 
5 −1 

)
and u � = (0 . 9 , 0 . 4) . 

t

C

w  

c  

i  

t

C

s  
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l  

m  

s

A

 

t  

i  

p  
ies, 

 t = − ln C(t) − ln ‖ x (0 

+ ) ‖ 

t 
and T c = − ln c − ln ‖ x (0 

+ ) ‖ 

T (c) 
, 

(C.3) 

hich have the dimension of reciprocal time. For the purpose of

omparison, stability measure C t is of particular interest, because

t is indexed by time t like return rates R 

ins 
t and R 

avg 
t . Substituting

he definition of C ( t ), we get 

 t = − ln max s ≥t ‖ x (s ) ‖ − ln ‖ x (0 

+ ) ‖ 

, 

t 
howing that C t is closely related to R 

avg 
t . They are equal when

ax s ≥t ‖ x (s ) ‖ = ‖ x (t) ‖ , which holds when the return to equi-

ibrium is monotonous. This indicates that our results, although

ostly expressed in terms of return rate R 

avg 
t , are also valid for

tability measures based on return times such as C t . 

ppendix D. Median return rate 

We derive approximate expressions for the median value of re-

urn rates R 

ins 
t and R 

avg 
t for a random perturbation u . The only

nformation the approximation requires about the distribution of

erturbation vectors u is a correlation matrix C . In the next section
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we compute this correlation matrix for a few simple perturbation

models. 

We start by deriving some exact expressions for averages over

the distribution of perturbation vectors. First, we consider the

squared displacement from equilibrium. Denoting by E the mean

over the distribution of vectors u , we have 

E 

(‖ x (t) ‖ 

2 
)

= E 〈 x (t) | x (t) 〉 
= E 〈 e At u | e At u 〉 
= E 

(
Tr | e At u 〉〈 e At u | 

)
= Tr e At 

E 

(| u 〉〈 u | ) e A 
� t 

= Tr e At C e A 
� t , (D.1)

where C = E | u 〉〈 u | is the correlation matrix of perturbation vec-

tors. 

Next, we consider the time derivative of the squared displace-

ment from equilibrium. We have 

d 

d t 
‖ x (t) ‖ 

2 = 

d 

d t 
〈 e At u | e At u 〉 

= 〈 A x (t) | x (t) 〉 + 〈 x (t) | A x (t) 〉 
= 2 〈 x (t) | H(A ) x (t) 〉 , 

where H(A ) = (A + A 

� ) / 2 is the symmetric part of matrix A . Taking

the mean over the perturbation vectors u , 

E 

(
d 

d t 
‖ x (t) ‖ 

2 
)

= 2 E 〈 x (t) | H(A ) x (t) 〉 

= 2 E 

(
Tr | H(A ) e At u 〉〈 e At u | 

)
= 2 Tr H(A ) e At 

E 

(| u 〉〈 u | ) e A 
� t 

= 2 Tr H(A )e At C e A 
� t . (D.2)

We are interested in averages of ‖ x ( t ) ‖ , R 

ins 
t and R 

avg 
t . These

quantities can be expressed as non-linear functions of ‖ x ( t ) ‖ 2 and
d 
d t 

‖ x (t) ‖ 2 , 
‖ x (t) ‖ = 

√ 

‖ x (t) ‖ 

2 

R 

ins 
t = − 1 

2 ‖ x (t) ‖ 

2 

d 

d t 
‖ x (t) ‖ 

2 

R 

avg 
t = − ln ‖ x (t) ‖ 

2 − ln ‖ x (0) ‖ 

2 

2 t 
. 

Applying these functions to the means of ‖ x ( t ) ‖ 2 and 

d 
d t 

‖ x (t) ‖ 2
(i.e., Eqs. (D.1) and (D.2) ) gives poor approximations for the means

of ‖ x ( t ) ‖ , R 

ins 
t and R 

avg 
t . Applying the same procedure to medi-

ans leads to much better approximations. Explicitly, denoting by

M the median value over the perturbation vectors u , we get from

Eqs. (D.1) and (D.2) , 

M 

(‖ x (t) ‖ 

2 
)

≈ Tr C e A 
� t e At 

M 

(
d 

d t 
‖ x (t) ‖ 

2 
)

≈ 2 Tr C e A 
� t H(A ) e At . 

Hence, 

M 

(‖ x (t) ‖ 

)
≈

√ 

Tr 
(
C e A � t e At 

)
(D.3)

M 

(
R 

ins 
t 

)
≈ −

Tr 
(
C e A 

� t H(A ) e At 
)

Tr 
(
C e A � t e At 

) (D.4)

M 

(
R 

avg 
t 

)
≈ −

ln 

(
Tr C e A 

� t e At 
)

− ln 

(
Tr C 

)
. (D.5)
2 t 
he accuracy of the approximations is excellent, as illustrated in

igs. 2–4 and A.1 (compare full line (numerically computed me-

ian) and × -marks (analytical approximation); Eq. (D.3) in panel C

nd Eq. (D.5) in panel D). 

It is interesting to consider the median of initial return rate

 

ins 
0 

= lim t→ 0 R 

avg 
t . From Eq. (D.4) or (D.5) , 

 

(
R 

ins 
0 

)
= lim 

t→ 0 
M 

(
R 

avg 
t 

)
≈ −

Tr 
(
CH(A ) 

)
Tr C 

= −
Tr 

(
CA 

)
Tr C 

. 

n the simple case where C is proportional to the identity matrix

see next section), we find that 

 

(
R 

ins 
0 

)
= lim 

t→ 0 
M 

(
R 

avg 
t 

)
= −1 

n 

Tr A = −1 

n 

n ∑ 

i =1 

λi = 

1 

n 

n ∑ 

i =1 

−� e (λi ) , 

here λi are the eigenvalues of A . Hence, the median initial return

ate is always positive and larger than asymptotic resilience. This is

he case even for reactive systems, for which the initial return rate

or some perturbation directions is negative (that is, the system

nitially moves away from equilibrium). 

A similar procedure as above can be used to derive approxima-

ions for the median values of | 〈 w , x ( t ) 〉 |, R 

ins 
t ( w ) and R 

avg 
t ( w ) , 

 

(|〈 w , x (t) 〉| ) ≈
√ 

〈 w | e At C e A � t w 〉 (D.6)

 

(
R 

ins 
t ( w ) 

)
≈ −

〈 w | e At 
(
A C + CA 

� ) e A 
� t w 〉 

2 〈 w | e At C e A � t w 〉 (D.7)

 

(
R 

avg 
t ( w ) 

)
≈ − ln 〈 w | e At C e A 

� t w 〉 − ln 〈 w | C w 〉 
2 t 

. (D.8)

he accuracy of these approximations is illustrated in

ig. B.1 ( Eq. (D.6) in panel C and Eq. (D.8) in panel D). 

ppendix E. Correlation matrix of perturbations 

The statistics of the perturbation u acting on the system are

ummarized in the correlation matrix C . Here we derive this co-

ariance matrix for two simple random perturbation models. In

he first model we assume that all perturbation directions u are

qually probable. This implies that on average all species are

qually displaced. In the second model we allow that certain per-

urbation directions are more probable than others. In particular,

e assume that a typical perturbation will displace more, in abso-

ute terms, species with large equilibrium biomass. 

To define the first model, we specify the distribution of the ran-

om perturbation vector u . For a given perturbation direction (i.e.,

iven u / ‖ u ‖ ), the norm ‖ u ‖ of the perturbation vector has no ef-

ect on the return rates by linearity. Hence, we can choose ‖ u ‖ = 1 .

hen, because all perturbation directions are equally probable, we

ee that the perturbation vector u is uniformly distributed on the

nit sphere (i.e., the sphere defined by the condition ‖ u ‖ = 1 ). 

To generate samples from this distribution, the following proce-

ure can be used, 

1. Generate a vector v , of the same dimension as u , consisting of

independent standard Gaussian variables v i . 

2. The normalized vector u = v / ‖ v ‖ gives a sample from the uni-

form distribution on the unit sphere. 

Note that the components v i of vector v have to be taken from

 Gaussian distribution for this procedure to work. Hence, we have

he following relationships between the probability distributions of

 , u and r = ‖ v ‖ , 
 ( v ∈ d v ) = P (r ∈ d r) P ( u ∈ d u ) = 

∏ 

i 

P (v i ∈ d v i ) , (E.1)
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here the distributions P (v i ∈ d v i ) are standard Gaussian. 

To compute the corresponding correlation matrix C , we start

rom the equality 

 = E | u 〉〈 u | = 

∫ 
| u 〉〈 u | P ( u ∈ d u ) . (E.2)

e multiply both sides of the equation by r 2 and integrate with

espect to distribution of r = ‖ v ‖ . For the left-hand side, we get 
 

C r 2 P (r ∈ d r) = C 

∫ 
r 2 P (r ∈ d r) 

= C 

∫ 
‖ v ‖ 

2 
P ( v ∈ d v ) 

= C 

∫ ∑ 

i 

v 2 i 

∏ 

i 

P (v i ∈ d v i ) 

= C 
∑ 

i 

∫ 
v 2 i P (v i ∈ d v i ) = n C, 

here n is the dimension of u and v . For the right-hand side, we

et 
 

| u 〉〈 u | P ( u ∈ d u ) r 2 P (r ∈ d r) = 

∫ 
| v 〉〈 v | P ( v ∈ d v ) . 

ence, we find that 

 = 

1 

n 

∫ 
| v 〉〈 v | P ( v ∈ d v ) . (E.3)

he integral in the right-hand side is equal to the correlation ma-

rix of the random variables v i . They are independent and have

ariance 1, so that 

 = 

1 

n 

1 , (E.4) 

here 1 denotes the n × n identity matrix. 

To define the second model, we give the procedure to sample

andom perturbations u . The procedure is a slightly modified ver-

ion of the previous sampling procedure, 

1. Generate a vector v , of the same dimension as u , consisting of

independent standard Gaussian variables v i . 

2. Multiply the vector v by D , the diagonal matrix containing the

equilibrium species biomass, giving w = D v . 
3. The normalized vector u = w / ‖ w ‖ gives a sample from the dis-

tribution of perturbation u . 

Note that this is again a distribution on the unit sphere (defined

y ‖ u ‖ = 1 ). However, this distribution is not uniform due to the

ultiplication by matrix D . 

We compute the corresponding correlation matrix C . First, we

ote that the components of vector w are independent Gaussian

ariables. Their distributions are not identical; component w i has

ariance D 

2 
ii 

(and mean 0). Introducing the variable r = ‖ w ‖ , we

ave the following relationships, 

 ( w ∈ d w ) = P (r ∈ d r) P ( u ∈ d u ) = 

∏ 

i 

P (w i ∈ d w i ) , (E.5)

hen, we can apply a similar computation as for the first model.

sing that 
 

r 2 P (r ∈ d r) = 

∑ 

i 

∫ 
w 

2 
i P (w i ∈ d w i ) = 

∑ 

i 

D 

2 
ii , 

e get 

 = 

1 ∑ 

i D 

2 
ii 

∫ 
| w 〉〈 w | P ( w ∈ d w ) . (E.6)

he integral in the right-hand side is the covariance matrix of the

andom variables w . Substituting their variances and covariances,
i 
 

e find that 

 = 

1 ∑ 

i D 

2 
ii 

D 

2 . (E.7) 

his result show that, on average, species with larger biomass are

ffected more strongly by the perturbation. The standard deviation

f the displacement of species i is proportional to D ii . Hence, the

isplacement strength relative to species biomass does not differ

etween species. Note that also for this second model the pertur-

ation affects species in an uncorrelated way. 

ppendix F. Effect of rare species on asymptotic resilience 

Here we illustrate a simple mechanism of how a rare species

an determine asymptotic resilience. We assume that the rare

pecies is present in the community without significantly affect-

ng the other species, but is kept at low abundance by interactions

ith the core community (a satellite species). We consider two

ases: one in which the rare species can persist in the commu-

ity without immigration, and another in which the rare species is

aintained by immigration (a sink population). 

We focus on the dynamics of the satellite species, which we

escribe by logistic growth with immigration. Denoting its biomass

y N 1 , the dynamical equation reads, 

d N 1 

d t 
= r 1 N 1 

(
1 − N 1 + β10 N 0 

K 1 

)
+ c 1 , (F.1)

ith r 1 the intrinsic growth rate, K 1 the carrying capacity, and c 1 
he immigration rate of the satellite species. Variable N 0 aggregates

he biomass of the core species. Because the effect of the satellite

pecies on the core species is assumed to be negligible, the dy-

amics of N 0 are autonomous, converging to an equilibrium value

 

∗
0 

. Competition coefficient β10 quantifies the negative effect of the

ore species on the satellite species, effectively reducing its intrin-

ic growth rate, 

 1 → r 1 

(
1 − β10 N 

∗
0 

K 1 

)
= α1 r 1 with α1 = 1 − β10 N 

∗
0 

K 1 

. (F.2)

he factor α1 is smaller than one, and can even be negative. The

ffective growth rate α1 r 1 is equal to the invasion fitness of the

atellite species (without immigration). 

First, assume the satellite species has positive invasion fitness,

1 > 0, so that it can persist in the community without immi-

ration. Neglecting immigration, c 1 = 0 , we find that the equilib-

ium biomass is N 

∗
1 = α1 K 1 and that the corresponding eigenvalue

s −α1 r 1 (recall that the other eigenvalues of the community dy-

amics are basically unaffected by the satellite species). Hence, for

mall α1 , the satellite species contributes a small eigenvalue (in

bsolute value). The eigenvalue might be smaller than the other

igenvalues of the community dynamics, in which case the satel-

ite species determines asymptotic resilience. 

Second, assume the satellite species has negative invasion fit-

ess, α1 < 0, so that it is maintained in the community by im-

igration. Neglecting intraspecific competition (i.e., dropping the

 

2 
1 term in Eq. (F.1) ), we obtain the equilibrium biomass N 

∗
1 = 

 1 / (| α1 | r 1 ) and the corresponding eigenvalue α1 r 1 . If immigration

s very weak (very small c 1 ), both biomass and eigenvalue can be

mall. Hence, the satellite species can contribute a weakly negative

igenvalue to the community dynamics, and might even determine

symptotic resilience. 

The two cases (positive and negative invasion fitness) are illus-

rated in Fig. 5 . For concreteness, we complement Eq. (F.1) with a

imple dynamical equation for the aggregate biomass N 0 , 

d N 0 

d t 
= r 0 N 0 

(
1 − N 0 

K 0 

)
. (F.3)
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Fig. F.1. Rare species determine asymptotic resilience in random community model. 

Same model as in Fig. 6 , but here we look at a single realization. Black line: recov- 

ery trajectory for full community (averaged over perturbation directions). Red line: 

recovery trajectory for community from which the rarest species has been removed. 

Inset: zoom of the recovery trajectories for shorter times. 
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We take r 0 = 1 . 0 and K 0 = 1 . 0 , so that N 

∗
0 

= 1 . 0 and the associated

eigenvalue λ0 = −1 . 0 . For the satellite species we set r 1 = 1 . 0 and

β10 = 0 . 8 . 

In case A of Fig. 5 , we take K 1 = 0 . 77 and c 1 = 0 , so that α1 =
−0 . 039 . Hence, the satellite species cannot persist and the commu-

nity dynamics are not affected. 

In case B of Fig. 5 , we take K 1 = 0 . 83 and c 1 = 0 , so that

α1 = 0 . 036 . Hence, the satellite species can persist and its equi-

librium biomass is N 

∗
1 

= 0 . 030 . This introduces a new eigenvalue

in the community dynamics, equal to −0 . 036 = 0 . 036 λ0 , which is

strongly dominant. This illustrates the first case discussed above. 

In case C of Fig. 5 , we take K 1 = 0 . 77 and c 1 = 0 . 002 . The

satellite species is maintained by immigration and its equilibrium

biomass is N 

∗
1 = 0 . 027 . The associated eigenvalue −0 . 11 = 0 . 11 λ0

is strongly dominant. This illustrates the second case discussed

above. 

The previous observations can be generalized to many-species

communities, as shown in Fig. 6 . Here we look more closely at a

single model realization ( Fig. F.1 ). In this example, asymptotic re-

silience can be linked to a single species, because the left eigen-

vector associated with the dominant eigenvalue is strongly concen-

trated on a single component. This species is the rarest of the com-

munity. When removing this species, asymptotic resilience changes

drastically, but the short-term recovery dynamics do not (see inset

in Fig. F.1 ). The same phenomena are observed in a majority of

model realizations. In other cases, asymptotic resilience is not as

clearly associated with a single rare species. 
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