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Abstract 

Thermal expansion of α-rhombohedral boron (α-B12) and two isostructural boron-rich pnictides 

(B12P2 and B12As2) has been studied between 298 and 1280 K by high-temperature synchrotron 

X-ray diffraction. For all studied phases no temperature-induced phase transitions have been 

observed. The observed temperature dependencies of the lattice parameters and unit cell volumes 

were found to be quasi-linear. Variation of the thermal expansion coefficients in the group of 

boron-rich pnictides (B13N2 – B12P2 – B12As2) was analyzed.  
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I. Introduction 

 
During last few decades elemental boron and boron-rich compounds have been attracting a 
considerable attention due to their unusual crystal structure and properties. The common features of 
these compounds are B12 icosahedra and other closo-clusters with polycentric metal-like bonding 
system [1]. At the same time, boron atoms within closo-clusters form strong covalent bonds with 
neighbouring atoms of the adjacent clusters and various interstitial atoms (e.g. C, N, O, P, Zr, Y), 
giving a big verity of boron-rich compounds: B4C, B12O2, B13N2, ZrB12, YB12, etc. A combination 
of the metal-like intra-cluster bonds and strong covalent inter-cluster bonding makes boron-rich 
compounds extremely stable, eventually leading to high melting temperatures, chemical inertness, 
outstanding mechanical properties and interesting electronic properties (e.g. self-healing resistance 
to radiation damage, superconductivity, etc.) [1-9]. It should be noted that properties of boron-rich 
solids are significantly influenced by the interstitial atoms [3,7]. Thus, study of the impact of 
interstitial atoms on various properties (hardness, compressibility, thermal expansion, band gap, 
etc.) is of great interest from both fundamental and application points of view. 

Very recently thermal expansion of two boron-rich nitrides synthesized under extreme conditions 
has been studied by synchrotron X-ray diffraction [10]. In the present paper we report the results on 
thermal expansion of α-rhombohedral boron (α-B12) and two boron-rich pnictides, B12P2 and 
B12As2. The retrieved thermal expansion coefficients compared with those reported earlier [10,11] 
allowed us to analyze the thermal expansion variation in the family of boron-rich pnictides. 
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II. Experimental 

 

Highly crystalline α-B12 (99.98%) was provided by Dr. Igor N. Goncharenko, Laboratoire Léon 
Brillouin (CEA-Saclay, France). Boron subphosphide B12P2 was produced by self-propagating 
high-temperature reaction in the BPO4–MgB2–Mg system according to the method described 
elsewhere [12]. Boron subarsenide B12As2 was synthesized by reaction of amorphous boron with 
arsenic melt at 5 GPa and 2100 K in a toroid-type apparatus (for details, see [13]). According to 
X-ray diffraction study (TEXT 3000 Inel diffractometer, CuKα1 radiation) all samples are single-
phase, and their lattice parameters determined using Maud [14] and PowderCell [15] software are in 
good agreement with literature data [1,3]. 

Thermal expansion of boron-rich pnictides and α-B12 has been studied at MCX beamline, Elettra 

Synchrotron (Trieste, Italy) and B2 beamline, DORIS III storage ring, HASYLAB-DESY 

(Hamburg, Germany). The powdered samples were loaded into quartz-glass capillaries under Ar 

atmosphere. Debye-Scherrer geometry with rotating capillary was used at both beamlines. The 

wavelength (1.0352 Å at MCX beamline and 0.6841 Å at B2 beamline) was calibrated using Si and 

LaB6 as external standards; temperature calibration has been done by measuring thermal expansion 

of platinum [16] under the same experimental conditions. X-ray diffraction patterns were collected 

in the 2-60 θ-range using image plate detectors upon stepwise heating with 100-K steps from room 

temperature up to 1280 K (see Fig. 1). The ramp time was 10 min with 5 min of temperature 

stabilization; the acquisition time was 60-120 s. FIT2D software [17] was used to integrate the 

collected X-ray diffraction data into one-dimensional patterns. The lattice parameters of the studied 

phases at different temperatures were determined by Le Bail refinement procedure using 

PowderCell software [15]. 

 
 
III. Results and Discussion 

 
α-rhombohedral boron is the low-temperature allotrope, and its thermodynamic stability domain in 
the equilibrium phase diagram of boron [18] is still not precisely defined. It has rhombohedral 
crystal structure (R-3m) containing B12 icosahedra located at the vertices of the rhombohedral cell. 
Due to the lack of the valence electrons necessary for the formation of inter-icosahedral covalent 
bonds, the equatorial boron atoms of the neighboring icosahedra lying in one layer forming 
relatively weak "two electrons-three centers" bonds, 2e3c [1,2] (Fig. 2a). The boron-rich pnictides, 
B12X2Y (where X = N, P, As;  Y = B), have structures related to α-rhombohedral boron with two or 
three interstitial atoms in 1b and 2c Wyckoff positions (in hexagonal setting, 3b and 6c) placed 
along the body diagonal of the rhombohedral unit cell (Fig. 2b). The interstitial atoms in 2c 
positions form the "two electrons-two centers" covalent bonds, 2e2c, with equatorial boron atoms of 
the neighboring icosahedra. 

The unit cell parameters of α-B12, B13N2 [10], B12P2 and B12As2 in hexagonal (ahex, chex) and 
rhombohedral (arh, αrh) settings are presented in Table I. Further we will consider the thermal 
expansion in hexagonal unit cell only, so the "hex" indexes of lattice parameters will not be used. 
As one can see, a parameter increases in the α-B12 – B13N2 – B12P2 – B12As2 row, which happens 



due to insertion of the interstitial atoms in α-boron unit cell and subsequent "squeezing" of the B12 
units outside [3]. On the other hand, X-X bonds (X = N, P, As) tend to pull closer the adjacent 
planes of icosahedra resulting in decrease of c parameter [19]. Different "compression" of boron-
rich pnictides along c-axis might be explained by different nature of X-X bonds i.e. P–P and As–As 
are 2e2c covalent bonds (however, they are considerably longer than the corresponding diatomic 
equilibrium bonds [20][20], see Table II), whereas B–N–B chain in the B13N2 structure can be 
considered as 3e3c bond (for details, see [21]), and is significantly longer. Nevertheless, as it 
follows from the formula for the hexagonal unit cell volume: 

V� =
√3
2
��																																																																							(1) 

the enlargement of hexagonal unit cell in the ab-plane has significantly greater impact on increase 
of the unit cell volume than the "compression" along c-axis. 

The results of high-temperature X-ray diffraction study of α-B12, B12P2 and B12As2 (Fig. 3) revealed 
quasi-linear temperature dependency of the lattice parameters, hence, the linear thermal expansion 
coefficients (TEC) do not change over the whole temperature range under study. The linear TECs 
(αl) can be estimated by Eq. 2 [22]: 

�� =
� − ����	�

����	� ∙ (� − 298	K)
																																																															(2) 

where l is a unit cell parameter and l298 K is a unit cell parameter at room temperature. The αl values 
are presented in Table I. The thermal expansion of different interatomic distances was not analyzed 
due to insufficient quality of powder X-ray diffraction data (for that the single-crystal diffraction 
data are highly required); here and further the thermal expansion of the inter- and intra-icosahedral 
bonds is assumed to be the same for all studied solids. 

As it has been expected, thermal expansion of α-rhombohedral boron and isostructural boron-rich 
pnictides in different crystallographic directions was found to be anisotropic. The anisotropy was 
estimated by αc/αa ratio (see Table I): in contrast to α-B12, thermal expansion of all boron-rich 
pnictides along c-axis (αc) is larger than that in the ab-plane (αa) (see Fig. 4a). Moreover, the liner 
TEC values of α-boron and boron-rich pnictides vary considerably. 

Analysis of the αc variation of boron-rich pnictides requires special consideration of B–X and X–X 
bonds. According to Fig. 2, the interstitial atoms (X = N, P, As) in 3c Wyckoff positions form the 
bonds with four neighboring atoms and, hence, are tetrahedrally coordinated as well as X atoms in 
cubic boron pnictides BN [23], BP [24] and BAs [25]. All four B–X bonds in the cubic BX phase 
have equal lengths, thus, forming an ideal tetrahedron. Taking into account thermodynamic stability 
of all cubic boron pnictides, the lengths of the B–X bonds in these compounds were assumed to be 
the optimal for the tetrahedral geometry. Unlike cubic boron pnictides, the tetrahedra (with central 
X atom) in B13N2, B12P2 and B12As2 are significantly distorted (see Table II). Employing the 
explanation that has been already used in the case of B50N2 thermal expansion [10] we assume that 
thermal vibrations lead to the reduction of the distorted tetrahedra towards the ideal ones i.e. at high 
temperatures the X–X bonds in B12P2 and B12As2 tend to shrink (see Table II for corresponding 
diatomic equilibrium bonds), whereas N–B–N chains in B13N2 tend to expand. In the case of boron 
subnitride, nitrogen atom is in the center of tetrahedron formed by boron atoms only, that is why the 
B–N distances in B13N2 are comparable with the corresponding bond lengths in cubic BN, but not 



with diatomic equilibrium B–N bond. Such a different thermal expansion of boron-rich pnictides 
along c-axis results in αc decrease in the row: B13N2 – B12P2 – B12As2 (see Fig. 4a). Despite one 
could expect the maximal thermal expansion in c-direction for α-B12, its αc value was found to be 
close to that of B12As2. 

Following the same logic, one should expect that at high temperatures B–P and B–As bonds in the 
ab-plane will tend to expand (see the difference between B–X bond lengths in B12X2 and cubic BX, 
Table II), while B–N bonds will tend to shrink, which should result in the higher αa values for B12P2 
and B12As2. Nevertheless, the hexagonal unit cell initially enlarged in the ab-plane leads to the 
smaller increase of the inter-icosahedral distances and B–X bonds at high temperatures, and, thus, 
to lower αa values; αa decrease in the row B13N2 – B12P2 – B12As2. The largest thermal expansion of 
α-B12 in the ab-plane might be explained by the presence of weak 2e3c inter-icosahedral bonds 
instead of 2e2c covalent bonds in boron-rich pnictides i.e. stronger 2e2c bonds prevent significant 
thermal expansion in this crystallographic direction. 

Fig. 3 presents the variations of the normalized unit cell volumes V(T)/V0 (V0 is the unit cell 
volume at 298 K) of α-B12, B12P2 and B12As2 versus temperature. The observed temperature 
dependencies of unit cell volume are quasi-linear and, thus, can be approximated by Eq. 3 [26]: 

�(�) = ���1 + ��(� − 298	K)�,																																																									(3) 

where αv is volume TEC. 

The retrieved volume TECs of α-B12, B12P2 and B12As2 (see Table I ) were found to be of the same 
order of magnitude as those of other boron-rich solids [10,11,22,26-30]. The αv value of B12As2 
(15.3(1)×10-6 K-1) is in excellent agreement with the literature data (15(2)×10-6 K-1) [11]. According 
to Table I, boron subnitride has the highest volume TEC among all studied phases. The main 
reasons for that are: not too much expanded unit cell at room temperature (thus, allowing the further 
increase of the interatomic distances) and the presence of 3e3c N–B–N chains with its tendency to 
expand at high temperatures. α-B12 has the second largest volume TEC owing to strong impact of 
the rather weak 2e3c bonds resulting in significant expansion in the ab-plane. The volume thermal 
expansion of boron subphosphide and subarsenide is considerably influenced by the "negative" 
tendency for the P–P and As–As bonds at high temperatures and the unit cells initially enlarged in a 
and b directions. 

Interestingly, the volume TECs and bulk moduli (B0) of B13N2, B12P2 and B12As2 [31-33] vary 
similar (see Table I and Fig. 4b). As one can see, the αv vs B0 dependence for boron-rich pnictides 
can be approximated by the following exponential function: 

�� = 14.94 + 1.37 ∙ 10$% ∙ &�.�'∙() ,																																										(4) 

Data for α-rhombohedral boron is also presented in Fig. 3 (we used B0 value of α-B12 reported in 
[34]), however it does not follow the exponential αv(B0) dependency. It should be noted that for all 
studied phases we did not observe temperature-induced phase transitions and/or decomposition up 
to the highest experimental temperatures. 

 
IV. Conclusions 

 
Thermal expansion of α-rhombohedral boron and isostructural boron-rich pnictides (B12P2, B12As2) 
was studied in situ by synchrotron X-ray diffraction up to 1280 K. The precise measurements of 



lattice parameters at different temperatures allowed us to retrieve the corresponding linear (αl) and 
volume (αv) thermal expansion coefficients of α-B12, B12P2 and B12As2. The obtained values were 
compared with the literature data for boron subnitride B13N2, and variation of αl and αv of three 
boron-rich pnictides was analyzed in terms of their crystal structure.  
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Table I. Lattice parameters, unit cell volumes, mean linear thermal expansion 

coefficients (αl), linear thermal expansion anisotropy parameters (αa/αc), 

volume thermal expansion coefficients (αv) and bulk moduli (B0) of 
α-B12, B13N2, B12P2 and B12As2. 

 

 α-B12 B13N2 [10]  B12P2 B12As2 

a,bhex Å 4.9161(3) 5.4537(3) 5.9894(3) 6.1353(2) 

chex, Å 12.5752(5) 12.2537(7) 11.8594(8) 11.8940(7) 

Vhex, Å3 263.20(4) 315.62(5) 368.43(6) 387.72(5) 

arh, Å 5.0623(3) 5.1573(3) 5.2521(1) 5.3166(2) 

α
rh,° 58.09 63.84 69.53 70.48 

Vrh, Å3 87.73(1) 105.21(2) 122.81(2) 129.24(2) 

αa ×106, K-1 6.4(3) 6.1(1)  5.7(1) 5.0(1) 

αc ×106, K-1
 5.4(2) 8.9(1)  6.5(1) 5.3(1) 

αc/αa 0.84 1.46 1.14 1.06 

αv ×106, K-1
 18.3(6) 21.3(2)  17.9(3) 15.3(1) 

B0, GPa 224(7) [34] 205(2) [33] 192(11) [32] 150(4) [31] 

  



 

Table II. Bond lengths in boron-rich pnictides and cubic boron pnictides compared with 

diatomic equilibrium B–B and B–X (X = N, P, As) distances. 

 

 

 

 

 

 

 

 

 

 

*  X–X distance in B13N2 is given for the N–B bond of the N–B–N chain. 

  

 BN [23] BP [24]  BAs [25]  α-B12 B13N2 [10] B12P2 B12As2 

B–X, Å 1.566 1.967 2.069 – 1.6302 1.9074 1.9914 

X–X, Å – – – – 1.5390* 2.2428 2.3833 

Diatomic equilibrium bonds [20], Å 
B–B B–N P–P As–As 

1.590 1.281 l.893 2.103 



 

 

 

 

 

Fig. 1 X-ray diffraction patterns of α-rhombohedral boron (left) and B12As2 boron 

subarsenide (right) acquired at B2 (DORIS III) and MCX (Elettra), respectively. 

 

  



 

 

 

Fig. 2 Crystal structures of α-rhombohedral boron (left) and α-B12-related boron-rich 

pnictides, B12X2Y, (right) in rhombohedral setting. The B12 clusters are presented 

by green icosahedra, the 2e3c bonds in α-B12 are shown by rose triangles, the 

interstitial X (X = N, P, As) and Y atoms (Y = B) in 2c and 1b Wyckoff positions, 

respectively, are shown by grey balls. 

  



 

Fig. 3 Variation of the normalized unit cell volumes of α-B12, B12P2 and B12As2 as 

function of temperature. The dashed lines represent the linear fits to the 

experimental data. The corresponding values of volume thermal expansion 

coefficients are indicated. 

  



 

Fig. 4 a) Volume (αv, black) and linear (αa, red, and αc, blue) thermal expansion 

coefficients of α-B12, B13N2 [8], B12P2 and B12As2; b) Volume (αv) thermal 

expansion coefficients of α-B12, B13N2, B12P2, B12As2 versus bulk modulus (B0) 

[29-32]; the dashed line represents exponential fit. 


