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Abstract1

Empirical knowledge of diversity-stability relationships is mostly based on the analysis of2

temporal variability. Variability, however, often depends on external factors that act as dis-3

turbances, which makes comparisons across systems difficult to interpret. Here we show how4

variability can reveal inherent stability properties of ecological communities. This requires5

abandoning one-dimensional representations, in which a single variability measurement is6

taken as a proxy for how stable a system is, and instead consider the whole set of variabil-7

ity values generated by all possible stochastic perturbations. Furthermore, in species-rich8

systems, a generic pattern emerges from community assembly, relating variability to the9

abundance of perturbed species. The contrasting contributions of different species abun-10

dance classes to variability, driven by different types of perturbations, can lead to opposite11

diversity-stability patterns. We conclude that a multidimensional perspective on variability12

helps reveal the dynamical richness of ecological systems and the underlying meaning of their13

stability patterns.14
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Introduction15

Ecological stability is a notoriously elusive and multifaceted concept (Pimm, 1984; Donohue16

et al., 2016). At the same time, understanding its drivers and relationship with biodiversity17

is a fundamental, pressing, yet enduring challenge for ecology (Elton, 1946; MacArthur, 1955;18

May, 1973a; McCann, 2000). The temporal variability of populations or ecosystem functions,19

where lower variability is interpreted as higher stability, is an attractive facet of ecological20

stability, for several reasons. First, variability is empirically accessible using simple time-series21

statistics (Tilman et al., 1996). Second, variability – or its inverse, invariability – is a flexible22

notion that can be applied across levels of biological organization (Haegeman et al., 2016) and23

spatial scales (Wang & Loreau, 2014; Wang et al., 2017). Third, variability can be indicative24

of the risk that an ecological system might go extinct, collapse or experience a regime shift25

(Scheffer et al., 2009). During the last decade, the relationship between biodiversity and eco-26

logical stability has thus been extensively studied empirically using invariability as a measure27

of stability (Tilman et al., 2006; Jiang & Pu, 2009; Hector et al., 2010; Campbell et al., 2011;28

Gross et al., 2014; Pennekamp et al., 2018).29

In a literal sense, stability is the property of what tends to remain unchanged (Pimm,30

1991). Variability denotes the tendency of a variable to change in time, so that its inverse fits31

this intuitive definition. However, variability is not necessarily an inherent property of the32

system that is observed (e.g., a community of interacting species), as it typically also depends33

on external factors that act as perturbations. Thus, the variability of a community is not a34

property of that community alone. It may be caused by a particular perturbation regime so35

that a different regime could lead to a different value of variability. Stronger perturbations36

will generate larger fluctuations, and the way a perturbation’s intensity is distributed and37

correlated across species is also critical. In other words, a variability measurement reflects38
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the response of a system to the specific environmental context in which it is embedded.39

Despite this complexity, quantifying the fluctuations of an ecosystem property (e.g., pri-40

mary production) can be of foremost practical interest as it provides a measure of predictabil-41

ity in a given environmental context (Griffin et al., 2009). However, to generalize results42

beyond the specific context in which variability is measured, use variability to compare the43

stability of different systems, establish links between different stability notions, or reconcile44

the conflicting diversity-stability patterns and predictions reported in the empirical and the-45

oretical literature (Ives & Carpenter, 2007), one needs to know how variability measurements46

can reflect a system’s inherent dynamical features.47

Here, we adopt an approach in which stability is viewed as the inherent ability of a48

dynamical system to endure perturbations (Fig. 1A). For simplicity we will restrict to systems49

near equilibrium, by opposition to, e.g., limit cycles or chaotic attractors. We propose that50

a measure of stability should reflect, not a particular perturbation (as in Fig. 1B), but a51

system’s propensity to withstand a whole class of perturbations. We therefore consider a vast52

perturbation set, and study the corresponding range of community responses (Fig. 1C). Even53

from a theoretical perspective, considering all possible perturbations that an ecosystem can54

face is a daunting task. We will thus restrict our attention to communities near equilibrium,55

perturbed by stochastic perturbations, and derive analytical formulas for two complementary56

features of the set of their variability values: its average and maximum, corresponding to57

the mean- and worst-case perturbation scenarios, respectively. Our work follows traditional58

approaches of theoretical ecology (May, 1973a; Ives et al., 2003), extending the analysis to59

encompass a large perturbation set.60

After having developed a general theory of variability that can be applied to any system61

near equilibrium, we turn our attention to species-rich communities assembled from nonlinear62

dynamics. We show that a generic variability-abundance pattern emerges from the complex63
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interactions between species during assembly. We argue that this pattern, in conjunction with64

the type of perturbations considered (environmental, demographic, or caused by stochastic65

immigration), determines the specific species abundance class that governs the variability66

distribution. In particular, we establish a fundamental link between rare species, worst-case67

variability, and asymptotic resilience – the long-term rate of return to equilibrium following a68

pulse perturbation. We finally illustrate that the contrasting contributions of various species69

abundance classes can be responsible for opposite diversity-invariability patterns.70

Material and Methods71

Perturbed communities72

Let Ni(t) represent the abundance (or biomass) of species i at time t, and xi(t) = Ni(t)−Ni73

its displacement from an equilibrium value Ni, with i running over S coexisting species that74

form an ecological community. We model variability as a response to stochastic forcing. We75

focus on stationary fluctuations caused by weak perturbations with zero mean, governed by76

the following dynamical system, written from the perspective of species i as77

d

dt
xi(t)︸︷︷︸

fluctuations

=
S∑
j=1

Aijxj(t)︸ ︷︷ ︸
interactions

+σi
√
Ni

α
ξi(t)︸ ︷︷ ︸

perturbation

. (1)

The coefficients Aij represent the effect that a small change of abundance of species j has78

on the abundance of species i. Organized in the community matrix A = (Aij), they encode79

the linearization of the nonlinear system of which (Ni) is an equilibrium. In the perturbation80

term, ξi(t) denotes a standard white-noise source (Arnold, 1974; Van Kampen, 1997). In81

discrete time ξi(t) would be a normally distributed random variable with zero mean and unit82
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variance, drawn independently at each time step (Appendix 1).83

Such models were studied by Ives et al. (2003) to analyze ecological time series. In their84

approach, stability properties are inferred from the system’s response to specific perturbations.85

Here we build on a similar formalism, but explicitly explore a vast set of possible perturbations.86

Although environmental fluctuations often follow temporal patterns (Vasseur & Yodzis, 2004;87

Ruokolainen et al., 2009; Fowler & Ruokolainen, 2013) we will not consider autocorrelated88

perturbations. What we will explicitly consider, however, are temporal correlations between89

ξi(t) and ξj(t), a situation in which individuals of species i and j are similar in their perception90

of a given perturbation, a property known to have potentially strong, and unintuitive effects91

on species dynamics (Ripa & Ives, 2003).92

For the fluctuations of species abundance in eq. (1) to be stationary, the equilibrium state93

(Ni) must be stable. More technically, the eigenvalues of the community matrix A must have94

negative real part (May, 1973a; Gurney & Nisbet, 1998). The maximal real part determines95

the slowest long-term rate of return to equilibrium following a pulse perturbation. This rate96

is a commonly used stability measure in theoretical studies; we call it asymptotic resilience97

and denote it by R∞ (Arnoldi et al., 2016). To illustrate the connections between stability98

concepts, we will compare asymptotic resilience to measures of variability.99

Perturbation type100

The perturbation term in eq. (1) represents the direct effect that a perturbation has on the101

abundance of species i. It consists of two terms: some power α of
√
Ni, and a species-specific102

term σiξi(t). The latter is a function of the perturbation itself, and of traits of species i that103

determine how individuals of that species perceive the perturbation. The former defines a104

statistical relationship between a perturbation’s direct effects and the mean abundance of105
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perturbed species. It allows us to consider ecologically distinct sources of variability (Fig. 2).106

When individuals of a given species respond in synchrony to a perturbation, the direct107

effect of the perturbation will be proportional to the abundance of the perturbed species, thus108

a value of α close to 2 (Lande et al., 2003). We call this type of perturbation environmental109

as fluctuations of environmental variables typically affect all individuals of a given species,110

leading, e.g. to changes in the population growth rate (May, 1973b).111

If individuals respond incoherently, e.g., some negatively and some positively, the direct112

effect of the perturbation will scale sublinearly with species abundance. For instance, demo-113

graphic stochasticity can be seen as a perturbation resulting from the inherent stochasticity114

of birth and death events, which are typically assumed independent between individuals. In115

this case α = 1, and we thus call such type demographic (Lande et al., 2003).116

We can also consider purely exogenous perturbations, such as the random removal or ad-117

dition of individuals. In this case α = 0. We call such perturbations immigration-type but118

stress that actual immigration events do not necessarily satisfy this condition (e.g., they can119

be density-dependent). Furthermore, because we focus on zero-mean perturbations, pertur-120

bations of this type contain as much emigration than immigration. The reasoning behind121

this nomenclature is that, in an open system, fluctuations of an otherwise constant influx of122

individuals would correspond to an immigration-type perturbation.123

More generally, eq. (1) with α ∈ [0, 2] describes a continuum of perturbation types. Al-124

though not unrelated, the statistical relationship that defines perturbation type is not equiv-125

alent to Taylor’s law (Taylor, 1961). The latter is an empirically observed power-law re-126

lationship between the variance and mean of population fluctuations. In contrast to the127

perturbation type α, the exponent of Taylor’s law depends on community dynamics, e.g., on128

species interactions (Kilpatrick & Ives, 2003). We will come back to this point below and in129

the Discussion.130
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Perturbation intensity131

For a given community, a stronger perturbation will lead to stronger fluctuations. A dispro-132

portionate increase in their amplitude as perturbation intensity changes would reveal nonlin-133

earity in the dynamics (Zelnik et al., 2019). In a linear setting, however, there is only a linear134

dependency on perturbation intensity. This trivial dependency can be removed by controlling135

for perturbation intensity. We now illustrate how to do so, for a given definition of variability.136

Fluctuations induced by white-noise forcing are normally distributed, thus fully charac-137

terized by their variance and covariance. We thus construct a measure of variability based on138

the variance of species time-series. To compare variability of communities of different species139

richness we consider the average variance:140

σ2
out =

1

S

∑
i

Var(Ni(t)). (2)

We now remove the trivial effect of perturbation intensity from eq. (2), starting from the141

one-dimensional system dx/dt = −λx + σξ(t). Its stationary variance is σ2
out = σ2

2λ
. Here we142

see the combined effect of perturbation σ2 and dynamics λ, leading us to define σ2 as measure143

of perturbation intensity. For species-rich communities, we define perturbation intensity as144

the average intensity per species, that is, using the species-specific intensities σ2
i :145

σ2
in =

1

S

∑
i

σ2
i . (3)

When increasing all species-specific perturbation intensities by a factor c, both σ2
in and σ2

out146

increase by the same factor. To remove this linear dependence, we define variability as147

V =
σ2

out

σ2
in

, (4)
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i.e., as the average species variance relative to perturbation intensity (see Ives et al., 2003 for148

a similar definition). Generalizing previous work (Arnoldi et al., 2016; Arnoldi & Haegeman,149

2016) to all perturbation types, we construct invariability as150

I =
1

2V
. (5)

The factor 1/2 allows I to coincide, for simple systems, with asymptotic resilience (Arnoldi151

et al., 2016). In particular, for the one-dimensional example considered above for which152

R∞ = λ, we do have V = 1/2λ and thus I = λ = R∞.153

Perturbation direction154

At fixed intensity, perturbations can still differ in how their intensity is distributed and tem-155

porally correlated across species. Species with similar physiological traits will be affected in156

similar ways by, say, temperature fluctuations, whereas individuals from dissimilar species157

may react in unrelated, or even opposite, ways (Ripa & Ives, 2003). We thus study the effect158

of the covariance structure of the perturbation terms, i.e., the effect of the direction of pertur-159

bations. Spanning the set of all perturbation directions defines a whole range of community160

responses. Assuming some probability distribution leads to a probability distribution over161

the set of responses, i.e., a variability distribution (see Fig. 2). Finally, spanning the set of162

perturbation types reveals a continuous family of variability distributions. In Fig. 2 we show163

three archetypal elements of this family, corresponding to α = 0 (blue distribution), α = 1164

(green distribution) and α = 2 (red distribution).165

For each distribution we consider two complementary statistics: mean- and worst-case166

responses. In Appendices 3 and 4 we prove that the worst-case response is always achieved by167

a perfectly coherent perturbation, i.e., a perturbation whose direct effects on species are not168
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independent, but on the contrary, perfectly correlated in time. We derive explicit formulas169

to compute the worst-case variability from the community matrix and species equilibrium170

abundances, see eqs. (C2, D5). The mean-case scenario, on the other hand, is defined with171

respect to a prior over the set of perturbation directions. For the least informative prior,172

we prove in Appendices 3 and 4 that a perturbation affecting all species independently but173

with equal intensity, realizes the mean-case response. This provides a way to compute this174

response from the community matrix and the species abundances, given in eqs. (C3, D6).175

Results176

Variability patterns for two-species community177

We illustrate our variability framework on the following elementary example, in the form of178

a 2× 2 community matrix179

A =

 −1 0.1

−4 −1

 . (6)

This matrix defines a linear dynamical system that could represent a predator-prey commu-180

nity, with the first species benefiting from the second at the latter’s expense. Its asymptotic181

resilience is R∞ = 1. Let us suppose that the prey, N2 (second row/column of A) is 7.5182

times more abundant than its predator, N1 (first row/column of A) and consider stochastic183

perturbations of this community, as formalized in eq. (1).184

In Fig. 3 we represent the set of perturbation directions as a disc, in which every point is185

a unique perturbation direction (see Appendix 5 for details). The effect of a perturbation on186

a community is represented as a color; darker tones imply larger responses, with the baseline187

color (blue, green or red) recalling the perturbation type (α = 0, 1, 2, respectively). Points188
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at the boundary of the disc correspond to coherent perturbations, which have the potential189

to generate the largest (but also the smallest) variability. This is why the color maps of190

Fig. 3 take their extreme values at the boundary. We see that variability strongly depends on191

the perturbation direction, and that this dependence is strongly affected by the perturbation192

type. For immigration-type perturbations (in blue) variability is largest when perturbing the193

predator species most strongly (the least abundant species in this example). For demographic-194

type perturbations (in green) perturbations that equally affect the two species but in opposite195

ways achieve the largest variability. For environmental-type perturbations (in red) variability196

is largest when perturbing the prey species (the most abundant species in this example). For197

all types we see that positive correlations between the components of the perturbation (i.e.,198

moving upwards on the disc) reduce variability (see Ripa & Ives, 2003 for related results).199

Thus, in general, a given community cannot be associated to a single value of variability.200

Depending on the type of perturbations causing variability, different species can have com-201

pletely different contributions. This stands in sharp contrast with asymptotic resilience R∞,202

which associates a single stability value to the community. Although we know from previous203

work (Arnoldi et al., 2016) that the smallest invariability value in response to immigration-204

type perturbations will always be smaller than R∞, in general (i.e., any perturbation type205

and/or any perturbation direction) there is, a priori, no reason to expect a relationship be-206

tween invariability and asymptotic resilience.207

Variability patterns in complex communities208

The dimensionality of variability will be larger in communities comprised of many species,209

as their sheer number, S, increases the dimension of the perturbation set quadratically. Yet,210

when species interact, a generic structure can emerge from ecological assembly, revealing a211
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simple relationship between variability and the abundance of perturbed species. To show this,212

we study randomly assembled communities. We start from a large random pool of species and213

let the system settle to an equilibrium following Lotka-Volterra dynamics. During assembly214

species would go extinct, but no limit cycles, chaotic behavior or multi-stability were observed.215

A complete description of the nonlinear model is given in Appendix 6 and Matlab simulation216

code is available as supplementary material.217

In Fig. 4 we show the variability patterns for a single randomly assembled community,218

but the results hold more generally (see below). The species pool consists of Spool = 50219

species, with species interaction strengths one order of magnitude weaker than species self-220

regulation. 40 species coexist in the community. In this species-rich context, the perturbation221

set cannot be represented exhaustively. We therefore plot the variability induced by species-222

specific perturbations (of various types) against the abundance of perturbed species. That is,223

we focus on the effect of a specific subset of perturbations, those affecting a single species.224

Linear combinations of these perturbations will span all scenarios in which species are affected225

independently, but exclude scenarios in which they are perturbed in systematically correlated226

or anti-correlated way.227

The leftmost panel shows a negative unit slope on log scales: when caused by immigration-228

type perturbations, variability is inversely proportional to the abundance of perturbed species.229

Randomly adding and removing individuals from common species generates less variability230

than when the species is rare. In fact, the worst-case scenario corresponds to perturbing the231

rarest species. Worst-case invariability is close to asymptotic resilience, which corroborates232

previous findings showing that the long-term rate of return to equilibrium is often associated233

to rare species (Haegeman et al., 2016; Arnoldi et al., 2018). On the other hand, the middle234

panel of Fig. 4 shows that, in response to demographic-type perturbations, variability is inde-235

pendent of perturbed species’ abundance. Finally, the rightmost panel shows a positive unit236
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slope on log scales: when caused by environmental-type perturbations, variability is propor-237

tional to the abundance of perturbed species. The worst case is thus attained by perturbing238

the most abundant one. Despite being more stable than rare ones (they buffer exogenous per-239

turbations more efficiently, see left-hand panel), common species are more strongly affected240

by environmental perturbations, and can thus generate the most variability.241

Those patterns are not coincidental, but emerge from species interactions, as we illustrate242

in Fig. 5. In their absence, other patterns can be envisioned. Without interactions, the243

response to a species-specific perturbation involves the perturbed species only. The variability-244

abundance relationship is then V = Nα/2r, with N = K. If r and K are statistically245

independent in the community (top-left panel in Fig. 5), this yields a different scaling than the246

one seen in Fig. 4. In the case of an r-K trade-off (i.e., species with larger carrying capacities247

have slower growth rate), abundant species would be the least stable species (bottom-left panel248

in Fig. 5, in blue) which is the opposite of what the leftmost panel of Fig. 4 shows. However, as249

interaction strength increases (from left to right in Fig. 5; the ratios of inter- to intraspecific250

interaction strength are 0, 0.02 and 0.1 approximately), we see emerging the relationship251

between abundance and variability of Fig. 4, regardless of the choice made for species growth252

rates and carrying capacities. We explain in Appendix 7 why this reflects a generic, limit-case253

behavior of complex communities. It occurs when species abundances, due to substantial254

indirect effects during assembly, become only faintly determined by their carrying capacities.255

This example demonstrates that this limit can be reached even for relatively weak interactions256

(in Fig. 4 and in the right-hand panels of Fig. 5, the interspecific interaction strengths are257

ten times smaller than the intraspecific ones).258

Although we considered a specific section of the perturbation set, the response to single-259

species perturbations of immigration and environmental types can still span the whole variabil-260

ity distribution, from worst-case (rarest and most abundant species perturbed, respectively)261
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to mean- and best-case scenarios (most abundant and rarest species perturbed, respectively).262

For demographic-type perturbation the situation is more subtle as the response is indepen-263

dent of species abundance, and, in general, extreme scenarios will be associated to temporally264

correlated perturbations affecting multiple species.265

The variability-abundance patterns shown in Figs. 4 and 5 should not be confused with266

Taylor’s law (Taylor, 1961), a power-law relationship between a species’ variance and its mean267

abundance. In fact, the variability-abundance pattern is dual to Taylor’s law, it represents268

the community response to single-species perturbations instead of that of individual species269

to a community-wide perturbation.270

Diversity-invariability relationships271

To illustrate implications of the generic variability-abundance pattern, we revisit the diversity-272

stability relationship, with stability quantified as invariability I. We assembled communities273

of increasing species richness S, each associated with an invariability distribution generated274

from random perturbations, predictions for mean- and worst-case scenarios, and a value of275

asymptotic resilience R∞.276

The leftmost panel of Fig. 6 shows a negative relationship between immigration-type277

invariability and species richness. Asymptotic resilience and worst-case invariability mostly278

coincide, with a decreasing rate roughly twice as large as that of the mean case. The middle279

panel suggests a different story. Mean-case demographic-type invariability stays more or280

less constant whereas the worst case diminishes with species richness, although much more281

slowly than R∞. The relationship between diversity and stability is thus ambiguous. In the282

rightmost panel we see an increase in all realized environmental-type invariability values with283

species richness, showcasing a positive diversity-stability relationship.284
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The diversity stability relationships can be explained by the generic variability-abundance285

patterns of Figs. 4 and 5 (see Appendix 8). In the case of immigration-type perturbations,286

species contributions to variability are proportional to the inverse of their abundance (first287

panel of Fig. 4). The worst-case scenario follows the abundance of the rarest species, which288

rapidly declines with species richness. As detailed in Appendix 8, mean-case invariability289

scales as the average species abundance, which also typically decreases with S.290

The responses to demographic perturbations, on the other hand, are not determined by291

any specific species abundance class (second panel of Fig. 4), so that no simple expectations292

based on typical trends of abundance distributions can be deduced.293

We recover a simpler behavior when looking at the response to environmental-type per-294

turbation: abundant species now drive variability (rightmost panel of Fig. 4). As explained295

in Appendix 8, mean-case invariability now scales as the inverse of an average species abun-296

dance. The latter typically declines with S explaining the observed increase of mean-case297

invariability.298

There is an analogy to be made between stability and diversity. As has been said about299

diversity metrics (e.g., species richness, Simpson index or Shannon entropy), different invari-300

ability measures “differ in their propensity to include or to exclude the relatively rarer species”301

(Hill, 1973). In this sense, different invariability measures can probe different dynamical as-302

pects of a same community, with potentially opposite dependencies on a given ecological303

parameter of interest.304

Discussion305

Because it is empirically accessible using simple time-series statistics, temporal variability306

is an attractive facet of ecological stability. But there are many ways to define variability307
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in models and empirical data, a proliferation of definitions reminiscent of the proliferation of308

definitions of stability itself (Grimm & Wissel, 1997). Variability measurements often depend,309

not only on the system of interest, but also on external factors that act as disturbances, which310

makes it difficult to relate variability to other stability concepts. These caveats constitute311

important obstacles toward a synthetic understanding of ecological stability, and its potential312

drivers (Ives & Carpenter, 2007).313

We proposed to consider variability as a way to probe and measure an ecosystem’s response314

to perturbations, thus revealing inherent dynamical properties of the perturbed system. We315

did not seek for an optimal, single measure of variability but, on the contrary, we accounted316

for a vast set of perturbations, leading to a whole distribution of responses. We focused on317

the worst- and mean-case values of this distribution as functions of species abundance, their318

interactions, and the type of perturbations that generates variability.319

A perturbation type characterizes a statistical relationship between its direct effect on a320

population and the latter’s abundance. We distinguished between environmental perturba-321

tions, whose direct effects on populations scales proportionally to their abundance; demo-322

graphic perturbations, whose direct effect on populations scales sublinearly to their abun-323

dance; and purely exogenous perturbations, representing random addition and removal of324

individual, independent of the size of the perturbed population (immigration-type). Con-325

trolling for perturbation type and intensity, we considered all the ways this intensity can be326

distributed and correlated across species.327

After having described a general (linear) theory for variability, which emphasizes its highly328

multidimensional nature, we turned our attention towards species-rich communities assem-329

bled by random (nonlinear) Lotka-Volterra dynamics. Because of the sheer number of species330

contained in such communities (S ≈ 40 in our examples), we could have expected the dimen-331

sionality of perturbations and responses to be so large that variability distributions would be332
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too complex and broad to be clearly described. However, the process of assembly allowed for333

a simple behavior to emerge: a generic relationship between variability and the abundance334

of individually perturbed species. In essence, this pattern predicts that the species’ ability335

to buffer exogenous perturbations is proportional to their abundance. In conjunction to this336

simple pattern, the type of perturbation will then determine the individual contributions of337

species to the variability distribution, so that both common and rare species can determine338

variability. This is reminiscent of diversity measures (Hill, 1973), some of which (e.g., species339

richness) are sensitive to the presence of rare species, while others are mostly indicative of340

the distribution of abundant species (e.g., Simpson diversity index).341

These connections with different diversity metrics can explain contrasting trends in invari-342

ability as a function of species richness. Since immigration-type perturbations mostly affect343

rare species, they lead to a negative diversity-invariability relationship, reflecting a growing344

number and rarity of rare species. On the other hand, in response to demographic pertur-345

bations, species contributions to variability can be independent of their abundance. In this346

case, variability is not expected to follow trends in diversity, so that diversity-invariability347

patterns can be less predictable and harder to interpret. Finally, although common species348

buffer exogenous perturbations efficiently, they are also the most affected by environmental-349

type perturbations. This can lead to a proportional relationship between average abundance350

and mean-case invariability, and hence to a positive diversity-invariability relationship.351

Implications for empirical patterns352

We showed that species abundances greatly affect variability distributions. This new in-353

sight has broad consequences. For example, it has been reported that ecosystem-level and354

population-level stability tend to increase and decrease, respectively, with increasing diversity355
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(Jiang & Pu, 2009; Campbell et al., 2011). Ecosystem-level stability is often quantified based356

on the variability of total biomass, which gives, by construction, a predominant weight to357

abundant species. On the other hand, averages of single-species variabilities have been used358

to measure population-level stability (Tilman, 1996). These averages are strongly affected,359

and can even be fully determined, by rare, highly variable species (Haegeman et al., 2016).360

Thus, here as well as in our theoretical results (Fig. 6), stability metrics governed by common,361

or rare, species tend to generate respectively positive and negative diversity-stability relation-362

ships. It would be interesting to test whether this observation holds more generally, e.g., if it363

can explain the contrasting relationships recently reported by Pennekamp et al. (2018).364

The type of perturbations affects which species abundance class contributes most to vari-365

ability. In turn, the physical size of the system considered affects which perturbation type366

dominates. This is well known in population dynamics (Engen et al., 2008), but it also trans-367

poses to the community level. At small spatial scales, implying small populations, we may368

expect variability to be driven by demographic stochasticity. At larger scales, implying larger369

populations, demographic stochasticity will be negligible compared with environmental per-370

turbations. Just as changing the perturbation type transforms the respective roles of common371

and rare species, patterns of variability at different scales should reflect different aspects of372

a community (Chalcraft, 2013), associated to different species abundance classes (abundant373

species at large spatial scales, rare/rarer species at small spatial scales).374

Empirically determining the perturbation type is a non-trivial task. To develop suitable375

methods, it might be helpful to first understand the link between the variability-abundance376

patterns (see Figs. 4 and 5) and Taylor’s law (Taylor, 1961). The latter is an empirically ac-377

cessible pattern, relating the mean and variance of population sizes. We studied the behavior378

of the community response to an individual species perturbation, while Taylor’s law focuses379

on the individual species response to a perturbation of the whole community. This duality380
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also suggests that Taylor’s law is, at the community level, strongly affected by species inter-381

actions. This is known (Kilpatrick & Ives, 2003), yet our approach could shed new light on382

the information regarding species interactions and other dynamical traits, actually contained383

in community-level Taylor’s laws.384

On the dimensionality of stability385

We noted a connection between variability and asymptotic resilience, the most popular no-386

tion in theoretical studies (Donohue et al., 2016). We showed that asymptotic resilience is387

comparable to the largest variability in response to an immigration-type perturbation, which388

is often a perturbation of the rarest species (first panel of Fig. 4). While asymptotic resilience389

is sometimes considered as a measure representative of collective recovery dynamics, we pre-390

viously explained why that this is seldom the case (Arnoldi et al., 2018). The asymptotic rate391

of return to equilibrium generally reflects properties of rare “satellite” species, pushed at the392

edge of local extinction by abundant “core” species. On the other hand, short-time return393

rates can exhibit qualitatively different properties related to more abundant species.394

The multiple dimensions of variability are related to the multiple dimensions of return395

times. Variability is an integral measure of the transient regime following pulse perturbations,396

i.e., a superposition of responses to various pulses, some of which have just occurred and are397

thus hardly absorbed, while others occurred long ago and are largely resorbed. If abundant398

species are faster than rare ones (the case in complex communities, see Appendix 7), if they are399

also more strongly perturbed (e.g., by environmental perturbations), the bulk of the transient400

regime will be short: variability in response to environmental perturbations is associated401

with a short-term recovery. By contrast, if all species are, on average, equally displaced by402

perturbations (e.g., by immigration-type perturbations), rare species initially contribute to403
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the overall community displacement as much as do abundant ones. Since their recovery is404

typically very slow, the transient regime will be long: variability in response to immigration-405

type perturbations is associated with a long-term recovery.406

Ecologists have long acknowledged the multi-faceted nature of ecological stability (Pimm,407

1984; Grimm & Wissel, 1997; Ives & Carpenter, 2007; Donohue et al., 2016), but here we show408

that a single facet (variability) is in itself inherently multidimensional, thus suggesting that409

links across facets can be subtle. Short-term return rates may be linked with environmen-410

tal variability, but environmental variability may have nothing to do with immigration-type411

variability, the latter possibly related with long-term return rates and driven by rare species.412

Because measures can be determined by different species abundance classes, we should not413

expect a general and simple connection to hold between facets of ecological stability.414

Conclusion415

The multidimensional nature of variability can lead to conflicting predictions, but once this416

multidimensionality is acknowledged, it can be used to extensively probe the dynamical prop-417

erties of a community. In particular, in species-rich systems, we revealed a generic pattern418

emerging from ecological assembly, relating species abundance to their variability contribu-419

tion. This allowed connections to be drawn between variability and statistics of abundance420

distributions. We argued that similar patterns should underlie ecosystem responses to other421

families of perturbations (e.g., pulse perturbations). Therefore, we conclude that embracing422

the whole set of a ecosystem responses can help provide a unifying view on ecological stability423

and shed new light on the meaning of empirical and theoretical stability patterns.424
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Figure 1: Variability vs stability. A: Stability quantifies the way a system responds to perturbations, seen as

an inherent property of the system (indicated by the red framed box). B: By contrast, temporal variability is

typically a feature of both the system studied and external factors that act as perturbations. C: For variability

to be an inherent property of the system, one can consider a whole set of perturbations, thus integrating out

the dependence on specific external factors.
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Figure 2: A theoretical framework for variability. Perturbations are characterized by their type, a statistical

relationship between the direct effect of perturbations and the abundance of perturbed species. For a given

type and fixed intensity, there remains a whole set of covariance structures of perturbations, i.e., various

perturbation directions, that will be transformed by community dynamics into a whole set of community

responses, i.e., various covariance structures of species stationary time series. A sampling of those responses

leads to a variability distribution, one for each perturbation type. Spanning all perturbation types leads to a

family of variability distributions (in blue, green and red in the rightmost column).

28



[h]

Figure 3: Variability patterns for a two-species community. Top panel: For a two-species community the

set of all perturbation directions can be represented graphically as a disc (shaded in gray), with the variance

of the perturbation term ξ2(t) on the x-axis and the covariance between ξ1(t) and ξ2(t) on the y-axis. Some

special perturbation directions are indicated (numbers 1 to 5, see also Appendix 5). Bottom panels: We

consider a predator-prey system; the community matrix A is given by eq. (6), and the prey (species 2) is 7.5

more abundant than its predator (species 1). The induced variability depends on the perturbation directions

(darker colors indicate larger variability), and this dependence in turn depends on the perturbation type α.

For immigration-type perturbations (α = 0, in blue) variability is largest when perturbing species 1 most

strongly. For demographic-type perturbations (α = 1, in green) perturbations that affect the two species

equally strongly but in opposite ways achieve the largest variability. For environmental-type perturbations

(α = 2, in red) variability is largest when perturbing species 2 most strongly. Notice that the worst case is

always achieved by perturbations lying on the edge of the perturbation set. Such perturbations are perfectly

correlated (see main text and Appendix 5).
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Figure 4: Variability-abundance pattern in a complex community. We consider a community of S = 40

species, and look at the variability induced by perturbing a single species, whose abundance is reported on the

x-axis. Left: When caused by immigration-type perturbations (α = 0), variability is inversely proportional

to the abundance of the perturbed species (notice the log scales on both axis). The worst case is achieved

by perturbing the rarest species, and is determined by asymptotic resilience (more precisely, it is close to

1/2R∞). Middle: For demographic-type perturbations (α = 1), variability is independent of the abundance

of the perturbed species. The worst case is not necessarily achieved by focusing the perturbation on one

particular species. Right: For environmental-type perturbations (α = 2), variability is directly proportional

to the abundance of the perturbed species. The worst case is attained by perturbing the most abundant.
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Figure 5: The emergence of the variability-abundance pattern (same procedure as in Fig. 4). Top row:

intrinsic growth rates r and carrying capacities K are sampled independently. Bottom row: Species satisfy a

r-K trade-off (r ∼ 1/K). Colors correspond to the three perturbation types: α = 0 (blue), α = 1 (green) and

α = 2 (red). The value β reported in each panel corresponds to the exponent of the fitted relationship Vi ∝ Nβ
i

for each perturbation type. As interaction strength increases (left to right) we see emerging the relationship

between abundance and variability described in Fig. 4, i.e., β = α − 1. Thus when species interactions

are sufficiently strong, variability always ends up being: (blue) inversely proportional, (green) independent

and (red) directly proportional to the abundance of the perturbed species. Note that such relationships differ

from Taylor’s law: they represent an average community response to individual species perturbations, whereas

Taylor’s law deals with individual species responses to a perturbation of the whole community.
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Figure 6: Different perturbation types yield contrasting diversity-stability relationships, with stability

quantified as invariability I. We generated random communities of increasing species richness S and computed

their invariability distribution in response to 1000 random perturbations. Full line: median invariability,

dark-shaded region: 5th to 95th percentile, light-shaded region: minimum to maximum realized values. The

×-marks correspond to the analytical approximation for the median, the dots to the analytical formula for

the worst-case. Dashed line is asymptotic resilience R∞. For immigration-type perturbations (α = 0, blue)

diversity begets instability, with R∞ following worst-case invariability. For demographic-type perturbations

(α = 1, green) the trend is ambiguous. For environmental-type perturbations (α = 2, red) all realized values

of invariability increase with S.
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Appendices to ”The inherent multidimensionality of tem-

poral variability: How common and rare species shape

stability patterns”

Jean-François Arnoldi, Michel Loreau, and Bart Haegeman

The Appendices are organized as follows: Appendix A through D provides a self-contained

presentation of the mathematical foundations of our variability theory. Appendix E through

H provide details concerning specific applications considered in the main text: two-species

communities in Appendix E, complex Lotka-Volterra communities in appendices F and G,

and the link between abundance statistics and variability in Appendix H. A list of the most

important notation used in the Appendices is given in Table A1.

1 Response to white-noise perturbation

We describe the response of a linear dynamical system, representing the dynamics of dis-

placement of species around an equilibrium value, to a white-noise perturbation. Stochastic

perturbations in continuous time are mathematically quite subtle (see, e.g., Turelli, 1977).

However, in the setting of linear dynamical systems, the effect of a white-noise perturbation

can be analyzed relatively easily. Because this analysis is not readily available in the ecology

literature, we present here a short overview. We start from a fomulation in vector notation,

dx

dt
= Ax+ ξ(t), (A1)

where x = (xi) denotes the vector of species displacements, ξ = (ξi) the vector of species

perturbations, and A = (Aij) the community matrix.
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Table A1: Notation used throughout the Appendices

symbol meaning equation

σ2
in per species variance of applied perturbation (B2)

σ2
out per species variance of system response to perturbation (B4, D3)

Cu covariance matrix of individual pulses in multi-pulse per-
turbation

(A3)

f frequency at which pulses occur in multi-pulse
perturbation

E perturbation direction, proportional to fCu (B5)

Cx covariance matrix of species responses to perturbation (A5, A9)

L solution of Lyapunov equation, used to compute station-
ary Cx

(A7, A8)

Vα variability for perturbation type α; when index α is
omitted, immigration-type perturbations are assumed
(α = 0)

(D4)

Vworst mean-case variability, i.e., variability averaged over per-
turbation directions

(C2, D5)

Vmean worst-case variability, i.e., variability maximized over
perturbation directions

(C3, D6)

Vspec i variability for the perturbation that affects only species
i

I invariability, i.e., variability-based stability measure (B6)

34



Suppose that the perturbation ξ(t) consists in a sequence of pulses. We denote the times

at which these pulses occur by tk, and the corresponding pulse directions by uk = (uk,i). The

multi-pulse perturbation can then be written as

ξ(t) =
∑
k

δ(t− tk)uk. (A2)

where we have used the Dirac delta function δ(t).

We model both the pulse times tk and the pulse directions uk as random variables. Specif-

ically, we assume that the pulse times are distributed according to a Poisson point process

with intensity f . This means that the probability that a pulse occurs in a small time interval

of length ∆s is equal to f∆s, and that this occurrence is independent of any other model

randomness. We denote the average over the pulse times tk by Ef .

Furthermore, we assume that the pulse directions uk are independent (mutually indepen-

dent, and independent of any other model randomness) and identically distributed. They

have zero mean, and their second moments are given by the covariance matrix Cu. That is,

denoting the average over the pulse directions uk by Eu, we have Eu uk,i = 0, Eu u2
k,i = Cu,ii,

Eu uk,iuk,j = Cu,ij, and Eu uk,iu`,i = Eu uk,iu`,j = 0 for i 6= j and k 6= `. The latter equations

can be written in vector notation,

Cu = Eu uku
>
k and Eu uku

>
` = 0. (A3)

We use this information to compute the statistics of species displacements x(t). Because

the system response to a single pulse perturbation at time tk in directon uk is equal to
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e(t−tk)Auk, the system response to the sequence (A2) of pulse perturbations is equal to

x(t) =
∑
k|tk<t

e(t−tk)A uk. (A4)

Taking the mean over the perturbation directions, we obtain

Eu x(t) =
∑
k|tk<t

e(t−tk)A Eu uk = 0,

showing that the species displacements fluctuate around the unperturbed equilibrium.

Next, we compute the covariance matrix of the species displacements,

Cx = Ef,u x(t)x(t)>. (A5)

We substitute the response to the multi-pulse perturbation, eq. (A4),

Cx = Ef,u
∑
k|tk<t

e(t−tk)A uk
∑
`|t`<t

u>` e
(t−t`)A>

= Ef
∑
k|tk<t

∑
`|t`<t

e(t−tk)A Eu uku
>
` e

(t−t`)A>

= Ef
∑
k|tk<t

e(t−tk)A Eu uku
>
k e

(t−tk)A>

= Ef
∑
k|tk<t

e(t−tk)ACu e
(t−tk)A>

,

where we have used eq. (A3). To take the average over the pulse times, we partition the time

36



axis in small intervals of length ∆s. Writing sn = n∆s for any integer n, we get

Cx =
∑
n|sn<t

e(t−sn)ACu e
(t−sn)A>

f∆s,

because the contribution of term n is equal to e(t−sn)ACu e
(t−sn)A>

with probability f∆s, and

zero otherwise. Assuming that the time intervals ∆s are infinitesimal, we find the integral

Cx =

∫ t

−∞
e(t−s)ACu e

(t−s)A>
fds

=

∫ ∞
0

esACu e
sA>

fds

=

∫ ∞
0

esA
(
fCu

)
esA

>
ds. (A6)

Hence, we have obtained the stationary covariance matrix of the species displacements under

a stochastic multi-pulse perturbation.

A white-noise perturbation corresponds to a special case of the stochastic multi-pulse

perturbation, namely, to the case of extremely frequent pulses (large f) of extremely small

size (small ‖u‖). More precisely, we have to take the coupled limit f →∞ and Cu → 0 while

keeping fCu constant. Because eq. (A6) depends on f and Cu through the product fCu only,

the same expression is also valid for white-noise perturbations.

Alternatively, the stationary covariance matrix Cx can be obtained by solving the so-called

Lyapunov equation,

AC + CA> + E = 0, (A7)

where E is the covariance matrix characterizing the white noise, equal to fCu in our case.
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Indeed, it can be verified that eq. (A6) satisfies eq. (A7),

ACx + CxA
> =

∫ ∞
0

(
AesA fCu e

sA>
ds+ esA fCu e

sA>
A>
)
ds

=

∫ ∞
0

d

ds

(
esA fCu e

sA>
)
ds

= esA fCu e
sA>
∣∣∣
s→∞

− esA fCu esA
>
∣∣∣
s=0

= −fCu.

For a stable matrix A this is the unique solution of the Lyapunov equation, for which we

introduce the short-hand notation L(A,E),

L(A,E) =

∫ ∞
0

esAE esA
>
ds. (A8)

Hence, we can write

Cx = L(A, fCu), . (A9)

From a numerical viewpoint, the covariance matrix Cx can be easily obtained by solving the

Lyapunov eq. (A7), which can be written as a system of S2 linear equations, rather than by

computing the integral in (A8). Note also that solution of Lyapunov equation is linear in the

perturbation covariance matrix,

L(A, c1E1 + c2E2) = c1 L(A,E1) + c2 L(A,E2). (A10)
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2 Construction of variability measure

We explain the construction of the variability measure V , see eq. (4) in the main text. The

construction is based on the comparison of the intensity of the system response relative to

the intensity of the applied perturbation. It should be stressed that, while we take special

care of quantifying these intensities in a reasonable way, alternative choices are possible.

Perturbation intensity A reasonable measure of the perturbation intensity should in-

crease with the number of pulses and the intensity of each pulse separately. In particular,

we expect it to be proportional to the pulse frequency f and to some function of the pulse

covariance matrix Cu.

We propose to look at the squared displacements ‖uk‖2 induced by pulses uk. The accu-

mulated squared displacement in time interval [t, t+ T ] is

∑
tk∈[t,t+T ]

‖uk‖2.

Taking the average over pulse times and pulse directions,

Ef,u
∑

tk∈[t,t+T ]

‖uk‖2 =
∑

n|t<sn<t+T

Eu‖u‖2 f∆s,

where we have partitioned the time axis in small intervals of length ∆s (see derivation of

eq. (A6)). Then,

Ef,u
∑

tk∈[t,t+T ]

‖uk‖2 = Tr
(
Cu
)
fT.

The result is proportional to the length T of the considered time interval. The average
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accumulated squared displacement per unit of time is

1

T
Ef,u

∑
tk∈[t,t+T ]

‖uk‖2 = Tr
(
fCu

)
. (B1)

As expected, this quantity is proportional to the pulse frequency f and increases with the pulse

covariance matrix Cu. Note also that f and Cu appear as a product, so that the expression

is compatible with the white-noise limit.

Eq. (B1) quantifies the intensity of the perturbation applied to the entire ecosystem. This

measure is not directly appropriate to normalize the pertubation intensity across systems.

Indeed, when keeping the total perturbation intensity constant, the perturbation applied to a

given species would be weaker in a community with a larger number of species. To eliminate

this artefact, we normalize the perturbation intensity on a per species basis. Thus, we propose

to quantify the perturbation intensity as

σ2
in =

f

S
TrCu. (B2)

Response intensity We measure the intensity of the system response in terms of the

covariance matrix Cx. This matrix encodes the statistical properties of the abundance (or

biomass) fluctuations in stationary state. For example, species abundance xi(t) fluctuates

around its equilibrium value Ni with variance Cx,ii. More generally, we can describe the

fluctuations of any function ϕ of species abundance. The dynamics near equilibrium are

ϕ(n(t)) = ϕ(N ) + v>x(t),

where vector v = ∇ϕ is the gradient of the function ϕ evaluated at the equilibrium N . This

vector gives the direction in which the system fluctuations are observed. Then, denoting the

40



temporal mean and variance by Et and Vart, we have

Vart (ϕ(n(t)) = Et
((
v>x(t)

)2
)

= Et
(
v>x(t)x(t)>v

)
= v>Et

(
x(t)x(t)>

)
v

= v>Cx v. (B3)

We use this variance to quantify the intensity of the system response. Rather than choosing

a particular vector v, we consider the average over all observation directions. Specifically, we

restrict attention to unit vectors v and average over the uniform distribution of such vectors.

Denoting this average by Ev, we get

Ev Vart
(
ϕ(n(t)

)
= Ev

(
v>Cxv

)
= Tr Ev vv

>Cx.

It follows from species symmetry that the average Ev vv> is proportional to the unit matrix.

Moreover, because Tr vv> = 1 for all vectors v, the constant of proportionality is equal to 1
S

.

Hence,

Ev Vart
(
ϕ(n(t)

)
=

1

S
TrCx.

Therefore, we propose to quantify the response intensity as

σ2
out =

1

S
TrCx. (B4)
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Variability and invariability We define variability V as the ratio of the response intensity

σ2
out and the perturbation intensity σ2

in,

V =
σ2

out

σ2
in

=
1
S

TrCx
f
S

TrCu
=

TrCx
f TrCu

.

Substituting eq. (A9) for Cx, we get

V =
TrL(A, fCu)

f TrCu
= TrL

(
A,

Cu
TrCu

)
,

where we have used the linearity property (A10). We see that only the normalized perturba-

tion covariance matrix matters in this expression. That is, the variability measure focuses on

the directional effect of the perturbation. We make this dependence explicit in the notation,

and write

V(E) = TrL(A,E), (B5)

where E = Cu
TrCu

is the perturbation direction, i.e., a covariance matrix with unit trace.

Variability is inversely related to stability: the more variable an ecosytem, the less stable

it is. For purpose of comparison, we construct a stability measure based on variability V(E),

which we call invariability I(E),

I(E) =
1

2V(E)
. (B6)

The factor 2 in this definition guarantees that we recover asymptotic resilience for the simplest

dynamical systems. To see this, consider a system of S non-interacting species, in which all

species have the same return rate λ. The community matrix is equal to A = −λ1 where

1 denotes the identity matrix. From the Lyapunov equation (A7) we get the stationary

covariance matrix L(A,E) = 1
2λ
E. Therefore, V(E) = 1

2λ
and I(E) = λ, which is equal to
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the asymptotic resilience of this example system.

3 Worst-case and mean-case variability

Worst-case variability is defined as

Vworst = max
E
V(E) = max

E
TrL(A,E) (C1)

where the maximum is taken over perturbation directions, i.e., over covariance matrices E with

TrE = 1. The function TrL(A,E) is linear in the perturbation direction E, see eq. (A10),

and the set of perturbation directions is convex. Hence, the maximum is reached at an

extreme point, that is, on the boundary of the set. The extreme points are the purely

directional perturbations (see Appendix 5 for the argument in the two-species case), so that

the maximum is reached at a purely directional perturbation. Arnoldi et al. (2016) showed

that the worst-case variability can be easily computed, namely, as a specific norm of the

operator Â−1 that maps E to L(A,E). Concretely, defining Â = A⊗ 1 + 1⊗ A,

Vworst = ||Â−1||, (C2)

where || · || stands for the spectral norm of S2 × S2 matrices.

To define mean-case variability Vmean, we assume a probability distribution over the

perturbation directions, and compute the mean system response over this distribution. Due

to the linearity property (A10), this mean response is equal to the response to the mean

perturbation direction. Hence, we do not have to specify the full probability distribution over

the perturbation directions; it suffices to determine the mean perturbation direction. As can

be directly verified in the two-species case (Appendix 5), if, averaged over the distribution
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of perturbation directions, perturbation intensities are evenly distributed across species, and

positive and negative correlations between species perturbations cancel out, then the mean

perturbation direction is adirectional. This corresponds to the center of the set of perturbation

directions (in the two-species case the disc center represented in Fig. 3), and is proportional

to the identity matrix, that is, E = 1
S

1. Therefore,

Vmean = TrL(A, 1
S

1). (C3)

4 Perturbation types and variability

The perturbation type (environmental-, demographic- or immigration-type) affects how the

perturbation intensity is distributed across species. Therefore, it also affects our measure of

variability, as defined in Appendix 2. Here we describe how the variability definition has to

be modified.

We defined variability measure (B5) as the intensity of the system response relative to

the intensity of the applied perturbation. To quantify the perturbation intensity in the case

of abundance-dependent perturbations, we distinguish the intrinsic effect of the perturbation

on a species, which does not depend on the species’ abundance, and the total effect of the

perturbation on the species, which does depend on abundance. We propose to express the

perturbation intensity in terms of the intrinsic perturbation, while it is the total perturbation

that acts on the species dynamics.

Formally, for species i, we denote the intrinsic perturbation by ξintr
i (t) and the total per-

turbation by ξtot
i (t). Then, for a type-α perturbation, we have

ξtot
i (t) = N

α
2
i ξintr

i (t), (D1)
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where Ni is the abundance of species i. Thus, the intrinsic perturbation ξintr(t) can be

interpreted as the per capita perturbation strength. Eq. (D1) can be written in vector notation

as

ξtot(t) = D
α
2 ξintr(t), (D2)

where D is the diagonal matrix whose entries are species equilibrium values (Dii = Ni).

Both the intrinsic and total perturbation are multi-pulse. If we denote the pulses of the

intrinsic perturbation by uk, then, by eq. (D2), those of the total perturbation are D
α
2uk.

Then, to quantify the perturbation intensity, we use the covariance matrix of the pulses in the

intrinsic perturbation. The derivation leading to eq. (B2) is still valid. However, to compute

the covariance matrix of the species displacements, we use the covariance matrix of the pulses

in the total perturbation. This corresponds to replacing Cu by D
α
2CuD

α
2 in the derivation of

eq. (B4), so that we get

σ2
out =

1

S
TrL

(
A, fD

α
2CuD

α
2

)
. (D3)

The variability measure for a type-α perturbation becomes

Vα =
σ2

out

σ2
in

= TrL
(
A,
D

α
2CuD

α
2

TrCu

)
,

or, in terms of the (intrinsic) perturbation direction E,

Vα(E) = TrL
(
A,D

α
2ED

α
2

)
. (D4)

Applying the same arguments as in Appendix 3, we find that worst-case variability,

Vworst
α = max

E
Vα(E) = max

E
TrL

(
A,D

α
2ED

α
2

)
,
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is attained at a perfectly correlated perturbation. If we define the operator (an S2 × S2

matrix)

Dα = D
α
2 ⊗D

α
2 ,

then the worst case-variability can be computed as

Vworst
α = ||Â−1 ◦ Dα||, (D5)

where || · || is the spectral norm for S2 × S2 matrices. On the other hand, the mean-case

variability,

Vmean
α = TrL

(
A, 1

S
Dα
)
, (D6)

is attained by the uniform, uncorrelated perturbation.

5 Perturbation directions in two dimensions

Variability spectra are built on the notion of perturbation directions. They are characterized

by a covariance matrix E with TrE = 1. To gain some intuition, we study the set of

perturbation directions in the case of two species.

Any perturbation direction E in two dimensions can be written as

E =

 1− x y

y x

 . (E1)

with 0 ≤ x ≤ 1 and y2 ≤ x(1 − x). The first inequality guarantees that the elements on

the diagonal are variances, i.e., positive numbers. The second inequality guarantees that the

off-diagonal element is a proper covariance, in particular, that the correlation coefficient is
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contained between −1 and 1. Note that matrix (E1) has always TrE = 1.

It follows from eq. (E1) that the set of perturbation directions in two dimensions is param-

eterized by two numbers x and y. Using these numbers as axes of a two-dimensional plot, we

see that the set of perturbation directions corresponds to a disc with radius 0.5 and centered

at (0.5, 0) (see Fig. 3).

It is instructive to study the position of specific perturbation directions on the disc. The

point (0, 0) corresponds to a perturbation affecting only the first species, whereas point (1, 0)

is a perturbation only affecting the second species. More generally, any point on the boundary

of the disc correspond to a multi-pulse perturbation for which the individual pulses have a

fixed direction. For example, the point (0.5, 0.5) is a perturbation for which each pulse has

the same effect on species 1 and species 2, whereas the perturbation corresponding to point

(0.5,−0.5) consists of pulses that affect the two species equally strongly, but in an opposite

way. Perturbations on the boundary are perfectly correlated.

The perturbations towards the center of the disc are composed of pulses with more variable

directions. For example, a multi-pulse perturbation for which half of the pulses affect only

the second species, and the other pulses affect the two species equally strongly corresponds to

the point 1
2
(0, 1) + 1

2
(0.5, 0.5) = (0.25, 0.75). The mixture of different pulse directions is the

strongest at the center of the disc (0.5, 0). Examples of ways to realize this perturbation are

1
2
(0, 0) + 1

2
(1, 0), 1

2
(0.5, 0.5) + 1

2
(0.5,−0.5) and 1

4
(0, 0) + 1

4
(0.5, 0.5) + 1

4
(1, 0) + 1

4
(0.5,−0.5). In

each of these example, the pulses have their intensities, averaged over time, evenly distributed

across species, and affect them, again averaged over time, in an uncorrelated way. The

perturbation corresponding to the point (0.5, 0) is thus evenly distributed across species but

uncorrelated in time.
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6 Random Lotka-Volterra model

The communities used in Figs. 4, 5 and 6 are constructed from the Lotka-Volterra model with

random parameters. We consider a pool of species governed by the dynamics

dNi(t)

dt
=
riNi(t)

Ki

(
Ki −Ni −

Spool∑
j=1
j 6=i

BijNj(t)

)
, (F1)

and we let the dynamics settle to an equilibrium community of S remaining species. By

drawing random values for the parameters – growth rates ri, carrying capacities Ki, and

competition coefficients Bij – we generate communities of various diversity.

For the communities in Fig. 4, we set Spool = 50, and chose the parameter values as follows,

ri randomly drawn from N (1, 0.2), a normal distribution with mean 1 and

standard deviation 0.2 (independent draws for different species)

Ki drawn from N (1, 0.2)

Bij half of the competition coefficients are set equal to 0; the other half are

drawn from N (0.1, 0.1).

This procedure resulted in a community of S = 40 persistent species. Note that some of

the competition coefficients can be negative, so that there can be positive interactions (e.g.

facilitation).

For the communities in the top row of Fig. 5, we followed the same procedure, except

that we changed the way of generating the competition coefficients Bij. In the case without

interactions, all Bij were set zero; in the case with weak interactions, the non-zero coefficients

Bij were drawn from N (0.02, 0.02); and in the case with strong interactions, the non-zero Bij

were drawn from N (0.1, 0.1), as for the community of Fig. 4.
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We applied a similar procedure to obtain the bottom row of Fig. 5, but for these commu-

nities the growth rates ri and carrying capacities Ki were not drawn independently. Instead,

we first drew auxiliary variables ai from N (1, 0.2), bi from N (1, 0.1) and ci from N (1, 0.1),

and then set ri = biai and Ki = ci/ai.

For the communities of Fig. 6, we varied the size of the species pool Spool so that the

realized species richness covered the range from 1 to 20. Specifically, we drew Spool randomly

from 1 to 100, and generated the parameter values as in Fig. 4. We repeated this procedure

many times, until obtaining 1000 communities for each value of realized species richness S

from 1 to 20. Then, for each realized community, and for each of the three perturbation types

(α = 0, α = 1 and α = 2), we generated 1000 random perturbations leading to a variability

distribution of 1000 values. From the variability distributions we extracted median, 5th and

95th percentile, and minimum and maximum. For the realized communities we computed

asymptotic resilience, worst-case variability and the prediction for the median. Finally, we

computed the median of these statistics and predictions, all represented in Fig. 6.

7 Genericity in strongly interacting communities

We give some elements as to why the behavior reported in Figs. 4 and 5 in the main text

can be expected to be a general trend in diverse communities of interacting species. Denote

by Vspec i
α the community variability induced by a type-α perturbation that is fully focused

on a single species i. We are interested in the relationship between this variability and the

equilibrium abundance Ni of the perturbed species i.

First, note that for single-species perturbations the variability metrics Vspec i
α for different
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perturbation types α are directly linked. From definition (D4) we get that

Vspec i
α = Nα

i V
spec i
α=0 . (G1)

Hence, it suffices to study the behavior of Vspec i
α=0 .

Next, consider again the Lotka-Volterra dynamics (F1) from the perspective of a focal

species i. If a stable equilibrium exists in which the focal species survives, small displacements

from equilibrium xi = Ni(t)−Ni are met with the dynamics

dxi
dt

=
riNi

Ki

(
− xi −

∑
j 6=i

Bijxj

)
=

1

τi

(
− xi −

∑
j 6=i

Bijxj

)
, (G2)

where τi = Ki
riNi

has units of time. We claim that τi sets a characteristic time scale of the

focal species dynamics; it measures the typical time it takes for the species to recover from

a perturbation that displaces it from its equilibrium. This species response time is directly

related to the species’ variability Vspec i
α=0 : the slower the species, the larger the impact of a

repeated perturbation acting on this species, and the larger the induced variability.

We illustrate the relationship between τi and Vspec i
α=0 in Fig. G1 (inset panels). For the six

communities of Fig. 5, we fit the power-law relationship

Vspec i
α=0 ∝ τ νi , (G3)

where the index i runs over the set of persistent species. The estimates of the exponent ν

(using linear regression on the log-log plot) are all close to one. This result is obvious for

the communities without interactions, for which Vspec i
α=0 = 1

2
τi (left-hand panels). But the

same result remains valid in the presence of interactions. We find that interactions do not

substantially modify the time scale on which a species responds to perturbations affecting
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only that species.

Therefore, to study the relationship between Ni and Vspec i
α , we can restrict to the simpler

relationship between Ni and τi = Ki
riNi

, which is determined by the correlations between growth

rates ri, carrying capacities Ki and equilibrium abundances Ni. Fig. G1 (main panels) shows

this relationship for the six communities of Fig. 5. Fitting the power law

τi ∝ Nγ
i , (G4)

we find various estimates for the exponent γ. Without interactions, we have Ni = Ki, and

hence, τi = 1
ri

. If growth rates and carrying capacities are drawn independently, abundance

and response time are unrelated, leading to γ ≈ 0 (Fig. G1, upper-left panel). Alternatively,

if growth rates and carrying capacities satisfy some trade-off, higher abundance (larger Ki) is

associated with longer response time (smaller ri), leading to γ > 0 (Fig. G1, lower-left panel).

When increasing the interactions, the link between Ni and Ki becomes weaker. Indeed, from

the equilibrium condition for species i we have

Ni = Ki +
∑
j 6=i

BijNj

= Ki +

(∑
j 6=i

BijKj +
∑
k 6=j 6=i

BijBjkKk

+
∑

l 6=k 6=j 6=i

BijBjkBklKl + . . .

)
,

where in the second line we have used the equilibrium condition for the other species. For

sufficiently strong interactions, the terms between brackets dominate the term Ki, so that Ni

and Ki become unrelated. In this case, we have τi ∝ 1
Ni

, leading to γ ≈ −1: more abundant

species have faster dynamics and smaller response time. This limiting case is observed both
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Figure G1: Clarifying the relationship between abundance of perturbed species and community variability.

In Appendix 7 we introduce the auxiliary variable τi, the characteristic time scale of species i, to explain the

relationship between variability Vspec i
α=0 and abundance Ni. For the six communities of Fig. 5 in the main text,

we plot τi vs Ni in the main panels, and Vspec i
α=0 vs τi in the inset panels. We fit a power law to each of these

relationships, using linear regression on the log-log plot. The estimated exponents γ (for the data τi vs Ni)

and ν (for the data Vspec i
α=0 vs τi) are reported in the panels.
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if ri and Ki are independent, and if they satisfy a trade-off (Fig. G1, right-hand panels).

Finally, putting together eqs. (G1, G3, G4), we get

Vspec i
α ∝ Nα

i τ
ν
i ∝ Nα+γν

i ≈ Nα+γ
i , (G5)

where in the last step we have used that ν ≈ 1. The relationship between abundance of

perturbed species and community variability is strongly determined by the exponent γ, that

is, by the relationship between abundance Ni and response time τi. In the case of weak

interactions, the latter relationship depends on the assumed link between growth rate ri

and carrying capacity Ki, so that no unambiguous relationship is to be expected between

abundance and variability. However, in the limit of strong interactions, we have γ ≈ −1 and

Vspec i
α ∝ Nα−1

i . (G6)

Hence, for immigration-type perturbations (α = 0) variability is inversely proportional to the

abundance of the perturbed species. In contrast, for environmental perturbations (α = 2),

variability is directly proportional to the abundance of the perturbed species. These are the

relationships depicted in Figs. 4 and 5 of the main text.

8 Variability and abundance statistics

From the observed relationship between abundance and variability (Figs. 4 and 5), patterns

for worst- and mean-case variability can be deduced. This reveals a connection between

stability and diversity metrics.

Denote by Vspec i
α the community variability induced by a type-α perturbation fully focused

on species i. We start from the power-relationship (G6), linking this variability and the
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Figure H1: Invariability and species abundance. Top row: mean-case, bottom row: worst-case. ×-marks:

analytical formula; +-marks: approximation in terms of abundance (see Appendix 8); thick line: simulation

results. For immigration-type perturbations (first column, in blue), mean-case invariability scales as the

harmonic mean abundance (see eq. (H2)), which decreases with diversity. Worst-case invariability scales as

the abundance of the rarest species. On the other hand, in response to environmental-type perturbations

(third column, in red), mean-case variability scales as the arithmetic mean abundance (see eq. (H4)) so that

invariability increases. Worst-case variability scales as the abundance of the most common species. In between

(second column, in green), for demographic-type perturbations, neither worst- nor mean-case invariability is

determined by statistics of species abundances.
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equilibrium abundance of species i. As argued in Appendix 7, we expect this relationship to

hold for sufficiently strong interactions.

For immigration-type perturbations (α = 0), worst-case variability is approached by taking

the maximum over species which gives

Vworst
α=0 ≈ max

i
Vspec i
α=0 ∝

1

miniNi

. (H1)

so that the worst case is governed by the rarest species. Because the abundance of the rarest

species typically decreases with diversity, the corresponding diversity-stability relationship is

decreasing. For mean-case variability, averaging over species individual contributions, we get

Vmean
α=0 =

1

S

∑
i

Vspec i
α=0 ∝

1

S

∑
i

1

Ni

= 〈N〉−1
harm, (H2)

where 〈N〉harm stands for the harmonic mean of species abundances. Mean abundance typ-

ically decreases with diversity, so that the corresponding diversity-stability relationship is

decreasing.

When caused by environmental-type perturbations (α = 2), worst-case variability is ap-

proached by taking the maximum over species, giving

Vworst
α=2 ≈ max

i
Vspec i
α=0 ∝ max

i
Ni, (H3)

so that the worst case is governed by the most abundant species. For mean-case variability

we get

Vmean
α=2 ∝

1

S

∑
i

Ni = 〈N〉arith, (H4)

the arithmetic mean of species abundances. Mean abundance typically decreases with diver-
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sity, so that the corresponding diversity-stability relationship is increasing.

Note that when caused by demographic-type perturbations (α = 1) the species-by-species

approach does not work: demographic variability probes a collective property of the commu-

nity. The different relationships between abundance and variability are illustrated in Fig. H1.
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