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Mechanical properties of ultra-hard nanocrystalline cubic boron nitride 
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Nanostructure and mechanical properties of bulk nanocristalline cubic boron nitride have been studied 

by transmission electron microscopy, and micro- and nanoindentation. The obtained data on hardness, 

elastic properties and fracture toughness clearly indicate that nano-cBN belongs to a family of 

advanced ultra-hard materials. 
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Introduction 

 

Cubic (F-43m) boron nitride (cBN) is a superhard phase that is about half as hard as diamond [1] but 

with much higher thermal and chemical stability [2]. The latter makes cBN a material of choice for 

wide range of engineering applications, i.e. from high-temperature electronics to superabrasive 

industrial tooling for cutting, drilling, polishing and shaping of ferrous alloys and hard ceramics, 

petroleum extraction, etc. (see Ref. 3 and references therein). 

As it was found for cubic BC2N [1,4], diamond [5,6] and diamond-like BC5 [7], creation of 

nanostructures by extreme pressure–temperature conditions leads to significant increase of the material 

hardness, mainly due to the Hall–Petch effect (nanosize effect which restricts dislocation propagation 

through the material) [8.9]. The first attempt to synthesize nanocrystalline cBN by direct conversion of 

graphite-like boron nitride at 18 GPa and 1900 K resulted in the formation of ultra-hard aggregated BN 

nanocomposite containing both cubic and wurzitic (wBN) polymorphs [10]. This nanostructured 

material shows very high Vickers hardness (HV up to 85 GPa) but relatively low thermal stability 

caused by the presence of metastable wBN. Successful synthesis of single-phase nanocrystalline cBN 

was performed by Solozhenko et al. [11] by direct solid-state phase transformation of graphite-like BN 

with "ideal random layer" (turbostratic) structure at 20 GPa and 1770 K. The material shows very high 

hardness (HV = 85(3) GPa), superior fracture toughness (KIc = 10.5 MPa·m1/2), and high thermal 

stability and oxidation resistance (up to 1500 K). 

Later synthesis of ultra-hard cBN-based nanostructured materials has been reported by other research 

groups [12-16], however, extremely high Vickers hardness claimed by some authors (up to 108 GPa 

for so called "nanotwinned" cBN [12,16]) is unconvincing [17,18]. It should be noted that data on 
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hardness and elastic properties of nanocrystalline cBN are limited and rather controversial. In the 

present paper we report the mechanical properties of ultra-hard nanocrystalline cubic boron nitride 

from in situ study by nanoindentation technique, as well as from conventional microhardness and 

fracture toughness measurements. 

 

Experimental 

 

High-purity bulk nanocrystalline cubic boron nitride has been synthesized in a LPR 1000-400/50 

Voggenreiter press with Walker-type module at 20 GPa and 1770 K by direct phase transformation of 

turbostratic graphite-like BN (tBN) following the method described previously [11]. According to 

X-ray diffraction study (TEXT 3000 Inel, CuKα1 radiation), the recovered bulks contain well-

crystallized single-phase nanocrystalline cBN with lattice parameter a = 3.616(1) Å, in perfect 

agreement with literature data [11]. Raman spectrum of the material shows strong broad band centered 

at ∼400 cm−1 and three week broad bands at ∼820, ∼1050 and ~1300 cm−1 that is a fingerprint of 

nanocrystalline cBN with grain size less than 100 nm [11]. 

The recovered samples (cylinders 1.5–2 mm in diameter and 3-mm height) were hot mounted in 

electrically conductive carbon-fiber reinforced resin, and were polished with 9-μm and 1-μm diamond 

suspensions. Mechanical polishing was followed by vibropolishing with 0.04-μm SiO2 colloidal 

solution for 24 hours. Such extensive polishing duration ensured the minimal sample surface damage 

that is required for accurate nanoindentation and microhardness measurements. 

Microstructure characterization of nanocrystalline cBN has been performed on JEOL 3000F 

transmission electron microscope (TEM) which was used for scanning (STEM) and dark field 

(DFTEM) imaging and selected area electron diffraction (SAED). FEI NanoLab 600 dual beam 

scanning electron microscope (SEM) was used for the preparation of TEM lamella by focused ion 

beam (FIB) lift-out technique [19]. The same SEM was used for cross-validation of the indentation 

data from optical microscope. Atomic force microscope (AFM) Dimension 3100 Digital Instruments 

was used in tapping mode for characterization of Knoop and nanoindentation imprints, the later for 

pile-up correction. 

Nanoindentation study has been performed on Micro Materials NanoTest Vantage system with trigonal 

Berkovich diamond indenter (the tip radius of 120 nm). The maximal applied load was 1000 mN. 

Loading at the rate of 0.5 mN/s was followed by a 10 s holding and unloading at the same rate. 

Evaluation of the hardness and elastic modulus was performed in accordance to the Oliver-Pharr 

method [20]. The nanohardness was determined by Eq. 1: 

 c
N hA

P
H max  (1) 

where Pmax is the maximum applied load and A(hc) is the projected contact area. The area function 

A(hc) was calibrated on a standard fused silica reference sample. Correction of the area function for the 
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pile-up effects was based on the imprint topography data obtained on the actual samples by atomic 

force microscopy. The elastic recovery was estimated as the ratio of elastic work to the total work of 

the indentation by Eq. 2:  
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R  (2) 

where Wp and We are plastic and elastic works, respectively. Reduced modulus Er was determined 

from stiffness measurements that are governed by elastic properties of the sample and diamond 

indenter via Eq. 3: 
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where Es, Ei are Young's moduli and νs, νi are the Poisson's ratios of the sample and indenter, 

respectively. The elastic modulus of material can be calculated for known properties of diamond 

(Ei = 1141 GPa and vi = 0.07 [20]) and Poisson's ratio of the sample. Using the relation between 

Young's (E) and shear (G) moduli of an isotropic material 

  
12
E

G  (4) 

the shear modulus can be evaluated for the known value of Poisson's ratio. 

Microhardness measurements have been performed using Ernst Leitz Wetzlar indentation tester under 

loads ranging from 0.25 to 5.0 N at 15 seconds dwell time. At least five indentations have been made 

at each load. The indentation imprints were measured with a Leica DMRME optical microscope under 

1000 magnification in the phase contrast regime. The value of Knoop hardness (HK) was determined 

by Eq. 5: 

2070279.0 d

P
HK 

  (5) 

where P is the applied load and d is the length of a large diagonal of an imprint.  

Material hardness characterization by Vickers microindentation was omitted due to a poor accuracy 

related to the high elastic recovery of nanocrystalline cBN [13] and strong hardness overestimation as 

a result of low precision of imprint diagonal measurements (see Fig. 5b). However, Vickers 

indentation under 6 N and 7 N loads was used for characterization of material indentation fracture 

toughness (KIc), with at least 5 indentations at each load. The lengths of radial cracks emanating from 

the indent corners were measured by Leica DMRME optical and FEI NanoLab 600 SEM microscopes. 

The KIc value was determined in terms of the indentation load P and the mean length (surface tip-to-tip 

length 2c) of the radial cracks according to Eq. 6 [21]: 

KIc = xv·(E/HV)0.5 (P/c1.5) (6) 
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where xv = 0.016(4), E is Young’s modulus and HV is load-independent Vickers hardness. The latter 

value was taken as HV = 85 GPa based on data reported earlier for the identical nanocrystalline cBN 

material [11]. 

Indentation fracture toughness was also assessed based on microindentation with Berkovich pyramid 

performed at 20 N load. Standardized form of Laugier KIc formulation [22] was used which relates 

indentation load P with indentation crack geometry parameters (imprint tip-to-corner length a, radial 

crack length l, and imprint-tip-to-crack-tip distance c) according to Eq. 7:  

KIc = xb·(a/l)0.5 (E/HN)1.5 P/c1.5 (7) 

where xb = 0.016(1) is the value of the constant corrected for three-sided Berkovich pyramid as 

opposed to the four-sided Vickers one [22], E is Young’s modulus, and HN is load-independent 

hardness for Berkovich indentation.  

 

Results and Discussion 
 
Fig. 1a depicts a typical nano-cBN microstructure as detected by scanning transmission microcopy in 

low-angle annular dark field (STEM LAADF) mode for grain diffraction contrast. The structure is 

characterized by non-equilibrium grain boundaries with only a few individual grains with equiaxed 

boundaries that underwent recrystallization. Presence of nano-twinning within all cBN grains, 

including those undergoing recrystallization, is also clearly visible. 

Reported grain size distribution (Fig. 1b) is determined through the equivalent circle diameter method 

according to ASTM:E1382-97 [23] by considering the complete grain area determined by image 

processing algorithms for a series of STEM LAADF images. It can be seen that the grain size ranges 

from 10 to mainly 50 nm, with a few larger individual grains. The average value makes 35 nm. 

Selected area diffraction pattern (Fig. 1c) shows a substantial deviation of individual reflections from 

the theoretical 111, 220 and 311 diffraction rings which is indicative of numerous structural defects 

and residual strains as a result of the direct solid-state tBN-to-cBN transformation accompanied by a 

substantial volume change. Asterisk shows weak broad asymmetric wBN-like reflection caused by 

stacking faults, typical for displacive phase transformations [11]. 

Fig. 1d depicts an image composed of three superimposed dark field TEM images taken with large 

diffraction plane aperture of nearly 5 reciprocal nanometer diameter, as a way to include all 111 

reflections. Data confirm nano-twinning of cubic boron nitride, absence of equiaxed grain boundaries, 

while diffuse appearance of the grains also confirms presence of structural defects. 

From 18 independent nanoindentation experiments it was found that in the whole studied range of 

peak indentation loads (80-1000 mN) the measured nanohardness of bulk nanocrystalline cBN is 

almost constant and makes HN = 78(2) GPa. Fig. 2 shows the characteristic load-displacement curves. 

The elastic recovery of nano-cBN has been estimated by Eq. 2 as 79(2)% that is much higher than 

elastic recovery of single-crystal cubic BN (60% [24]). The Young's modulus of E = 961(39) GPa was 
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calculated by Eq. 3 using the experimental value Er = 524(9) GPa and Poisson's ratio  = 0.07 

estimated from the experimental value of nano-cBN bulk modulus (375(4) GPa [25]) according to the 

relation between bulk and Young's moduli: 

  213 


E
B  (8) 

Thus, Young's modulus of nano-cBN is noticeably higher than 909 GPa value calculated from the 

elastic stiffness constants of single-crystal cBN [26]. The shear modulus of nano-cBN was evaluated 

by Eq. 4 as G = 449(18) GPa which is 12% higher that the maximal value G = 402 GPa reported for 

translucent polycrystalline cBN with grain size of 2-4 μm [27]. 

The measured Knoop hardness of bulk nanocrystalline cubic boron nitride decreases with the load and 

at 5 N reaches the asymptotic value of HK = 63(2) GPa (Fig. 3) which is higher than previously 

reported Knoop hardness values for cBN-based nanostructured bulk materials [13,15,16,28,29]. 

Atomic force microscopy data on Knoop imprint (Fig. 4) indicate that, similarly to earlier reported 

observations [13], the actual length of the short diagonal ds is smaller than the value prescribed by the 

indenter geometry [30] due to material elastic recovery. Bearing in mind that Knoop hardness is the 

ratio of testing load to the projected area of the indentation [30], such reduction in ds value (and 

respective reduction of the projected area) results in an increase of hardness. AFM data indicate that 

7 % reduction of projected area took place which should lead to the proportional increase in HK value 

as determined based on the long diagonal d (Eq. 5). 

It can be seen that Knoop indentation does not lead to formation of radial cracks as in the case of 

Vickers (Fig. 5a) and Berkovich (Fig. 6) pyramids, thus making it a reliable technique for 

characterizing only the material hardness, as opposed to combined measure of hardness and fracture 

resistance for the two other indentation techniques.  

Indentation fracture toughness at both indentation loads of 6 N and 7 N (Fig. 5a) demonstrated that the 

minimum requirement criterion c ≥ 2a for crack length c and half-imprint a is fulfilled (c/a = 3.6 at 

6 N and c/a = 3.8 at 7 N). Close-up observation of post-indentation imprint (Fig. 5b) indicates that an 

additional source of uncertainly is related to locating the corners of Vickers imprint which is disguised 

by the material elastic recovery and a series of concentric cracks that are formed parallel to the 

indenter facets. This finding verifies low accuracy of Vickers hardness measurement [13] which may 

lead to significant hardness overestimations, as it is reciprocal to diagonal squared. Apart from that, it 

is visible that indentation cracks initiate not directly at the corner but some distance inside the residual 

imprint. Both factors might contribute to the underestimation of fracture toughness.  

The average fracture toughness of nano-cBN is practically the same for both loads and is estimated as 

KIc = 5.0±0.3 MPa·m½ at 7 N which is almost twice higher than the 2.8 MPa·m½ value for single-

crystal cBN [31], yet this value is significantly lower than the one reported earlier for another nano-

cBN materials of the same class [11]. Presence of structural defects and residual strain (see Fig. 1) 

which contributes to anomalous hardness increase are most likely compromising the fracture 

toughness.  
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The average fracture toughness determined for indentation crack geometry by Berkovich pyramid 

(Fig. 6) was estimated as KIc = 4.7±0.4 MPa·m½. This value is only slightly lower than the one for 

indentation fracture toughness with conventional Vickers pyramid. 

 

Conclusions 

 

The data on mechanical and elastic properties of nanocrystalline cubic boron nitride are summarized in 

the Table together with the corresponding values for single-crystal and microcrystalline cBN. Due to 

extremely high hardness and elastic recovery as well as high thermal and chemical stability [11], the 

synthesized bulk nanocrystalline cubic boron nitride offers further substantial improvement and 

promise as an exceptional superabrasive for a wide range of engineering applications, including 

established areas for existing conventional nano-cBN solutions, such as micro- and nano-machining of 

ferrous alloys for die and mold applications [33], and use for manufacture nanoindentation tips for 

operation at elevated temperature [34]. 
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Table Hardness, elastic moduli, Poisson's ratio and fracture toughness of cubic boron nitride 

(data of the present work are given in bold) 

 

  HHVV  HHKK  HHNN  EE  GG  BB    KKIIcc  

 GPa  MPa·m½ 

nano-cBN 85 [11] 63(2) 78(2) 961(39) 449(18) 375 [25] 0.07 4.9(4) 

cBN 62 [24]* 44 [24]* 55 [24]* 909 [24] 407† 392 [32]* 0.12 [27] 2.8 [31]* 

*  Single crystal 

†  Calculated using Eq. 4 
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 (c) (d) 
 
 

Fig. 1 (a) STEM LAADF image and (b) cumulative density function of grain-size distribution 

of bulk nanocrystalline cubic boron nitride;  (c) (inverted contrast) SAED pattern from 

the TEM lamella, and (d) three superimposed false color dark field TEM images. 
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Fig. 2 Load-displacement curves of bulk nanocrystalline cubic boron 

nitride at 80 mN, 180 mN and 300 mN peak indentation loads. 
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Fig. 3 Knoop hardness of bulk nanocrystalline cubic boron nitride vs load. 

Inset: optical microscope image of the imprint at 5 N load. 

 

 

 

 

 
 
 

Fig. 4.  AFM image of Knoop imprint at 5 N load. 
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Fig. 5 (a) SEM image of Vickers imprint after indentation fracture toughness test 

(6 N load), and (b) close-up SEM image of Vickers imprint at 7 N load. 
 

 

 

 

 
 
 
 

Fig. 6 SEM image of Berkovich imprint after microhardness test at 20 N load. 
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