
HAL Id: hal-02331068
https://hal.science/hal-02331068v1

Preprint submitted on 24 Oct 2019 (v1), last revised 22 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-layer Approach to Semi-Discrete Optimal
Transport with Applications to Texture Synthesis and

Style Transfer
Arthur Leclaire, Julien Rabin

To cite this version:
Arthur Leclaire, Julien Rabin. A Multi-layer Approach to Semi-Discrete Optimal Transport with
Applications to Texture Synthesis and Style Transfer. 2019. �hal-02331068v1�

https://hal.science/hal-02331068v1
https://hal.archives-ouvertes.fr


Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

A Multi-layer Approach to Semi-Discrete Optimal Transport
with Applications to Texture Synthesis and Style Transfer

Arthur Leclaire · Julien Rabin

Received: date / Accepted: date

Abstract This paper investigates a new approach to

approximate semi-discrete optimal transport for large-

scale problem, i.e. in high dimension and for a large

number of points. The proposed technique relies on a

hierarchical decomposition of the target discrete distri-

bution and the transport map itself. A stochastic op-

timization algorithm is derived to estimate the param-

eters of the corresponding multi-layer weighted near-

est neighbor model. This model allows for fast evalu-

ation during synthesis and training, for which it ex-

hibits faster empirical convergence. Several applications

to patch-based image processing are investigated: tex-

ture synthesis, texture inpainting, and style transfer.

The proposed models compare favorably to the state of

the art, either in terms of image quality, computation

time, or regarding the number of parameters. Addition-
ally, they do not require any pixel-based optimization

or training on a large dataset of natural images.

Keywords Optimal Transport · Texture Synthesis ·
Patch matching · Image Inpainting · Style Transfer

1 Introduction

Since its original formulation by Monge [37], the theory

of optimal transportation has been very widely devel-

oped [59,50] and has found many applications in com-
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putational sciences [44]. Given two probability distri-

butions µ (source) and ν (target), the optimal trans-

port (OT) problem consists in finding a way to transfer

the source mass µ onto the target mass ν while mini-

mizing a transportation cost. The solution then defines

a distance between µ and ν that is truly sensitive to the

distances in the underlying spaces. Thus OT provides

a natural way to compare probability distributions.

Therefore, OT has been used for numerous appli-

cations in imaging science. Firstly, applying OT in the

color space permits to evaluate the distance between

the color distributions of two images, which was used

in [49] for image retrieval. The corresponding OT maps

provide candidates to transfer the colors from one im-

age to the other, but must be regularized to produce

visually plausible results [47]. Similarly, from two im-

ages, one can transfer the colors to a kind of averaged

color distribution, which was coined as midway image

equalization in [7]. Both problems of color transfer and

color equalization have found a variational formulation

in [43]. In these color applications, the transport maps

act on a three-dimensional space for RGB images and

on a one-dimensional space for graylevel images. Even

before that, a one-dimensional OT distance was used

to compare angular descriptors identified as probabil-

ity distributions on the circle, in order to address image

matching [46]

In a higher-dimensional setting, several authors pro-

pose to use OT distances to compare images identified

as probability distributions. For example, a Kantorovich-

Rubinstein norm was used in the data-fidelity term for

image denoising in [29]. Transportation maps acting on

images can then be used to perform image warping [1,

22,42,34,12], which is relevant for images that reflect

some kind of density of material. Notice that similar

tools can also be used to process shapes identified as
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probability distributions which allows to perform shape

interpolation [53] and shape registration [10] with ap-

plications in brain imaging [11].

Several other imaging applications require to use op-

timal transport in a feature space. Indeed, gathering

several features defined around a pixel gives informa-

tion on the regularity or textural aspect of the image in

the neighborhood. Such a point of view was already de-

veloped in [49] for image retrieval. The authors of [48]

proposed to address image segmentation by constrain-

ing the distribution of features (color and derivatives

norms) in the segmented regions. More generally, it is

possible to use OT distances between feature distribu-

tions, or even image distributions, for texture model-

ing. In [60], the OT distance between Gaussian tex-

ture models was related to the distance between Fourier

transform modulii, which led to an elegant formulation

of Gaussian texture mixing. The authors of [54] pro-

posed to use OT distances between distributions of lin-

ear and non-linear features (e.g. wavelet responses or

dictionary-based features) to address texture synthesis

and restoration. In the present paper, considering that

the textural aspect is encoded in the patch distribu-

tion, we will exploit OT between patch distributions to

address texture synthesis.

A common bottleneck with many imaging appli-

cations of the OT framework is that, except in one

dimension, solving an OT problem is usually difficult

and computationally expensive. Indeed, in the case of

two discrete distributions, the OT problem is equivalent

to a linear programming problem. If the distributions

support have the same number of points n, this prob-

lem can be solved with the Hungarian algorithm [27]

which has complexity O(n3) and thus scales quite badly

with n. One possibility to overcome this numerical is-

sue is to add an entropic penalization in the OT prob-

lem, leading to the definition of Sinkhorn distances [6].

Such regularized OT distances can be computed with a

fixed point algorithm that is geometrically convergent.

However, for some imaging applications, the entropic

regularization may deteriorate the OT plan. And be-

sides, the computational gain is only available for the

case of two discrete distributions with n points, whereas

for high-dimensional OT problems, the discretization

of the underlying space is prohibited (representing 100-

dimensional distributions with 10 bins in each direction

would require to store a discrete vector of size 10100).

In this paper, we will focus on the semi-discrete case

of OT, meaning that the source distribution µ is as-

sumed to have a density with respect to the Lebesgue

measure, while the target distribution ν is discrete. The

authors of [2] have shown that in this case, the OT map

takes the form of a weighted nearest neighbor (NN) as-

signment where the weight parameters solve a differen-

tiable concave optimization problem. Since [2], several

numerical solutions have been proposed to solve the

semi-discrete OT problem [36,25,30,26] but they of-

ten require the exact computation of a gradient which

amounts to computing the µ-measure of polytopes. In a

high-dimensional setting, computing such integrals may

be intractable. Thus one may turn to stochastic gradi-

ent algorithms to approximate the OT maps, as pro-

posed in [19] and later studied in [3]. But when the

number J of points in the target distribution is large,

this stochastic algorithm converges slowly [15].

A classical way to improve the practical convergence

of optimization methods is to exploit a multiscale rep-

resentation of the data. For which concerns optimal

transport, this amounts to working on simplified ver-

sions of the measures µ and ν. Several authors [21,

5,41] have proposed to discretize the measures on a

grid, and then use a grid refinement strategy to target

the true OT map. They propose different arguments to

demonstrate the stability of the refined transport plans

(which exploits directly or indirectly the sparsity of the

true OT plan when µ and ν are absolutely continu-

ous). Again, when working with high-dimensional data,

such a grid-based multiscale scheme is not tractable.

Another strategy is to consider a multiscale decompo-

sition (ν`)06`<L of the measure ν meaning that ν` is

an approximation of ν with a fixed budget of J` points,

J0 > J1 > . . . > JL−1 (and similarly for the source µ).

This approach was proposed in [36] to solve richer and

richer semi-discrete OT problem by initializing the op-

timization algorithm at one scale with an extrapolation

of the solution at the previous scale. A similar approach

(with decomposition of both the source and target mea-

sures) was followed by [20] to solve large-scale discrete

OT problems.

In this paper, we propose a different multiscale ap-

proach to approximately solve the semi-discrete OT

problem. The main idea is to consider so-called multi-

layer transport maps that can be roughly understood as

a composition of weighted NN assignments that solve

restricted OT problems between µ and the simplified

measures ν` (obtained with a hierarchical clustering

of ν at different resolutions). In general, such a multi-

layer transport map may not exactly solve the OT prob-

lem because a simple weighted NN assignment may not

be decomposed as a multi-layer map. In other words,

restricting to such multi-layer maps induces a bias that

can be related to the geometry of the hierarchical clus-

tering of ν. However, optimizing such a multi-layer trans-

port map amounts to solving many semi-discrete OT

problems with much smaller target distributions. For

that reason, when using stochastic algorithms for semi-
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discrete OT, we demonstrate that nearly-optimal cost

can be attained in a faster way with multi-layer trans-

port maps (even if the total number of parameters of a

multi-layer map is slightly larger than a weighted NN

assignment).

Such a multi-layer approach thus helps to efficiently

solve high-dimensional semi-discrete OT problems linked

to imaging applications. In particular, we will be able to

improve a texture model [15] based on semi-discrete OT

in the patch space. The initial model presented in [15]

was limited to target distributions of 1000 patches of

size 3× 3. Using multi-layer transport maps will allow

to consider richer distributions of patches with larger

size, thus enriching the class of well-reproduced tex-

ture. We will see that these new texture models can

also be used for texture inpainting and style transfer.

The rest of the paper is organized as follows. In Sec-

tion 2, we recall the framework of semi-discrete optimal

transport. Section 3 is devoted to multi-layer trans-

port maps. First, we define multi-layer transport maps

and analyze their optimality conditions. And then, we

propose a stochastic algorithm to optimize multi-layer

transport maps, and examine its behavior on a simple

one-dimensional example. In Section 4 we demonstrate

that such multi-layer transport maps can be used to

improve a texture model based on semi-discrete OT.

We also show that this texture model can be used to

address textural inpainting. Finally, in Section 5, we

propose to extend the framework used in texture syn-

thesis to address style transfer. Let us mention that a

preliminary version of this work has been published as

a conference paper [28]. Compared to the conference

version, we contributed with a more thorough study of

optimality conditions for multi-layer transport maps, a

more extensive study of the performance of these mod-

els in texture synthesis, and new applications on textu-

ral inpainting and style transfer.

2 Semi-discrete Optimal Transport

Let µ, ν be two probability measures on RD. For the

sake of simplicity, we will restrict to the case of the

quadratic cost, even if some of the concepts developed

in this paper could be used with other cost functions.

For the quadratic cost, Monge’s formulation of OT con-

sists in solving

inf
T

∫

RD
‖x− T (x)‖2dµ(x), (OT-M)

where the infimum is taken over all measurable func-

tions T : RD → RD for which T]µ = ν, where T]µ is the

push-forward measure defined by T]µ(A) = µ(T−1(A))

for every Borel set A ⊂ Rd. The Monge problem admits

a convex relaxation due to Kantorovich

W 2(µ, ν) = inf
Π

∫

RD
‖x− y‖2dΠ(x, y), (OT-K)

where the infimum is taken on all probability distribu-

tions Π on RD×RD with marginal µ, ν. If (OT-M) ad-

mits a solution T , then (Id⊗T )]µ is a solution to (OT-K).

But the Kantorovich problem is more general in the

sense that they may exist no map T such that T]µ = ν.

Besides, under some conditions (that will be satisfied

in the semi-discrete case), one can show that (OT-M)

admits a solution which is uniquely defined almost ev-

erywhere. In such a case, the solution will be denoted

by T ∗. We refer the reader to the books [59,50] for an

exhaustive presentation of the OT framework.

In this paper we only consider the semi-discrete case

of optimal transportation. Indeed we assume that µ is

absolutely continuous RD with density ρ and that ν is

supported on a finite set Y

ν =
∑

y∈Y
ν(y)δy. (1)

As proved in [2,30,26], the solution of (OT-M) has the

form of a weighted NN assignment. Indeed, for v ∈ RY ,

one can define TY,v by

TY,v(x) := argmin
y∈Y

‖x− y‖2 − v(y). (2)

This map is defined almost everywhere (i.e. at all points

where the previous argmin is uniquely defined). The

preimages

Lv(y) = T−1Y,v({y}) (3)

are called the Laguerre cells and form a partition of RD
up to a negligible set called the Laguerre tessellation (or

also power diagram).

Then it is known [2,26] than TY,v is a solution of (OT-M)

as soon as v maximizes the concave function

H(v) := EX∼µ [h(X, v)] (4)

where

h(x, v) =

(
min
y∈Y
‖x− y‖2 − v(y)

)
+
∑

y∈Y
v(y)ν(y). (5)

One can see that for all v ∈ RJ and for almost all

x ∈ RD,

∂v(y)h(x, v) = −1Lv(y)(x) + ν(y) (6)

where 1Lv(y) is the indicator function of Lv(y), and that

∂v(y)H(v) = EX∼µ
[
∂v(y)h(X, v)

]

= −µ(Lv(y)) + ν(y). (7)



4 Arthur Leclaire, Julien Rabin

Several authors [2,36,30,26] have proposed exact

gradient-based methods or quasi-Newton schemes in or-

der to optimize the weights v when the distributions

µ and ν are defined on RD for D = 2 or D = 3

dimensions, in cases where the µ-measure of the La-

guerre cells needed in (7) are tractable. However, in a

high-dimensional framework where such integrals are

not tractable, one may turn to the Average Stochastic

Gradient Descent (ASGD) Algorithm 1 to solve it. One

can show [19,15,3] that this algorithm has a conver-

gence guarantee in O( log k√
k

) (in expectation). Numeri-

cal experiments also confirm its slow convergence rate,

especially when the number J of points in the target

distribution gets very large.

Algorithm 1: ASGD to estimate OT

map TY,v, solution of (OT-M)

1: Inputs: source density µ, target discrete

distribution ν,

initial assignment weight (e.g. ṽ = 0 and v = 0),

and gradient step (e.g. C = 1)

2: for k = 1, 2, . . . do

3: Draw a sample x ∼ µ
4: Compute the gradient g ← ∇vh(x, ṽ) (see

Eq. (6))

5: Gradient ascent of weights: ṽ ← ṽ + C√
k
g

6: Average of updates: v ← k−1
k v + 1

k ṽ

7: return v

3 Multi-layer Semi-Discrete Transport Maps

In order to cope with the slow convergence of the stochas-

tic algorithm used to estimate the semi-discrete OT

map, we propose to approximate the optimal map with

hierarchical applications of several weighted NN assign-

ments that are tuned to solve simpler semi-discrete OT

problems (i.e. with smaller target distributions). These

smaller problems are related to a multiscale decomposi-

tion ν0, . . . , νL−1 of the target measure, that is, a collec-

tion of measures that “summarizes” ν from fine (` = 0)

to coarse (` = L) resolution.

As already mentioned in the introduction, a multi-

scale algorithm for semi-discrete OT has already been

proposed in [36]. However, as reported in [28] and illus-

trated in the experimental Section 3.6, it is not straight-

forward to design an “upscaling” scheme that gives a

good initial guess for the variable v at one scale from

the solution found at the previous scale. In the follow-

ing, we thus propose a new strategy which consists in:

1. modeling the OT map itself as a multiscale hierar-

chical operator;

2. optimizing at all scales simultaneously.

In order to avoid confusion with aforementioned multi-

scale techniques, we refer to the proposed hierarchical

model as a multi-layer transport map.

3.1 Decomposition of the Target Measure

In all this section, we will work with a decomposition

ν0, . . . , νL−1, νL (8)

of the target measure. By convention, ν0 = ν and νL

will be supported on a singleton, so that there are only

L non-trivial scales. At scale ` ∈ {0, . . . , L}, we will use

a measure

ν` =
∑

y∈Y `
ν`(y)δy (9)

supported by a finite set Y ` of cardinal J` (which is a

prescribed budget of points at scale `, with J0 = J , and

JL = 1).

Following [36], this decomposition is built recur-

sively: the measure ν`+1 should be a close approxima-

tion of ν` with a budget of J`+1 points. More precisely,

given ν`, ν`+1 is built as an approximate solution of

min
m

W 2(ν`,m) (10)

where the min is taken on all discrete measuresm on RD
whose support has J`+1 points.

This non-convex problem is known to be equiva-

lent to a weighted K-means problem, which we approx-

imately solve with Lloyd’s algorithm. At the end of this

algorithm, we get a set Y `+1 ⊂ RD of J`+1 centroids

corresponding to a partition

Y ` =
⊔

y∈Y `+1

C`y (11)

and the associated masses

∀ y ∈ Y `+1, ν`+1(y) = ν`(C`y). (12)

Additionally, we consider normalized distributions per

cluster

∀ y ∈ Y `+1,∀ z ∈ C`y ν̃`y(z) =
ν`y(z)

ν`y(C`y)
. (13)

With the convention JL = 1, the clustering of Y L−1

is trivial with only one cluster, and the corresponding

centroid (the only point of Y L) is the νL−1-barycenter

of Y L.
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Fig. 1: Illustration of the multiscale approximation of

the discrete target distribution ν in the 1D case, and

the multi-layer transport map T (x) applied sequentially

with L = 3 layers. See the text for more details about

notation.

An illustration of such a multiscale decomposition

is given in Figure 1. Let us emphasize that the previous

decomposition algorithm (based on K-means) can be

called hierarchical in the sense that there exists a tree

structure on the elements of the sets Y ` (each y ∈ Y `
has exactly one parent in Y `+1). This hierarchical struc-

ture will be crucial for the construction of multi-layer

transport maps.

3.2 Multi-layer Transport Maps

Now, we can define multi-layer transport maps by us-

ing a hierarchical tree search based on weighted NN

assignments.

Definition 1 Let us denote by Y the hierarchical clus-

tering of Y composed of the sets (Y 0, Y 1, . . . , Y L) and

the clusters (C`y)06`<L,y∈Y `+1 satisfying (11). Let us

also consider the multi-layer parameters

v =
(
v`y
)
06`<L,y∈Y ` ∈

L−1∏

`=0

RY
`

. (14)

Then we can define a multi-layer map TY,v recursively

as follows. Let us fix x ∈ Rd. We set TL(x) = yL (only

point in Y L). And then, for ` = L− 1, . . . , 0, denoting

y = T `+1(x), we set

T `(x) = TC`y,v`y (x) = argmin
z∈C`y

‖x− z‖2 − v`y(z). (15)

Then TY,v(x) = T 0(x).

3.3 Optimal multi-layer maps

Let TY,v be a multi-layer map and we recall the defi-

nition T ` (` = L, . . . , 0) of the intermediate maps. No-

tice that applying these intermediate maps at a point x

amounts to tracing back a hierarchy of Laguerre cells to

which x belongs. Therefore, the sets L`y = (T `)−1({y})
provide a decomposition

RD =
⊔

y∈Y `
L`y (16)

which is a partition up to a negligible set. These subsets

are obtained by intersecting Laguerre cells in a nested

way; therefore the L`y will be called the nested cells.

In the following, we denote by µ|A the restriction of

the measure µ to the Borel set A.

Definition 2 A multi-layer map TY,v associated with

the hierarchical clustering Y is said to be optimal if,

for all 0 6 ` < L and all y ∈ Y `+1, TC`y,v`y realizes the

semi-discrete OT from µ|L`+1
y

to ν`|C`y
.

Remark: Let us emphasize that this optimality con-

dition must be understood in a coarse to fine manner.

Indeed, for a given scale 0 6 ` < L, the conditions

µ(L`+1
y ) = ν`(C`y) i.e. µ(L`+1

y ) = ν`+1(y) are ensured

for all y ∈ Y `+1 if and only the map T `+1 realizes the

semi-discrete OT at the previous scale. By uniqueness

of optimal semi-discrete OT maps, it follows that there

exists a unique optimal multi-layer map (up to a µ-

negligible set).

Alternately, for a given nested cell L`+1
y , y ∈ Y `+1

at the previous scale, one can consider the normalized

measure

µ̃`+1
y =

µ|L`+1
y

µ(L`+1
y )

. (17)

Then, from the last remark, we get that a multi-layer

map TY,v is optimal if and only if for all 0 6 ` < L and

all y ∈ Y `+1, TC`y,v`y realizes the semi-discrete OT from

µ̃`+1
y to ν̃`y.

It is also possible to express the optimality of multi-

layer maps in terms of the variables v: for all 0 6 ` < L

and all y ∈ Y `+1, the weights v`y should maximize the

function

H`
y(v`y) =

∫

L`+1
y

min
z∈C`y

(‖x− z‖2 − v`y(z))dµ(x)

+
∑

z∈C`y

v`y(z)ν`(z) (18)

Notice that the weights v should solve, at each layer `,

J`+1 sub-problems of semi-discrete OT where the nested

cells L`+1
y intervene.
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First layer ` = 1: the coarse transport map T 1 maps
every points of a Laguerre cell j of µ to the centroid of
the corresponding cluster C0

j in ν.

Second layer ` = 0: the fine mapping T = T 0 is defined
from the transport maps TC0

j
,v`
j
.

Fig. 2: Illustration of a multi-layer map (for L = 2 layers). Here the source distribution µ is chosen to

be a Gaussian mixture model with 4 components (in graylevels). For each layer `, the arrows illustrate T `(x)

(arrows) the multi-layer mapping of samples x drawn from µ (circle points on the left) to the points of the discrete

distribution ν` (diamonds for layer ` = 1 and square for layer ` = 0).

Proposition 1 The multi-layer map TY,v solves the

semi-discrete OT problem between µ and ν if and only if

∀y ∈ Y, L0
y = (T ∗)−1({y}) (19)

up to a µ-negligible set. In this case, at each scale `,

all the nested cells L`y can be written as a reunion of

Laguerre cells associated with the OT map T ∗, up to a

µ-negligible set.

Proof First of all, let us recall that with the adopted
assumptions on µ, the OT map T ∗ is uniquely defined

µ-almost everywhere. It follows that TY,v = T ∗ a.e. is

equivalent to (19). The last statement holds because,

by construction of the maps T `, for all 0 6 ` < L and

all y ∈ Y `+1,

L`+1
y =

⋃

z∈C`y

L`z. (20)

ut

One practical consequence of Proposition 1 is that,

if TY,v is optimal, then the boundary of a nested cell L`y
is included in the reunion of boundaries of (T ∗)−1({z})
for all z ∈ Y that are children of y. But, except for

very particular cases (see Fig. 3), this has no reason

to happen because each face composing the boundary

of L`y is orthogonal to one of the segment joining two

points of Y `. Therefore, the geometry of the partition

(L`y)y∈Y ` at scale ` is very much impacted by the posi-

tions of the centroids y ∈ Y `. In other words, the choice

of hierarchical clustering imposes a bias that cannot be

coped with by the optimization of the weights v.

In dimension D = 1, the situation is much simpler,

as shown by the next proposition.

Proposition 2 Assume that the dimension D = 1.1

Let us also assume that the hierarchical clustering is

increasing in the following sense: for all 0 6 ` < L, for

all y1, y2 ∈ Y `+1 such that y1 < y2 then we have z1 < z2
for all z1 ∈ C`y1 and z2 ∈ C`y2 . Then the optimal multi-

layer map realizes the semi-discrete OT from µ to ν.

Proof Let us show by induction on ` = L−1, . . . , 0 that

T ` is non-decreasing and realizes the semi-discrete OT

between µ and ν`. By Definition 2 and since there is

only one point in Y L (for which LLy = RD and CL−1y =

Y ), TL−1 is the OT map between µ and νL−1. Next,

assume that T `+1 is non-decreasing and realizes the OT

between µ and ν`+1. Again, from Definition 2, and for

all y ∈ Y `+1, on L`+1
y , T ` coincides with TC`y,v`y which

realizes the OT from µ|L`+1
y

to ν`|C`y
, and which is thus

non-decreasing. Thus, T ` is a non-decreasing map such

that for each z ∈ Y `, µ((T `)−1({z})) = ν`(z). This

implies that T ` is the semi-discrete OT map between µ

and ν`.

Remark: The above discussion shows that, except in

dimension 1, fixing a hierarchical clustering of ν im-

poses constraints on the shapes of the optimal nested

cells. Optimizing both the multi-layer maps and the hi-

erarchical clustering of ν seems worth of interest but
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it would probably lead to a much more complex non-

convex problem.

3.4 Stochastic Optimization

As already said, finding an optimal multi-layer map

amounts to compute in a coarse-to-fine manner many

semi-discrete OT maps, by solving the restricted semi-

dual problems (18). If we have optimality at the pre-

vious scales `′ > `, then the OT problem at scale ` is

well-defined. Then, going back to the Monge formula-

tion of these separates sub-problems, the map T ` actu-

ally minimizes

∫

RD
‖T `(x)−x‖2dµ(x) =

∑

y∈Y `+1

∫

L`+1
y

‖T `(x)−x‖2dµ(x)

(21)

but with marginal constraints on each of the Laguerre

cells L`+1
y .

If we consider the concave problem (18), the gradi-

ent of H`
y can still be computed

∂H`
y

∂v`y(z)
= −µ(L`+1

y ∩ L`z) + ν`(z) (22)

where we kept the notation L`+1
y ∩L`z for L`z to empha-

size that L`z is a subset of L`+1
y which is fixed by the

previous layer. If v`y is a critical point of H`
y, then

∀z ∈ C`y, µ(L`+1
y ∩ L`z) = ν`(z) (23)

which implies that µ(L`+1
y ) = ν`(C`y). However, this

last condition is not guaranteed if we do not have opti-

mality at the previous scales. In this case, H`
y have no

critical point and thus no maximum.

For that reason, we can only propose a heuristic al-

gorithm to optimize the multi-layer map TY,v. It con-

sists in performing gradient ascent to simultaneously

increase the values of all functions H`
y for all layers

0 6 ` < L and all y ∈ Y `+1. However, in order to cope

with the fact that the OT maps are not optimal at the

previous layers, we consider instead the cost adapted to

the normalized measures defined in (17) and (13)

H̃`
y(v`y) := EX∼µ̃`+1

y

[
h̃`y(X, v`y)

]
(24)

with

h̃`y(x, v`y) =

(
min
z∈C`y

‖x− z‖2 − v`y(z)

)
+
∑

z∈C`y

v`y(z)ν̃`y(z).

(25)

The corresponding gradient

∂h̃`y
∂v`y(z)

(x, v`y) = −1L`z (x) + ν̃`y(z) (26)

is normalized as well (i.e. it has zero sum after taking

the expectation) and is used in lieu of the former gradi-

ent estimate Eq. (22). The corresponding optimization

procedure is summarized in Algorithm 2.

Algorithm 2: ASGD for the estimation of the

multi-layer map TY,v.

Inputs: source density µ, target distribution ν,

gradient step C, number of layers L and number

of iterations T

1: Hierarchical clustering {ν0, . . . , νL−1} of ν

2: Set ν̃`y ∀ `, y using Eq. (13) (normalized measures)

3: Set ṽ`y ← 0, ∀ `, y (weights initialization)

4: Set n`y ← 0, ∀ `, y (number of visits in cluster C`y)

5: for t = 1, . . . , T do

6: Draw a sample x ∼ µ
7: for ` = L− 1, . . . , 0 do

8: Using T `+1(x), compute the cluster index

y = T `(x) (Eq. (15))

9: n`y ← n`y + 1

10: g ← ∇ṽ`y h̃`y(x, ṽ`y) (Eq. (26))

11: ṽ`y ← ṽ`y + C√
n`y
g

12: v`y ← v`y + 1
n`y

(
ṽ`y − v`y

)

Outputs: {ν`}06`<L and v =
(
v`y
)
06`<L,y∈Y `

3.5 Aggregating the errors

In order to measure how much a multi-layer map drifts

from the true OT map T ∗, one may essentially distin-

guish two types of errors. The first one is the bias that

is induced by a fixed hierarchical clustering and which

cannot be coped with the optimization of v, as dis-

cussed in Section 3.3. Denoting by L∗`y the nested cells

of the optimal multi-layer map, it is possible to quantize

this bias at level ` by

bias(`) =
∑

y∈Y `
µ


L∗`y ∆

⋃

z∈C(y)

(T ∗)−1({z})


 (27)

where A∆B refers to the symmetric difference between

the sets A,B, and where C(y) is the set of children of
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Fig. 3: Bias due to the hierarchical clustering. In

this figure, we illustrate the bias which is induced by

the hierarchical clustering and quantized by (27). Here,

µ is the uniform distribution on the largest square, and

ν the discrete uniform distribution on the 8 blue crosses.

The red points form a possible clustering at level 1.

We draw the optimal Laguerre cells with blue bound-

aries, and the optimal Laguerre cells at level 1 with red

boundary. For the very particular case of the left dia-

gram, the OT map is exactly the optimal multi-layer

map. However, on the right diagram, the hierarchical

induces a bias at level 1 that can be measured by the

area of the region colored in green.

y at scale 0. In Fig. 3 we illustrate this bias on a simple

two-dimensional example. In general, computing this

bias is a difficult problem since it requires to know the

optimal nested cells L∗`y , which is equivalent to know

the optimal multi-layer map. However, in dimension 1,

this bias is known to be zero by Proposition 2.

Another source of error comes from the unoptimal-

ity of the elementary transport maps TC`y,v`y parame-

terized by the vectors v`y. Of course, one could directly

consider the values of the functions H`
y. But it is cer-

tainly more revealing to consider the L1-norm of their

gradients (22) and to aggregate them. Therefore, we

obtain an error

E =

L−1∑

`=0

∑

z∈Y `
|µ(L`z)− ν`(z)|. (28)

Analogously to the single-layer case, this corresponds to

the amount of mistranported mass at all scales. Given

a hierarchical clustering Y, then minE = 0 which, by

definition, is attained only for the optimal multi-layer

map. Notice also that, contrary to (27), the error (28)

can be estimated by a Monte-Carlo method.

3.6 1D Experiments

Experimental setting In this section, we propose a sim-

ple one-dimensional experiment to evaluate the conver-

gence speed of the Algorithm 2 to approximate the op-

timal multi-layer map. For all the experiments shown

in this section,

· µ is he standard Gauss distribution N (0, 1),

· ν is the uniform discrete distribution on J equally

spaced points between −1 and 1.

The benefit of such a one-dimensional setting is that

the OT map between µ and ν can be computed (using

the quantiles of µ), and besides, it is easy to compute

distances between a transported measure T]µ and ν. In

the following, we will focus on the Kolmogorov distance

dKOL(T]µ, ν), which is defined as the L∞ distance be-

tween cumulative distribution functions. Another ben-

efit of the one-dimensional setting is that, as shown by

Proposition 2, the bias (27) induced by the monotone

hierarchical clustering is zero. Therefore, the optimal

multi-layer map targeted by Algorithm 2 is exactly the

optimal transport map T ∗. The budget J` of points at

scale ` is chosen manually (see more explanation be-

low), and the hierarchical clustering is computed with

Lloyd’s algorithm.

Let us mention that in the multi-layer setting, the

comparison cannot be fairly performed at a fixed num-

ber of iterations since one iteration of ASGD for the

1-layer transport has not the same cost as one iteration

of ASGD for multi-layer transport. Therefore, the com-

parison will be based on the true computational time

(in seconds).

Multi-layer versus one layer First, let us compare the

multi-layer framework with L = 2 (Algorithm 2) with

the single-layer framework (Algorithm 1) with J = 103

and 104 points in the target distribution. The number

of clusters for the 2-layer transport is J1 = J
10 . We also

compare to a naive multiscale variant of Algorithm 2

that consists in exploiting another decomposition ν` of

the target measures (with more scales), and estimating

the semi-discrete OT from µ to ν` in a coarse-to-fine

manner by initializing the weights v with an extrapo-

lation of the weights found at the previous scale (for

example simply propagating the values from parent to

children in the hierarchical clustering). This multiscale

algorithm was also presented in [36] for a deterministic

framework (based on an efficient second-order optimiza-

tion scheme which is not implemented here).

The results can be seen in Fig. 4. One can see that

the bi-layer algorithm reaches a good value for the dis-

tance dKOL(T]µ, ν) in a faster way than the single-layer

algorithm, especially when J gets very large. However,

in the case of J = 1000 points, it is interesting to notice

that, up to a certain time, the single-layer algorithm

attains a better cost (even if the bias induced by the
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hierarchical clustering is exactly zero). This reflects the

fact that Algorithm 2 is only a heuristic optimization

scheme. Therefore, it is expected to have a more oscil-

latory behavior than the single-layer algorithm. Thus

it is especially interesting to turn to the multi-layer al-

gorithm if J is very large with a constrained computa-

tional time. Notice also that, in the stochastic setting,

the naive multiscale procedure does not help much in

terms of convergence speed. Besides, in this naive pro-

cedure, one should choose a budget of iterations per

scale, which is less trivial in the stochastic setting than

in the deterministic quasi-Newton setting of [36] (where

only ≈ 10 iterations are needed to obtain the solution

with very good precision).

Setting the number of clusters We first assume here for

simplicity that Y can be decomposed into L scales with

balanced clusters. We denote by nL the number of NN

comparison required to evaluate the L-layer transport

map TY,v (15) at a given point; pL is the number of

weight parameters v`y(z) describing TY,v.

For L = 1, we have n1 = J and p1 = J .

For L = 2 layers with J1 balanced clusters and a

total of J points, n2 = J1 + J
J1

: the minimum number

of comparison is then n2 = 2
√
J for J1 =

√
J . The

corresponding number of parameters is p2 = J1 + J1 ×
J
J1

=
√
J + J .

For L = 3 layers with J1 and J2 balanced clusters at

each layer respectively, the number of points compari-

son per iteration for J points is n3 = J1 +J2 + J
J1J2

: the

minimum number of comparison is then n3 = 3 3
√
J <

n2 for J2 = J1 = 3
√
J . The number of parameters is then

p3 = J1 +J1×J2 +J1J2× J
J1J2

= 3
√
J +

3
√
J2 +J > p2.

Thus, from the sole perspective of computation load

indicated by nL, one should use a hierarchical represen-

tation where the number of clusters per scale is close

to L
√
J . One could then hope that such a choice would

provide a faster convergence, since the number of itera-

tion per second is maximized. This is confirmed empir-

ically in Fig. 5, where we consider the same experimen-

tal setting as before, with J = 104 (Fig. 5a), J = 105

(Fig. 5b) and J = 106 (Fig. 5c). In these experiments,

the optimal number of clusters for convergence corre-

sponds approximately to L
√
J .

Setting the number of layers Observe now that the num-

ber of comparisons nL decreases much faster than the

number of parameters pL increases when using perfectly

balanced clusters. Moreover, it is interesting to notice

that, while the number of parameters grows with the

number of layers, the maximum number of parameters

is actually bounded by 2J . Indeed, even if the following
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Fig. 4: 2-layer versus 1-layer. We compare three al-

gorithms (“Monoscale” for 1-layer, “Multiscale” for the

naive multiscale procedure, and the multi-layer Algo-
rithm 2) for computing a transport map T by monitor-

ing the Kolmogorov distance between T]µ and ν . The

horizontal axis represents the computational time (in

seconds) and the vertical axis the Kolmogorov distance

between the current transported measure T]µ and the

target measure ν. When J is very large, the 2-layer ap-

proach leads to a better transport map in a reasonable

time.

geometric sum is divergent

pL =

L∑

`=1

J
`
L =

1− J
1+L
L

1− J
1
L

− 1 −−−−→
L→∞

+∞

the worst practical case, i.e. the deepest possible search

tree that can be built, corresponds to the binary clas-

sification tree, for which we have (setting J = 2L)

pL =

L∑

`=1

2` = 21+L − 2 = 2(J − 1) < 2J
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Fig. 5: Comparison of convergence speed for estimating the multi-layer transportation plan, accord-

ing to the number L of layers and the number J` = K of clusters. Increasing the number of layers

accelerates convergence when the number of clusters is optimal (K ≈ L
√
J). (Note: each curve are displayed every

104 iterations; the initial offset corresponds to the amount of time required to reach such a number of iterations,

increasing with K.)

but only nL = 2L comparisons.

Setting aside questions about complexity (such as

optimization of memory access, data structure, and par-

allel computing), one would be tempted to conclude

that, as the number of layers does not impact much the

number of parameters of the model while providing an

interesting speed-up, one should use the highest possi-

ble number of layers. However, increasing the number

of layers makes it more difficult for the estimated trans-

port map to get close to the optimal one. Hence, there is

a tradeoff between using more layers to reduce the com-

putation time and less layers to reduce the complexity

of the model.

Fig. 5 and Fig. 6 illustrate the impact of increas-

ing the number of layers on convergence speed for L ∈
{1, 2, 3} layers and from J = 104 to J = 107. The

comparison of performance shows that, even if a larger

number of layers allows for more samples to be drawn

during optimization, the bias error caused by clustering

discussed previously in Section 3.5 is more difficult to

cope with. Nevertheless, the benefit of increasing the

number of layers is yet overwhelming when considering

a large number of points J (Fig. 6).

4 Application to Texture Synthesis

In this section, we show how the optimal multi-layer

maps introduced above can be used to enrich a tex-

ture model based on OT in the patch space [15]. The

main limitation of this model was that the discrete tar-

get patch distributions were constrained to have ≈ 103

points (otherwise, the ASGD algorithm would converge

too slowly), which prevents one from using patches larger

than 3× 3 (e.g. the 7× 7 patch distribution of a natu-

ral texture needs much more than 103 patches to be

accurately represented). As was shown in the previ-

ous sections, the multi-layer strategy allows to approxi-

mate the transport map with larger discrete target dis-

tributions, and thus to extend our texture model to

7 × 7 patches, which greatly enlarges the class of well-

reproduced textures. Let us emphasize that one must

not confound the layers of the multi-layer OT maps

of the previous section, and the image resolutions; the

model here defined will indeed be multiscale in both

these aspects.

In all the following, we denote by u : Ω → Rd the

original texture (with d channels, d = 1 for graylevel

images, and d = 3 for color images). We also denote by

ω = {0, . . . , w − 1}2 the patch domain and by RD the

patch space (where D = dw2).

4.1 Single-Resolution Model

The texture model [15] consists in transforming a sta-

tionary Gaussian random field by applying patch trans-

port maps at several resolutions. First, we recall the

construction of the texture model for a single resolu-

tion.

The single resolution model is built on the Gaussian

random field U defined by

∀ a ∈ Z2, U(a) = ū+
∑

b∈Z2

tu(b)W (a− b), (29)

where ū = 1
|Ω|
∑
a∈Ω u(a), W is a normalized centered

Gaussian random field (i.e. the W (a) are independent

with standard N (0, 1) distribution), and where tu =
1√
|Ω|

(u−ū)1Ω . Then we extract all patches U|a+ω of U ,
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Fig. 6: Comparison of convergence speed for es-

timating the multi-layer transportation plan for
a large number J of points.

apply to all these patches the same map T : RD → RD,

and then aggregate the transformed patches with a sim-

ple average. In other words, we define the transformed

random field by

∀a ∈ Z2, V (a) =
1

|ω|
∑

b∈ω

T (U|a−b+ω)(b). (30)

In order to reimpose geometric structures of the exem-

plar texture in a statistically coherent way, the patch

map T should solve (at least approximately) the OT

between the distribution µ of a patch U|ω of U (which

is a Gaussian distribution with explicit parameters) and

the empirical distribution ν of the patches of u. Such

a transformed random field is still stationary and pos-

sesses some properties that were listed in [15], for exam-

ple a covariance control and long-range independence.

Therefore, µ is absolutely continuous and ν is dis-

crete so that the OT between µ and ν is actually a

weighted NN assignment as in Equation (2). In our

previous work [15], we used such a weighted NN as-

signment, estimated with Algorithm 1. But again, the

estimation step was then very slow for J � 1000 and

so we restricted to J = 1000 patches in the target

distribution, which constrained us to work only with

3 × 3 patches. The rest of this section aims at replac-

ing the weighted NN assignment by a multi-layer map,

and to precisely assess the benefit of such multi-layer

maps when working with larger target distributions and

larger patches.

Before presenting the results, let us give the details

about the remaining parameters of the model. In con-

trast to our previous work, the target distribution ν is

here given by all patches of u. Thus the mono-layer

transport map Tv is parameterized by a single v ∈ RJ
where J is the number of patches in u (for example,

for a 128 × 128 image, we have J ≈ 16000). For the

multi-layer transport, we use only L = 2 layers (thereby

defining bi-layer transport maps), and perform a two-

scale hierarchical clustering with J1 = 40 (the clusters

are found using Lloyd’s k-means algorithm).

In Fig. 7, in the single-resolution case, we compare

the synthesized images obtained with a monolayer patch

transport and a bi-layer patch transport, with patch

size w = 3, 5, 7. One can first remark that the visual

quality of the synthesized texture is very limited with

this model working at a single resolution. Indeed, in-

creasing the patch size allows to retrieve larger geomet-

ric structures from the exemplar, but w = 7 is not large

enough to capture all structures of the textures shown

in Fig. 7. We will cope with this strong restriction in

Section 4.2.

However, beyond the geometric content, the patch

statistics are better retrieved with a bi-layer map than

a mono-layer map. This reflects again that Algorithm 2

allows to better approximate the transport map in a

more reasonable time. Indeed, in this experiment, the

number of iterations was set to 105 for mono-layer trans-

port, and 106 for bi-layer transport, and yet, the re-

quired computational time was much lower in the bi-

layer case.

The statistical benefit is confirmed by the patch

distributions shown in Fig. 8. Since the patch space

is high-dimensional (D = 75 for color 5 × 5 patches),

we only represent the one-dimensional distributions ob-

tained after projecting on a few principal components

of the patch space. In general, on the most important

principal components, the multi-layer map will perform

at least as good as the mono-layer map (even if, in some

cases, the approximation is not perfect). Actually, ap-
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plying the same methodology on a larger set of textures

and principal components (not shown here) allows to do

draw the following conclusions:

– On a wide majority of components, the multi-layer

and mono-layer maps perform nearly equally.

– On few main principal components (that will dom-

inate in the visual perception), the multi-layer map

better approximates the reference distribution.

– Sometimes (for example on the last principal com-

ponents with less energy), the mono-layer map per-

forms better.

These remarks correlate the visual differences observed

in Fig. 7.

4.2 Multi-Resolution Model

In this section, we define a texture model using multi-

layer maps at several image resolutions. We will work

with S subsampled versions us, (0 6 s 6 S − 1) of the

original image at different resolutions, us being defined

on a subdomain Ωs ⊂ 2sZ2. We will also denote by νs
the empirical distribution of w × w patches of us.

The model is defined by successive patch transport

and exemplar-based upsampling as summarized in Al-

gorithm 3. The estimation of the model can be done

during one initial pass of synthesis (that can be per-

formed offline). At the coarsest resolution s = S − 1,

as in the previous section, the model is initialized with

the Gaussian random field US−1 associated with uS−1.

Then for every scale s = S − 1, . . . , 1, a patch trans-

form Ts is applied to all patches of the current synthesis.

This transformation is computed during the estimation
stage with the two following steps:

· Fit a GMM distribution µs to the patches of Us.

· Compute the patch transformation Ts that realizes

the OT from µs to νs.

Once estimated, all patches are transformed with Ts
and later averaged, which defines a transformed random

field

Vs(a) =
∑

b∈2sω

Ts(Us|a−b+2sω)(b), x ∈ 2sZ2. (31)

Since Ts is actually a patch assignment, there is a “coor-

dinate map” Cs : 2sZ2 → Ωs which allows to express Vs
as

Vs(a) =
∑

b∈2sω

us
(
Cs(a− b) + b

)
, x ∈ 2sZ2. (32)

Then an exemplar-based upsampling step allows to ini-

tialize the synthesis at the next resolution. It consists

in taking twice larger patches at the same positions.

This is equivalent to set for all a ∈ 2sZ2 and for all

t ∈ {0, 2s−1}2,

Us−1(a+ t) =
∑

b∈2sω

us−1
(
Cs(a− b) + b+ t

)
. (33)

An illustration of this coarse-to-fine synthesis procedure

is available in [15].

Algorithm 3: Texture analysis/synthesis

1: Inputs: input texture u

2: Initialization: Sample US−1 (29).

3: for s = S − 1, . . . , 0 do

4: if Analysis then

5: · Fit GMM µs to the patches of Us.

6: · Estimate transport Ts from µs to νs
(with stochastic Algorithm 2)

7: Apply patch transport Ts on patches of Us
8: Aggregate patches to get Vs (31)

9: if s > 1, upsample Vs to get Us−1 (33)

10: return V0

Here again, instead of taking a single-layer trans-

port map for Ts, we propose to use a bi-layer transport

map that better approximates the semi-discrete OT be-

tween µs and νs, even for larger patches. Therefore, in

contrast to [15] (referred to as a single-layer model or

“1-layer” in the captions), the model will not be limited

to 3× 3 patches anymore. Indeed, in the experiments

shown in this section, the bi-layer maps are defined on

7× 7 patches.

Let us give the parameters of the used bi-layer maps.

In all the examples shown below, we used S = 4 scales

for images smaller than 500× 500 and S = 6 scales for

larger images. Since the target patch distribution νs of

the exemplar texture has a more complex structure for

coarse scales, the number of clusters J1 is adapted to

the scale, i.e. we take J1 = 10 for s = S−1, J1 = 20 for

s = S − 2, and J1 = 40 for s < S − 2. The hierarchical

clustering is again found using the k-means algorithm;

however, in order to keep a reasonable complexity even

if the exemplar texture is very large, we fix a budget

B of patches in each cluster. If the number of patches

in a cluster C0
y exceeds B, then we randomly select B

patches in this cluster. This budget also depends on the

scale: B = 100 for s = S − 1, B = 200 for s = S − 2

and B = 400 for s < S − 2. At the finest scales, the

global budget is thus 40 × 400 = 16000; this selection

step amounts to simplifying ν with only 16000 patches.

For which regards the source distribution, during the
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Original 1-layer 2-layer 1-layer 2-layer 1-layer 2-layer

w = 3 w = 3 w = 5 w = 5 w = 7 w = 7

Fig. 7: Single-resolution model, synthesis results. For several original textures shown in the first column,

we compare several synthesis results obtained by the single-resolution transformed random field (30), where T is

either a mono-layer or bi-layer transport map, and where the patch size w ranges from 3 to 7. Even if the visual

differences between the mono-layer and bi-layer map is subtle in terms of geometric content, one can see that the

patch statistics (and in particular the color distribution) are better respected with the bi-layer transport maps.

estimation phase, a GMM distribution µs with 10 com-

ponents is fitted to the current patch distribution of

Us using the Expectation Maximization algorithm [35].

Finally, in order to reimpose details at the finest reso-

lution, we apply on V0 a last bi-layer transport map on

3× 3 patches to get the output image V .

Let us emphasize on the fact that the overall al-

gorithm can be decoupled into an estimation and syn-

thesis step. In other words, the estimation of bi-layer

transport maps at all resolutions (which is quite costly)

can be done once and for all. Once estimated, these

transport maps can be applied to all patches, and also

be used to synthesize many images with arbitrary size.

For this reason, if the model is pre-estimated, then the

synthesis algorithm has a very low computational time,

comparable to methods based on pre-estimated feed-

forward networks like [55].

Several synthesis results obtained with the multi-

layer model are displayed in Fig. 9. Compared to the

previous model [15], it is clear that working on 7 × 7

patches (instead of 3 × 3 patches) allows to capture

larger geometric structures of the exemplar texture.

This is not surprising since the semi-discrete transport

maps that are used are essentially weighted NN as-

signments that use patches seen in the exemplar tex-

ture. But still, combining the Gaussian initialization at

coarse resolution and the patch averaging procedure at

all resolutions permits to create new patches which are

not seen in the exemplar. This is where the model gets
its capacity of innovation. The copy-paste effect will

be discussed below. Let us also mention that the new

model is able to better respect fine details thanks to the

last 3×3 transport map applied at the finest resolution,

see Fig. 10.

In Fig. 11, we compare the multi-resolution model

with other state-of-the-art texture models. The model

of Gatys et al. [16] consists in optimizing the image

(starting from a white noise) in order to match some

spatially averaged second-order responses obtained in

a pre-learned neural network. The model of Ulyanov

et al. [55] consists in learning a feed-forward neural

network that mimicks the optimization procedure of

Gatys’ method. Finally, the model of Raad et al. [45]

consists in progressively growing the texture using patch

conditional sampling (also working in a coarse-to-fine

manner so that one resolution is conditioned by the

previous coarser resolution).
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Fig. 8: Single-resolution model, output patch distributions. In this figure, we examine the output patch

distributions after the mono-layer and bi-layer transport maps for the single-resolution model with patch size

w = 5, for the textures shown in the two first rows of Fig. 7. Each diagram represents the one-dimensional

distribution obtained after projecting on a principal axis in the patch space, and the corresponding patch principal

component is displayed just below. On each diagram, the black curve is the reference distribution, the blue curve

is the distribution after multi-layer transport and the yellow curve is the distribution after mono-layer transport.

See the text for comments.

One can see that the visual quality is comparable

to the one attained by the model of Gatys et al. [16],

and is clearly higher than the one obtained by the other

models (should it be in terms of details, frequency con-

tent, or spectrum). However, compared to [16], the im-

ages generated with our model are often smoother; this

is probably due to the averaging step used to merge

patches at all resolutions. Also, the unstructured tex-

ture of the 5th row of Fig. 11 is worth of comment;

on this example, both models fail to preserve the fre-

quency content of the texture, but the failure of our

model can be avoided by properly setting the parame-

ter S. Indeed, one should set the number S resolutions

depending on the size of structures present in the ex-

emplar image, keeping in mind that the receptive field

is of size 2S−1w×2S−1w (for example, with S = 4 reso-

lutions and 7×7 patches, the receptive field is 56×56).

For a texture with no salient structure (like the one

shown in the 5th row of 11), taking a single-resolution

model (i.e. S = 1) is sufficient to obtain a perfect result.

Observe that pseudo-periodic patterns are often not

well reproduced by neural network methods, while long

correlations can be captured by our multiscale model.

This phenomenon can be circumvented by expending

the perceptual loss objective function, adding Fourier

spectrum information [33] or spatial correlation [51].

Additionally, it is interesting to compare the results

by looking at the resulting patch distributions, as is

proposed in Fig. 12. Since the patch distribution is

very high-dimensional, for that, one can plot the one-

dimensional distributions obtained after projections in

the principal components of the patch space (the princi-

pal component analysis being led on the patches of the

original texture). Curiously, even if our model is inher-

ently designed to preserve the patch distribution, one

can see that the model by Gatys et al. often outperforms

it in terms of proximity to the original patch distribu-

tion. Again, this may be caused by the averaging step,

or also by the fact that the multi-layer maps do not

attain exactly the target empirical patch distributions.

However, this is very difficult how some observed drifts

on the patch distributions (on some principal compo-

nents) will impact the visual perception. Complement-

ing the study by looking at the color distribution or the

spectrum helps to understand the failure/success of the

different algorithms.

Let us also remark that, even if our model does not

reach the visual quality of Gatys’ model, it reaches a

very good compromise between visual quality and syn-

thesis time (since, again, the model estimation can be

performed offline). In contrast, the model by Ulyanov

et al. [55], which can also be estimated offline and has
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a comparable synthesis time, produce results with cu-

rious visual artifacts that can be analyzed in the patch

distribution or the spectrum.

Finally, we propose one last experiment that aims

at evaluating the capacity of innovation of the previous

models. For several large patches in the original texture,

we propose to single out their NN in the synthesis. The

results can be seen in Fig. 13. Since the bi-layer trans-

port maps projects onto patches seen in the original

texture, it is expected that some pieces of the synthe-

sis are quite close to the original. However, one can see

that there are always small differences thanks to the

patch averaging step.

4.3 Textural Inpainting

To close this section, we propose to show briefly that

the texture model defined in the previous section can

also be used to address textural inpainting. Indeed, if

the original texture u : Ω → R is known outside a mask

M ⊂ Ω, one can define the target patch distribution as

the empirical distribution of available patches. Working

with several resolutions is not an issue either since one

can compute subsampled versions us : Ωs → R and

define an adapted mask Ms at resolution s (for example

by thresholding the bilinear reduction of the indicator

function of M).

However, at the coarsest scale, the synthesized Gaus-

sian texture should agree with the unmasked content.

Fortunately, in the Gaussian case, the inpainting prob-

lem can be formulated as a conditional Gaussian model

estimated outside the mask as proposed in [14]. The

benefit of such a conditional simulation is that, at the

coarsest scale, the synthesized content will extend the

long-range correlations that can be observed outside

the mask. Then, using this Gaussian inpainting of the

coarsest scale, one can apply the bi-layer transport maps

at several resolutions in order to reimpose geometric

structures, as shown in Fig. 14. The model is estimated

in the same way than for the case of pure synthesis,

except that the target patch distributions contain only

patches which do not overlap the mask (the number of

scales should be sometimes reduced in order to find

enough available patches at the coarsest resolution).

Also, a crucial difference lies in the patch recomposi-

tion: one should apply the transport maps to all patches

that overlap the mask boundary (and average them to

get an image).

Some textural inpainting results can be seen in Fig. 14,

Fig. 15 and Fig. 16. As can be observed in Fig. 14

and Fig. 15, this inpainting model allows to inpaint-

ing structured textures in a reasonable way. However,

for complex sharp textures, some blur can be perceived

at the boundary of the mask (for example in the sec-

ond example of. 16). Also, the comparison of Fig. 16

highlights the benefit of considering the patch distribu-

tions. Indeed, constraining the patch distribution allows

to avoid inpainting failures that are undesirable optima

when optimizing functionals based only on the distance

to the patch NN.

Fig. 17 compares our approach with two other in-

painting techniques [57,4] that have a limited amount

of artifacts at the boundary of the mask. On the one

hand, deep image prior [57] consists in training a fully

convolutional neural network (in this specific case, with

skipping connections) to generate the masked image

from a (fixed) noise input using a mean square error

loss function outside the masked domain. Due to the

continuous nature of the generative network, this tech-

nique gives sometimes surprisingly good results with

a seamless transition at the border of the mask. On

the other hand, we compare to the greedy patch-based

copy method of [4], where an efficient blending tech-

nique is proposed to avoid block artifacts when combin-

ing locally patches from different locations in the im-

age. Again, our approach compares favorably to those

methods, despite introducing some noticeable blur at

the finest resolution due to the averaging of patches.

5 Application to Style Transfer

5.1 A short review on Image Stylization

The principle of image stylization or style transfer (see

e.g. [8,23,16,24,55,13,9,61]), is to give a source image
the artistic look of an example (or style) image, such

as a painting, a texture or another picture with the

desired visual features (e.g. color or dynamic range).

The most important aspect of this problem is that the

synthesized image should at the same time have similar

visual features than the style image and preserve the

geometrical content of the original image.

Until recently, most successful approaches consisted

in patch-based methods that are largely based on tex-

ture synthesis [8,23]. Often, the only main difference is

that the initialization, instead of using random noise,

is the image to be modified itself. However, there is no

guarantee that the resulting image will keep most of

its important geometrical structures. In order to cope

with this issue, other methods rely on a variational for-

mulation that balances the two objectives: an objective

function comparing style features to the style image,

linearly combined with a second objective comparing

other geometric features to the original image. Such

formulations are usually used to drive an optimization
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.

1-layer 2-layer Original 2-layer 1-layer

w = 3 w = 7 w = 7 w = 3

Fig. 9: Multi-resolution model, synthesis results. For several exemplar textures displayed in the middle

column, we present several synthesis results obtained with a multi-resolution model exploiting multi-layer transport

maps working on 7× 7 patches at each resolution. We compare with the previous model [15] based on single-layer

transport on 3× 3 patches. See the text for comments.
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Original 1-layer, w = 3 1-layer, w = 7 2-layer, w = 7 2-layer, w = 7

and w = 3 at s = 0.

Fig. 10: Preserving fine scale details. This figure illustrates that the multi-layer model retrieves geometric

structures of the exemplar in a cleaner way. In particular, applying the single-layer model on patches 7× 7 is not

sufficient to produce relevant structures. Also, one can see that the last 3× 3 transport applied at resolution 0 is

important to retrieve fine scale structures.

algorithm that iteratively updates the pixel values of

the synthesized image.

As was already discussed in the introduction, tex-

tural or style features can be based on patch represen-

tations [13,9]. However, a more popular way to extract

features is to use a visual representation of images that

is learned on a large dataset of natural images, as ini-

tiated in [16]. In practice, most techniques use features

extracted from layers of the deep convolutional neural

network VGG-19 [52] trained on ImageNet, but ran-

dom representations could be used as well [58]. Note

that learned representations for image classification are

known to be heavily biased toward textural informa-

tion [18,38]. In order to use such a network for style

transfer, spatial information linked to geometrical fea-

tures of the input must be kept while the style features

must be extracted with spatially-averaged statistics (of-

ten with second-order statistics, like Gram matrices).

Although using deep representations makes the opti-

mization more involved (as it requires backward prop-

agation through a deep network), it improves greatly

the visual quality [17].

The authors of [24] have shown that this optimiza-

tion process could be performed offline by training a

deep network to achieve a given type of stylization on

a dataset (MS-COCO with 80k training images). After

training, the corresponding stylisation of a new source

image is simply done by a single forward propagation

through the neural network. Afterwards, the authors

of [55] demonstrated that such a technique can be used

for texture synthesis as well, or for multiple styles [61].

While image quality might not be on par with deep

optimization technique [17], the speed-up is of several

orders of magnitude, as it requires less computations

than for a single iteration which involves forward &

backward propagation through a deep descriptive net-

work.

5.2 Feed-forward Texture Transfer

We propose here to adapt the multi-resolution texture

synthesis algorithm of the last section to perform style

transfer in a “feed-forward” fashion. More precisely, we

estimate the multi-resolution texture model associated

with the style image, and then we directly apply the

multi-layer transport maps to the source image in a

coarse-to-fine manner, without any optimization. The

main difference is the following: at each scale, the up-

scaled output from the previous scale is now blended

with geometric features from the source image. For sim-

plicity, we use only edges as geometric features. Note

that, as for the ”perceptual loss” in [16,24,55], style

features do not encode spatial information in our case

(patch distribution) but geometrical features does. The

method is summarized in Algorithm 4 and detailed in

the next paragraphs. Contrary to other aforementioned

approaches, our algorithm is not optimizing the input

image nor trained on a dataset.

Pre-processing We denote by w the input image to be

processed and u the style image. In order to ensure that

the patch distribution of w at the coarsest resolution

s = S − 1 is close to the one of u (which serves to

estimate the transport maps), we first pre-process w

to match the patch second-order statistical properties

of u. Namely, the pre-processed image w̃ is constructed

by overlapping transformed patches:

w̃(a) =
1

|ω|
∑

b∈ω

A(w|a−b+ω)(b), (34)

where A is an affine transform that imposes the patch

mean and patch covariance of u. Because the recon-

structed image w̃ may have out of range values, a local

histogram equalization of the intensity channel in Lab

color space is performed. An example illustrating this

preprocessing is shown in Fig. 18d.
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Original 2-layer Ulyanov et al. [55] Gatys et al. [16] Raad et al. [45]

Fig. 11: Comparison. For each row, we display, from left to right, an original texture, the result of the model

based on 2-layer patch transport, the result of the feed-forward network of [55], the result of the neural optimization

procedure of [16] and the results of the patch-based method of [45]. See the text for comments.
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Original 2-layer Ulyanov et al. [55] Gatys et al. [16]
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Fig. 12: In this figure, we compare the synthesis results obtained with the model based on bi-layer OT and with

the models of [55] and [16]. For comparison we also display the 7 × 7 patch distribution in the 3rd and 7th rows

(with the principal components shown in 4th and 8th rows), the color distributions visualized with [32] in the 2nd

row, and the spectrum in the 6th row. See the text for comments.
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Original 2-layer Ulyanov et al. [55] Gatys et al. [16]

Fig. 13: Innovation capacity. In this figure we illustrate the capacity of innovation of three texture models by

looking for several patches of the exemplar texture (marked with red, green, and blue squares) the 50 NN in the

synthesis (marked with squares with corresponding color). See the text for comments.

Blending geometric and texture information Geometric

features are based on contour extraction. A mask is first

computed from the gradient intensity on the smoothed

input image, and normalized using a sigmoid function:

Mw(x) = St (‖∇(w ∗ gγ)(x)‖) (35)

where ∗ indicates the discrete convolution with the Gaus-

sian density function gγ of standard deviation γ (con-

trolling the detection scale), and

Sτ (w) =
1

1 + e−10
w−τ
τ

(36)

parameterized by τ , which controls the detection inten-

sity. Fig. 18c shows the mask computed at the largest

resolution.

The blending of texture synthesis with geometric

features is performed with a convex combination be-

tween the current upsampled image (33) and the pre-

processed image w̃s (34) (Fig. 18e)

Ũs(x) = (1−Mws(x))Us(x) +Mws(x)w̃s(x). (37)

Once blended, we can apply the pre-learned multi-layer

transport map as in (31). Fig. 18 shows that applying

the blending before the transport map (Fig. 18g) rather

than after (Fig. 18h) gives a much better result.

In practice, as shown in Fig. 19, decreasing the thresh-

old τ adds details with less contrast from the input, and

decreasing γ keeps only fine details.

Remark: Observe that, as we blend the preprocessed

input image with textures, the patch distribution of the

stylized image does not follow the GMM that served

as the source of the transport maps. However, as we

change patches only at some edges of the texture im-

age, the difference is practically negligible for this ap-

plication.

Algorithm 4: Feed-forward image stylization

1: Inputs: style image u and source image w

2: Offline: Estimate the transport maps Ts of the

texture model defined by u.

3: Pre-processing: Compute w̃ (34).

4: Initialization: Sample US−1 (29) (same size as w).

5: for s = S − 1, . . . , 0 do

6: Resize images at scale s: us, ws and w̃s
7: Contour detection: Compute mask Mws (35)

8: Blending: Compute Ũs from w̃s and Us (37)

9: Apply patch transport Ts on patches of Ũs
10: Aggregate patches to get Vs (31)

11: If s > 1, upsample Vs to get Us−1 (33)

12: return V0

Additionally, Fig. 19 shows stylization results with

different random initializations. It should be noted that
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→

Masked Texture s = 4, Masked s = 4, Gaussian s = 4 s = 3

↓

Ground-truth Output s = 0 s = 1 s = 2

Fig. 14: Multiscale Textural inpainting. The proposed textural inpainting consists in using a Gaussian condi-

tional sampling at the coarsest scale (1st row, 3rd column), and then adding details with bi-layer patch transport

maps.

we do not have any of the diversity problems reported

for feed-forward networks in [56] and [31] for instance.

5.3 Stylization Results

First, Fig. 20 gives a comparison of our image styliza-

tion approach (Fig. 20g) with the gold standard tech-

nique of deep image optimization introduced by Gatys

et al. [17] (Fig. 20f). As already mentioned, the op-

timization process is based on an objective function,

linearly combining a style loss with a content loss func-

tion weighted by a parameter λ. The interesting aspect

of using deep image representation is that it enables a

more liberal definition of the content of the image to be

preserved than ours, resulting in mixing the content of

both images in intricate patterns (see for instance the

posts becoming curved like the branches in the source

image). However, as already reported in previous work

(see e.g. [33]), some features are not well preserved, such

as color, and checkerboard artifacts may also appear.

On the other hand, as previously demonstrated, our

technique aims at matching the patch distribution from

the style image, hence being better at preserving color

and reproducing tiny details from the exemplar image.

For a complete comparison, we display stylization with

our method when incorporating only geometric details

at low resolution (by setting τ = 0 after the third scale,

and referred to as low in Fig. 20e) or with all details at

high resolution (by setting τ = 1 after the third scale,

referred to as high in Fig. 20i).

Comparing our technique to other feed-forward ap-

proaches from the literature [24,61] (that still require

training on a large dataset of natural images) is inter-

esting as well. Both techniques (Johnson et al. [24] in

Fig. 20c, Zhang et al. [61] in Fig. 20d) do not manage

to preserve the main features of the style image, thus

highlighting the benefit of our statistical framework.

Quite interestingly, unlike Gatys et al. [17], these meth-

ods have automatically learned to preserve the contours

from the source image, as we choose to do explicitly.

Fig. 21 shows various stylization results for different

types of source image. In these experiments, all styliza-

tion parameters are fixed (same random seed, τ = 0.02

and γ = 0.8) and the same parameters have been used

for learning all bi-layer transportation maps from the

style image (as detailed in Section 4.2). To start with,

observe that our method is better suited for style im-

ages which are textures, which is the main hypothesis

of our statistical framework. When it is not the case, we

observed that the multi-layer model has more trouble

to match statistics with the same set of parameters, re-

quiring more iterations during training, and more sam-

pled patches, more GMM components, etc. Yet, it is still

providing interesting results on non-stationary style ex-

amples (such as rows 1, 4 and 8 of Fig. 21).

6 Conclusion

In this paper we have proposed to approximate a semi-

discrete OT map with multi-layer transport maps that

exploit a hierarchical clustering of the target discrete
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Original Multi-layer OT Original Multi-layer OT

Fig. 15: Textural inpainting results. For several masked textures (1st and 3rd columns) we display the inpainting

result obtained with the model based on 2-layer patch transport. Notice that the inpainted content blends quite

nicely with the rest of the image, even if a residual blur is sometimes perceived due to patch averaging.

distribution. After studying the optimality condition

for such multi-layer maps, we have shown that they can

be optimized with a heuristic stochastic optimization

approach. The corresponding algorithm performs bet-

ter than the usual stochastic algorithm for semi-discrete

OT, especially when the target discrete distribution has

a very large support. However, we have shown that, ex-

cept in dimension 1, the hierarchical clustering of the

target distribution induces a bias that cannot be coped

with by the optimization procedure.

Such multi-layer transport maps, therefore, can be

used for applications that rely on a large-scale OT set-

ting (both in terms of dimensions of the underlying

space and in terms of support of the target distribu-

tion). In particular, we proposed to exploit this multi-

layer approach to tackle OT in the patch space, which

is useful for several imaging applications, and we gave

results in texture synthesis, texture inpainting and style

transfer. For texture synthesis, the multi-layer approach

allowed us to consider larger patches in a previous tex-

ture model, which considerably enrich the class of well-
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Masked Texture 2-layer Newson et al. [39]

Fig. 16: Textural inpainting comparison. In this figure, we compare our approach for textural inpainting with

the one of Newson et al.[39] (their result was obtained with the online demo [40]). See the text for comments.

Texture Masked Texture Our approach Deep-image prior [57] Patch blending [4]

Fig. 17: Textural inpainting comparison. In this example we compare our approach with Deep image prior [57]

(which optimizes a deep neural network with skipping connection to generate the masked image using Mean Square

Error criterion) and with [4], where patches from the uncovered part of the image are used to fill in the masked

domain and blended to avoid blocking artifacts.

reproduced textures. We thus obtained a texture model

that is comparable to state-of-the art models in terms

of visual quality, while maintaining several mathemat-

ical properties (like long-range independence), and a

good empirical control on visual statistics (like the color

distribution of the spectrum). Besides, once estimated,

such a texture model can be sampled in a fast man-

ner (since it consists only in recursive weighted NN

patch assignments), and thus has a competitive compu-

tational time compared to recent neural network tech-

niques.

This texture model can also be used to address tex-

ture inpainting (by relying on a Gaussian conditional

sampling scheme for the coarse resolution) or style trans-

fer (with a feed-forward approach that blends the source

image with a synthesized texture and which does not

need pixel-based optimization). For both these prob-

lems, this model produces visual results that compare

well to other competing methods, with the benefit of a
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(a) Style
image u

(b) Source
image w

(c) Mask Mw

(Eq. (35))
(d) Preprocessing
(Eq. (34))

(e) Contour
Mww̃

(f) Multiscale
Blending (Alg. 4)

(g) Naive blending (h) Without
blending

Fig. 18: Illustration of contour extraction and

blending for texture transfer. Direct blending (g)

of contour (e) in the synthesized texture (h) is not

sufficient. Using blending directly during the multi-

resolution synthesis (f) gives more satisfying results.

good statistical control, in the sense that all the tex-

tural content visible in the input texture (or the style

image) will be fairly represented in the output image.

For inpainting, this statistical control allows to avoid

trivial solutions of patch-based approach (for example,

flat areas obtained by repeating a flat available patch).

The main limitation of this texture model lies in its

constrained architecture. While the number of scales is

easily tuned, the patch recomposition strategy is here

fixed as a simple average. Although this linear strat-

egy helps to preserve the covariance structure of the

random field, it inexorably produces some blur in the

synthesized images, which is often the main explication

for the failure cases encountered in this article. This is-

sue would certainly be solved by constraining the patch

distribution after the patch recomposition strategy. But

this would require a radical change of the model archi-

tecture, that we leave for further investigation.

(a) Style image u (b) Source image w

γ
=

0
.8

(c) τ = 0.01 (d) τ = 0.02 (e) τ = 0.04 (f) τ = 0.06

τ
=

0
.0

2
(g) γ = 0.2 (h) γ = 0.4 (i) γ = 0.8 (j) γ = 1.6

τ
=

0
.0

2
,
γ

=
0
.8

(k) seed = 0 (l) seed = 1 (m) seed = 2 (n) seed = 3

Fig. 19: Illustration of contour extraction and

blending parameters γ and τ for texture trans-

fer. The same random seed is used to generate the

style on the first two lines. Last row show the effect

of changing the random seed used to initialize the algo-

rithm Gaussian random field (29), where τ = 0.02 and

γ = 0.8 (as fixed throughout the rest of experiments).
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