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The Kolmogorov-Taylor Law of turbulence : what can

rigorously be proved ?

Roger Lewandowski ∗,

Abstract

We define a mathematical framework in which we can specify the Reynolds de-
composition and the correlation tensors of an incompressible locally homogeneous
and isotropic turbulent flow. After having fixed the technical background and some
probabilistic tools, we focus on the 2-order correlation tensor, which is the covariance
matrix of the velocity vectors at two different points of the flow. We perform a Taylor
expansion of this matrix when the two points are close to one another. We characte-
rize the principal part of this expansion, for which we prove the law of the 2/3 by a
mathematical similarity principle.

MCS Classification : 35Q30, 76D05, 76D06, 76F05

1 Introduction

Most of realistic flows are turbulent, looking chaotic, disordered, unpredictable. The
physical processes that govern turbulence are far to be all understood, although it attracted
a lot of attention in the literature since the 19th century. Therefore, turbulence remains
one of the main challenge of modern science, which has an impact from the human, social
and economic standpoints, especially in the understanding of climate change and ecological
issues.
Based on works carried out by Boussinesq [1] and Reynolds [27], it has been soon recognized
that the velocity field of a turbulent flow can be decomposed as the sum of a mean field
and a fluctuation. Initially, the mean velocity field was specified by its long time averaged.
Later, Taylor [29] introduced the notion of statistical means, where the velocity and the
pressure of the flow are considered as abstract random fields. The mean velocity is then
its mathematical expectation, which also allowed Taylor to define the notion of isotropic
turbulence, through algebraic properties satisfied by the correlation tensors.
In [21], Kolmogorov mainly revisited Taylor’s work. He generalized the notion of isotropy
by introducing local isotropy, stating somehow that all turbulent flows are locally isotropic.
In this context, he retrieved the law of the 2/3, already found in [29]. However, the main
impact of Kolmogorov’s paper lies in a footnote, in which he explains that turbulence
can be depicted by a structure of eddies of different scales that interact with each other,
the scales being distributed in a continuous range. The large scale eddies transfer energy
to smaller ones, that transfer energy to more smaller, and so on until a final scale that
dissipates energy as heat.
Kolmogorov’s paper is written from a physical viewpoint, without considering the NSE.
The aim of the present work is to define a mathematical framework in which notions
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such as homogeneity and isotropy can be set up, the correlation tensors of the flow can be
properly defined, and in which we can find the right mathematical hypotheses that allow to
rigorously describe the structure of the covariance matrix in order to prove standard laws
of the turbulence, such as the law of the 2/3. To do so, we are led to make connections
between the physical concepts of [21, 29] and modern mathematical results about the
Navier-Stokes equations (NSE).
We start with a short overview about the Navier-Stokes equations, considering throughout
this text the incompressible case. Then, we define the length-time bases that provide a
framework for performing the dimensional analysis, which yields to introduce the notion
of generalized Reynolds number and to give the dimensionless form of the NSE. We state
the Reynolds similarity principle in this context and seek for solutions of the NSE that
verify this similarity principle. We next define general homogeneous and isotropic tensors.
We prove algebraic results in order to fully characterize isotropic tensors of orders 1 and
2.
Once we are done with this technical background, we recall the suitable probabilistic
framework, which was initially introduced in [5] by considering smooth solutions of the
NSE. The underlying probabilistic space is a set of initial data, over which we are able to
construct a probability measure. This construction should be compared with the notion
of statistical solutions, developped for instance in [16].
The correlation tensors can therefore be specified, yielding the definition of homogeneous
and istropic turbulence. We also introduce by this way the Reynolds stress, that plays a
central role in the turbulence models.
We then consider the correlation tensor of order 2 in a ball of fluid δV , centered at a point
x0, and over a short time interval. From the probability viewpoint, this tensor, denoted
here by B(x,x0), is the covariant matrix of the velocities at x0 and any other point x of
the ball of fluid. Therefore, B(x,x0) measures how the two random velocity vectors at x0

and x are dependant. We consider an homogeneous, isotropic and stationnary turbulence,
in the case of smooth solutions of the NSE. We then perform a expansion of B(x,x0) when
r = |x − x0| goes to zero, and we show that the main term in this expansion is entirely
characterized by a function E = E(r). We show next that in some inertial range [r1, r2],

E(r) ∼ (E r)
2
3 , E being the mean dissipation at x0, which is the law of the 2/3. To do so,

we carrefully establish the mathematical concept of similarity principle.
So far we know, this work is the first attempt to give a rigorous proof of the 2/3 law.
Nevertheless, the well known law of the −5/3 about the velocity spectrum, and everything
which relates, has attracted a lot of attention in the mathematical literature, see for
instance in [5, 8, 10, 11, 12, 15, 18]

Ackowledgements. The author thanks Benoit Pinier for a carrefull proofreading of this
text. He also thanks Antoine Chambert-Loir for intesting discussions about the algebraic
part of this work.

2 About the Navier-Stokes Equations

Let Ω ⊂ IR3 be a smooth domain, Γ = ∂Ω its boundary, T > 0 a given time, Q = [0, T ]×Ω.
In the following v = v(t,x), p = p(t,x) denote the Euler velocity and the pressure of the
fluid at any (t,x) ∈ Q.
A divergence free field v0 being given, the incompressible Navier-Stokes Equations (NSE)

2



set in Q with the no slip bounary condition and v0 as initial data are the following:

(2.1)


∂tv + (v · ∇) v −∇ · (2νDv) +∇p = f in Q, (i)

∇ · v = 0 in Q, (ii)
v = 0 on Γ, (iii)
v = v0 at t = 0, (iv)

where ν > 0 is the kinematic viscosity, usually a function of the temperature,

Dv =
1

2
(∇v +∇vt),

is the deformation tensor, f is any external force (gravity, electromagnetic force....).
Equation (i) of system (2.1), labeled with (2.1.i), is the momentum equation. Equation
(ii) of (2.1), labeled with (2.1.ii), is the mass conservation equation, that expresses in this
case the incompressibility of the fluid. Equation (iii) is the boundary condition, namely
the no slip condition, whereas (iv) is the initial data. Notice that when ν is constant, we
deduce from the incompressibility condition the identity

∇ · (2νDv) = ν∆v.

By writing v = (v1, v2, v3), the momentum equation (2.1.i) becomes component-by-component:

(2.2) ∂tvi + vj
∂vi
∂xj
− ∂

∂xj

(
ν

(
∂vi
∂xj

+
∂vj
∂xi

))
+
∂p

∂xi
= fi,

by using the Einstein summation convention. Moreover, the incompressiblity condition
(2.1.ii) reads:

(2.3)
∂vj
∂xj

= 0.

It is convenient to notice that the incompressibility condition yields

vj
∂vi
∂xj

=
∂(vivj)

∂xj
,

hence
(v · ∇) v = ∇ · (v ⊗ v),

where v ⊗ v = (vivj)1≤i,j≤3.

We distinguish two types of solutions to the NSE:

1) The ”strong” solutions over a small time interval [0, Tmax[ ”à la” Fujita-Kato [17],

2) the ”weak” (also turbulent) solutions, global in time, ”à la” Leray-Hopf [19, 22]

1) Strong solutions are essentially C1,α over [0, Tmax[×Ω, as long as the data are smooth
enough. A given f being fixed, the time Tmax only depends on ν and ||v0|| for a suitable
norm, and whatever the choice of v0 smooth enough, the corresponding solution is unique,
yielding the writing

v = v(t,x,v0), p = p(t,x,v0).

Strong solutions might be globally defined in time over [0,∞[ when the initial data v0 is
“small enough”, or the viscosity ν is ”large” enough, which means that the flow is rather
laminar (see also in [3, 4, 6, 20]).
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2) Weak solutions are such that the velocity, denoted here by v = v(t), is considered as
a trajectory into a suitable Hilbert space H ⊂ L2(Ω)3, and is weakly continuous from
[0, T ] into H, for any T > 0. This means that any η ∈ H being given, the function
t→ 〈v(t),η〉 is a continous function of t, where 〈·, ·〉 denotes the scalar product in H (see
in [9, 14, 24, 25, 30]).
Whatever the type of solution one considers, it is not known if it develops a singularity in
finite time [13], which means that for some (t0,x0),

lim
t→t0
x→x0

|v(t,x)| =∞,

a question studied in [2, 7, 23, 28]. Moreover, it is not known if the Leray-Hopf solution
is unique or not.

3 Similarity and Reynolds number

3.1 Dimensions

Each physical field ψ = ψ(t,x) involved in incompressible flows, can be decomposed as

(3.1) ψ = `d`(ψ)τdτ (ψ),

where τ = τ(t,x) a time field (expressed in seconds) and ` = `(t,x) a length field (expressed
in meters). Because of incompressibility, the mass does not play any role in the dimensional
analysis carried out in the following. In the expression above,

(3.2) D(ψ) = (d`(ψ), dτ (ψ)) ∈ Q2,

is the dimension of ψ. Notice that in particular, D(x) = (1, 0), D(t) = (0, 1). Any field ψ
such that D(ψ) = (0, 0) is said to be dimensionless. We also use the standard notation

(3.3) [ψ] = Ld`(ψ)T dτ (ψ),

which is useful in pratical calculations. The following table gives the dimension of the
main scalar fields involved in turbulent flows.

scalar field dimension D
kinematic viscosity ν (2,-1)

scalar velocity u (1,-1)

pressure per mass density p (2,-2)

kinetic energy per mass density E = (1/2)|v|2 (2, -2)

dissipation per mass density ε = 2ν|Dv|2 (2, -3)

The following table gives the main dimension of the vector and tensor fields involved in
turbulent flows.

vector and tensor field dimension D
velocity v (1,-1)

deformation tensor Dv (0,-1)

vorticity ω (0,-1)

Source term f , force per mass unit (1, -2)

stress tensor per mass density (1/ρ)σ (2,-2)
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3.2 Lenght-time bases and generalized Reynolds numbers

Definition 3.1. A length-time basis is a couple

(3.4) b = (λ, τ),

where λ a given constant length and τ a constant time.

Definition 3.2. Let ψ = ψ(t,x) (constant, scalar, vector, tensor...) be any given field
defined on a cylinder Q = [0, T ]× Ω. Let ψb be the field defined by

(3.5) ψb(t
′,x′) = λ−d`(ψ)τ−dτ (ψ)ψ(τt′, λx′), (t′,x′) ∈ Qb =

[
0,
T

τ

]
× 1

λ
Ω,

where t′ and x′ are dimensionless. It is easily checked that ψb is dimensionless. We say
that ψb = ψb(t

′,x′) is the b-dimensionless field deduced from ψ.

Let b = (λ, τ) be the length-time basis related to a given scale, and

(3.6) V = λτ−1,

be the convective associated velocity. We assume in what follows that the kinematic
viscosity ν is constant. Therefore, according to formula (3.5), the b-dimensionless field νb
deduced from ν is expressed as

(3.7) νb = λ−2τν =
ν

V λ
,

by involving the associated convective velocity V given by (3.6). Let Re(b) be the dimen-
sionless number defined by

(3.8) R(b) =
1

νb
=
V λ

ν
.

We observe that Re(b) is of the same form as the Reynolds number used in classical fluid
dynamics, defined as the quotient of the convective forces intensity by the viscous forces
intensity, which is why we call Re(b) a generalized Reynolds number.

3.3 dimensionless form of the NSE

Lemma 3.1. Let b = (λ, τ) be any length-time basis, (vb, pb) be the b-dimensionless field
deduced from (v, p). Then (vb, pb) satisfies the following dimensionless NSE,

(3.9)


∂t′vb + (vb · ∇′) vb − νb∆′vb +∇′pb = fb in Qb,

∇′ · vb = 0 in Qb,
vb = 0 on Γb,
vb = (v0)b at t = 0.

Proof. It is easily checked that for any field ψ = ψ(t,x) of class C1 in time, of class C2 in
space,

∂tψ(t,x) = λd`(ψ)τdτ (ψ)−1∂t′ψb(t
′,x′),(3.10)

∇ψ(t,x) = λd`(ψ)−1τdτ (ψ)∇′ψb(t′,x′),(3.11)

∆ψ(t,x) = λd`(ψ)−2τdτ (ψ)∇′ψb(t′,x′),(3.12)
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where (t,x) = (τt′, λx′). As

d`(v) = 1, dτ (v) = −1, d`(p) = 2, dτ (p) = 1,

we get from (3.5),

(3.13) v(t,x) = λτ−1vb(t
′,x′), p(t,x) = λ2τ−2pb(t

′,x′).

Then (3.9) results from (3.10), (3.11) and (3.12) applied to v and p, combined with (3.13).
�

3.4 Similarity

The pressure in the NSE is defined up to a constant. Therefore, it naturally belongs to
quotient spaces. We denote by p̃ the class of any p in a suitable quotient space, which
does not need to be specified here. For i = 1, 2, let us consider:

i) Q(i) = [0, T (i)]× Ω(i) two cylinders,

ii) ν(i) two kinematical viscosities,

iii) f (i) two forces per mass unit,

iv) v
(i)
0 = v

(i)
0 (x) two velocity fields defined in Ω(i) (i = 1, 2).

Definition 3.3. Let (v(i), p̃(i)) be two flows in Q(i), i = 1, 2. We say that these two flows
are similar if there exist two length-time bases b1 and b2 , such that

(3.14) Q
(1)
b1

= Q
(2)
b2
, (v

(1)
b1
, p̃

(1)
b1

) = (v
(2)
b2
, p̃

(2)
b2

).

Let us consider the NSE equations, for i = 1, 2,

(3.15)


∂tv

(i) + (v(i) · ∇) v(i) − ν(i)∆v(i) +∇p(i) = f (i) in Q(i),

∇ · v(i) = 0 in Q(i),

v(i) = 0 on Γ(i),

v(i) = v
(i)
0 at t = 0.

We assume that the data are such that each of these two NSE have a sufficiently smooth
solution (v(i), p̃(i)). The similarity hypothesis is stated as follows.

Similarity Hypothesis. If there exist two length-time bases b1 and b2 such that

Q
(1)
b1

= Q
(2)
b2
, (v

(1)
0 )b1 = (v

(1)
0 )b2 , f

(1)
b1

= f
(2)
b2
, νb1 = νb2 ,

then the two flows (v(i), p̃(i)) are similar.

It results from the foregoing that the similarity hypothesis is satisfied if and only the
dimensionless form (3.9) of the NSE has a unique solution, which can be made sure for
local time solutions “à la Fujita-Kato”. Global time similarity remains a mathematical
open problem, although it is intensively used in many engineering and environmental
applications.

4 Homogeneous and Isotropic tensor fields

We assume that Ω is a convex set and its boundary (if any) is of class C2. Moreover, we
also assume that Ω̊ 6= ∅. We denote by B0 = (e1, e2, e3) the canonical basis of IR3.
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4.1 Homogeneity

Definition 4.1. Let n ≥ 1 and p ≥ 1 integers, Tp the set of all tensor of order p in IR3.
We say that T is a (n, p)-order tensor field over Ω if it defines a map from Ωn+1 into Tp,

T :

{
Ωn+1 −→ Tp,

(x0, · · · ,xn) −→ T (x0, · · · ,xn) = (Ti1···ip(x0, · · · ,xn))1≤i1,··· ,ip≤3.

Definition 4.2. The (n, p)-order tensor field T is said to be homogenous if and only
if it is invariant with respect to the translations, which means that ∀ r ∈ IR3 such that
∀ j = 0, · · · , n, xj + r ∈ Ω, then T (x0 + r, · · · ,xn + r) = T (x0, · · · ,xn).

The following result is straightforward.

Proposition 4.1. Let T be an homogenous (n, p)-order tensor. Then it only depends on
the n vectors rj = xj − x0, j = 1, · · · , n.

The proof of Proposition 4.1 is straithforward. According to it, we shall denote any
homogeneous tensor T by T = T (r1, · · · , rn).

It is worth noting that all this makes sense when the rj ’s belong to the set

(4.1)
ηn(Ω) = {Pn = (r1, · · · , rn) ∈ IR3n,

∃x0 ∈ Ω such that ∀ j = 1, · · · , n, x0 + rj ∈ Ω},

which is not an empty set. Indeed, as Ω̊ 6= ∅, for some x0 ∈ Ω and r0 > 0, B(x0, r0) ⊂
Ω̊ ⊂ Ω. Therefore,

{Pn = (r1, · · · , rn) ∈ IR3n, |rj | < r0, j = 1, ..., n} ⊂ ηn(Ω).

From now on, we shall deal with ηn(Ω). For example, an homogeneous (1, 1)-order tensor
T = T (r) = (T1(r), T2(r), T3(r)) is a vecteur field defined over η1(Ω). Furthermore an
homogeneous (1, 2)-order tensor can be viewed as a matrix

T = T (r) =

(
T11(r) T12(r)
T21(r) T22(r)

)
.

Throughout the following, we shall write Pn = (r1, · · · , rn) ∈ ηn(Ω).

4.2 Dual action

Any (n, p)-order homogeneous tensor field T = T (Pn) performs a dual action over IR3p as
follows. Let Ap = (a1,a2, · · · ,ap) ∈ IR3p = IR3 × · · · × IR3. We set ai = (ai1, ai2, ai3). It is
therefore natural to define the dual action of T (Pn) at each Pn ∈ ηn(Ω) over IR3p by the
expression

(4.2) [T (Pn), Ap] = Ti1···ip(Pn)ai11 · · · aipp,
that we also could write

(4.3) [T (Pn), Ap] = T (Pn) : a1 ⊗ a2 ⊗ .....⊗ an,

where “ : ” stands for the contracted tensor product, “⊗” the tensor product.
For example, when T = T (r) = (T1(r), T2(r), T3(r)) is a (1, 1)-order tensor, this dual
action is the standard scalar product on IR3,

[T (r),a] = (T (Pn),a) = Ti(Pn) ai.

When T (r) = (Tij(r))1≤ij≤3 is a (1, 2)-order tensor, then

[T (r), (a,b)] = Tij(r)aibj = (T (r) · b,a),

where T (r) · b denotes the product of the matrix T (r) with the vector b.
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4.3 Isotropy

Usually, a tensor field T is said to be isotropic if it exerts the same action regardless of
the direction, a notion that remains to be rigorously defined. To do so, let us introduce
O3(IR) the orthogonal group, characterised by:

Q ∈ O3(IR) if and only if QQt = I3,

where I3 denotes the identity of IR3, Qt the transpose of Q. To well define the notion of
isotropy, we also will need the set

(4.4)
ιn(Ω) = {Pn = (r1, ...., rn) ∈ ηn(Ω),

∀Q ∈ O3(IR), QPn = (Qr1, ...., Qrn) ∈ ηn(Ω)}.

It is easily checked that ιn(Ω) 6= ∅. Finally, let Ap = (a1,a2, · · · ,ap) ∈ IR3p, Q ∈ O3(IR),
and let QAp be specified by

QAp = (Qa1, Qa2, · · · , Qap) ∈ IR3p.

Definition 4.3. Let T be an homogeneous (n, p)-order tensor field over Ω. The tensor T
is said to be isotropic if and only if,

(4.5)
∀Pn ∈ ιn(Ω), ∀Ap ∈ IR3p, ∀Q ∈ O3(IR),

[T (QPn), QAp] = [T (Pn), Ap].

4.4 1-1 isotropic tensor fields

We aim in this section to caracterize 1-1 isotropic tensors. The main result is that the
unique 1-1 isotropic tensor, which is smoth and has a free divergence, is the null tensor.
In the following, any r = (r1, r2, r3) ∈ IR3 being given, we set r = |r| = (r21 + r22 + r23)

1
2 .

Theorem 4.1. Let w = w(r) = (w1(r), w2(r), w3(r)) be a 1-1 order isotropic tensor field.
Then there exists a function a = a(r) such that

(4.6) ∀ r ∈ ι1(Ω), w(r) = a(r)
r

r
.

Assume in addition that w is differentiable over ι1(Ω) \ B(0, r0) for some r0 > 0, and is
incompressible with respect to r. Then if w is not identically equal to zero, there exists a
constant K such that

(4.7) ∀ r ∈ ι1(Ω), w(r) = K
r

r
,

for all r ∈ ι1(Ω) \B(0, r0).

Proof. Let a ∈ IR3, Q ∈ O3(IR). Remember that [w(r),a] = (w(r),a) is the standard
scalar product in IR3. From the isotropy assumption and the relation Qt = Q−1 because
Q ∈ O3(IR), we get the equalities

[w(Qr), Qa] = (w(Qr), Qa) = (Q−1w(Qr),a) = (w(r),a) = [w(r),a].

As this equality holds ∀a ∈ IR3, the isotropy of w yields

(4.8) ∀Q ∈ O3(IR), ∀ r ∈ ι1(Ω), Q−1w(Qr) = w(r).

8



Let r = re1, with r ∈ [0, r0[ such that re1 ∈ ι1(Ω). Let Q ∈ O3(IR) partitioned into 4
blocks of the form

(4.9) Q =

(
1 0
0 P

)
, P ∈ O2(IR).

It is easily checked that Q(e1) = e1. Therefore, we deduce from (4.8)

(4.10) Q−1w(re1) = w(re1).

Let us write w(re1) = (a(r), b(r), c(r))t, that we insert in (4.10), which yields

(4.11) Qw(re1) =

(
1 0
0 P

) a(r)
b(r)
c(r)

 =

 a(r)

P

(
b(r)
c(r)

)  =

 a(r)
b(r)
c(r)

 ,

leading to

P

(
b(r)
c(r)

)
=

(
b(r)
c(r)

)
,

which holds ∀P ∈ O2(IR). Therefore, b(r) = c(r) = 0. Consequently,

w(re1) = a(r)e1.

Let r ∈ ι1(Ω). There exists Q ∈ O3(IR) such that

r

r
= Q(e1).

We deduce from (4.8) that

w(r) = Qw(re1) = a(r)
r

r
,

which concludes the proof of (4.6).
We are left with proving (4.7). Assume that a is of class C1 over [r0, r1[ for some 0 < r0 <
r1, and that w is incompressible over ι1(Ω)\B(0, r0). For simplicity, we put α(r) = a(r)/r.
In this formalism, wi = α(r)ri. Since ∂ir = ri/r, we deduce from the incompressibility
assumption the differential equation

(4.12) ∇ ·w = rα′(r) + α(r) = 0,

Integrating (4.12) over [r0, r1[ yields

α(r) =
K

r

hence the result.

The following corollary is straightforward.

Corollary 1. Let w = w(r) = (w1(r), w2(r), w3(r)) be a 1-1 order isotropic tensor field
of class C1 over ι1, and incompressible over ι1. Then w is identically equal to 0.
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4.5 1-2 isotropic tensor fields

This section is devoted to the characterization of 1-2 isotropic tensor fields.

Theorem 4.2. Let B(r) = (Bij(r))1≤i,j≤3 be a 1-2 order isotropic tensor field. Then there
exists a function Bd = Bd(r) and a function Bn = Bn(r) such that ∀ r ∈ ι1(Ω),

(4.13) B(r) = (Bd(r)−Bn(r))
r⊗ r

r2
+Bn(r)I3.

Proof. Let (a,b) ∈ (IR3)2 be any vector. We already know that

(4.14) [B(r), (a,b)] = Bij(r)aibj = (B(r) · b,a),

The isotropy assumption yields

(4.15) ∀Q ∈ O3(IR), (B(Qr) ·Qb, Qa) = (B(r) · b,a) = (Q−1B(Qr)Qb,a),

where we have used Qt = Q−1. Since this relation holds for all (a,b) ∈ IR3 × IR3, the
isotropy assumption leads to

(4.16) ∀ r ∈ ι1(Ω), Q−1B(Qr)Q = B(r),

or alternatively

(4.17) ∀ r ∈ ι1(Ω), B(Qr)Q = BR(r),

We consider again r = re1 and Q as (4.9), so that Q(e1) = e1. We write

(4.18) B(re1) =

(
Bd(r) wt

v H

)
,

where Bd(r) is a scalar function, v and w vectors in IR2 and H a 2×2 matrix, all depending
on r. We deduce from (4.17),

(4.19) QB(re1) =

(
Bd(r) wt

Pv PH

)
= B(re1)Q =

(
Bd(r) wtP
v HP

)
,

Therefore,

(4.20) ∀P ∈ O2(IR), ∀ (v,w) ∈ IR2 × IR2, Pv = v, wtP = wt, PH = HP,

which yields v = w = 0. Moreover, we know from standard alegbra that only scalar
matrices commute with all matrices in O2(IR), which leads to H = Bn(r)I2, for some
scalar function Bn(r). Summerizing, we have

(4.21) B(re1) =

 Bd(r) 0 0
0 Bn(r) 0
0 0 Bn(r)

 = (Bd(r)−Bn(r)) e1 ⊗ e1 +Bn(r)I3.

Formula (4.13) results from (4.16) combined with (4.21). Indeed, let r ∈ ι1(Ω). There
exists Q ∈ O3(IR) such that r = rQ(e1), and we notice that

Q(e1 ⊗ e1)Q
−1 = (Qe1)⊗ (Qe1) =

r⊗ r

r2
,

because Qt = Q−1.

Remark 4.1. By writting r = (r1, r2, r3), B = (Bij)1≤ij≤3, we deduce from (4.21) the
relations

(4.22)
B11(r, 0, 0) = Bd(r),
B22(r, 0, 0) = B33(r, 0, 0) = Bn(r),
Bij(r, 0, 0) = 0, ∀ i 6= j.
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5 Homeneous and isotropic turbulence

We will have define what is an homogeneous and isotropic turbulence by the end of this
section.

5.1 Statistics and Reynolds Stress

Following [5], chapter 4, we consider a compact set IK of C2,α divergence free vector field
on Ω. We also know from [5] that there exists a probablity measure µ defined on IK.
Moreover, there exists δT > 0 such that for all v0 ∈ IK, the NSE have a unique strong
solution v = v(t,x) for t ∈ [0, δT ], such that v(0,x) = v0(x). By setting v = v(t,x,v0),
the velocity becomes a random variable, which allows to consider the mean field

(5.1) v(t,x) = Eµ(v) =

∫
IK

v(t,x,v0)dµ(v0),

where in addition

(5.2) v(0,x) = v0(x) =

∫
IK

v0(x)dµ(v0).

We will also consider the mean pressure:

(5.3) p(t,x) =

∫
IK
p(t,x,v0)dµ(v0).

We can decompose (v, p) as follows:

(5.4) v = v + v′, p = p+ p′,

which is known as the Reynolds decomposition. The fields v′ and p′ are the fluctuations.
We deduce from standard results in analysis the following Reynolds rules:

∂tv(t,x,v0) = ∂tv(t,x),(5.5)

∇v(t,x,v0) = ∇v(t,x),(5.6)

∇p(t,x,v0) = ∇p(t,x).(5.7)

Moreover, by noting that v = v and p = p, it easily checked that:

Lemma 5.1. The fluctuation’s mean vanishes, i.e.

∀ (t,x) ∈ Qm, v′(t,x,v0) = 0, p′(t,x,v0) = 0.

Therefore, applying Lemma 5.1 and taking the mean of the NSE yields the PDE system

(5.8)


∂tv + (v · ∇) v − ν∆v +∇p = −∇ · σ(r) + f in Qm,

∇ · v = 0 in Qm,
v = 0 on Γ,
v = v0 at t = 0,

where Qm = [0, δT ]×Ω, and by assuming that f is a given constant field. In the equation
above,

(5.9) σ(r) = v′ ⊗ v′

is the Reynolds stress. A thorough presentation of this process can be found in [5]).
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Remark 5.1. Any field ψ related to the flow still satisfies the reynolds rules (5.5) and
(5.6)

Remark 5.2. The average process introduced above does not affect the dimension, in the
sense that

D(ψ) = D(ψ),

for each field ψ related to the flow.

5.2 Correlation tensors, main assumptions

Following Prandtl [26], we consider a ball of fluid δV ⊂ Ω, whose diameter is equal to ` and
which is centered at x0, ` being the Prandtl mixing length at x0. Following Kolmogorov
[21] we consider for (t,x) ∈ [0, δT ]× δV ,

(5.10) w(t,x) = v(t,x)− v(t,x0), w = (w1, w2, w3).

The general n-order correlation tensor T (n) = T (n)(t,x0, r1, · · · , rn) is specified component
by component by the expression

T
(n)
i1···in(t,x0, r1, · · · , rn) = wi1(t,x0 + r1) · · ·win(t,x0 + rn),

We assume that in δV the turbulence is i) stationnary, ii) homogeneous, which is reflected
by:

i) The correlation tensors are invariant under time translation, which yields in this case
that they do not depend on t,

ii) The correlation tensors are invariant under spatial translations, in the sense that

∀ r, T (n)(t,x0, r1 + r, · · · , rn + r) = T (n)(t,x0, r1, · · · , rn).

so far the quantities above are well defined.

Therefore, the correlation tensor does not depend on t nor on x0, that might have been cho-
sen anywhere in δV . Consequently, we can write T (n) = T (n)(r1, · · · , rn), for (r1, · · · , rn) ∈
ηn(δV ) (see Definition 4.1).

Remark 5.3. We could also have set

T
(n)
i1···in(t1, · · · , tn,x0, r1, · · · , rn) = wi1(t1,x0 + r1) · · ·win(tn,x0 + rn),

which is the most general correlation tensor that can be considered, the study of which is
out the scope of this text.

Finally, we assume that the turbulence is isotropic in δV , meaning that all correlation
tensors are isotropic (see Definition 4.3).

Remark 5.4. Notice that w = w(r) is a 1-1 divergence free tensor, which is of class C1,α

over [0, δT ] × δV and isotropic. Therefore, according to Corollary 1, w = 0. The main
consequence is that the mean velocity field v is constant in [0, δT ]× δV . Consequently, the
NSE (5.8) reduces to:

(5.11) ∇ · σ(r) +∇p = f .
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Definition 5.1. We say that the turbulence is homogeneous and isotropic in δV if all the
correlation tensors are homogeneous and isotropic (see Definition 4.3).

Remark 5.5. It is implicitely assumed in [21] that the velocity is a random vector field that
has a distribution function, although the probabilistic space is not specified. This crucial
point is far to be obvious, which remains an open issue in our framework. However, if this
claim is true, then the correlation tensor can also be considered as the momentum of this
distribution function.

Throughout the rest of this text, we shall assume that the turbulence is homogeneous
and isotropic. It must be stressed that this assumption may depend on the choice of the
initial data set IK and the probability measure µ, and we do not know wether there exists
IK and µ such that homogeneity and isotropy is hold.

6 Covariance matrix and the law of the 2/3

6.1 Asymptotic expansion of the covariance matrix

We focus in this subsection on the 1-2 energy tensor, as first introduced in [21, 29]:

(6.1) B(r) = T (2)(r, r),

that we write for simplicity Bij(r) = wi(r)wj(r). This matrix, or tensor, is the covariance
matrix of the vector fields v at x0 and at any next point x. Roughly speaking, it measures
how the velocity at a given point is correlated to the velocity at a next point. In the case
the velocities follow gaussian laws, the velocities are independant random fields if and only
if B is the null matrix, which may be not happend in the non gaussian case.
The main result of this section is Theorem 6.1, which somehow proves relation (25) stated
at the end of [21].
As we have assumed that the turbulence is homogeneous and isotropic in δV , we deduce
from Theorem 4.2 that there exists two scalar functions Bd(r) and Bn(r) such that:

(6.2) B(r) = (Bd(r)−Bn(r))
r⊗ r

r2
+Bn(r)I3.

Moreover, we also know from Remark 4.1 that

Bd(r) = |w1(r, 0, 0)|2,(6.3)

Bn(r) = |w2(r, 0, 0)|2 = |w3(r, 0, 0)|2,(6.4)

∀ i 6= j, wi(r, 0, 0)wj(r, 0, 0) = 0.(6.5)

Lemma 6.1. The following holds:

Bd(0) = Bn(0) = 0,(6.6)

B′d(0) = B′n(0) = 0,(6.7)

Proof. Equality (6.6) results from (6.3) and (6.4) combined with w(0, 0, 0) = 0. To check
(6.7), we use the Reynolds rule (5.6), and we get

B′d(r) = 2
∂w1(r, 0, 0)

∂r1
w1(r, 0, 0),

hence the equality B′d(0) because w(0, 0, 0) = 0. The proof of B′n(0) = 0 is similar.
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Theorem 6.1. Assume that the mean pressure gradient is constant inside δV . Then there
exists a C1 scalar function E = E(r) such that E(0) = E′(0) = 0 and such that

(6.8) B(r) = E(r)
r⊗ r

r2
− 3

2
E(r)I3 + o(r3).

Proof. We denote by ∇x and ∇r the gradient with respect to x and r respectively. The
proof is divided into 3 steps. In the first step, we expand ∇r · B(r) from (6.2) by using
Lemma 6.1. In the second step we expand ∇r · B(r) from the NSE. In the last step, we
combine the two expensions and get the conclusion.

Step 1. We deduce from (6.2) and a standard calculation the relation:

(6.9) ∇r ·B(r) =
r

r2
(
rB′d(r) + (Bd(r)−Bn(r)

)
.

Identities (6.6) and (6.7) yield the Taylor expansion

(6.10)
Bd(r) = αdr

2 + r3εd(r),
Bn(r) = αnr

2 + r3εn(r),

where αn and αd are constant coefficients, εd and εn are smooth bounded functions, the
derivative of which are bounded. Moreover, by (6.3) and (6.4) we get αn ≥ 0 and αd ≥ 0.
Therefore, equality (6.9) becomes

(6.11) ∇r ·B(r) = (3αd − αn)r + r2ε(r),

for some smooth bounded function ε that does not need to be specified.

Step 2. We start from Bij(r) = wi(r)wj(r) combined with wi(r) = vi(x0 + r) − vi(x0),
which yields the decomposition

(6.12) Bij(r) = Mij(r)−Nij(r)− Pij(r) +Qij(r),

where

(6.13)


Mij(r) = vi(x0 + r)vj(x0 + r),

Nij(r) = vi(x0)vj(x0 + r),

Pij(r) = vi(x0 + r)vj(x0),

Qij(r) = vi(x0)vj(x0).

In the following, we set

(6.14) M = (Mij)1≤ij≤3, N = (Nij)1≤ij≤3, P = (Pij)1≤ij≤3, Q = (Qij)1≤ij≤3,

so that decomposition (6.12) becomes

(6.15) B = M−N−P + Q.

We will now use the Reynolds decomposition v = v + v′, and study each term in the r.h.s
of (6.12) one after each other. We recall that σ(r) = (σij)1≤ij≤3 is the Reynolds stress.
(i) — We easily obtain

(6.16)
Mij(r) = vi(x0 + r) . vj(x0 + r) + v′i(x0 + r)vj(x0 + r)+

vi(x0 + r)v′j(x0 + r) + σij(x0 + r).
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As v′ = 0, the second and third term in the r.h.s of this equality vanish, hence

(6.17) Mij(r) = vi(x0 + r) . vj(x0 + r) + σij(x0 + r).

We already know that v is constant inside δV , so that

(6.18) ∇r ·M(r) = ∇r · σ(r)(x0 + r) = ∇x · σ(r)(x),

where x = x0 + r. Therefore, by the averaged (NSE) (5.11), we get the relation

(6.19) ∇r ·M(r) = f −∇xp(x).

(ii) — The incompressibility condition yields

(6.20) ∇r ·N(r) = 0.

(iii) — A similar argmentation as in point (i) allows to write

(6.21) Pij(r) = vi(x0 + r) . vj(x0) + v′i(x0 + r)v′j(x0).

As v is constant in δV , we get ∇r · [vi(x0 + r) . vj(x0)] = 0. The difficult term to deal with
is the second one in the r.h.s (6.21). A Taylor expansion yields

(6.22) v′i(x0 + r) = v′i(x0) +∇xv
′
i(x0) · r + (H(v′i)(x0)r, r) + r3ηi(r),

where ηi is some bounded function, H(v′i)(x0) the Hessian matrix of v′i at x0, which means

(H(v′i)(x0)r, r) =
∂2v′i

∂xp∂xq
(x0)rprq.

On one hand,∇r·v′i(x0)v′j(x0) = 0. On the other hand, a rather straightforward calculation
yields

(6.23)
∂

∂rj

(
∂v′i
∂xq

(x0)rqv′j(x0)

)
=
∂v′i
∂xj

(x0)v′j(x0) =
∂

∂xj

(
v′i(x0)vj(x0)

)
=
∂σij
∂xj

(x0),

where we have used the incompressibility condition combined with the Reynolds rule (5.6).
Finally, let τ (r) denotes the tensor

(6.24) τ (r) = ∇xv′ ⊗ v′ =

(
∂v′i
∂xk

v′j

)
1≤ijk≤3

= (τijk)1≤ijk≤3.

Using the incompressibility condition again and the Reynolds rule (5.6), we get

(6.25)
∂

∂rj
(H(v′i)(x0)r, r)v′j(x0) =

∂τijk
∂xj

rk.

Therefore, these calculations lead to

(6.26) ∇r ·P = ∇x · σ(r)(x0) +∇x · τ (r)(x0) · r + r2η(r),

which yields, by the averaged (NSE) (5.11),

(6.27) ∇r ·P = f −∇xp(x0) +∇x · τ (r)(x0) · r + r2η(r).
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(iv) — As Q does not depend on r, we obviously have

(6.28) ∇r ·Q = 0.

Step 3. By combining (6.15), (6.19 ) , (6.20 ), (6.27 ) and (6.28 ), we obtain the asymptotic
expansion

(6.29) ∇r ·B = −∇xq(r)−∇x · τ (r)(x0) · r− r2η(r),

by setting

(6.30) q(r) = q(x0 + r)− q(x0).

As we have assumed that the mean pressure gradient is constant inside δV , the firts term
in the r.h.s of (6.29) vanishes, so that

(6.31) ∇r ·B = −∇x · τ (r)(x0) · r− r2η(r),

that we combine with (6.11), which leads to

(6.32)
[
(3αd − αn)Id +∇x · τ (r)(x0)

]
· r + r2γ(r) = 0,

for some bounded function γ. Since this equality holds regardless of r, whose norm is
small, we deduce

(6.33) (3αd − αn)Id +∇x · τ (r)(x0) = 0.

We observe that the diagonal coefficients of the matrix ∇x · τ (r)(x0) satisfy

∂τiji
∂xj

=
∂

∂xj

(
∂v′i
∂xi

v′j

)
= 0,

because of the incompressibilty condition. Consequently, the following holds:

3αd = αn,(6.34)

∇x · τ (r)(x0) = 0,(6.35)

in particular

(6.36) Bn(r) = 3Bd(r) + o(r3),

hence formula (6.8) by setting E(r) = −2Bd(r).

Remark 6.1. The assumption that the gradient of the mean pressure is constant is not too
restrictive. Experiments suggest that this is indeed verified by flows in pipes or in boundary
layers. However, the general case remains an open problem.

Remark 6.2. In [21] the general two order correlation tensor is considered as a bilinear
form, which directly provides the formula

B(r) = E(r)
r⊗ r

r2
− 3

2
E(r)I3,

without using the NSE. We do not know how to prove this bilinearity property.
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6.2 Derivation of the law of the 2/3

We prove in this section the law of the 2/3, specified by (6.51) below, under assumption
6.1. The previous section states that,

(6.37) B(r) ∼ E(r)
r⊗ r

r2
− 3

2
E(r)I3,

and near 0

(6.38) E(r) ≈ r2.

The function E(r) is obviously defined in [0, `]. The question is the behavior of E(r) when
r differs from 0. According to Kolmogorov [21], we assume that E is entirely driven in δV
by the kinematic viscosity ν and the mean dissipation at x0, specified by

E = 2ν|Dv(x0)|2.

It is easily checked that ν and E are dimensionally independant. We deduce from these
quantities the length-time basis b0 = (λ0, τ0), where

(6.39) λ0 = ν
3
4 E −

1
4 , τ0 = ν

1
2 E −

1
2 .

The lenght scale λ0 is known as the “Kolmogorov scale”. Following Definition 3.2 and by
the table in section 3.1, we get

(6.40) ∀ r′ ∈ [0,
`

λ0
[, E(λ0r

′) = (νE )
1
2Eb0(r′).

We first assume that

(6.41) λ0 << `,

so that we can consider as a first approximation for the simplicity,[
0,

`

λ0

[
∼ IR+.

The main Kolmogorov assumption can be translated as follows: there is a range [r1, r2],
satisfying

(6.42) λ0 << r1 << r2 << `,

and such that in the range [r1, r2], E is uniquely determined by E . This last sentence
can lead to confusion, and the concept needs to be made more specific and rigorous by
a definition similar to Definition 3.3, based on a similarity statement. Therefore we shall
assume the following:

Assumption 6.1. For all lenght-times bases b1 = (λ1, τ1) and b2 = (λ2, τ2),

(6.43) Eb1 = Eb2 ⇒ ∀ r′ ∈
[
r1
λ1
,
r2
λ1

]
∩
[
r1
λ2
,
r2
λ2

]
, Eb1(r′) = Eb2(r′).

In the following, we set

r′1,0 =
r1
λ0
, r′2,0 =

r2
λ0
.
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Proposition 6.1. If assumption 6.1 holds, then there exists a constant C such that

(6.44) ∀ r′ ∈ [r′1,0, r
′
2,0], Eb0(r′) = C(r′)

2
3 .

Proof. The proof is based on the determination of a functional equation satisafied by Eb0 .
Let α > 0, and b(α) = (α3λ0, α

2τ0). This choice is motivated by the equality

(6.45) ∀α > 0, Eb(α) = Eb0 ,

which is easily checked. Therefore,

(6.46) ∀ r′ ∈ Iα = [r′1,0, r
′
2,0] ∩

[
r′1,0
α3

,
r′2,0
α3

]
, Eb(α)(r

′) = Eb0(r′),

which is consistant so far
r1
r2
< α <

r2
r1
.

According to (6.42), statement (6.46) makes sense for a large range of α ∈ IR?
+. By

Definition 3.2, we get

(6.47) E(λ0α
3r′) = α2(νE )

1
2Eb(α)(r

′),

hence, ∀ r′ ∈ Iα,

(6.48) Eb(α)(r
′) =

1

α2(νE )
1
2

E(λ0α
3r′) = Eb0(r′),

where we have used (6.46). We combine (6.40) with (6.48), which yields

(6.49) Eb0(r′) =
1

α2
Eb0(α3r′).

We deduce from equation (6.49) by standard calculations

(6.50) ∀r′ ∈ [r′1,0, r
′
2,0], Eb0(r′) =

(
Eb0(r′1)

(r′1)
2
3

)
(r′)

2
3 ,

which concludes the proof.
In conclusion, combining (6.39), (6.40) and (6.50) by writting r′ = r/λ0, we get

(6.51) ∀r ∈ [r1, r2], E(r) = C(E r)
2
3 ,

which is indeed the law of the 2/3 as initially found in [21, 29].
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