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A B S T R A C T  9 

This paper studies a hybrid system for cold production consisting of a compression cycle combined with a thermochemical process 10 

by sharing the same condenser, evaporator and refrigerant fluid. The aim of this hybridization is to solve mismatch issues between 11 

the demand of cold and the source of energy (availability and/or price) with a system as compact as possible. One important side 12 

benefit is that the interaction between the compressor and the thermochemical reactor reduces the activation temperature for 13 

ammonia desorption in the thermochemical reactor. To study this interaction a quasi-steady simulation model for both storage 14 

and de-storage phases has been developed and experimentally validated by means of a small scale (approx. 300 Wh of cold 15 

storage) experimental bench with ammonia as refrigerant and barium chloride (BaCl2) as reactant salt. Experiments proved a 35 16 

K reduction in the activation temperature of the desorption reaction with respect to desorption without compressor. Model 17 

validation by adjusting permeability and thermal conductivity of the reactive composite showed an acceptable agreement between 18 

predicted and experimental reaction advancement-time curves. The validated model was used for simulation of the system in a 19 

preliminary case study, representative in power (40 kW) and temperature (-25°C) of an industrial cold demand. It is shown that 20 

during ammonia de-storage, the hybrid achieves a higher COP than a conventional mechanical vapor compression system. It 21 

increases exponentially with the relative share of thermochemical storage in the cold production. 22 

Keywords: Refrigeration, Hybrid system, Vapor compression refrigeration, Thermochemical storage, Low-grade heat source, 23 

Heat and mass transfer. 24 

H I G H L I G H T S  25 

 Compression-thermochemical cooling system with electricity & low-grade heat input. 26 

 35 K heat source temperature reduction through compression-assisted desorption. 27 

 Quasi-steady simulation model validated accounting for heat and mass transfers. 28 

 Preliminary case study with bi-stage compression and cold production at -25 ºC. 29 

 2 times higher COP than vapor compression during ammonia de-storage phase. 30 
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Nomenclature   

    

Names and variables Greek symbols 

    

G Gas  Increment 

h Specific enthalpy, kJ·kg-1or kJ·mol-1  Fraction of cold produced by the thermochemical subsystem 

during synthesis phase

k Permeability, m2  Efficiency 

M Molar mass, kg·kmol-1  Effective thermal conductivity, W·m-1·K-1 

m Mass, kg  Dynamic viscosity, Pa·s 

𝑚̇ Mass flow rate, kg·s-1  Density, kg·m-3 

𝑛̇ Mole flow rate, mol·s-1 𝜌̃ Apparent density, kg·m-3 

P Pressure, bar  Compression ratio 

𝑄̇ Heat power, kW  Reaction’s stoichiometric coefficient, mole-gas·mole-salt-1 

Q Heat, kWh  COP ratio between hybrid system and MVC system 

R Thermochemical Reactor  Moles of refrigerant in the fully discharged salt 

ℜ Ideal gas constant, J·mol-1·K-1  

r Radius, m Subscripts and Superscripts 

S Solid   

s Specific entropy, J·kg-1·K-1or J·mol-1·K-1 º Reference point 

T Temperature, ºC 0 Fully discharged reactive salt (X = 0) 

t Time, h 1 Fully charged reactive salt (X = 1) 

Uw Global heat transfer coefficient, W·m-2·K-1 c Constraint temperature or pressure applied to the reactor 

V Volume, m3 cd Condenser 

𝑉̇ Volumetric flow rate, m3·s-1 dec Decomposition phase 

v Specific volume, m3·kg-1 d Gas diffuser 

𝑊̇ Power, kW ev Evaporator 

W Work, kWh eq Equilibrium 

w Mass fraction, kg·kg-1 f1 Mass transfer-limited reaction front 

X Reaction advancement degree (-) f2 Heat transfer-limited reaction front 

Z Axial coordinate and length of reactive composite, m h High temperature or pressure level 

  HP Relative to High-Pressure compressor 

Acronyms HYB Hybrid system 

  i Inlet 

CAD Compression-Assisted Decomposition l Low temperature or pressure level 

COP Coefficient Of Performance LP Relative to Low-Pressure compressor 

D# Decomposition reaction experiment (# goes from 1 to 3) m Medium temperature or pressure level 

Dec Energy storage density of the reactive composite, kWh-heat / 

m3-composite (based on heat of reaction) 

min Minimum 

ENG Expanded Natural Graphite MVC Mechanical Vapor Compression 

EV Expansion Valve o Outlet 

HCTRS Hybrid Compression-Thermochemical Refrigeration System r Reaction, reactor, or reactive composite 
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L/V Liquid / Vapor rd Decomposition reaction 

MVC Mechanical Vapor Compression rs Synthesis reaction 

MX Metal halide s Isentropic 

S# Synthesis phase experiment (# goes from 1 to 3) sa Anhydrous reactive salt 

TCH Thermochemical syn Synthesis phase 

TOD Thermally-Only activated Decomposition syn-dec Complete TCH cycle (synthesis and decomposition) 

V-XX Valve number XX (goes from 01 to 16) TCH Thermochemical 

  w Reactor’s wall 

1. Introduction 31 

The current need to reduce GHG emissions and decarbonize energy systems has increased the interest of using 32 

renewable sources and recovering low-grade waste heat in the recent decades [1]. The impact of cold production in 33 

the commercial sector is not negligible: for instance, supermarkets and hypermarkets represent 56 % of the total 34 

demand of cold in France’s commercial sector [2]. Compression refrigeration is a mature technology, and if applied 35 

for solar operation, it can also benefit from the competitive costs of solar photovoltaic (PV) technology [3]. A classic 36 

problem is the mismatch between the solar resource and the cold demand [4,5]. If this mismatch is solved by having 37 

the system connected to the grid, it happens that the price of this source is variable, thus creating another type of 38 

mismatch (cold demand/source price). An answer to the problem of mismatch is energy storage, to store surplus cold 39 

during favorable periods (sunshine hours or low price of the source) for later use [6]. One idea is placing phase 40 

change materials (PCM) in the cold delivery unit, which has been studied experimentally for solar-PV compression 41 

refrigeration driven with DC motor [7]. Otherwise, the storage can be placed outside of the unit, as studied 42 

experimentally for solar-PV air conditioning with ice thermal storage [8], for instance, or the energy can be stored by 43 

means of batteries [9].  44 

Thermochemical processes allow mid- and long-term energy storage with nearly negligible heat losses [10], for 45 

several applications such as solar air conditioning [11], cooling + heating [12], or long-term storage of solar energy 46 

[13]. Another interesting application proposed is deep-freezing [14], by means of a cascading process that has the 47 

added benefit of being driven by low-grade heat. Indeed, thermochemical systems can utilize low-grade to mid-grade 48 

heat sources depending on the choice of reactive pair [15], and usually, several useful effects can be obtained from 49 

these systems, such as cascaded use and storage of solar thermal energy [16], especially when they are configured 50 

with two reactive beds [17,18]. Several of the systems in these studies are ammonia-based [19]. The idea of replacing 51 

the condenser/evaporator with a secondary adsorbent reactor has also been investigated, under the name of 52 

resorption [20]. The notable advantages of thermochemical processes can make these processes economically 53 
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competitive in the near future. The idea of combining the maturity of vapor compression with the prospective 54 

competitiveness of thermochemical storage seems promising. 55 

The coupling of absorption or desorption processes with mechanical vapor expansion or compression was 56 

patented by Moritz Honigmann in 1883 [21]. Recently, the so-called ‘Honigmann process’ was re-evaluated by 57 

Jahnke et al. [22] as thermochemical storage producing power during desorption phase, and later simulated for the 58 

LiBr/H2O and NaOH/H2O working pairs [23]. Bao et al. developed the idea of combining thermochemical processes 59 

with vapor compression [24] and with vapor expansion [25]. The concepts were presented under the name of 60 

‘integrated chemisorption cycles’, and the suggested applications were ultra-low grade (30 ºC – 100 ºC) heat recovery 61 

and thermo-electric energy storage. The study considered ammonia as working fluid and manganese chloride 62 

(MnCl2), calcium chloride (CaCl2) and sodium bromide (NaBr) as reactant salts. The coupling between the reactor 63 

and the compressor is reported to show some instabilities because of the variable flow rate of ammonia entering the 64 

compressor, and one solution proposed for similar systems (expansion/thermochemical) is to place a buffer tank at 65 

the reactor outlet to reach constant inlet rate of ammonia [26,27]. Recently, Ferruci et al. [28] pursued the concept of 66 

thermochemical storage driven by mechanical vapor compression activated by solar-PV energy. The system was 67 

proposed with ammonia as refrigerant and barium chloride (BaCl2) as reactant salt for cooling applications, 68 

highlighting as main strengths the thermochemical storage and the possibility of using low-temperature heat sources 69 

thanks to the compressor aiding the desorption of ammonia in the reactor.  70 

Further studies on this hybrid thermochemical/compression system are not abundant, although several 71 

experimental studies exist with thermochemical systems alone, especially with the NH3/BaCl2 reaction, and 72 

mechanical vapor compression refrigeration is a mature technology. In addition, other concepts very similar to 73 

hybridization have been proposed, for instance an adsorption/compression cascade system [29]. The idea of coupling 74 

mechanical vapor compression with thermochemical storage can result in interesting hybrid systems with high 75 

potential for waste heat utilization, and their experimental study is feasible.  76 

This paper investigates further into this idea and studies experimentally an ammonia-based refrigeration system 77 

consisting in the hybridization of compression refrigeration with thermochemical storage implementing the NH3/BaCl2 78 

pair [30]. The main novelties of this paper with respect to literature are the approach chosen for simulation as well as 79 

the experimental validation. The system utilizes low-grade heat thanks to its compression-assisted reduction of 80 

activation temperature (described in Section 2), and benefits from the advantages of thermochemical storage. The 81 

absorption, desorption, and compression-assisted desorption stages are simulated by means of a quasi-steady dual-82 

front model (Section 3). An experimental bench was built to validate the model by adjusting composite’s permeability 83 
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and thermal conductivity, the most representative parameters of mass and heat transfer respectively (Section 4). 84 

Experimental results show a 35 K reduction in heat source temperature thanks to the compression-assisted 85 

desorption. The validated model is then used for simulation in a simplified case study (Section 5) of a different 86 

configuration of the hybrid system operating at different conditions with the NH3/SrCl2 and the NH3/CaCl2 pairs. This 87 

preliminary case study is offered for a permanent production of 40 kW cold at -25 ºC which is representative of the 88 

needs for cold stores of supermarkets.  89 

2. System description 90 

Figure 1 depicts the operating principle of the hybrid compression-thermochemical refrigeration system (HCTRS) 91 

on a simplified Clausius-Clapeyron diagram. The vapor/liquid equilibrium of pure refrigerant is represented with a 92 

green line, and the red line represents a reversible solid/gas thermochemical reaction. The HCTRS consists of two 93 

subsystems: the mechanical vapor compression (MVC) subsystem, made up of a compressor, a condenser, an 94 

expansion valve and an evaporator; and the thermochemical (TCH) subsystem, made up of a thermochemical 95 

reactor, the condenser, a storage tank, the expansion valve and the evaporator. The hybridization consists of the 96 

same condenser, expansion valve, evaporator and refrigerant fluid being shared by both subsystems. The HCTRS 97 

requires an input of both electric and thermal energy and operates within 3 temperature levels and at least 2 pressure 98 

levels. Indeed, each subsystem can be operated separately from the other, but for the sake of simplicity, Fig. 1 99 

focuses only on the three most characteristic operating modes. 100 

   

 

Fig. 1a: Simultaneous production of 

cold with the thermochemical 

subsystem (synthesis phase) and 

with the mechanical vapor 

compression subsystem, depicted 

in the Clausius-Clapeyron diagram. 

 

Fig. 1b: Cold production by the 

mechanical vapor compression 

subsystem with simultaneous storage 

of refrigerant by the thermochemical 

subsystem activated by thermal 

source only (classic decomposition 

phase) at condenser pressure. 

 

Fig. 1c: Cold production by 

mechanical vapor compression and 

simultaneous thermochemical storage 

of refrigerant activated by low-grade 

thermal energy at P < Ph, thanks to the 

compressor (compression-assisted 

decomposition). 
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The first one is simultaneous cold production by the MVC and the TCH (Fig. 1a). Stored refrigerant from the TCH 101 

is released into the evaporator and provides additional cold production. This can be used to assist the MVC in periods 102 

of peak demand with unstable electric source, or to reduce its load in the case of a stable electric source but with 103 

higher price. Thanks to the thermochemical process, the energy storage saves one step of energy conversion during 104 

the discharge stage, reducing the inertia of the system in comparison with electricity storage in batteries. Refrigerant 105 

vapor leaving the evaporator is divided into two streams: one enters the compressor for the MVC cycle, and the other 106 

reacts with the salt inside the TCH reactor, in an exothermic process with the reaction heat released at ambient 107 

temperature. 108 

The second characteristic mode of the hybrid system is the possibility of producing cold by MVC while storing 109 

ammonia with the TCH activated with a heat source (Fig. 1b). Both ammonia streams leaving the compressor and 110 

the reactor join before entering the condenser. The part corresponding to TCH storage is kept in a tank right after 111 

condensing. This mode will be hereinafter called ‘Thermally-Only activated Decomposition’ (TOD) in this study. In 112 

TOD, activation temperatures can be relatively high depending on reactive pair and condenser pressure. This may 113 

force to discard certain heat sources that do not have enough temperature, as sometimes happens with classical 114 

TCH systems because of their monovariant equilibrium. Nevertheless, in the HCTRS the reactor and compressor 115 

can be connected to facilitate decomposition reactions at pressures lower than the condenser pressure, and therefore 116 

lower activation temperatures.  117 

The third and most interesting operating mode, ‘Compression-Assisted Decomposition’ (CAD, Fig. 1c), makes 118 

this connection possible. The compressor allows the reactor pressure to be different from the condenser pressure, 119 

granting an additional degree of freedom. This allows decomposition at low pressure (Pl) simultaneously to MVC cold 120 

production. Of course, operating pressure can be adjusted to any value between Pl and Ph (it could be regarded as 121 

a ‘floating’ pressure level), to utilize any waste heat at the required temperature level for this suction pressure. This 122 

possibility can be investigated until process activation at ambient temperature: this case may well imply reactor 123 

pressures even lower than the low pressure level itself. The CAD enables low-grade waste heat recovery, as well as 124 

selection of well-performant reactive pairs (such as ammonia-barium chloride) despite heat source temperatures 125 

below reaction equilibrium temperature at condenser pressure. 126 

The reversible solid/gas thermochemical reaction is usually written as in eq. (1). <MX> is a metallic salt reacting 127 

between  and ( + ) moles of refrigerant gas (G),  is the stoichiometric coefficient and ∆hr
º is the standard enthalpy 128 

of reaction. The equilibrium formed by G, <MX·G> and <MX·( +)G> is monovariant and represented by eq. (2), 129 
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where values of ∆ℎ𝑟
0 and ∆𝑠𝑟

0 referred by mole of gas (ammonia) are given by Touzain [31] for each reactive pair and 130 

assumed constant with respect to temperature. The reference pressure P0 is 1 bar. 131 

 〈𝑀𝑋 · 𝜉𝐺〉 + 𝜈(𝐺)  ⇌  〈𝑀𝑋 · (𝜉 + 𝜈)𝐺〉 +  𝜈 · ∆hr
°          (1) 132 

ln (
𝑃𝑒𝑞

𝑃° ) =
−∆ℎ𝑟

°

ℜ·𝑇𝑒𝑞,𝑟
+

∆𝑠𝑟
°

ℜ
            (2) 133 

3. Modeling 134 

The sizing of the two essential components of the HCTRS hybrid system, namely the compressor and the reactor, 135 

depends mainly on the temperatures of the heat sources and sinks (in particular the one to which the cold is 136 

delivered), the desired cooling power and the scenario of storage and restitution, i.e. the energies and respective 137 

powers provided by the two subsystems MCV and TCH. For common applications, such as the one discussed in 138 

Section 5, the sizing of the compressor is straightforward (issue from suppliers' catalogs). It must be able to aspirate 139 

the sum of both ammonia flow rates coming from evaporator and reactor in CAD phase. 140 

On the other hand, the design of the reactor is not so obvious. Indeed the running of the solid / gas reactor is 141 

intrinsically unsteady, with instantaneous power decreasing overall between the beginning and the end of the 142 

reaction, both in synthesis and in decomposition phases, and even when the thermodynamic constraints (T and P) 143 

applied to the reactor are kept stable. The modeling of this hybrid system is therefore more complex, and even more 144 

so when the reactor is coupled to the compressor during the CAD phases, given the antagonistic contributions of the 145 

compressor and the reactor that affect the reactor pressure: the decomposition reaction releases refrigerant gas 146 

(thus contributing to pressure increase) while the compressor removes it (thus contributing to pressure decrease). 147 

In all cases, including purely thermal decompositions (TOD), reactor modeling is necessary to estimate the 148 

performance of HCTRS systems with different solid / gas reactions, thermodynamic constraints and reactor sizes. 149 

This modeling, detailed below, allowed to firstly dimension an experimental bench of a HCTRS system with a small 150 

power, and secondly to fit with sufficient precision the parameters of the model on a whole series of experiments. 151 

3.1. Model’s hypotheses 152 

There are several more or less sophisticated models able to describe solid / gas reaction rate as a function of the 153 

implementation of the reagent, the applied thermodynamic constraints (Tc, Pc) and the geometry of the inner heat 154 

exchanger and gas diffuser. The most accurate [32] is based on the resolution of a system coupling the equation of 155 

heat and that of mass conservation, including the terms of accumulation (i.e. sensible heat and variation of mass of 156 
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gas in the porous volume). In this model, the gas flow rates and the reaction heat fluxes are connected by a kinetic 157 

law of transformation of the reactive grain, which is a function of a local deviation from the thermodynamic equilibrium. 158 

On the other hand, the simplest model [33] assumes a uniform and constant temperature of the reactant during the 159 

reaction and a reaction rate solely as a function of an overall coefficient of heat exchange between the reactive solid 160 

and the coolant. The model used here is of intermediate complexity; it neglects the terms of accumulation and 161 

therefore does not adequately reflect evolutions in the temperature and pressure profiles within the reactive fixed 162 

bed. On the other hand, it correctly accounts for reactor power evolutions that are more useful for quantifying the 163 

performance of an HCTRS system. 164 

The model is constructed for a reactive medium with a cylindrical geometry (Fig. 2) and calculations are carried 165 

out in the radial direction. Refrigerant gas (assumed as a perfect gas) at the constraint pressure Pc leaves or enters 166 

the cylindrical reactor through a gas diffuser in its axis, and the constraint temperature Tc is applied via a heat transfer 167 

fluid circulating through an external coil exchanger at the peripheral wall. The advancement degree of the reaction is 168 

bound to limitations of heat transfer and mass transfer, and the model takes both into account. 169 

 

 

Fig. 2: Schematic view of the thermochemical reactor. 

During synthesis, dark grey area represents salt that 

already reacted and light grey area corresponds to salt that 

is yet to react, and vice versa during decomposition phase. 

The yellow (at rf2) and grey (at rf1) boundaries are the two 

fronts of reaction. 
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The main hypothesis of this model (also detailed in [32,34]) is the existence of two ‘sharp’ reactive fronts, after 170 

named by simplicity: the “heat front” (identified by the index f2 and located at the radius rf2 in Fig. 2), based on a 171 

purely heat transfer limiting case, moving from the reactor wall (rw) to the gas diffuser (rd), and the “mass front” 172 

(identified by the index f1 and located at the radius rf1 in Fig. 2), based on a purely mass transfer limiting case, moving 173 

from the gas diffuser to the reactor wall. From a cross-section view of the solid reactive medium, two areas can be 174 

distinguished at an intermediate time of the reaction: in synthesis phase, the dark grey area represents the reactive 175 

medium that has fully reacted (i.e. at X = 1) and the light grey area represents the one that is yet to react (i.e. at X = 176 

0), and vice versa in decomposition phase. The reaction ends when reactive fronts finally meet each other, which 177 

happens at a radial position that depends on experiment conditions. Main model hypotheses are: 178 

 Heat transfer and mass transfer are the two limiting phenomena, while reaction kinetics is not. So on the two 179 

reaction fronts the local temperature and pressure couples (Tf1,Pf1) and (Tf2,Pf2) correspond to the thermodynamic 180 

equilibrium (eq. 3) and heat power and mass flow given by the reaction are function of the heat and mass transfer 181 

properties of the fixed bed on one hand, and on the other hand of the temperature drop and pressure drop between 182 

these fronts and the exchanger wall and gas diffuser respectively and between the two fronts also. 183 

 Composite properties and conditions (pressure, temperature) are uniform along the axial direction. 184 

 Convective heat transfer between refrigerant gas and reactive composite is neglected. 185 

 Accumulation terms are neglected (sensible heat and accumulation of refrigerant gas within the porous 186 

volume of the reactive). 187 

 Pseudo-steady state is assumed between the two successive advancements of reaction (X and X + ΔX), 188 

therefore T, P and dX/dt (rate of reaction) do not vary in this interval. 189 

3.2. Model’s governing equations 190 

Some of the following equations are available for the decomposition reactions (equations noted #d); those of 191 

synthesis (equations noted #s) are similar with in particular an inversion of the heat and mass transfer coefficients 192 

between the reactive medium that have fully reacted and the un-reacted one (see below). 193 

𝑙𝑛 (
𝑃f#(𝑡)

𝑃°
) = −

∆hr
°

ℜ·𝑇f#(𝑡)
+

∆sr
°

ℜ
         {# = 1,2}          (3) 194 
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Conventionally the global advancement X evolves between 1 and 0 for a decomposition reaction. It is linked by 195 

(4d) to the partial advancements Xf1 and Xf2, which are themselves function of the radial position of the two fronts 196 

(5d, 6d). 197 

𝑋(𝑡) = (𝑋𝑓1(𝑡) + 𝑋𝑓2(𝑡)) − 1 = 𝑋(𝑡 − 1) − ∆𝑋                   (4d) 198 

𝑋𝑓1(𝑡) = 1 −
𝑟𝑓1

2 (𝑡)−𝑟𝑑
2

𝑟𝑤
2 −𝑟𝑑

2                       (5d) 199 

𝑋𝑓2(𝑡) = 1 −
𝑟𝑤

2 −𝑟𝑓2
2 (𝑡)

𝑟𝑤
2 −𝑟𝑑

2                       (6d) 200 

 At each simulation step, the new X is calculated from the previous one with the selected step ΔX (4d). The 201 

advancement degrees related to the progression of the heat and mass fronts are calculated by means of the individual 202 

and global speeds of reaction (by deriving eq. 4d), and the global reaction rate is the sum of the reaction rates of 203 

both fronts. The gas flows and heat powers within the reactive fixed bed are deduced respectively from the application 204 

of Darcy's law and Fourier's law. In addition, the gas flows and heat powers are coupled via the enthalpy of reaction 205 

or alternatively via the energy density of the reactive composite (eq. 7). 206 

𝑄̇#(𝑡) =    𝑛#̇(𝑡). ∆ℎ𝑟
°   = 𝑛𝑠 . 𝜈.

𝑑𝑋#

𝑑𝑡
(𝑡). ∆ℎ𝑟

°  = [𝐷𝑒𝑐 · 𝜋 · Z · (𝑟𝑤
2 − 𝑟𝑑

2) ] .
𝑑𝑋#

𝑑𝑡
(𝑡)  {# = 𝑓1, 𝑓2 , 𝑜𝑟 𝑛𝑜 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡 } (7) 207 

The spatial integration of the Darcy and Fourier equations in radial unidirectional transfers and steady state is 208 

done for: 209 

- the total molar gas flow 𝑛̇(𝑡) between the boundaries rf1 and rd (eq. 8d); 210 

- the molar flow of gas 𝑛̇𝑓2(𝑡) desorbed by the so-called "heat front" between boundaries rf2 and rf1 (eq. 9d) ; 211 

- the total heat power 𝑄̇(𝑡) between the boundaries rw and rrf2 (eq. 10d); 212 

- the heat power 𝑄̇𝑓1(𝑡) absorbed by the so-called "mass front" between the boundaries rf2 and rf1 (eq. 11d). 213 

𝑛̇(𝑡)·ℜ·𝑇𝑐

2𝜋·Z
= [𝐷𝑒𝑐 · (𝑟𝑤

2 − 𝑟𝑑
2) ]  ·  

𝑑𝑋

𝑑𝑡
(𝑡) ·

ℜ·𝑇𝑐

2.∆ℎ𝑟
° = {

𝑘0

2·𝜇
[𝑃𝑐

2 − 𝑃𝑓1
2 (t)]} 𝑙𝑛 [

𝑟𝑓1(𝑡)

𝑟𝑑
]⁄               (8d) 214 

𝑛̇𝑓2(𝑡)·ℜ·𝑇𝑐

2𝜋·Z
= [𝐷𝑒𝑐 · (𝑟𝑤

2 − 𝑟𝑑
2) ]  ·  

𝑑𝑋𝑓2

𝑑𝑡
(𝑡) ·

ℜ·𝑇𝑐

2.∆ℎ𝑟
° = {

𝑘1

2·𝜇
[𝑃𝑓1

2 (t) − 𝑃𝑓2
2 (t)]} 𝑙𝑛 [

𝑟𝑓2(𝑡)

𝑟𝑓1(𝑡)
]⁄              (9d) 215 

𝑄̇(𝑡)

2𝜋·Z
= 𝐷𝑒𝑐 · (𝑟𝑤

2 − 𝑟𝑑
2)  ·  

𝑑𝑋

𝑑𝑡
(𝑡) ·

ℜ·𝑇𝑐

2
= {𝜆0 · [𝑇𝑓2(𝑡) − 𝑇𝑤(𝑡)]} 𝑙𝑛 [

𝑟𝑤

𝑟𝑓2(𝑡)
] =⁄ 𝑟𝑤 · Uw0 · [𝑇𝑤(𝑡) − 𝑇𝑐]         (10d) 216 
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𝑄̇𝑓1(𝑡)

2𝜋·Z
= [𝐷𝑒𝑐 · (𝑟𝑤

2 − 𝑟𝑑
2) ]  ·  

𝑑𝑋𝑓1

𝑑𝑡
(𝑡) ·

ℜ·𝑇𝑐

2
= {𝜆1 · [𝑇𝑓1(𝑡) − 𝑇𝑓2(𝑡)]} 𝑙𝑛 [

𝑟𝑓2(t)

𝑟𝑓1(𝑡)
]⁄            (11d) 217 

Where k0, k1 are the permeability of the fixed layers respectively at X = 0 and X = 1, 0, 1 are the conductivities of 218 

the same fixed layers and Uw0 a global heat transfer between the heat transfer fluid and the reactive salt (also at 219 

X=0 from the beginning of the decomposition) at the inner boundary of the heat exchanger wall of the reactor which 220 

involves the temperature Tw (variable during the reaction) at this interface. Dec is the energy density refer to the heat 221 

of reaction and the apparent volume of the reactive composite 𝑉̃𝑐 and it is linked to two other implementation 222 

parameters (eq. 12): the mass fraction of anhydrous salt (wsa) and the apparent density of expanded natural graphite 223 

(ρ̃ENG). Indeed, the reactive salt is mixed with expanded natural graphite (ENG) because this binder, which is 224 

chemically inert, makes it possible to obtain a reactive, porous and consolidated composite having much better heat 225 

transfer properties than a simple fixed bed consisting of salt alone [35], and hence a better specific power of the 226 

reactor. The high porosity of ENG leaves plenty of empty space within the reactive bed. When the grains of barium 227 

chloride react with ammonia and swell up, this empty space prevents agglomeration and ensures that the contact 228 

surface between the salt and the ammonia is always sufficient. 229 

Consequently for the implementation of the composite there are two degrees of freedom since the mass ratio of 230 

anhydrous salt (wsa) and the final volume of the composite can be controlled in a wide range (unlike what is possible 231 

with salt alone). The values, given in Table 2 (next section), of the two implementation parameters chosen, wsa and 232 

𝝆̃𝑬𝑵𝑮 (this last one being the ratio between mass of binder and apparent volume of composite) correspond to a 233 

compromise between the specific reactor power and its energy density Dec, the latter parameter being a function of 234 

the other two. 235 

𝐷𝑒𝑐 =
𝑛𝑠·𝜈·∆ℎ𝑟

°

𝑉̃𝑐
=

wsa

1−wsa
· ρ̃ENG ·

𝜈·∆ℎ𝑟
°

Msa
                   (12) 236 

For the reaction of synthesis the global advancement X evolves now between 0 and 1, so: 237 

𝑋(𝑡) = (𝑋𝑓1(𝑡) + 𝑋𝑓2(𝑡)) = 𝑋(𝑡 − 1) + ∆𝑋                   (4s) 238 

𝑋𝑓1(𝑡) =
𝑟𝑓1

2 (𝑡)−𝑟𝑑
2

𝑟𝑤
2 −𝑟𝑑

2                       (5s) 239 

𝑋𝑓2(𝑡) =
𝑟𝑤

2 −𝑟𝑓2
2 (𝑡)

𝑟𝑤
2 −𝑟𝑑

2                       (6s) 240 
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The equations (8d) to (11d) relating to the decompositions become respectively the equation (8s) to (11s) relating 241 

to the synthesis by changing in the first ones the transfer parameters k0, k1, 0, 1 and Uw0 with respectively the 242 

parameters k1, k0, 1, 0 and Uw1. 243 

 In the equations (8d) to (11d) and (8s) to (11s) the thermodynamic constraints Tc and Pc are written as constant, 244 

but they may be variable. In that case (encountered with the experimental study below) the values Tc(t) and Pc(t) 245 

must be included in the code as boundaries conditions. 246 

At each iteration the variables Tf1, Pf1, Pf2, 
𝑑𝑋𝑓1

𝑑𝑡
 , 

𝑑𝑋𝑓2

𝑑𝑡
 , Tw, etc. are determined from the system of equations (3) to 247 

(11d) or (3) to (11s) and the variable Tf2 is calculated by the Newton-Raphson iterative method. 248 

4. Experimental study 249 

 An experimental study was carried out on a HCTRS system of rather small power, but nevertheless 250 

representative of the physical phenomena that would be involved in a case of realistic application (treated in section 251 

5). The main objectives of this study were: 252 

 To verify that the temperature reduction of the source heat is feasible. 253 

 To obtain reaction’s advancement degree as a function of time (X-t curves) of three synthesis and two 254 

TODs at different operating conditions. 255 

 To obtain the X-t curve of a CAD at low constraint pressure. 256 

 To validate the quasi-steady simulation model by adjusting parameters related to heat and mass transfer, 257 

i.e. permeability and thermal conductivity of both charged and discharged reactive composite and global 258 

heat transfer coefficient from reactive composite to heat exchange fluid. 259 

 To register temperature and pressure evolutions within the reactive composite for qualitative discussion 260 

about their mutual influence. 261 

The chosen salt was barium chloride (Fig. 3), because its low activation temperature makes it adequate for low-262 

grade heat sources. Nevertheless, another two salts, calcium chloride and strontium chloride, are also suitable for 263 

such applications and were taken into account for the case study presented later in this paper.  264 

The experimental setup (Fig. 4 and 5) was designed in collaboration between the CREVER Group (Spain) and 265 

the PROMES laboratory (France) [30]. It is made up of one thermochemical reactor, one electrically driven vapor 266 

compressor, one storage tank with level probe, two flat plate heat exchangers as condenser and evaporator, one 267 
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expansion valve, three thermal baths, a set of temperature and pressure measurement devices, and several process 268 

valves. 269 

 

Fig. 3: Thermodynamic equilibrium of pure ammonia and selected 

solid/gas thermochemical reaction pairs with their  and  

stoichiometric coefficients (BaCl2.0-8NH3, CaCl2.4-8NH3 and 

SrCl2.1-8NH3), represented on the Clausius-Clapeyron diagram. 

Operating conditions of the case study are also included. 

 

 270 

 

Fig. 4: Flow diagram of the setup used for experimental study of the hybrid compression-thermochemical refrigeration system. 

Main components, valves and measurement devices are represented. 
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Fig. 5: Picture of the setup (before thermal insulation) used for experimental study of the hybrid compression-thermochemical 

refrigeration system. The main components are identified with labels. Two additional pictures are also embedded: one front 

view of the thermochemical reactor (flange open) that shows the reactive composite in the inside, and a zoomed picture 

showing radial position of 3 of the 4 thermocouples placed inside the composite. List of items: 1) Reactor; 2) Compressor; 3) 

Condenser; 4) Storage tank; 5) Level probe; 6) Evaporator; 7) Liquid trap; 8) Reactor’s flange; 9) Reactor’s internal gas diffuser; 

10) Reactor’s internal thermocouples at different radial positions. 

 271 

The thermochemical reactor is cylindrical and made out of stainless steel 316. The upper end is flat and closed 272 

with a flange and EPDM flat sealing. The bottom is also flat and has four perforations for thermocouples TC01-04. 273 

Inside the reactor there is a in-situ compressed composite made up of BaCl2 salt mixed with expanded natural 274 

graphite (ENG), an inert enhancer for heat and mass transfer. The preparation of this composite and its charge into 275 

the reactor is a specialized procedure from the Promes laboratory, and further description is available in [30]. The 276 

reactor also has an external thermal jacket consisting of a copper tube rolled around the external wall and surrounded 277 

with a high conductivity thermal paste. Type T thermocouples were used at the inlet (TC-05) and outlet (TC-06) of 278 

the heat transfer fluid from the reactor’s thermal jacket. Relevant data about the reactor and the experimental bench 279 

are collected in Tables 1 and 2. 280 

 281 

 282 
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Table 1: Relevant data of the experimental bench: dimensions of the thermochemical reactor and reactive composite, intensive parameters of 283 

implementation of the solid reactive composite, and final values of the heat and mass transfers parameters after model validation. 284 

Extensive parameters for reactive solid implementation 

rd rTr-02 rw Z msa mENG 
mNH3 

reacting 
Qev 

m kg Wh cold 

0.005 0.045 0.055 0.6 1.316 0.536 0.865 300 

Intensive parameters Heat and mass transfers 

wsa 𝝆̃𝑬𝑵𝑮 Dec k0 = k1 λ0 = λ1 Uw0 = Uw1 

- kg/m3 kWh/m3 m2 W/(m·K) W/(m2·K) 

0.71 100 100 10-14 1.4 170 

 285 

Three thermal baths are connected to the setup through external connections. The bath connected to the reactor’s 286 

thermal jacket has a maximum heating power of 1 kW at a maximum delivery temperature of 150 ºC, and a maximum 287 

cooling power of 0.3 kW at 20 ºC. The bath connected to the evaporator provides heating with a maximum power of 288 

1 kW, and the bath connected to the condenser provides cooling with a maximum power of 1.5 kW. Two SS316 flat 289 

plate heat exchangers were used in counter-flow as condenser and evaporator. Several temperature and pressure 290 

measurement devices were placed throughout the setup, for monitoring purposes. Measurements were recorded 291 

with a data acquisition unit consisting of an Agilent© 34901A data logger with two 20-channel (2/4-wire) Keysight© 292 

multiplexer modules. Further information is available in [30]. 293 

The most important information derived from experiences is the advancement degree (X) vs time (t) curve of 294 

reaction. X-t curves indicate whether or not full reaction is achieved and within how much time. In this study, these 295 

curves were derived from the mass of ammonia inside the solid composite, which was calculated from indirect 296 

measurements. A capacitive probe (named LT01 in figure 4) was placed inside the storage tank to measure the level 297 

of liquid ammonia, and this level was converted to mass knowing the density (derived from temperature readings 298 

from TC07-08). This calculation assumes that during reaction, all ammonia entering the tank comes from to the 299 

reactor, or vice versa. Thermocouples TC01-04 were relevant for registering temperature evolutions inside the 300 

composite. The CAD is the main focus of this experimental study, although the setup allows bypassing the 301 

compressor (V-04 and V-05 closed, V-06 open) to carry out the TOD. 302 
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A set of experiments (Table 2) was designed within a certain range of activation temperatures Tc and operating 303 

pressures Pc. The equilibrium drop (ΔTeq) is defined as the difference between the reaction’s equilibrium temperature 304 

at the given operating pressure, and the average temperature of the heat exchange fluid. It influences implicitly the 305 

speed of the process (see equations 10d or 10s above). 306 

Table 2. List of experiments used for model validation, including the type of reaction, operating conditions and valves 

configuration. Valves not mentioned are supposed to be permanently closed. 

Experiment code S1 S2 S3 D1 D2 D3 

Reaction 

〈𝐵𝑎𝐶𝑙2〉 + 8(𝑁𝐻3)  

→  〈𝐵𝑎𝐶𝑙2 · 8𝑁𝐻3〉 
〈𝐵𝑎𝐶𝑙2 · 8𝑁𝐻3〉 → 〈𝐵𝑎𝐶𝑙2〉 + 8(𝑁𝐻3)   

Type of reaction Synthesis TOD CAD 

Open valves (Fig. 4) V01-02, V09-10, EV-01 V01-03, V06-08, V11-13 V01-05, V07-08, V11-13 

Pc [bar] 3.45 3.57 5.10 5.0 7.2 0.6 

Tc,avg [
ºC] 9.8 11.7 11.8 78.9 65.8 19.4 

ΔTeq [
ºC] -19.9 -18.5 -25.7 41.8 20.8 25.6 

 307 

Model validation was done by comparing experimental X-t curves with model predictions after parameter 308 

adjustment. The validation consisted of adjusting the values of parameters λ0, λ1, k0, k1, Uw0 and Uw1 by the least 309 

squares method in an iterative procedure. As shown in Table 1, adjusted values were λ0 = λ1 = 1.4 W·m-1·K-1, k0 = k1 310 

= 10-14 m2 and Uw0 = Uw1 = 170 W·m-2·K-1. In practice the pairs of values [λ0, λ1], [k0, k1] and [Uw0, Uw1] can differ 311 

slightly, but they were finally assumed equal for the sake of simplicity. Thus the validation of the model on all the 312 

experiments is done by adjustment of only three parameters. 313 

Figure 6 shows data confrontation for experiments D1-D3, where each experiment is distinguished by one color. 314 

Continuous lines represent experimental curves, while dashed lines represent predictions after parameter 315 

adjustment. As expected, the advancement degree (X) evolves from 1 to nearly 0 throughout the reaction and in all 316 

cases the process is faster at the beginning than at the end. In the case of the TODs, it is observed that a higher 317 

equilibrium drop results in lower reaction times, which is logical. 318 

Predicted reaction times are overestimated for D1 (TOD) and underestimated for D2 (TOD) and D3 (CAD), which 319 

could be regarded as a sign that there is no systematic bias in model predictions. Predicted curves are relatively 320 

close to experimental ones, and maximum deviations are observed towards the end of the process. A slightly more 321 

accurate adjustment might be possible with independent values of λ0 and λ1 as well as k0 and k1. At the first stages 322 

of a decomposition λ1 and k1 are dominant, while λ0 and k0 gain weight towards the end, exactly where the highest 323 
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deviations are observed. Lower values of λ0 or k0 would increase the values of predicted times, leading to better curve 324 

fitting for D2 and D3, but higher deviations in D1.  325 

  

Fig. 6: Results of model validation: confrontation of experimental and 

simulated X-t curves for the three decomposition reactions used for 

validation (two TODs and one CAD). Operating conditions and other 

data available in Tables 1 and 2. 

Fig. 7: Results of model validation: confrontation of experimental and 

simulated X-t curves for the three synthesis reactions used for 

validation. Operating conditions and other data available in Tables 1 

and 2. 

 326 

Orange lines show data confrontation for experiment D3 (CAD). At first glance, it is observed that predictions fit 327 

most of the experimental data acceptably, except for the final reaction time. This deviation is probably caused by the 328 

low constraint pressure (around 0.6 bar) throughout the experiment, in comparison with the other experiments. At 329 

such low pressure, mass transfer limitations become non-negligible and slow the reaction down. This would also 330 

explain why the actual reaction is generally slower than the prediction, and why D3 is slower than D2 despite having 331 

a higher equilibrium drop (25.6 ºC in front of 20.8 ºC in D2, see Table 1). Also, D1 and D3 have similar equilibrium 332 

drops but the heat source temperature in D3 is much lower, which is taken as a proof that the activation temperature 333 

has been lowered thanks to the compressor-reactor coupling. 334 

Predictions for syntheses (Fig. 7) are acceptable. The best fitting is observed for synthesis S3 (blue lines), 335 

although the model overestimates reaction times until almost the end of reaction, where it underestimates end 336 

reaction time. In the case of S1, the model consistently underestimates reaction times, while for S2 there seems to 337 

be a noticeable change in slope mid-reaction.  338 

For the conditions of this study, the model predicts the X-t curves of TOD, CAD and synthesis with less than 20 339 

% average deviation in reaction times within the realistic domain of operation (i.e. 0.05 < X < 0.95). Given the 340 

simplifications in this model, such accuracy was considered sufficient for validation. A tendency is observed in which 341 

the model slightly overestimates final reaction times in the fastest reactions, and underestimates them in the slowest 342 
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reactions. Further, better accuracy can probably be reached with a more detailed, calculation-intensive adjustment 343 

method, although such procedure is out of the scope of this study. 344 

Temperature and pressure measurements lead to some interesting evolutions for qualitative discussion, collected 345 

in Figure 8. This figure shows the evolutions of reactor’s temperature and pressure, heat exchange fluid’s inlet and 346 

outlet temperatures, and equilibrium temperature of reaction at reactor pressure in two experiments: a) Synthesis 347 

S2; b) CAD D3. 348 

 

Fig. 8: Evolution, throughout reaction progress, of operating 

pressure, equilibrium temperature of the thermochemical reaction 

at the operating pressure, internal temperature of the solid reactive 

composite, and inlet and outlet temperatures of the heat exchange 

fluid, for: (a) synthesis S2; (b) CAD D3. 

 

In Fig. 8a, variables show typical evolutions for a synthesis reaction. At the precise moment where the constraint 349 

pressure is applied by opening the valve V-01 (see Fig.4), the temperature of the reactive composite (“Tr,02”, orange 350 

line) rises suddenly to almost the equilibrium temperature of reaction (“Teq(Pc)”, black line) at this given operating 351 
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pressure (“Pc”, green line). This happens because heat of reaction is released too quickly for the heat exchange fluid 352 

to evacuate it. This step is called by language abuse, the adiabatic phase of the reaction. Shortly after, temperatures 353 

within the solid composite start to descend, and as the reaction becomes slower, they get closer to Tc. When Tr,02 = 354 

Tc, reaction end is reached and all reaction heat has been evacuated. The change in both the inlet and outlet heat 355 

transfer fluid temperatures (“Tc,in”, dark blue, and “Tc,out”, light blue) during reaction progress is noticeable. These 356 

temperatures rise during approximately the first third of reaction, then reach a maximum, and start decaying until end 357 

of reaction. This is a sign that the thermal bath connected to the reactor’s thermal jacket was limiting during synthesis 358 

reactions, which is in agreement with the straight slopes seen at the X-t curves of experiments S1-S3 (Fig. 7). 359 

In Fig. 8b, same variables and color code are kept from Fig. 8a. Nevertheless, variables show typical evolutions 360 

for a decomposition reaction: Tr,02 drops noticeably at the beginning (similar phenomenon as in synthesis, but in 361 

opposite sense) and rises back slowly until equaling Tc by the end of reaction. This time, however, the thermal bath 362 

was not limiting (it was the same bath as in synthesis but in heating mode): Tc,out dropped just very slightly and, more 363 

importantly, Tc,in remained stable at target value. Thus, Tc can almost be considered constant in this experience. 364 

The most interesting evolution in Fig. 8b is the constraint pressure (Pc). As discussed in the description of the 365 

dual-front simulation model (Section 3.1), the ‘mutual constraint’ between compressor and thermochemical reaction 366 

has an influence on operating pressure, which should be variable and strictly decreasing throughout compression-367 

assisted decomposition. Its evolution in experiment D3 (CAD) reflects this discussion perfectly. From trd = 0.5 h to trd 368 

= 5 h, Pc falls gradually from 0.7 bar to 0.45 bar, which reflects the competition between the compressor and the 369 

decaying reaction kinetics. By the end of reaction, operating pressure stagnates at a value that was identified as the 370 

compressor’s minimum suction pressure for the maximum compression ratio of 8 (given by the manufacturer) with 371 

the given discharge pressure (condenser pressure, which was 3.5 bar). 372 

Although the original dual-front reaction model considers that Tc is constant and uniform, in practice the 373 

differences between Tc,in and Tc,out and their variations with time forced the implementation of variable profiles of Tc 374 

= f(t) in the model for validation. This was especially necessary for synthesis reactions. This was done by means of 375 

a function adjusted from experimental mean temperature between Tc,in and Tc,out at every measurement. A similar 376 

approach was used for Pc during CAD: the compressor/reactor interaction caused this pressure to be variable, so Pc 377 

= f(t) functions were implemented in the simulations. 378 

 379 

 380 
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5. Applicative study 381 

The aim of validating the model is to facilitate process simulations for other applications and demonstrate the 382 

interest of this hybrid system on representative case. The configuration chosen for this applicative study consists of 383 

the HCTRS producing cold at Tev = -25 ºC from an ambient temperature Tm = 20 ºC (which implies condenser 384 

temperature of Tcd = 30 ºC). Considering NH3 as working fluid, this temperature difference between cold production 385 

and heat rejection would require a too high compression ratio (Ph/Pl= 7.8) to implement the MVC system with a single 386 

stage only one vapor compressor refrigerator.  387 

5.1. System configuration 388 

The hybrid configuration presented in this case (Fig. 9) is based on a two stages vapor compression refrigerator 389 

that uses two compressors in series with an optimized intermediate pressure that maximizes overall COP. The 390 

ammonia retired from the thermochemical reactor during decomposition is stored inside the ammonia storage tank 391 

for later de-storage during synthesis. This means that, except during periods when only the MVC subsystem 392 

operates, the ammonia flow rates 𝑚̇9 and 𝑚̇10 are different. 393 

 

Fig. 9: Flow diagram of the configuration considered for the 

case study. 
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From the point of view of the TCH reaction, the synthesis is assumed to take place simultaneously with MVC cold 394 

production, and therefore it is carried out at Pl. As for the decomposition, it has been explained previously that the 395 

operating pressure can be adjusted accordingly to heat source temperature. In this particular configuration, 3 options 396 

are identified (Fig. 9):  397 

1) TOD at Pc,rd = Ph;  398 

2) CAD with single-staged compression at Pc,rd = Pm;  399 

3) CAD with bi-staged compression at Pc,rd = Pl.  400 

For all results shown in this section (except for some cases of Fig. 14), the TCH decomposition was always 401 

assumed as option 2 (single-stage CAD at Pc,rd = Pm), and ammonia gas leaving the reactor was assumed to be at 402 

the same temperature as the reaction’s equilibrium one at Pc,rd. 403 

Figure 10 shows the process on the ammonia’s h-P diagram. The cycle is carried out with total injection, and the 404 

three pressure levels are labelled on the diagram. The three options for decomposition of the TCH reactive are also 405 

displayed. The same type of compressor was chosen for both high-pressure and low-pressure regions: GEA Bock 406 

Open Type Ammonia Compressor, model F14/1366 NH3 [36]. Functions of isentropic efficiency with respect to Pm 407 

were derived for both compressors from data in the technical sheet.  408 

The determination of the COP, defined by equation 13, is based on energy and mass balances with some classical 409 

hypotheses as: steady-state running, isenthalpic expansion through throttle valves, temperatures of ammonia near 410 

to ambient temperature after exchange with it (T4 = T18 = Tamb + 5K ; T10 = Tamb + 2K), separator perfectly insulated, 411 

no pressure drops in pipes... 412 

𝐶𝑂𝑃 =
𝑄̇𝑒𝑣

𝑊̇𝐿𝑃+ 𝑊̇𝐻𝑃
                                                                                                                               (13) 413 

For the MVC subsystem alone this coefficient depends only of the specific enthalpies hi where the subscript "i" 414 

refers to the point "i" in the figures 9 and 10 (eq. 14): 415 

𝐶𝑂𝑃𝑀𝑉𝐶 =
𝑚̇𝐿𝑃 ∙ (ℎ1−ℎ13)

𝑚̇𝐿𝑃 ∙ (ℎ2−ℎ1)+𝑚̇𝐻𝑃 ∙(ℎ6−ℎ5)
=

ℎ1−ℎ13

(ℎ2−ℎ1)+[(ℎ4−ℎ12) (ℎ5−ℎ11)⁄ ]∙(ℎ6−ℎ5)
                (14) 416 

For the HCTRS this coefficient depends also on mass flows exchanged with the reactor, and this one is different 417 

during the synthesis (eq. 15) or decomposition (eq. 16):  418 
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𝐶𝑂𝑃𝐻𝑌𝐵,𝑠𝑦𝑛 =
[𝑚̇𝐿𝑃+𝑚̇𝑟𝑠(𝑡)] ∙ (ℎ1−ℎ13)

𝑚̇𝐿𝑃 ∙ (ℎ2−ℎ1)+𝑚̇𝐻𝑃 ∙(ℎ6−ℎ5)
                    (15) 419 

𝐶𝑂𝑃𝐻𝑌𝐵,𝑑𝑒𝑐 =
𝑚̇𝐿𝑃∙ (ℎ1−ℎ13)−𝑚̇𝑟𝑑,17𝑐(𝑡) ∙ (ℎ18−ℎ13)

𝑚̇𝐿𝑃 ∙ (ℎ2−ℎ1)+𝑚̇𝐻𝑃 ∙(ℎ6−ℎ5)
                   (16) 420 

with the mass flows deduced from mass balance and energy balance on the separator respectively for the 421 

synthesis phase (eq. 17) and decomposition one (eq. 18): 422 

𝑚̇𝐻𝑃 ∙  (ℎ11 − ℎ5) + 𝑚̇𝐿𝑃 ∙  (ℎ4 − ℎ12) + 𝑚̇𝑟𝑠(𝑡)  ∙  (ℎ11 − ℎ12) = 0                         (17) 423 

𝑚̇𝐻𝑃 ∙  (ℎ11 − ℎ5) + 𝑚̇𝐿𝑃 ∙  (ℎ4 − ℎ12) + 𝑚̇𝑟𝑑,17𝑏(𝑡)  ∙  (ℎ4 − ℎ11) + 𝑚̇𝑟𝑑,17𝑐(𝑡)  ∙  (ℎ12 − ℎ11) = 0             (18) 424 

Note that 𝑚̇𝑟𝑑,17𝑏(𝑡) and/or 𝑚̇𝑟𝑑,17𝑐(𝑡) may be null in equations (16) and (18) according to the option retained for 425 

the CAD. 426 

These functions were implemented in the simulation code [37] of the hybrid system, and the COP = f(Pm) diagram 427 

was traced (Fig. 11) for optimization. It was found that Pm = 5 bar optimizes COPMVC. It was assumed that the value 428 

of Pm that optimizes COPHYB would be very close to this value, for three reasons. First, the MVC subsystem is 429 

operating during most of the time. Second, the ammonia stream of the TCH subsystem during CAD is consequently 430 

lower than the stream in MVC. Third, optimal Pm for single-stage CAD must prioritize the high-pressure compressor, 431 

same as for MVC alone (Fig. 11). 432 

  

Fig. 10: Hybrid compression-thermochemical deep-freezing cycle 

represented on the h-P diagram with the configuration that includes 

bi-staged compression at the intermediate pressure that optimizes 

global system’s COP. 

Fig. 11: Global COP optimization of the bi-staged configuration for the 

case study. Evolution of COP of the MVC subsystem and compression 

ratio of the low-pressure and high-pressure compressors as a function 

of intermediate pressure. Optimal intermediate pressure was found at 

5 bar by taking into account isentropic efficiency of the two 

compressors. 
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5.2. Operation scenario 433 

Different scenarios are possible. It could be assumed, for instance, that the compressors are driven off-grid by 434 

solar-PV electricity. This approach would result in ammonia storage during the day (because of sun availability) and 435 

cold production at night (to cover the demand by TCH synthesis since compressors cannot work). Different 436 

hypotheses are also applicable for the driving heat: it could be waste heat, or generated by solar thermal collectors, 437 

with interesting consequences on operating modes distribution and performance evaluation. 438 

The scenario supposed for this applicative study is a permanent cooling load of 40 kW for food freezing in an 439 

industrial chamber. Both compressors of the hybrid system are driven by on-grid electricity, and the CAD reactor 440 

decomposition is activated with waste heat from another industrial process (therefore, at zero cost). Given the 441 

assumptions of constant demand of cold and unlimited availability of both grid electricity and waste heat for a given 442 

reactor design, the only decision factor for switching between operating modes is electricity price. It is assumed that 443 

the lowest price takes place during the night, while peak prices occur in late evening. Figure 12 represents in “watch 444 

shape” the behavior of the HCTRS in this scenario for one full cycle (24 hours, midnight to midnight).  445 

 

Fig. 12: “Watch-shaped” representation of operating periods of 

the hybrid compression-thermochemical freezing system in the 

case study. Global cycles of 24 hours (midnight to midnight) are 

considered, with a total of four different operating periods 

throughout the day. 

 

 446 
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Three operating modes are identified: 447 

1) “MVC + CAD” from 00:00 to 06:00, period of lowest electricity price. The whole demand of cold is satisfied 448 

by MVC while ammonia from the TCH subsystem is being stored in the ammonia storage tank (in other 449 

words, the TCH is charging by means of the endothermic reaction from eq. 1). 450 

2) “MVC-only” when electricity price is average. The hybrid system proceeds just as an MVC cycle, and the 451 

ammonia of TCH reaction remains stored. This mode is assumed to take place between 06:00 and 18:00 452 

and between 22:00 and 00:00. These two periods are represented with distinct colors to differentiate 453 

between “MVC-only” with TCH fully charged or fully discharged. 454 

3) “MVC + Synthesis” for the peak demand period of 18:00 – 22:00. A part of the cooling load is satisfied by 455 

MVC while the other part is covered by discharging ammonia from the storage tank through TCH 456 

synthesis (exothermic reaction from eq. 1), reducing consumption of mechanical power by both 457 

compressors, and hence electric consumption.  458 

Although each operating period is presented as a block in Fig. 12, their distribution in a more realistic case study 459 

may well be scattered throughout the day. For instance, another peak electricity price can occur at morning between 460 

06:00 and 08:00. Operation of the HCTRS is still feasible in such cases, because the TCH reaction can be interrupted 461 

mid-progress and resumed later, with no penalization on total ammonia production. Nevertheless, as this is a 462 

preliminary case study, the simplified approach presented here was considered sufficient. 463 

Two reactive salts were considered for this case study: SrCl2 and CaCl2, whose activation temperatures for CAD 464 

at Pc,dec are suitable for low-grade waste heat utilization (Fig. 3). The calculation procedure combined the dual front 465 

quasi-steady reaction model described in Section 3 with a nodal model based on mass and energy balances for 466 

global cycle simulation. The calculation process was done in three steps: 467 

1) For the given constraint temperature of Tc = Tm = 20 ºC during synthesis phase, adjust reactive 468 

composite’s diameter to complete synthesis phase (cold production) within 4 hours (18:00 – 22:00). In 469 

this step, the same 𝜌̃𝐸𝑁𝐺   and 𝑤𝑠𝑎 as with experimental implementation of the BaCl2 are kept. This allows 470 

to keep also the same values of 𝜆0(= 𝜆1), 𝑘0 (= 𝑘1) and 𝑈𝑤0 (=𝑈𝑤1) that were adjusted for model validation. 471 

2) After adjusting composite’s diameter, adjust Th to complete CAD at Pc equal to Pm or Pl, or to complete 472 

TOD at Pc equal to Ph, accordingly to the option chosen for the decomposition within 6 hours (00:00 – 473 

06:00). 474 
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3) Obtain 𝑚̇𝑁𝐻3
= 𝑓(𝑡) for synthesis and CAD or TOD and implement these values in the global simulation 475 

to obtain data on cold production and power consumption. 476 

We propose a performance indicator  defined as the COP ratio between the hybrid system and mechanical 477 

vapor compression, with COPMVC and COPHYB themselves defined by equations (14) to (16). 478 

The value of this indicator is calculated with two different approaches: for Figs. 13 and 14, it is calculated in terms 479 

of power at each time step (and noted  𝜓̇ , equation (19)), while for Fig. 15 it is calculated in terms of energy (and 480 

noted 𝜓) by integrating throughout the whole period of either synthesis (syn , eq. (20)), decomposition (dec , eq. (21)), 481 

or the overall thermochemical cycle (syn-dec , eq. (22)).  In these cases, as the cooling energy is the same for each 482 

period, the ratio of COP is also equal to the ratio of mechanical energy required by the MVC and HCTRS 483 

𝜓̇# =  
𝐶𝑂𝑃𝐻𝑌𝐵,#

𝐶𝑂𝑃𝑀𝑉𝐶
= 𝑓(𝑡)         {# = 𝑠𝑦𝑛, 𝑑𝑒𝑐}                     (19) 484 

𝜓syn =  
∫ 𝐶𝑂𝑃𝐻𝑌𝐵,syn∙𝑑𝑡

22ℎ
18ℎ

𝐶𝑂𝑃𝑀𝑉𝐶
=  

∫ (𝑊̇LP+𝑊̇HP)𝑀𝑉𝐶∙𝑑𝑡
22ℎ

18ℎ

∫ (𝑊̇LP+𝑊̇HP)𝐻𝑌𝐵,𝑠𝑦𝑛∙𝑑𝑡
22ℎ

18ℎ

                           (20) 485 

𝜓dec =  
∫ 𝐶𝑂𝑃𝐻𝑌𝐵,dec∙𝑑𝑡

6ℎ
0ℎ

𝐶𝑂𝑃𝑀𝑉𝐶
=  

∫ (𝑊̇LP+𝑊̇HP)𝑀𝑉𝐶∙𝑑𝑡
6ℎ

0ℎ

∫ (𝑊̇LP+𝑊̇HP)𝐻𝑌𝐵,𝑠𝑦𝑛∙𝑑𝑡
6ℎ

0ℎ

                            (21) 486 

𝜓syn−dec =  
∫ (𝑊̇LP+𝑊̇HP)𝑀𝑉𝐶∙𝑑𝑡

22ℎ
18ℎ +∫ (𝑊̇LP+𝑊̇HP)𝑀𝑉𝐶∙𝑑𝑡

6ℎ
0ℎ

∫ (𝑊̇LP+𝑊̇HP)𝐻𝑌𝐵,𝑠𝑦𝑛∙𝑑𝑡
22ℎ

18ℎ +∫ (𝑊̇LP+𝑊̇HP)𝐻𝑌𝐵,𝑠𝑦𝑛∙𝑑𝑡
6ℎ

0ℎ

                           (22) 487 

Note that 𝑊̇𝑀𝑉𝐶  corresponds to the mechanical power consumption of the compressors if all the cooling load was 488 

satisfied by MVC exclusively.  489 

On the other hand the part  of the cooling effect assumed by the TCH subsystem in the hybrid system can be 490 

chosen arbitrary (eq. 23) between the two extreme values 0 and 1: 491 

𝜀 =  
𝑄𝑒𝑣,𝑇𝐶𝐻,𝑠𝑦𝑛

𝑄𝑒𝑣,𝐻𝑌𝐵,𝑠𝑦𝑛
                       (23) 492 

5.3. Results 493 

Figure 13 shows results for one full cycle with a dimensioning of the TCH reactor for ε = 0.5 (i.e. to cover 50 % of 494 

the cooling load) in the “MVC + Synthesis” period and with Pc equal to Pm during CAD phase. For more clarity, the x-495 

axis includes background color traces to distinguish between operating modes that are identical to those of Figure 496 

12. Values on the right y-axis correspond to total cooling power (blue line) and power consumption from low-pressure 497 
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compressor (purple continuous line) and high-pressure compressor (purple dashed line). Left y-axis is exclusive for 498 

the ratio between COP of the hybrid system and COP if all cooling load was covered by MVC alone. 499 

 

Fig. 13: Evolution of COP ratio calculated in terms of power 

(𝜓̇), cooling power and mechanical power consumption of low-

pressure and high-pressure compressors of the bi-staged 

hybrid compression-thermochemical freezing system, for one 

full cycle (24 hours) at nominal case (ε = 0.5) and Pc,dec = Pm. 

Each operating mode is depicted on the x-axis with its 

corresponding color (see Fig. 12). 

 500 

The 06:00 – 18:00 and 22:00 – 24:00 periods can be considered as “regular” periods in this figure: all cooling load 501 

is satisfied by MVC alone, and power consumption from both compressor remains steady. These values serve for 502 

calculation of the COPMVC that is later used for calculation of 𝜓̇. Obviously, in these periods COPHYB = COPMVC, which 503 

means 𝜓̇  = 1. As for power consumption, that of the high-pressure compressor is lower than that of the low-pressure 504 

compressor despite the fact that the mass flow is higher. This is coherent with the fact that Pm = 5 bar yields lower 505 

values of HP than of LP and finally better value of the isentropic efficiency for the high-pressure compressor (see 506 

Fig. 11). 507 

The 00:00 – 06:00 period corresponds to “MVC + CAD”. The cooling load remains constant at target value and is 508 

still satisfied by MVC alone, which explains why power consumption from the low-pressure compressor remains the 509 

same as in “MVC-only”. However, power consumption from the high-pressure compressor is higher, in accordance 510 

with CAD at Pm. Since decomposition is carried out at intermediate pressure, only the high-pressure compressor has 511 

increased power consumption. It shows peak consumption at the beginning and decays gradually until the end, and 512 

the final value right before switching to the next mode is very close to power consumption in “regular” operation. This 513 
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profile is coherent with 𝑚̇𝑟𝑑,𝑁𝐻3
= 𝑓(𝑡) during decomposition, since the reaction is faster at the beginning (see Fig. 514 

6). This additional power consumption implies 𝜓̇ lower than unity, and this parameter follows the same curve as 𝑊̇𝐻𝑃 515 

but in the opposite sense. 516 

The 18:00 – 22:00 period shows three noteworthy traits: 1) Cold production is variable during the first hour, with 517 

a peak of surplus and a peak of shortage; 2) During this same interval, power consumption from both compressors 518 

drops to zero; 3) During this same interval, 𝜓̇ tends to infinity. 519 

The variations of 𝑄̇𝑒𝑣 are caused by the variations of 𝑚̇𝑟𝑠,𝑁𝐻3
= 𝑓(𝑡) in thermochemical synthesis, similarly to CAD. 520 

Congelation in an industrial chamber usually implies big quantities of food: therefore, the strategy chosen in this study 521 

is to let the TCH subsystem produce surplus cold in early synthesis reaction. This surplus cold is stored by the end 522 

product itself in the form of slightly lower temperature. This thermal inertia compensates for the sub-par cold 523 

production in the later stage of synthesis. As soon as the deficit in cold production equals surplus production from 524 

the previous stage, the compressors start working and the remainder of cooling load is supplied by MVC (please 525 

note that at this point the TCH subsystem is still producing cold, as shown by a lower power consumption by the 526 

compressors between 19h and 22h). 527 

The fact that both 𝑊̇𝐿𝑃 and 𝑊̇𝐻𝑃 drop to zero means that the TCH process is covering all cooling load. The whole 528 

ammonia stream leaving the evaporator enters the reactor directly, instead of flowing to the compressors. This is 529 

synchronized with the surplus/deficit peaks of production. After, power consumption increases gradually as the 530 

synthesis reaction advances, since more and more mass flow rate of ammonia is flowing to the compressors. 𝑊̇𝐿𝑃 531 

increases faster than 𝑊̇𝐻𝑃 because it compresses a slightly larger stream of ammonia. By the end of the operating 532 

period, both power consumptions are close to MVC values, which indicates that the synthesis is close to finishing 533 

and the mass flow rate of ammonia entering the reactor is close to zero.  534 

The value of 𝜓̇ tending to infinity is a logical consequence of power consumption dropping to zero. COPHYB is 535 

defined as the ratio of cold production to power consumption, so the denominator reaches 0. Right when compressors 536 

start working again, this parameter 𝜓̇ decreases back, but always maintaining itself at a value higher than 1.The 537 

authors wish to point out that the definition of COPHYB in these calculations does not include the heat of reaction 538 

during decomposition, since it is assumed to be waste heat with no cost.  Regardless, this figure shows the potential 539 

interest of the hybrid system in reducing total power consumption.   540 
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Fig. 14: Effect of constraint pressure and temperature of the heat source 

on system’s performance during decomposition phase. 

 541 

Figure 14 shows a sensitivity analysis on the influence of other values of Th or Pc during decomposition reaction. 542 

This figure can be regarded as a zoomed view of the first 7 hours of operation of Fig. 13, including nominal case 543 

(with the same black line as in Fig. 13) and some alternate cases. Three of these alternate cases involve increasing 544 

Th at same Pc (= Pm): as a consequence the decomposition finishes earlier than in nominal case, but the drop in 𝜓̇ is 545 

bigger because peak power consumption is higher. The fourth alternate case involves TOD (Pc = Ph) instead of CAD 546 

(Pc = Pm or Pc = Pl), resulting in a constant 𝜓̇𝑑𝑒𝑐  = 1 because Qrd is assumed no-cost and therefore not taken into 547 

account for COPHYB definition. Nevertheless, this case requires higher Th than nominal, which can make finding an 548 

appropriate waste heat source more difficult. The fifth and final alternate case involves CAD at Pc equal to Pl instead 549 

of Pm: this case requires lower Th than nominal, making it easier to find waste heat sources. The downside is a clearly 550 

higher power consumption because both compressors proceed during decomposition, while in CAD at intermediate 551 

pressure only the high-pressure compressor proceeds. This figure is interesting for analyzing the potential flexibility 552 

of this system in adapting to different operating schedules and heat source availability. Main results of the nominal 553 

case are shown in Table 3. Some differences can be seen between the process with SrCl2 or with CaCl2. For instance, 554 

CaCl2 shows lower activation temperatures at the same operating pressures. On the other hand, reactor volume is 555 

smaller with SrCl2 thanks to its higher energy density. 556 

 557 
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 Table 3. Operating conditions and performance 

figures of the HCTRS in the applicative study at 

nominal case (ε = 0.5 and Pc,rd = Pm) 

 Parameter \ Salt SrCl2 CaCl2 

 Δhrº [kJ · kmol-NH3
-1] 41432 41013 

 Δsrº [kJ · kmol-NH3
-1 · K-1] 132.9 134.4 

 Msa [kg/kmol] 158.53 110.98 

 𝝆̃𝑬𝑵𝑮 [kg/m3] 100 

 wsa 0.71 

 Dec [kWh/m3] 125 101 

 msalt [kg] 313 384 

 mENG [kg] 127 156 

 Vr [m
3] 1.28 1.57 

 Th,min [
ºC] with Pc = Ph  112.7 99.8 

 Th,min [
ºC] with Pc = Pm 91.0 78.9 

 Th,min [
ºC] with Pc = Pl 66.3 54.4 

 Ψsyn 2.056 2.066 

 Ψdec 0.892 0.892 

 Qev,MVC [kWh] 80.0 

 Qev,TCH [kWh] 80.0 

 WLP,syn [kWh] 17.8 17.7 

 WHP,syn [kWh] 12.2 12.1 

 WLP,dec [kWh] 56.3 56.3 

 WHP,dec [kWh] 47.3 47.3 

 Qrd [kWh] 158.9 157.4 

 558 

Figure 15 shows an analysis of main performance figures in this case study, for several scenarios between  = 0 559 

(no TCH subsystem at all) and  = 1 (all cooling load is provided by TCH during synthesis period) but always (except 560 

for =0) with Pc equal to Pm during the CAD periods. The case  = 0.5 corresponds to the nominal case. In this figure 561 

any indicator with the “syn” subscript, as well as cold production by MVC and TCH, correspond to integration within 562 

the whole duration of the “Synthesis” operating mode (18:00 to 22:00). Indicators with the “dec” subscript are 563 

calculated by integration within the whole duration of the “MVC + CAD” operating mode. And finally 𝜓𝑠𝑦𝑛−𝑑𝑒𝑐   564 

coefficient is calculated by integration within the overall duration of the thermochemical cycle including the synthesis 565 

and decomposition reactions (eq. 20 to 22). In the y-axes, magnitudes shown above the zero point are related to the 566 
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system’s useful effect: cold production by MVC and TCH shown as bars (left y-axis), and 𝜓 in synthesis, 567 

decomposition and overall thermochemical cycle shown as lines (right y-axis). For more clarity a change in scale for  568 

𝜓𝑠𝑦𝑛   is operated for the values of   upper to the nominal case (> 0.5). On the other hand, magnitudes shown below 569 

the zero point are related to the system’s "inputs": compressors’ power consumption during synthesis and 570 

decomposition (with yellow and grey bars, left y-axis), heat of decomposition reaction (red bars, left y-axis), and 571 

volume of reactive composite (blue line, right y-axis). 572 

At  = 0, the whole cooling load (40 kW during 4 hours, i.e. 160 kWh) is satisfied by MVC only, which explains the 573 

absence of Qev,TCH and Qrd. Also, both dec and syn equal 1 and Vr equals 0, because there is no TCH subsystem at 574 

all. At the other extreme case ( = 1) the demand in peak period is entirely covered by the TCH process, so there is 575 

no MVC cold production nor compression power consumption during synthesis and  𝜓𝑠𝑦𝑛 goes to infinity. As  576 

increases, the TCH process gains more and more presence in the hybrid system and results reflect this tendency. 577 

The cooling load is more covered by the thermochemical reaction and less by MVC, and accordingly, mechanical 578 

power consumption during synthesis phases becomes lower and lower (yellow bars in Fig. 15). On the other hand, 579 

mechanical power consumption in CAD increases gradually (grey bars in Fig. 15), as there is more and more 580 

ammonia vapor from the reaction that has to be compressed, so the dec decreases, but moderately until the value 581 

of 0.82 at   equal to 1. Finally for the overall thermochemical cycle the gain of the COP by the hybrid system is 582 

positive; 𝜓𝑠𝑦𝑛−𝑑𝑒𝑐 evolves between 1 and 1.4 for  varying from 0 to 1. This tendency of 𝜓𝑠𝑦𝑛−𝑑𝑒𝑐 in the figure 15 583 

corresponds also to the ratio between the total cold energy produced (sum of purple and blue bars, i.e. 160 kWh) 584 

and the total required mechanical power (sum of yellow and grey bars). Of course this evolution, although positive, 585 

is not very important, but we must not forget that the main objective of this hybrid HCTRS, in this case of application, 586 

was to reduce particularly the mechanical power absorbed during the hours of peak for electric consumption (i.e. 587 

between 18h and 22h); this goal is largely achieved with 𝜓𝑠𝑦𝑛 values of about 2 up to 15.4 for respective  values of 588 

0.5 and 0.9. 589 

Obviously the higher the  value the more the volume of the reactor and the thermal power to be supplied to it 590 

during the decomposition phases as well. For example (Fig. 15), at  equal to 0.8, the volume of the reactive 591 

composite is 2m3 and the heat required in decomposition is 250 kWh at 91 °C, again for a cooling production of 160 592 

kWh at -25 °C. 593 
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Fig. 15: Effect of target share of cold for the thermochemical subsystem (ε) on several variables. In synthesis 

phase: COP ratio (ψsyn and ψsyn/10 for ε 0.5) and total cold produced (in kWh) by both subsystems. In 

decomposition phase: COP ratio (ψdec), total consumption (in kWh) of mechanical energy by the two 

compressors (low-pressure and high-pressure), and total heat consumption (in kWh) by the thermochemical 

reactor (at Th = 91°C). For overall thermochemical cycle: total volume (in m3) of reactive composite and global 

COP ratio 𝜓𝑠𝑦𝑛−𝑑𝑒𝑐. 

 

The choice of an optimal  then derives from the relative importance attributed to the reduction of the electrical 594 

consumption and the corresponding increase of the thermal power required for the decomposition phases. The 595 

relative cost of the two energies (electrical and thermal) should be taken into account both for the investment of the 596 

hybrid system (globally proportional to ) and for its operation. This is outside the scope of this 1st study. 597 

6. Conclusions and perspectives 598 

The hybrid compression / thermochemical refrigeration system (HCTRS) presented in this paper is expected to 599 

valorize low-grade waste heat thanks to the connection between compressor and thermochemical reaction. This 600 

hybrid system has three characteristic operating modes, and each one of them allows cold production by mechanical 601 

vapor compression while either storing or de-storing refrigerant simultaneously. One of these modes allows additional 602 

cold production with no additional power consumption thanks to the thermochemical synthesis reaction. The second 603 

mode allows storing refrigerant with no additional power consumption, by using a heat source below 120 ºC. The 604 
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third mode connects the compressor and the thermochemical reactor to drop reactor pressure during the refrigerant 605 

storage phase, with the idea of reducing heat source temperature. 606 

Our experiences proved this reduction in heat source temperature. Thanks to the compressor-reactor coupling, 607 

an experiment with the BaCl2/NH3 reaction was possible with a reactor pressure as low as 0.5 bar (condenser 608 

pressure being kept at 3.5 bar because one small compressor alone was used). At this pressure, process activation 609 

was possible with a heat source at ambient temperature (20 ºC). Without assisting the decomposition reaction with 610 

the compressor, reactor pressure would have been 3.5 bar. With this pressure and respecting the same equilibrium 611 

drop, process activation would have required a source heat temperature of 55 ºC, i.e. 35K above. 612 

To allow further simulations of this system, a quasi-steady simulation model was validated from experimental 613 

data, through adjustment of the thermal conductivity and the permeability of the reactive composite, as well as the 614 

global heat transfer coefficient between reactive composite and heat transfer fluid from the reactor’s thermal jacket, 615 

respectively at the values 1.4 W·m-1·K-1, 10-14 m2 and 170 W·m-2·K-1. The three values are within the reasonable 616 

range, based on literature data on thermochemical systems. After parameter adjustment, the quasi-steady simulation 617 

model predicted the X-t curves of reaction accurately enough in synthesis, thermally-only activated decomposition 618 

and compression-assisted decomposition. In the particular case of compression-assisted decomposition, which is 619 

the most characteristic mode of this system, mass transfer limitations were not negligible, given the low operating 620 

pressures. 621 

The validated quasi-steady simulation model allowed a first law assessment of system performance in a 622 

preliminary and nevertheless realistic case study. The scenario was the HCTRS operating in cycles of 24 hours to 623 

produce 40 kW cold at -25 ºC for a food conservation industrial chamber, by running a bi-stage MVC cycle with full 624 

injection that implies two compressors in series and with a condenser temperature of 30 ºC. From the point of view 625 

of electricity source, the compressors were supposed grid-driven and the HCTRS was storing refrigerant in off-peak 626 

electric demand periods for later discharge during peak periods. Results indicated that the hybrid can reach, during 627 

ammonia de-storage phase, many times higher COP than a mechanical vapor compression refrigeration cycle, 628 

depending on the share of cold production (quantified by the  parameter) that is covered by the TCH process. 629 

The study also considered an alternate case in which compression-assisted decomposition is carried out at a 630 

pressure of 1.5 bar, which implies equilibrium temperatures as low as 20 ºC, 35 ºC and 45 ºC for reactions with BaCl2, 631 

CaCl2 and SrCl2, respectively. In the particular case of BaCl2, this bi-staged compression can eventually allow 632 

process activation with heat at ambient temperature. Our experience D3 proved this activation at ambient 633 
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temperature, although condenser pressure was pretty low (3.5 bar) because the experimental bench had just one 634 

compression stage. Thus, an experimental study with two compressors in series is definitely an interesting prospect, 635 

now that the single-stage compression-assisted decomposition has been experimentally proven. 636 

Another interesting question waiting for an answer is whether or not the HCTRS competes economically with 637 

state-of-the-art solutions such as electric batteries or phase change materials. Implementing the thermochemical 638 

process to a compression refrigeration cycle is probably more expensive than these two options, but as long as a 639 

source of free waste heat can be utilized, it can compensate in the long term. After all, both electricity stored by 640 

batteries and cold stored by phase change materials come from a surplus consumption of electricity at some point. 641 

The HCTRS proceeds the same way, but as long as source heat is free and operating pressure during decomposition 642 

can be adjusted, higher heat source temperatures result in lower power consumption by the compressor, and 643 

therefore, potentially much higher COP [28]. Moreover, thermochemical processes should have less inertia than 644 

batteries in the discharge phase, since the stored material is liquid refrigerant, and can be preferable to phase change 645 

materials if no modifications should be made at the cold delivery unit. In addition, the liquid refrigerant is stored at 646 

ambient temperature, with no concerns about thermal isolation, which is an advantage in front of other options such 647 

as sensible thermal storage. An appropriate economic assessment may eventually answer the question about 648 

competitiveness. 649 

As final statement the authors of this paper believe that, although the Compression/Thermochemical System may 650 

seem less promising than its ‘twin’, i.e. the Expansion/Thermochemical System (electricity and heat inputs for cold 651 

production versus heat input for electricity and cold production), its compression-assisted reduction of activation 652 

temperature is a powerful enough tool to find a niche. 653 
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