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Abstract
Current neural models of value-based decision-making consider choices as a 2-stage process, proceeding from the
“valuation” of each option under consideration to the “selection” of the best option on the basis of their subjective values.
However, little is known about the computational mechanisms at play at the selection stage and its implementation in the
human brain. Here, we used drift-diffusion models combined with model-based functional magnetic resonance imaging,
effective connectivity, and multivariate pattern analysis to characterize the neuro-computational architecture of value-
based decisions. We found that 2 key drift-diffusion computations at the selection stage, namely integration and choice
readout, engage distinct brain regions, with the dorsolateral prefrontal cortex integrating a decision value signal computed
in the ventromedial prefrontal cortex, and the posterior parietal cortex reading out choice outcomes. Our findings suggest
that this prefronto-parietal network acts as a hub implementing behavioral selection through a distributed drift-diffusion
process.

Key words: drift-diffusion model, fMRI, MVPA, neuroeconomics, value-based decision

Introduction
When ordering a dessert from a menu, choosing between the
apple pie and the strawberry tart solely depends on the subject-
ive values attributed to each sweet: there is no correct answer,
only options that are more or less desirable according to one’s
subjective preferences. Current models of economic choices
propose that value-based decisions entail 2 separable stages:
1) the aggregation of all options’ motivational features into sub-
jective values ordered on a common scale (“valuation”) and
2) the selection of the option associated with the highest

subjective value (“selection”) (Kahneman and Tversky 1979;
Rangel et al. 2008; Kable and Glimcher 2009). These models
often trivially reduce the selection stage to an instantaneously
solved maximization problem. As a result, most neurobiological
studies on value-based choices focused on characterizing the
valuation system of the human brain (Wallis 2007; Seymour
and McClure 2008; Grabenhorst and Rolls 2011; Padoa-Schioppa
2011; Levy and Glimcher 2012; Clithero and Rangel 2013).
Although this scientific endeavor yielded strong evidence link-
ing the ventromedial prefrontal cortex (vmPFC) with valuation,
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we still know little about the computational mechanisms at
play at the selection stage and their implementation in the
human brain.

At the algorithmic level, selecting the most valuable option
entails a comparison between alternatives that transform con-
tinuous subjective value signals into categorical choices
(Rangel et al. 2008). In this respect, value-based selection is
strikingly similar to drift-diffusion models (DDMs), which inte-
grate the difference between the subjective values of options
into an abstract decision variable drifting from an intermediate
starting point toward 1 of 2 boundaries (Ratcliff and McKoon
2008). Each boundary acts as a decision threshold for an option,
so that the outcome of a decision is read out when the decision
variable reaches one of the boundaries. Behavioral selection
using DDM is thus characterized by 2 key computations: a tem-
poral integration of their inputs and a readout of choice out-
comes when neural activity in one of the accumulator reaches a
threshold (Smith and Ratcliff 2004) (Fig. 1A and Supplementary
Fig. 1). DDMs successfully capture the complex relationship
observed between choice probabilities and reaction times
(RTs) in various value-based decision tasks (Busemeyer and
Townsend 1993; Usher and McClelland 2004; Milosavljevic et al.
2010; Krajbich and Rangel 2011; Philiastides and Ratcliff 2013),
and can be implemented within neurobiologically realistic
neural networks to make predictions on the brain activity gen-
erated by drift-diffusion’s key computations (Simen 2012).

Several theoretical neural architectures have been proposed
for value-based selection, which broadly fall in 2 categories
depending on whether value integration and choice readout are
performed in distinct neural populations (Lo and Wang 2006;
Drugowitsch and Pouget 2012; Simen 2012; Park et al. 2014;
Hanks et al. 2015), or not (Boerlin and Denève 2011; Wang 2012;
Park et al. 2014; Hanks et al. 2015). Recent neuroimaging studies
identified a candidate brain network, including the vmPFC, the
dorsolateral prefrontal cortex (DLPFC), and the posterior parietal
cortex (PPC) associated with computing and comparing values
(Boorman et al. 2009; Basten et al. 2010; Hare et al. 2011; Hunt
et al. 2014; Polanía et al. 2014; Strait et al. 2014). For example, an
influential study showed that blood oxygen level-dependent
(BOLD) activity in a set of brain regions including the DLPFC, the
PPC, the dorsomedial prefrontal cortex, and the anterior insula
correlated with the aggregate neural activity predicted by DDMs
(Hare et al. 2011). Another study reported that the encoding of
the difference between the expected costs and benefits used to
build up value-based choices is computed in the vmPFC, and
that the PPC reflects the accumulation of this vmPFC difference
signal (Basten et al. 2010).

However, the precise nature of the computations performed
in each of these brain regions remains elusive, particularly in
regards to the key DDM computations potentially performed.
In the current study, we investigated whether a single brain
region, such as the DLPFC or the vmPFC, implements value-
based selection as a stand-alone drift-diffusion process, or if
selection depends on a functionally specialized but spatially
distributed set of brain regions implementing distinct drift-
diffusion’s key computations, and interacting with each other
within a large-scale functional network. To do so, we com-
bined DDM-based functional magnetic resonance imaging
(fMRI), effective connectivity, and multivariate pattern ana-
lysis (MVPA) to delineate the neuro-computational architec-
ture of value-based selection (see Fig. 1A).

In DDM-based fMRI studies, it is classically assumed that
value-based selection should manifest itself as a correlation
between BOLD activity and the steepness of the ramping

activity predicted by a DDM (or with RTs, used as a proxy).
However, this approach ignores the multidimensional dynamic
of the neural populations engaged in value-based selection and
has been shown to be prone to uncontrolled confounds (Harvey
et al. 2012; Wang 2012; Kriegeskorte et al. 2006; Stokes et al.
2013; Kiani et al. 2014; Park et al. 2014) (see Supplementary
Fig. 1). To overcome this limitation, we used time-resolved
MVPA to extract the information on the upcoming choices from
spatial patterns of BOLD activity generated over time in
decision-related brain regions. By analogy with the instantan-
eous encoding of sensory information observed in the Medial
Temporal area (area MT) during perceptual decision-making
(Shadlen et al. 1996; Shadlen and Kiani 2013; Murray et al.
2014), we reasoned that information on the upcoming choice
decoded in brain regions engaged in valuation should shift to
an early plateau and stay stable during choice formation (step
response). By contrast, information on the upcoming choice
decoded from brain regions participating in value-based selec-
tion should increase over choice formation to reflect the grad-
ual accumulation of evidence in support of the upcoming
choice, as predicted by DDMs (ramping response). Then, we
performed dynamic causal modeling (DCM) between brain
regions involved in selection to investigate whether forward
and backward connectivity would depend on predecisional or
postdecisional variables, such as the integrated decision value
(DV) predicted by the DDM after choice onset and/or the sub-
jective value of the chosen option after committing to a choice.

Here, we designed a new event-related fMRI paradigm in
which subjects chose between 2 options yielding different types
of rewards: one option was probabilistically rewarded by view-
ing an erotic picture and the other one by receiving a small
amount of fruit juice (Fig. 1B–D). This experimental design
allowed us to: 1) use 2 different types of primary rewards that
were actually experienced after each choice; 2) vary orthogon-
ally the probability of reward associated with each option.
Hence, in our task, there was no money or monetary estima-
tion of the subjective value of outcomes (such as the willing-
ness-to-pay) involved. When confronted with our offers,
participants behaved “as if” they compared each option’s
expected subjective value to select the most desirable alterna-
tive. A simple DDM accurately captured their choice behavior.

Our key findings are that the vmPFC, dlPFC, and PPC
represent specific components of a multistage sequential deci-
sion process, with vmPFC involved in valuation, dlPFC integrat-
ing value information, and PPC encoding choice readout. More
specifically, the vmPFC encodes the DV signal that drives the
drift-diffusion process found at the core of the selection stage,
whereas the prefronto-parietal network (PPN) implements the
selection stage. Within this selection network, the DLPFC inte-
grates the vmPFC’s DV signal and the PPC reads out the choice
outcome from the output of the DLPFC. Together, our results
suggest that the fronto-parietal network acts as a hub imple-
menting behavioral selection through a distributed drift-
diffusion process.

Materials and Methods
Participants

Sixteen right-handed healthy male volunteers (mean age: 21.5 ±
3 years standard deviation [SD], mean handedness score: 0.812
± 0.2 SD) with no history of neurological or psychiatric condi-
tions were screened for inclusion through a medical interview
and standardized questionnaires assessing major depressive
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disorder (Beck Depression Inventory 21, mean score: 2.9 ±
3.58 SD), arousal (Sexual Assessment Inventory, global score:
93.3 ± 13.2 SD, subtotal on items related to erotic picture
[3,14,20,23]: 11.56 ± 2.67 SD on 20), as well as the absence of sex-
ual dysfunctions and heterosexual orientation (Brief Sexual
Function Questionnaire, 79.33 ± 21.87 SD). All subjects gave writ-
ten informed consent to be part of the experiment, which was
approved by the local ethics committee (CPP, Centre Léon
Bérard). We excluded 2 subjects from subsequent analyses: One
subject always chose the option rewarded by erotic pictures pre-
venting the estimation of his preference and the other one
exhibited an inconsistent choice patterns, casting serious
doubts on this subject’s comprehension of experimental
instructions.

Value-Based Decision-Making Paradigm

Participants were asked to choose between 2 options (offer),
one of which was probabilistically rewarded by an erotic pic-
ture (picture option) and the other by a small amount of fruit
juice (0.75mL, drink option). At the beginning of each new
choice trial (decision onset), 2 cues were displayed around a
central fixation cross (Fig. 1B). Each cue indicated the probabil-
ity of obtaining the reward as a pie chart and its type as a picto-
gram. Erotic picture and drink options were randomly
displayed on the left and the right sides of the fixation cross.
Thirty-one different offers were built by varying the reward
probabilities (P = [0.25, 0.5, 0.75, 1]) associated with each of the
2 options (see Fig. 1C). Four additional offers consisting of one

Figure 1. Experimental paradigm. (A) Value-based decision as a 2-stage process distinguishes the assignment of subjective values to each behavioral option (valu-

ation) from the selection of the option that is subjectively the most desirable. Based on a noisy internal representation of values, selection is implemented as a drift-

diffusion process, with 2 key computations: 1) the integration of the DV neural signals built at the selection stage and 2) the readout of choice outcome when neural

activity in one of the accumulator reaches a threshold. (B) Participants chose between 2 options, one of which was probabilistically rewarded by an erotic picture (pic-

ture option) and the other one by a fixed amount of fruit juice (drink option), using response buttons matching the on-screen position of option cues (left or right, ran-

domized across trials). After a random delay, the participant received either the chosen good (“rewarded” choice trials) or a scrambled picture (“not rewarded” choice

trials), according to the payoffs associated with his choice. (C) Thirty-nine different offers were built by systematically varying the reward probabilities associated

with the drink and the picture options (P = [0, 0.25, 0.5, 0.75, 1]). Note that option cues explicitly provided participants with reward probability (red pie chart) and type

(pictogram). (D) Payoff matrix (see also Supplementary Fig. 1).
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option never rewarded against another one probabilistically
rewarded (P = [0.5, 1]) were also built (Fig. 1C). Each offer was
repeated 8 times during the course of the experiment.
Following the decision onset, the participants were given 3 s to
indicate their choice (left or right option) using a button box
with 2 buttons placed under their right hand. Immediately after
the subject’s choice, the chosen option was highlighted
(350ms) and a small arrow circling around the chosen cue
symbolized a real-time drawing from the reward distribution
indicated by the cue (jittered 3530–4830ms). Then, upon “pic-
ture” choices, a picture of a slightly dressed or nude woman
(rewarded trial) or a neutral scrambled image (unrewarded trial)
was displayed on the screen for 2.5 s. Upon “drink” choices, a
picture showing a glass filled with juice was displayed on the
screen for 2.5 s while 0.75mL of fruit juice was simultaneously
delivered to the subject’s mouth through a polythene tube
mounted on an automated syringe pump (rewarded trials) or a
neutral scrambled image (and no fruit juice) was displayed
without any fluid delivery (unrewarded trials). To promote a
high level of motivation throughout the experimental session,
participants were asked to avoid sexual intercourse for 24 h
and drinking for 12 h prior to the scanning session. They were
also told that drinking would not be allowed for a few hours
after the scanning session.

The experiment was split into 4 runs of 70 choice trials. On
average, each choice trial lasted 14 s and was followed by a 4-
to 6-s intertrial interval (Fig. 1B). Condition order was rando-
mized and counterbalanced across sessions, and session order
was counterbalanced across subjects. Immediately before and
after the fMRI session, participants were presented with motiv-
ational questionnaires to mark their desire for various drinks
(including the apple juice used in our experiment) on rating
scales numbered from 1 to 5. These questionnaires allowed us
to assess their motivation for drink and its stability over the
experimental session.

Stimuli

Three kinds of stimuli were used in our experiment (Fig. 1B):
1) “Erotic pictures” showed slightly dressed or nude women
and were selected to induce moderate to high sexual arousal
but no negative emotion such as disgust (Redouté et al. 2000).
Each picture was presented only once during the experimental
session to preclude habituation effects. 2) The “fruit juice”
reward consisted of 0.75mL of apple juice directly delivered to
the participant’s mouth. The amount of fruit juice delivered for
each trial rewarded was experimentally set during pretests to
minimize satiety due to repeated deliveries of rewards. 3)
Neutral pictures were scrambled versions of the erotic pictures
used in the experiment. This procedure allowed us to remove
all spatial information while preserving the original chromati-
city and luminance of the picture.

EZ2 DDM: Adaptations to Value-Based Decisions

We used an EZ2 DDM to investigate the computational
mechanisms underlying value-based decision-making. EZ2
models are well suited to small data sets as they account for
the mean and the variance of choice RT distributions and for
choice probabilities instead of full RT distributions (Ratcliff and
Tuerlinckx 2002; Wagenmakers et al. 2007, 2008; Ratcliff 2008;
Grasman et al. 2009; van Ravenzwaaij and Oberauer 2009).

Hence, building upon the EZ2 DDM (Wagenmakers et al.
2007, 2008), we developed and validated a model variant to

account for value-based decisions on the basis of the small
data sets typically recorded during an fMRI session. To do so,
we first reformulated the EZ2 model according to mechanistic
hypotheses on the relationship between slope, decision thresh-
old, nondecision time, starting point, and DV. In our main mod-
el (Fig. 3A and Supplementary Fig. 4), the slope is equal to the
DV weighted by a “gain” parameter (eq. 1). The DV is computed
according to Supplementary Eqs 2 and 3, and depends on the
relative value of fruit juice over erotic pictures (denoted Rdrink/

picture in eq. 1). The starting point is set at mid-distance from
the accumulator boundaries. The decision threshold and the
nondecision time are unchanged compared with the original
formulation of the model. We set the accumulator internal
noise (scaling parameter) to 1 for all participants, as deter-
mined by an exploratory analysis of the parameter space. Thus,
our main model has 4 parameters: preference, gain, decision
threshold, and nondecision time (Supplementary Fig. 4).
Moreover, we built 3 additional models on top of our main
model to test whether extra mechanisms may participate to
the decision-making process: 1) the DV biases the starting
point, 2) the absolute value of the DV modulates the decision
threshold, and 3) the DV modulates nondecision time. For each
participant, we fitted the EZ2 models to observed mean RTs, RT
variances, and choice probabilities using a bounded NM sim-
plex algorithm optimizing the sum of the squared differences
across offers weighted by the standard deviations.

= ×
∝ × −

( )
R P P

Slope Gain DV

DV
1

drink/picture drink picture

EZ models are sensitive to contaminant RTs (Ratcliff 2008).
So, we performed a parameter retrieval Monte-Carlo valid-
ation studies (n = 2000 synthetic experiments per level of con-
taminant RT) to estimate error biases and 95% confidence
intervals for each parameter in our model, under increasing
levels of contaminant RTs (up to 5%, Supplementary Fig. 3)
(Wagenmakers et al. 2007, 2008). Our results show that our
modeling strategy provides unbiased and precise parameter
estimates up to 1% of contaminant RT (Supplementary Fig. 3).
We fitted a mixture of Ex-Gaussian and uniform distributions
to our data (Wagenmakers et al. 2008), and found that the pro-
portion of contaminant in our data was below this value (pro-
portion of contaminant RT = 0.72%, n = 3901). This indicates
that our EZ2 DDM could be safely used to account for behav-
ioral data in our experiment.

MRI Data Acquisition

Participants were scanned on a research dedicated 1.5T MRI scan-
ner (Siemens Magnetom Sonata with an 8-channel head coil). We
acquired 1016 echo-planar T2*-weighted functional volumes over
4 runs, each run lasting about 15 min (404 volumes/run). Each
volume comprised 26 axial slices acquired continuously over 2.5 s
(time echo [TE] = 60ms; ascending interleaved acquisition; slice
thickness 4mm; 0.4mm noncontiguous; axial AC–PC; in-plane
resolution: 3.44 × 3.44mm2; matrix size: 64 × 64 in a 220 × 220mm
field of view), allowing complete brain coverage. Additionally,
T1-weighted anatomical images were acquired at the end of each
experimental session (magnetization prepared rapid gradient
echo: time repetition = 1970ms; TE = 3.93ms; T1 = 1100ms; reso-
lution: 1mm3; matrix size: 256 × 256). Head movements were
minimized using foam padding and headphones with earplugs
were used to dampen the scanner noise. The participants were
instructed to keep the fruit juice in their mouth as long as the
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associated picture showing a fruit juice glass was displayed and
to wait for the intertrial interval to swallow in order to reduce
movement artifacts.

fMRI Data Analysis

Preprocessing
Data were processed and analyzed using SPM5 software
(Wellcome Department Of Imaging Neuroscience, University
College London, UK, www.fil.ion.ucl.ac.uk/spm). The first 8 volume
s of each run were removed to allow for T1 equilibrium effects
(400 volumes/run). Image preprocessing consisted of slice tim-
ing interpolation, motion correction (6 parameters, rigid body
transformation). We used realignment parameters during the
statistical analysis as covariates to model out potential nonline
ar head motion artifacts. Functional and morphological images
were then normalized into standard MNI space using EPI
Montreal Neurological Institute template. Then, functional vol-
umes were resampled and spatially smoothed with an isotropic
8-mm FWHM Gaussian kernel. A 128-s temporal “high-pass filte
r” regressor set was included in the design matrix to exclude
low-frequency noise and artifacts.

Finally, we explored the data for potential artifacts using
tsdiffana, mean and variance images (http://imaging.mrc-cbu.
cam.ac.uk/imaging/DataDiagnostics). An artifact is defined as
the co-occurrence of a variance spike and a mean intensity drop
uncorrelated with experimental design. We did not exclude any
volume using these criteria. Translational movements esti-
mated during the realignment procedure were small as com-
pared to voxel size (>1mm).

Main General Linear Model
Whole-brain statistical parametric analyses were performed
using a 2-stage random-effect approach. We estimated inde-
pendently the model parameters from each subject’s data set
and then made population inferences based on the parameter
intersubject variance. Regressors were constructed by convol-
ving functions representing the events with the canonical
hemodynamic response function. Five event-related categor-
ical regressors were used to model choice trials (“Decision
onset,” “Commitment to choice,” “Wait,” “Picture reward,” and
“Drink reward,” Supplementary Fig. 4). In accordance with DDM
accounts of decision-making, ongoing processes during value-
based decision formation were modeled as Dirac functions
time locked to each decision onset (Decision onset) to which
we added 2 parametric regressors: response time and DV
(Supplementary Eq. 3). On the other hand, processes associated
with decision threshold crossing or motor responses were
modeled as a Dirac function time locked to the response button
press (Commitment to choice) to which we added 2 parametric
regressors: a “left-right” regressor that was equal to one when
the option selected was displayed on right of the fixation cross
and to 0 otherwise and a “chosen option value” regressor, equal
to the expected subjective value of the chosen option. Feedback
on choices was included in the model as 2 categorical regres-
sors (Drink feedback and Picture feedback) modeled as 2.5 s
long boxcar functions time locked on the onset of feedbacks.
Rewarded and Unrewarded trials were modeled as a parametric
regressor equal to 0 when a scrambled picture was delivered
and to 1 otherwise. Finally, processes unrelated to decision
were modeled as boxcars time from the decision onset to the
onset of the feedback (Wait). While designing our model, we
controlled for multicolinearity by computing the variance infla-
tion factor for each parametric regressor within each

categorical regressor and by rejecting combinations of para-
metric regressors that yielded a Variance Inflation Factor (VIF)
superior to 4 for at least one of the regressor (O’brien 2007).
Parametric regressors were then estimated on the basis of the
variance they uniquely explained. Statistical inferences were
performed with a threshold of 5% Family Wise Error (FWE)-
corrected clusterwise using WFU pick-atlas built-in mor-
phological atlas of the Orbito-Frontal Cortex (OFC) with a 3D
dilatation kernel (3 voxels) and small volume corrections (vox-
elwise threshold, P < 10−3 uncorrected, http://fmri.wfubmc.edu/
software/pickatlas) (Maldjian et al. 2003). Note that we built this
anatomical Region-of-interest (ROI) of the OFC to include all the
OFC/vmPFC areas identified in recent fMRI meta-analyses on
brain response to primary rewards such as food and erotic pic-
tures (Sescousse et al. 2013) and on value-based decision-mak-
ing (Clithero and Rangel 2013).

Additional General Linear Models
Additional analyses were performed using alternative versions
of this main General Linear Model (GLM1). In GLM2, we esti-
mated separately the relationship between BOLD activity and
the expected value associated with the drink option, on one
hand, and between BOLD activity and the expected value asso-
ciated with the picture option, on the other hand (Fig. 4B). To
do so, we built and estimated a model based on GLM1, in which
we substituted the parametric regressor “decision variable”
with separate expected values for the drink and the picture
options. GLM2 was otherwise identical to GLM1. In GML3, we
built and estimated a GLM that retained the categorical regres-
sors for decision onset, wait, picture, and drink feedback of
GLM1, but not its parametric regressors (Fig. 4C). Our goal was
to estimate average BOLD response amplitude to test its rela-
tionship to EZ2 drift-diffusion parameter estimates between
subjects. We built and estimated GLM4 based on GLM1, in
which we substituted the absolute value of the DV multiplied
by each individual’s gain parameter estimate to the DV para-
metric regressor (Fig. 5B,C). GLM4 was otherwise identical to
GLM1. GLM4 build upon the hypothesis that event-related
BOLD activity in brain regions implementing option selection
as a drift-diffusion process correlates with the absolute value of
the DV as illustrated in Figure 5B and Supplementary Figure 1.
In GLM4 (see Fig. 4C), statistical inferences were performed
within the whole network of brain regions characterized in the
psycho-physiological interaction (PPI) analysis reported in
Figure 5A with a threshold of 5% FWE clusterwise and a small
volume correction (voxelwise threshold, P < 10−3 uncorrected).
Note that we also ran variants of GLM1, 2, and 4 in which box-
cars scaling with RT at decision onset were used instead of a
parametric regressor scaling with RT applied to a Dirac func-
tion. We did not report these analyses because they did not
change our conclusions. Finally, we built and estimated a last
GLM5, which was a control GLM based on GLM1. In GLM5, we
added the absolute value of the DV to the DV and RTs at choice
onset and removed the value of the chosen option at commit-
ment to choice (see Supplementary Fig. 8).

Functional Regions-of-Interest and Parameter Extraction
To further characterize the role of the OFC and the DLPFC in
value-based decision-making (Figs 4 and 5), we extracted ROI-
averaged regression line slope estimates (parametric regressors)
or ROI-averaged percent signal changes (categorical regressors)
using a leave-one-out approach that prevented circularity
biases in the post hoc ROI-based inferences we performed
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 by guest on January 5, 2017
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw396/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw396/-/DC1
http://fmri.wfubmc.edu/software/pickatlas
http://fmri.wfubmc.edu/software/pickatlas
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw396/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw396/-/DC1
http://cercor.oxfordjournals.org/


afterward (Kriegeskorte et al. 2009, 2010). To do so, we built indi-
vidual ROIs by computing a statistical map for each participant
and for each contrast from the whole subject group minus the
participant himself (threshold P < 10−3 voxelwise), hence expli-
citly excluding the subject’s ROI-averaged parameter estimate
from the data set used for voxels selection.

Supplementary Methods
Detailed descriptions of the PPI, MVPA, and DCM analyses are
provided in Supplementary Methods.

Results
Behavioral Results

In our experiment, participants chose between 2 options that
probabilistically yielded different goods: an erotic picture or a
drop of juice (Fig. 1B–D). We observed that their choices
depended on the probability of being rewarded associated with
each option, and on the relative value between erotic pictures
and fruit juice, reflecting participant’s subjective preferences
(Fig. 2A, see Supplementary behavioral analyses).

To explore how participants made their choices, we first
assessed their preference for juice over erotic pictures by per-
forming a logistic regression on each participant’s choice pat-
tern (see Supplementary Methods, Supplementary Eq. 1). Our
logistic model expressed the probability of choosing the drink
option as a function of the probability of reward for the drink
(mean effect size; 6.542 ± 0.29 standard error of the mean
[SEM]) and the picture options (−6.702 ± 0.21 SEM), the trial
number (accounting for a possible changes of the preference
over the experiment, 0.986 ± 0.49 SEM) and an intercept (−1.38 ±
0.38 SEM). We computed the preference as the ratio between
the model’s betas for the probabilities of reward associated
with the juice and the erotic picture options (Padoa-Schioppa
and Assad 2006) (Supplementary Eq. 2). Hence, we measured
preference as the relative value of a drop of juice against an
erotic picture, and reported it as equivalent offers expressing
“how many” drops of juices were subjectively equivalent to an
erotic picture (see inserts in Fig. 2A and Supplementary Fig. 2):
about half the participants (42.8%) had a ratio of greater than 1,
revealing their preference for erotic pictures (mean preference:
0.95 ± 0.3 SD). A group-level random-effect Bayesian model
selection of the best logistic model of our participants’ choices
ruled out a drift of the preference during the experiment (see
Supplementary behavioral results). Note that preference sta-
bility across the experiment was further supported by the

desirability ratings for fruit juice performed preexperiment
and postexperiment (paired t-test, P = 0.208). Although partici-
pants’ choices were mostly determined by the expected value
of each option, this analysis also characterized a slight, yet sig-
nificant, bias toward pictures. Post hoc tests showed that this
bias toward pictures was significant for only 4 participants
(out of 14), and was about a fifth of the effect size of reward
probabilities.

Then, we computed for each participant the DV of each offer
by subtracting the expected subjective value of the juice option
from the expected subjective value of the picture option
(EVdrink − EVpicture, Supplementary Eq. 3). This procedure
allowed us to place each offer on a common “currency” scale.
Figure 2A shows the choice patterns of 3 individuals, illustrat-
ing the range of sigmoid relationships observed between DV
and choice probability in our sample. Note that some subjects
were noisy decision-makers who frequently chose the option
with the lower expected subjective value (Fig. 2A, left panel),
whereas others were so efficient that they almost always chose
the option with the highest expected subjective value, even for
offers close to subjective equivalence (Fig. 2A, right panel). We
quantified participants’ decision-making efficiency as the
inverse of the full width at middle height of the choice uncer-
tainty curve (full-width at half-maximum [FWMH], Bell-shaped
green curves in Fig. 2A, Supplementary Eqs 4 and 5) (Grinband
et al. 2006; Freedman and Assad 2011). Consistent with previ-
ous reports (Busemeyer and Townsend 1993; Grinband et al.
2006), RTs linearly increased with choice uncertainty (Fig. 2B,
Spearman’s r = 0.3128, P < 10−3), indicating that participants
progressively slowed down when DV tended toward subjective
equivalence. On average, RTs were not significantly different
when choosing the picture or the drink option (paired t-test, P =
0.438). Overall, our behavioral results reveal the complex rela-
tionship between DV, choice probability, and RT. These inter-
dependencies are likely to reflect the elementary computations
underpinning economic choices.

To investigate the computational mechanisms underlying
economic choices, we fitted DDMs to the behavioral data of each
participant (see Materials and Methods). Most DDMs formally
describe value-based selection as the temporal integration of a
noisy DV signal up to a decision threshold, under the assump-
tion that valuation and selection are distinct, hierarchical pro-
cesses (see Figs 1A and 3A). These models successfully account
for the tradeoff between response probability and decision dur-
ation in various value-based choices tasks (Busemeyer and
Townsend 1993; Usher and McClelland 2004; Krajbich et al. 2010;

Figure 2. Behavioral results. (A) Probability of choosing the drink option (Blue sigmoid curve) and choice uncertainty (Bell-shaped green curve) as a function of the DV

for 3 representative participants, ordered from left to right by increasing decision efficiency. Blue circles represent observed probabilities of choosing the drink option

for a DV. Dashed lines intersect at the point of subjective equivalence where DV is null, choice probability at chance level and choice uncertainty is maximal.

Preferences are reported (Insert: 1P = x × D) as equivalent offers expressing “how many” drops of juice (x × D) were subjectively equivalent to one erotic picture (1P).

Note that some participants preferred viewing an erotic picture (middle panel), whereas other preferred drinking a drop of juice (left and right panels, see also

Supplementary Fig. 2). (B) Normalized response times linearly increases as a function of choice uncertainty (green curves). Error bars represent standard errors.
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Milosavljevic et al. 2010). Figure 3A illustrates the DDM that best
fit the behavior of our participants: a decision variable is initia-
lized halfway between upper and lower boundaries, correspond-
ing to the decision threshold for choosing the fruit juice and the
erotic picture option, respectively. After a predecision latency
(Nondecision time, noted “Tnd” in Fig. 3A), the DV drives the
decision variable progressively toward one of the boundaries.
The subject commits to a choice once the decision variable
crosses one of the decision thresholds (choice readout). Finally,
a gain parameter captures individual variations in the level of
internal noise, or stability, of the DV signal driving the drift-
diffusion process (Fig. 3A). This gain parameter is conceptually
homologous to the notion of quality of evidence in DDMs litera-
ture on perceptual inference (Voss et al. 2004; Ratcliff 2008;

Ratcliff et al. 2009). A Monte-Carlo parameter retrieval analysis
showed that our DDM yields accurate and unbiased estimates
for all its parameters given our experimental design and the
level of contaminant RT in our data set (proportion of contamin-
ant RTs = 0.72%, see Supplementary Fig. 3) (Ratcliff 2008). As
shown in Figure 3 (panels D–F), the DDM provided excellent fits
for choice probability (r = 0.926) and mean RTs (r = 0.883), and
despite small numbers of observations per condition, it accur-
ately accounted for RT standard deviations (r = 0.562). There
was a good agreement between the preferences independently
estimated by logistic regression and by our DDM (Spearman’s
r = 0.9326, P < 10−3) (Fig. 3B). Note that adjusting the distance
between boundaries or the nondecisional time to choice uncer-
tainty (Cavanagh et al. 2011; Ratcliff and Frank 2012), and

Figure 3. EZ2 DDM and behavioral fits. (A) Schematic of the EZ2 DDM. Decision variable (uneven lines) is initialized halfway between an upper (DT) and a lower

boundary (0), corresponding respectively to the decision threshold for selecting the drink option (red) and the picture option (blue). After a predecisional processing

latency (Nondecision time, Tnd), the decision variable progressively drifts toward 1 of the 2 boundaries. The average drift of the decision variable (slope) is computed

as the product of the DV (Supplementary Eq. 3) and a subject-specific Gain constant (eq. 1). Participants commit to a choice when the decision variable crosses one of

the boundaries. (B) Preferences estimated by logistic regressions plotted against the preference estimated by EZ2 model. In panels (B) and (C), each data point repre-

sents a participant. (C) Decision efficiency as a function of the gain parameter logarithm. Decision efficiency is defined as the choice uncertainty FWHM (green curves

in Fig. 2A and inserts), which measures the participant’s ability to maximize the subjective value of his choices. (D–F) Observed probability of choosing the drink

option (panel D), mean RT (panel E), and RT standard deviation (panel F) plotted against EZ2 model predictions. In (panel D), each black circle represents the probabil-

ity of choosing the drink option for 1 of the 39 offers made to one participant. Panels (E) and (F) further split the offers followed by a drink choice (red circles) from

the offers followed by a picture choice (blue circles). Data points tend to be aligned on the identity line (dashed lines), as model predictions are more accurate (see

also Supplementary Fig. 3).
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initializing the decision variable with an offset proportional to
DV (Voss et al. 2004), did not significantly improve model’s fits
(ΔAICDT-simple = 2.1431, ΔAICTnd-simple = 1.9751, ΔAICSP-simple =
1.9263). Importantly, observed interindividual variations in deci-
sion efficiency were entirely explained by the gain parameter
(Spearman’s rlog-Gain,Efficiency = −0.9773, P < 10−6, Fig. 3C), not by
the decision threshold (Spearman’s rlog-DT,Efficiency = 0.429, P =
0.125), although economic decision efficiency equally depends
on both parameters in the DDM (Wagenmakers et al. 2007,
2008). Together, our behavioral findings support the idea that
the brain implements economic choices as a drift-diffusion pro-
cess driven by the DV of the offer.

fMRI Results

We investigated how valuation and selection may be imple-
mented in the human brain, and whether they involve overlap-
ping or distinct brain regions. First, we focused on the OFC, a
brain region involved in value representation and reinforce-
ment learning, whose precise contribution to decision-making
processes remains controversial (Wallis 2007; Grabenhorst and
Rolls 2011; Padoa-Schioppa 2011; Clithero and Rangel 2013;
Sescousse et al. 2013; Strait et al. 2014; Wilson et al. 2014). To
account for our a priori assumption that the OFC represents
subjective values (Clithero and Rangel 2013), we first tested the
parametric effect of DV within an anatomical ROI of the OFC
(see Materials and Methods—GLM1 and Supplementary Fig. 4).
We found that BOLD activity at decision onset correlated posi-
tively with EVpicture – EVdrink in 2 OFC regions (5% FWE-corrected
clusterwise, Fig. 4A): the bilateral vmPFC (MNI: −4,40,−20 and
8,42,−20) and the right lateral OFC (lOFC) (MNI: 28,32,−16). There
was no OFC region in which BOLD activity correlated positively
with EVdrink − EVpicture (even at a lenient threshold of P < 0.1

voxelwise uncorrected). Consistent with these results, a control
GLM assessing separately the parametric effects of the expected
values of the drink on BOLD activity did not reveal new OFC
regions (beyond the vmPFC and the lOFC already identified, see
Supplementary Fig. 5 and Materials and Methods—GLM2).
Unsurprisingly, BOLD activity at decision onset in the vmPFC
and the lOFC increased with the reward probability of the erotic
picture option (t-test, lOFC, P = 0.0043; vmPFC, P = 0.0124, yellow
bars, Fig. 4B) and decreased when drink option reward probabil-
ity increased (t-test, lOFC, P = 0.0014; vmPFC, P = 0.0384, yellow
bars, Fig. 4B). At feedback, OFC BOLD activity was also greater
when receiving an erotic picture compared with when an erotic
picture was expected but not delivered, and smaller when
receiving juice compared with feedbacks when juice was
expected but not delivered showing the ubiquity of this frame
of encoding the value difference in our task (Supplementary
Fig. 6).

Note that, all our GLMs included (and thus controlled for)
the value of the chosen option. BOLD activity correlated sig-
nificantly with the value of the chosen option in the lOFC
(t-test, P = 0.0013), but not in the vmPFC (t-test, P = 0.252).
There was no other OFC region in which BOLD activity corre-
lated with the value of the chosen option (Supplementary Fig. 7).
Hence, our results cannot be interpreted in term of spurious
encoding of the chosen value (or the closely related metric;
difference between chosen and unchosen option values).
Finally, we also controlled our results for a potential confound-
ing effect of the absolute value of DV (∣ − ∣=EV EVdrink picture

∣ − ∣ ≈ )EV EV Choice uncertainty .chosen unchosen However, it did not
change our findings and we found no evidence of it being
encoded in the vmPFC or the lOFC (Supplementary Fig. 8).

Consistent with previous literature, our findings show that
the OFC encodes the subjective values of options on a common

Figure 4. Value-related BOLD activities in the OFC. (A) Parametric response to subjective values in the OFC (threshold for display P < 10−3 voxelwise). OFC clusters

showing a significant parametric response (5% FWE cluster corrected) to the offer’s DV at decision onset are rendered in green (left column). (B) Bar graphs reporting

the slope of the regression line between BOLD activity and the expected values for picture and drink options (yellow bars), and between BOLD activity and response

time (blue bars), in the vmPFC (left graph) and the lOFC (right graph) (see Materials and Methods—GLM2). Error bars represent 95% confidence intervals.

(C) Scatterplots of correspondence between average BOLD activity at decision onset and the gain parameter estimated using the EZ2 DDM in the vmPFC (left panel)

and the lOFC (right panel) (see also Supplementary Figs 4–8). Data in panel (B) and (C) were extracted using a leave-one-out cross-validation method to prevent circu-

larity (see Materials and Methods entitled Functional Regions-of-Interest and Parameter Extraction).
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currency scale during economic choices and extend this func-
tion to direct comparisons between incommensurable goods
(Tremblay and Schultz 1999; Padoa-Schioppa and Assad 2006;
Tom et al. 2007; Chib et al. 2009; FitzGerald et al. 2009;
Philiastides et al. 2010; Hare et al. 2011). Furthermore, our
results show that, in the case of direct comparisons between
incommensurable goods, the encoding frame of option values
in the vmPFC (what A and B are when computing A–B) is not
defined by the value of the chosen option, but by the nature of
the choice outcome (EVpicture − EVdrink).

Next, to further characterize the respective contributions of
lOFC and vmPFC to value-based decision-making, we investi-
gated the relationship between regional BOLD response and
DDM parameters (see Materials and Methods, GLM3). We found
a positive intersubject correlation between the gain parameter
and the average BOLD activity at decision onset in the vmPFC
(Fig. 4C, Spearman’s r = 0.666, P = 0.009), but not in the lOFC
(Fig. 4C, Spearman’s r = 0.031, P = 0.914). In our model, the gain
parameter is a core feature of the value signal driving the diffu-
sion process (Fig. 3A). Thus, this linear relationship between
BOLD activity and the model’s gain parameter strongly sup-
ports the idea that the vmPFC is actively engaged in the value-
based decision-making process. Under our working hypothesis
of distinct brain regions implementing valuation and selection
during value-based decision-making, it further suggests that
the vmPFC may drive the diffusion process at the selection
stage. Alternatively, this result could also be viewed as evi-
dence that the vmPFC directly implements a drift-diffusion pro-
cess. A sensitive, albeit unspecific, approach to identify brain
regions potentially implementing selection as a drift-diffusion
process is to test whether BOLD response correlates with RTs
(Hanes and Schall 1996; Gold and Shadlen 2007; Grinband et al.
2008; Basten et al. 2010; Summerfield and Tsetsos 2012).
However, no correlation was found between BOLD activity and
RTs, neither in the vmPFC nor in the lOFC (Fig. 4B, blue bar
graph, t-test; vmPFC, P = 0.504; lOFC P = 0.383, see also Fig. 5D),
even when considering drink and picture choices separately.

To explore this medio-lateral functional division within
the OFC, we reasoned that if the vmPFC provides its input to a
drift-diffusion process at the selection stage, then functional
integration between the brain regions implementing selection
and vmPFC should increase during decision formation. To
test this hypothesis, we performed a PPI analysis to assess
changes in the connectivity of each of the 2 OFC regions while
participants formed value-based choices (see Supplementary
Methods). We found that connectivity increased during deci-
sion formation between vmPFC and a right lateralized net-
work including the PPC, the DLPFC, and the anterior insula
(Fig. 5A, 5% FWE-corrected clusterwise). A symmetrical left-
lateralized PPN was found but did not survive whole-brain
FWE correction. Conversely, there was no increase in connect-
ivity between the lOFC and other brain regions during decision
formation (even when using a lenient threshold of P < 0.1
voxelwise). Consistent with these findings, DLPFC and PPC
involvement in implementing drift-diffusion processes during
perceptual decisions has already received strong experimental
supports (Hanes and Schall 1996; Heekeren et al. 2004, 2006;
Domenech and Dreher 2010; Ding and Gold 2012), and DLPFC
and PPC neurons feature sustained neural activity during
value-based decisions that are reminiscent of realistic DDM
predictions (Platt and Glimcher 1999; Barraclough et al. 2004;
Roesch and Olson 2004; Sugrue et al. 2004; Wallis 2007).

Having characterized this fronto-parietal network whose
connectivity with vmPFC increases during value-based

decision formation, we then tested whether BOLD activity
within this network contained the standard neural signature of
a drift-diffusion process. Electrophysiological recordings in
monkeys support the idea that mutually inhibiting cortical
assemblies integrate separately the net evidence supporting
each option, resulting in a ramping activity at the population
level (Usher and McClelland 2004; Simen 2012; Wang 2012).

Figure 5. Brain region implementing a drift-diffusion selection process.

(A) Whole-brain PPI analysis between vmPFC and other brain areas during eco-

nomic choices formation (threshold for display P < 10−3 voxelwise). (B) Coupling

between DDM and BOLD activity: convolving expected neural activity with

hemodynamic response function predicted lower BOLD activity when accumu-

lation slope is steep (green) and higher BOLD activity when it is shallow (red),

irrespective of the actual choice. (C) Brain regions whose BOLD activity corre-

lates negatively with the absolute value of the slope of the drift-diffusion accu-

mulation process among the brain regions exhibiting a positive PPI with the

vmPFC during decision formation (MNI, xyz: 38, 42,42, P < 10−3 voxelwise, P =

0.03 FWE cluster corrected for small volume, see Materials and Methods –

GLM4). Bar graphs in panels (C) and (D) show the slope of the regression line

between BOLD activity and the absolute value of the slope of the drift-diffusion

process accumulation (yellow bars), and between BOLD activity and response

times (blue bars). Error bars represent 95% confidence intervals. Data in panels

(C) and (D) were extracted using a leave-one-out cross-validation method to

prevent circularity (see Materials and Methods “Functional Regions-of-Interest

and Parameter Extraction”).
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This ramping activity is closely approximated by the absolute
value of the accumulation slope (∣DV∣, Fig. 3A) (van
Ravenzwaaij and Oberauer 2009). Thus, assuming a linear
coupling between the firing rate of integrator neurons and
hemodynamic response (Lee et al. 2010), BOLD activity in brain
regions coding the decision variable of the drift-diffusion pro-
cess should increase with longer integration time and should
decrease with a steeper slope of integration (i.e., when |DV|
increases) (Fig. 5B, and Supplementary Fig. 1, see Materials and
Methods, GLM4). As expected from a brain region integrating
DVs through a drift-diffusion process, we found that BOLD
response at decision onset correlated negatively with |DV| in
the right DLPFC (5% FWE-corrected clusterwise, Fig. 5C).
Moreover, residual BOLD response in this DLPFC region corre-
lated positively with RTs (Fig. 5C, t-test; accumulation slope,
yellow bars; P = 2.9 × 10−3, blue bars; RT, P = 0.02). Despite a
strong positive correlation between RTs and BOLD activity in
the right PPC (Fig. 5D, t-test; RT, P = 7.4 × 10−3; accumulation
slope, P = 0.3151), we did not find any correlation (positive or
negative) between |DV| and BOLD response in the other brain
regions identified by our PPI analysis (even at a lenient thresh-
old of P < 0.1 voxelwise uncorrected). A retrospective inspection
of the 2 OFC regions previously identified (Fig. 4A) confirmed
that there were no correlation between their BOLD response
and |DV| (Fig. 5D, t-test; vmPFC, P = 0.775; lOFC, P = 0.8816), or
RTs (Fig. 5D, t-test; vmPFC, P = 0.301; lOFC, P = 0.32).

Together, these results support a 2-stage functional archi-
tecture for value-based decisions, in which DLPFC integrates
vmPFC’s DV signal over deliberation time to select the option
that maximizes choice’s expected subjective value. Consistent
with the view that PPNs behave as a domain-general hub for
decision-making (Cole et al. 2013), we found that the DLPFC
and the PPC belonged to the same large-scale functional net-
work. However, we also found that these 2 regions exhibited
distinct functional signatures, suggesting a different role for
the PPC, downstream of DV integration in the DLPFC.

MVPA Results

In dual populations’ realistic DDMs, the crossing of the decision
threshold by a neural population integrating evidence is “read
out” downstream when a second neural population falls into
an attractor state (Simen 2012; Hanks et al. 2015). Thus, we
hypothesized that the PPC may also take part in the selection
process by reading out the crossing of the decision threshold by
the value signal integrated in the DLPFC from vmPFC inputs.
Under this hypothesis, information on the upcoming choice
decoded from the vmPFC should shift to an early plateau and
stay stable during choice formation (step response), consistent
with the instantaneous encoding of DVs, without temporal
integration. By contrast, information on the upcoming choice
decoded from the PPC and the DLPFC should increase over
choice formation (ramping response) to reflect the gradual
accumulation of evidence in support of the upcoming choice
up to a decision threshold. However, this information should
rise earlier in the DLPFC than in the PPC, as the accumulation
of evidence precedes the readout of choice outcome in dual
populations DDMs (Simen 2012).

To test these predictions, we carried out time-resolved
MVPA (Haynes and Rees 2006; Kriegeskorte et al. 2006). This
type of analysis allowed us to assess whether information on
the chosen option (erotic picture vs. drink option) decoded
from local patterns of BOLD response in the previously identi-
fied vmPFC, DLPFC, and PPC regions would be consistent with

our proposed architecture of value-based decision-making. We
found that the chosen option could be decoded above chance
level as early as 4 s after the decision onset in the vmPFC
(Fig. 6A, left column) and the DLPFC (Fig. 6A, middle column),
but not until 6 s after decision onset in the PPC (Fig. 6A, right
column), suggesting that DLPFC and vmPFC engagement in the
decision-making process may precede the engagement of the
PPC. Critically, information related to the chosen option rose
throughout the deliberation phase in the DLPFC (8 s, decoding
accuracy = 77 ± 3%; paired t-test, 4 vs. 8 s, P = 0.0225) and the
PPC (8 s, decoding accuracy = 87 ± 2%; paired t-test, 6 vs. 8 s, P =
2.47 × 10−4), but not in the vmPFC (6 s, decoding accuracy = 69 ±
9%; 4–8 s, repeated measures ANOVA, P = 0.9), and peaked sim-
ultaneously in DLPFC and PPC at the end of the deliberation
phase (Fig. 6A).

Then, we compared 2 models of the temporal dynamic of
the information on the chosen option during the deliberation
phase: 1) a step model defined as a discrete jump of decoding
accuracy from a baseline level to a plateau and 2) a ramp model
defined as a linear rise of decoding accuracy on the upcoming
choice (see Supplementary Methods). Here, we characterized
the deliberation phase (yellow boxes in Fig. 6A background) as
the time-window during which decision speed could be
decoded above chance level from DLPFC activity (Slow vs. Fast
RTs, Fig. 6B) because in DDM, selection is defined by both its
outcome and its duration. As predicted, the dynamic of
decision-related information was best captured by a ramp func-
tion in the DLPFC and the PPC (Bayesian Factor; BF = 3.7 and BF
= 10.83, respectively), and by a step function in the vmPFC (BF =
2, see Fig. 6A, Supplementary Fig. 9). Moreover, the hypothesis
that the rise of decision-related information in the DLPFC pre-
ceded that of the PPC was 22 times more likely than the
hypothesis of a simultaneous rise of information in the 2 brain
regions (ΔAIClag-nolag = −3.1779), confirming that the computa-
tions related to value-based selection in PPC followed those
performed in the DLPFC. These results support our model-
based conclusions that DLPFC integrates DV over deliberation
time, and that the vmPFC does not participate in the selection
process. These findings also indicate that value-based selection
is not confined to the DLPFC, but is distributed within a parieto-
prefrontal network (PPN), in which the DLPFC stands upstream
of the PPC.

Alternative theories of PPN function emphasized its puta-
tive role in converting abstract economic choices into actions,
and received experimental support from previous monkey
electrophysiology studies (Padoa-Schioppa 2011; Cai and
Padoa-Schioppa 2014). However, human fMRI studies have
shown that PPN can also be involved in perceptual decision-
making irrespective of response modalities (Heekeren et al.
2006), and that conversion of abstract choices into actions
might, in fact, occur downstream of the PPC, through forward
projections onto premotor (PM) areas (Hare et al. 2011). To test
whether value-based selection occurred in an abstract option-
based space, an action-based space, or whether a conversion
was embedded within the selection process itself in the PPN,
we decoded the information accumulated by the end of the
deliberation period (time points 6 and 8 s, see Supplementary
Methods) on the selected action (left or right button) and the
chosen option (picture or drink) in rPPC and rDLPFC. In con-
trast with information on the chosen option, which was
highly significant (green bars in Fig. 6C), information on the
selected action did not exceed chance level (blue bars in
Fig. 6C). This finding shows that value-based selection in the
PPN occurs in an abstract option-based space and precludes
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the hypothesis of a conversion of choices into action within
this brain network.

Taken together, our results support a distributed implemen-
tation of a drift-diffusion process, in which the PPC reads out
the DVs integrated in the DLPFC (Fig. 1A), as proposed in sev-
eral theoretical models (Drugowitsch and Pouget 2012; Simen
2012; Wang 2012).

DCM Results

Lastly, we used DCM to test whether drift-diffusion key compu-
tations, namely integration and choice readout, would topo-
graphically map onto DLPFC and PPC, hence revealing a
computational specialization within the PPN. Under this
hypothesis, the value signal driving the drift-diffusion process
should input the PPN through the DLPFC as integration neces-
sarily precedes choice readout, and the prefronto-parietal con-
nectivity should reflect the computational specialization in
each brain region. More specifically, we expect the forward
connectivity from DLPFC to PPC to scale with the absolute
value of the DV (|DV|) because the activity of integrator and
readout neurons converge when options become more dis-
criminable (Simen 2012; Hanks et al. 2015). We also considered
the possibility that backward connectivity from PPC to DLPFC
would reflect the postdecisional mechanisms following the
commitment to a choice by including the value of the chosen

option in our DCM analysis. So, we built a model space that
explored all of possible combinations (n = 64 models total,
Fig. 7A) between types of input (constant input vs. input scaling
with values), entry points (rDLPFC vs. rPPC), and DLPFC-PPC
connectivity modulatory factors (chosen option value or/and
|DV|). We also included the possibility of a value-independent
input to specifically test whether the PPN self-generates its
own values to guide value-based selection, or whether it relied
on a value signal generated elsewhere in the brain. Random-
effect Bayesian Family Comparison showed that the PPN
received its inputs through the DLPFC, and that it scaled with
values (Exceedance Probability, noted EP, of DLPFC being the
system’s entry point, EP = 0.961; EP of the system’s input scal-
ing with values, EP = 0.822, Fig. 7A,B). Consistent with our pre-
dictions, family comparison also showed that connectivity
between DLPFC and PPC was not symmetrical. |DV| modulated
the effect of DLPFC on PPC at decision onset (EP = 0.836) and
the chosen option value modulated the reciprocal connection
when committing to a choice (EP = 0.92). Taken together, our
results support a computational specialization within the PPN
consistent with our hypothesis that value integration function-
ally maps onto DLPFC and choice readout onto PPC (Fig. 1A).
Our findings also exclude alternative architectures in which
DLPFC and PPC perform the exact same computations and the
same function in value-based decision-making. Finally, it is
noteworthy that our DCM results indicate that the PPN does

Figure 6. Decoding choices from vmPFC, rDLPFC and rPPC using MVPA. (A) Decoding accuracy of the chosen option (green curves) as a function of time after decision

onset in vmPFC, rDLPFC, and rPPC. Red dots indicate when decoding accuracy exceeds significantly chance level (5% FWE corrected, error bars represent SEM), as esti-

mated by Monte-Carlo simulation (3000 permutations, black curves indicate chance level and SEM). Dashed black lines indicate decision onset (labeled “Ons”).

Dashed red lines indicate respectively the average feedback time (labeled “FB”) and next decision onset (labeled “Next”). In each graph’s background, a yellow box

indicates when decision speed can be decoded above chance from rDLPFC BOLD activity (deliberation phase, see B). (B) Decoding RTs from rDLPFC using MVPA.

Decoding accuracy of fast choices (yellow curves, fast choices: fast vs. slow choices) as a function of time after decision onset in rDLPFC. (C) Decoding accuracy of the

chosen option (green bars) and of the selected action (blue bars) at the end of the deliberation phase (6–8 s after decision onset) in the PPN. Error bars represent 95%

confidence intervals (see also Supplementary Fig. 9).
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not self-generate its own value signal to guide value-based
selection, but relies on another brain region (most likely the
vmPFC) to drive the drift-diffusion process (Input type, Fig. 7B).

Discussion
In this study, we show that the human brain implements
value-based choices as a 2-stage process, dissociating the com-
putation of a DV signal in the vmPFC (valuation) from the selec-
tion of the most desirable option within a PPN (selection).
Within the PPN, we further show that the DLPFC integrates
vmPFC’s DV signal into a decision variable from which the PPC
can read out choice outcomes, consistent with a distributed
implementation of a drift-diffusion process (Fig. 1A) (Lo and
Wang 2006; Drugowitsch and Pouget 2012; Simen 2012; Wang
2012; Hanks et al. 2015).

vmPFC Function as the Input of a Drift-Diffusion
Process

There is an ongoing debate over the precise role of vmPFC in
value-based decision-making (Rangel et al. 2008; Kable and
Glimcher 2009; Padoa-Schioppa 2011; Rushworth et al. 2012).

Our current findings show that the vmPFC primarily operates
as a valuation hub, which aggregates probabilistic evidence
and inner subjective preferences into a common DV signal.
More importantly, we demonstrate that the vmPFC does not
implement value-based selection per se since: 1) vmPFC BOLD
activity scaled with the difference between the expected sub-
jective values of the picture and the drink options (Fig. 4A),
2) vmPFC activity neither correlated with RTs nor with the
slope of the integration predicted by the DDM (Fig. 5D); 3)
information on the upcoming choice decoded from vmPFC
BOLD response quickly shifted after decision onset to a plat-
eau during the deliberation phase, which excludes a gradual
accumulation of evidence in this brain region (Fig. 6A). Finally,
we found a significant intersubject correlation between BOLD
activity in the vmPFC and the gain on DDM input, supporting
the idea that the DV signal encoded in the vmPFC was used
downstream at the selection stage (Fig. 4C). Consistent with
this view, a previous study showed that the connectivity
between vmPFC and its input structures also scaled with DDM
gain during cost-benefit choices (Basten et al. 2010). These
findings extend a large body of neuroimaging literature on
value-based decision-making characterizing the vmPFC as a
core structure of the human brain valuation system, critical to

Figure 7. DCM of connectivity in the PPN. (A) Model space included all of possible combinations of network topography (upper panel) and connectivity modulatory

factors (lower panel). (B) Bayesian Family Comparison testing the PPN main’s features: directionality of parieto-prefrontal bilinear modulations (upper row), input

type (lower left panel), and entry point in the network (lower right panel). “|DV|” refers to the absolute value of the DV, and “Chosen Value” to the subjective value of

the chosen option (see Supplementary Methods). (C) Summary schematic of PPN’s connectivity during value-based selection.
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the encoding of the subjective value of heterogeneous types of
goods (Chib et al. 2009; Clithero and Rangel 2013; McNamee
et al. 2013), appetitive or aversive (Plassmann et al. 2010), pro-
spects of gains and losses (Tom et al. 2007; Basten et al. 2010)
and contextual effects on values (Seymour and McClure 2008;
Chau et al. 2014). In many paradigms, the vmPFC encodes a
difference-based (or normalized) signal scaling with the sub-
jective values driving the ongoing decision (Chau et al. 2014;
Louie et al. 2015).

When computing a difference-based value signal (A–B), it is
crucial to know what A and B are because the brain regions
downstream in the decision process need to know which
option is favored by the relative value signal to properly imple-
ment option selection. In economics, the identity of A and B is
commonly referred to as a “frame” (Tversky and Kahneman
1981). There are currently several competing theories regarding
what A and B should be when encoding a relative value signal
in the vmPFC, with substantial differences in the meaning of
the corresponding brain activity. For example, several fMRI
studies have reported a value signal in the vmPFC reflecting the
difference “Vchosen − Vunchosen” (“postdecisional” frame), and
interpreted their results as evidence that the vmPFC directly
implemented value-based selection (Hunt et al. 2012; De
Martino et al. 2013; Chau et al. 2014; Strait et al. 2014). However,
a difference reflecting the end result of the decision process is
postdecisional by nature and cannot drive the selection stage
itself. According to the attentional frame theory (Krajbich et al.
2010), the relative value signal encoded in the vmPFC depends
on which option is attended to (“Vattended −Vunattended”). Such
framing provides a good account for vmPFC activity in a choice
task where fixation patterns were imposed to the subjects, and
correctly predicted several features of spontaneous choice
behavior by imposing a discount weight on the unattended
option value. Notably, the attentional frame predicts that more
fixated options should be more frequently chosen, which may
explain why vmPFC activity has been found to correlate with
Vchosen − Vunchosen in other studies as both quantities (Vchosen −
Vunchosen and Vattended − Vunattended) strongly covariate. Finally,
the default frame theory builds upon the literature on optimal
foraging, which argues that stay/switch choices are the natural
framing for decisions (Lopez-Persem et al. 2016). There are mul-
tiple ways of inducing a default option (Fleming et al. 2010;
Mulder et al. 2012; Boorman and Rushworth 2013) and relative
value signals are computed as the difference “Vdefault −
Valternative”. In our study, the relative value signal found in the
vmPFC was encoded in a frame set by the nature of the choice
outcome (EVpicture − EVdrink, see Fig. 4A,B). Choice feedbacks
were also encoded in the same frame (Supplementary Fig. 6).
We believe that this relative value signal may reflect the fact
that young heterosexual male subjects implicitly set one of the
options as the default when assessing the offer made in our
task. This may be due to the fact that one important originality
of our design is that participants make binary choices between
different goods that were immediately experienced in the scan-
ner, and thus directly rewarding, without any monetary
representation (e.g., willingness-to-pay). All our fMRI analyses
controlled for the value of the chosen option, which was not
encoded in the vmPFC (Supplementary Fig. 7). Moreover, asses-
sing separately the encoding of the subjective value of the
drink and of the picture options showed that the frame of
encoding observed in our task was not better explained as the
sum of option value (Supplementary Fig. 5), the value of the
chosen option (Supplementary Fig. 7) or the absolute value of
the difference between option (Supplementary Fig. 8). Although

we did not directly controlled for the effect of visual fixation on
valuation using an eye tracking device (Krajbich et al. 2010), a
confounding effect of attention was very unlikely here because
it also correlates with the value of the chosen option. Finally, it
is noteworthy that our model focuses on value-based selection
and does not propose any mechanistic account for how valu-
ation occurs in the vmPFC (Fig. 1A). Notably, our results are
compatible with hierarchical competition accounts of value-
based choices, in which valuation occurs through competitive
inhibition (Hunt et al. 2014) and value normalization (Louie
et al. 2015).

A general issue with model-driven studies lies with their
confirmatory nature, which makes it challenging to unambigu-
ously rule out confounding effects of uncontrolled experimen-
tal variables or cognitive processes (Hayden and Heilbronner
2014). For example, choices associated with negative DVs in
value-based decision-making tasks are likely to be under-
sampled because subjects maximize the expected value of their
outcomes. This sampling bias becomes especially problematic
when using only monetary gains as outcomes because it is
unclear how their relative values should be framed (Seymour
and McClure 2008; Louie et al. 2013). In these designs, the few
trials associated with negative DVs become the only data
points one can use to distinguish between a neural signal scal-
ing with chosen “minus” unchosen option values and other
alternative encodings of value, which might be insufficient for
ruling out alternative frames of encoding for relative values.
Acknowledging these methodological issues recently led to a
reappraisal of influential model-based findings on value-based
selection in term of choice uncertainty monitoring in the dorsal
Anterior Cingulate Cortex (Hayden and Heilbronner 2014;
Shenhav et al. 2014). Note that the issue raised here extends
beyond the specific example discussed above, as correlations
between BOLD activity and RT classically used to characterize
behavioral selection can also be confounded with motor prep-
aration (Filimon et al. 2013) or choice uncertainty (Summerfield
and Tsetsos 2012). Our study allowed us to address these lim-
itations to unambiguously rule out the participation of the
vmPFC in value-based selection by the concomitant use of non-
monetary outcomes in a sample of subjects whose revealed
preferences were balanced, and our data-driven approach using
MVPA confirmed our model-based findings.

Our interpretation that the vmPFC acts as a valuation hub
encoding a value signal, which drives a value-based selection
process implemented elsewhere in the brain, accounts for
other effects previously interpreted as evidence that this region
implemented value-based selection in terms of gain of the
DDM value signal input (Noonan et al. 2010; Jocham et al. 2012).
Indeed, in a 2-stage architecture, the gain of the DDM input
seems to mainly capture the noise in the neural encoding of
subjective values (Brunton et al. 2013). Thus, the gain is hom-
ologous to the quality of sensory evidence in perceptual
decision-making (Ratcliff and McKoon 2008) or to attention
weights in decision field theory (Busemeyer and Townsend
1993). Taken together, our findings strongly support the idea
that the primary function of the vmPFC is to aggregate all rele-
vant sources of information into a common value signal, which
in turn can drive a sequential sampling process at the selection
stage to make value-based choices.

A Medio-Lateral Dissociation in the Human OFC

Our results also revealed that vmPFC and lOFC differed from
each other in multiple ways. First, only the lOFC encoded the
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value of the chosen option when committing to a choice (at
the end of the decision), not the vmPFC (Supplementary Fig. 7).
The value of the chosen option is an important postdecisional
feature of the choice outcome. Second, mean BOLD activity
scaled with the gain parameter of the DDM in the vmPFC, but
not in the lOFC (Fig. 4C). Third, the functional connectivity
between vmPFC and a large-scale brain network including pos-
terior parietal and lateral prefrontal cortical brain regions
increased when forming a choice, whereas there was no
increase in the functional connectivity between lOFC and the
rest of the brain when forming a choice. Taken together, these
observations are compatible with theories involving the lOFC
as a key structure in credit assignment (the cognitive process
pairing a course of action with the motivational value of its
consequences). Supporting this view, a previous study showed
that selective lOFC lesions disrupted the correct pairing of esti-
mated option values with choice outcomes, leading to errone-
ous updates and canceling Thorndike’s “law of effect,” while
selective vmPFC lesions specifically disrupted value-based
decision-making (Noonan et al. 2010).

Distinct Roles for DLPFC and PPC in Value-Based
Selection

We found that the PPN implements value-based selection
through a distributed drift-diffusion process. Within this net-
work, the DLPFC integrates a DV signal encoded in the vmPFC
and the PPC reads out the choice outcome from output of the
DLPFC. Specifically, we first showed that the information flow
between vmPFC and the PPN increased during choices forma-
tion (Fig. 5A). Then, we showed that trial-by-trial BOLD activity
in the DLPFC correlated with the slope of integration predicted
by our DDM (Fig. 5C), whereas it only correlated with RTs in the
PPC (Fig. 5D). Consistent with these model-based results, infor-
mation on the upcoming choice linearly increased during
choice formation in these 2 brain regions, with the DPLFC pre-
ceding the PPC (Fig. 6A). By contrast, vmPFC BOLD response cor-
related neither with the slope of the integration predicted by
the DDM nor with RTs (Fig. 5D) and information on the upcom-
ing choice in vmPFC was constant during choice formation
(Fig. 6A). Together, these results support the view that the
DLPFC and PPC contribute differentially to value-based selec-
tion as a distributed drift-diffusion process: the DLPFC inte-
grated vmPFC’s DV signal into a decision variable from which
the PPC could readout choice outcomes.

Confirming this neuro-computational architecture, after
testing several families of models with different inputs, we
observed that a signal reflecting the integrated DV was trans-
mitted in a top-down fashion from the DLPFC to the PPC follow-
ing decision onset, while a signal reflecting the value of the
chosen option was sent back from the PPC to the DLPFC when
reading out choice (Fig. 7). Recently, gamma activity in fronto-
parietal regions compatible with a DDM and a causal role of
oscillation coupling between frontal and parietal brain regions
has been demonstrated during value-based selection (Polanía
et al. 2014, 2015). In these electroencephalography studies,
frontal brain regions were only recruited when forming value-
based choices, not when forming perceptual choices. Moreover,
electrophysiological recordings and optogenetic manipulations
of parietal and premotor cortices in rats performing perceptual
choices also found separate decision model functions in dis-
tinct brain areas but, unlike our own results, evidence integra-
tion was located in the PPC and choice readout was observed in
the Frontal Eye Field (Hanks et al. 2015).

Note that these 2 key DDM computations, temporal integra-
tion and choice readout, are not specific to DDMs. Thus, the
neuro-computational architecture we propose is functionally
compatible with any sequential sampling model, including
hierarchical neural network performing DDM-like selection
through mutual inhibition (Drugowitsch and Pouget 2012; Hunt
et al. 2012, 2014; Wang 2012).

Alternative theories of PPN function emphasize its putative
role in converting abstract economic choices into actions
(Padoa-Schioppa 2011; Cai and Padoa-Schioppa 2014). However,
previous human fMRI studies have shown that the PPN can
also be involved in perceptual decision-making irrespective of
response modalities (Heekeren et al. 2006), and that conversion
of abstract choices into actions might, in fact, occur down-
stream of the PPC, through forward projections onto PM areas
(Hare et al. 2011). Consistent with these previous fMRI studies,
our results preclude the hypothesis of a conversion of choices
into action within the PPN, and support the notion that value-
based selection in the PPN occurs in an abstract option-based
space (Fig. 6C).

The ability of DDMs to provide a unified account of simple
choices, supported by many studies linking the accumulation
of sensory evidence toward a decision threshold with the PPN
during perceptual decision-making (Heekeren and Marrett
2008; Donner et al. 2009; Domenech and Dreher 2010; Shadlen
and Kiani 2013), has recently fueled a debate on whether the
PPN may act as a hub implementing behavioral selection
through drift-diffusion across multiple cognitive domains, such
as value-based choices and memory retrieval tasks (Platt and
Glimcher 1999; Barraclough et al. 2004; Roesch and Olson 2004;
Sugrue et al. 2004; Wallis 2007; Ratcliff and McKoon 2008; Kable
and Glimcher 2009; Rangel and Hare 2010; Shadlen and Kiani
2013). Our findings support this view, as we demonstrate here
that the PPN implements value-based selection in an abstract
option-based space through drift-diffusion during economic
choices. Moreover, the PPN has been shown to flexibly connect
to many inputs and outputs brain regions across a variety of
simple decision-making tasks (Cole et al. 2013). Low-frequency
rTMS of DLPFC disrupts evidence integration during perceptual
decision-making and biases value-based decision-making
(Camus et al. 2009; Philiastides et al. 2011). Simultaneous
prefronto-parietal recordings showed that decision-related
activity of neurons in the DLPFC drives neurons in the PPC dur-
ing free choices formation and executive control tasks (Pesaran
et al. 2008; Crowe et al. 2013). Finally, human PPC’ oscillatory
MEG patterns have been shown to qualitatively match those of
an attractor network during value-based decision-making, as
expected from a brain region reading out choice outcomes
(Hunt et al. 2012).

Conclusion
Our findings suggest that the PPN may act as a domain-general
hub implementing behavioral selection through a distributed
drift-diffusion process. These results bridge economics and
neuro-computational accounts of value-based decision-making
within a unified framework to characterize the computations
performed by key brain regions engaged in value-based choices,
and illustrate the power of combining model-driven and data-
driven fMRI analysis to challenge complex cognitive questions.

Supplementary Material
Supplementary material are available at Cerebral Cortex online.
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