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Abstract 

The second-order realizable 𝜁 moment advection scheme developed in Laurent and Nguyen, (2017) 

is extended to the case of unstructured grids with cells of arbitrary shape. The necessary modifications 

to the scheme and the conditions under which the scheme ensures the realizability of the advected 

moment set are presented. The implementation of the scheme in the OpenFOAM® CFD toolbox is 

verified comparing the results obtained in one-dimensional test cases involving moment sets well 

inside the moment space, and at the boundary of the moment space. Results obtained with the 

proposed scheme are compared to the corresponding analytical solution. The scheme is then tested 

considering two-dimensional cases of pure moment advection with an imposed irrotational velocity 

field. First, a quadrilateral grid is considered to determine the order of the scheme and compare it to 

the results reported in Laurent and Nguyen (2017) with the same grid resolution. Then, the accuracy 

of the scheme on two-dimensional triangular grids is determined.  

Keywords: Moment advection, realizability, unstructured grid, advection, schemes, moment methods, 

quadrature method of moments 

1. Introduction 

Moment methods are a class of mathematical methods used to determine approximate solutions to 
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problems involving the evolution of a distribution function. Notable examples of equations describing 

this evolution are the population balance equation [2,3], the Boltzmann [4,5], the Boltzmann-Enskog 

[2], the Fokker-Planck and Kolmogorov [6–8] equations, in addition to several others. These equations 

can be written in compact form as 

 
𝜕𝑓

𝜕𝑡
+ ∇𝐱 ⋅ (𝑓𝐯) + 𝒮 = 0 (1.1) 

where 𝑓(𝑡, 𝐱, 𝛏) is the distribution, 𝐱 is the position vector, 𝛏 is the vector of internal coordinates 

specific to the problem (e.g. size, composition, velocity, charge…), 𝐯 is the velocity and 𝒮 contains 

other terms depending on the evolution equation for 𝑓 under consideration. 

Moment methods [9–11] consist in deriving partial differential equations (PDEs) for the spatio-

temporal evolution of a finite vector of moments of the distribution function characteristic of the 

problem under consideration, in order to reduce the dimensionality of the problem and, consequently, 

make it computationally more treatable. This is achieved by applying the definition of moment of 𝑓 

 𝑚𝑖𝑗𝑘… = ∫ 𝜉1
𝑖𝜉2
𝑗
𝜉3
𝑘 …𝑓𝑡, 𝐱, 𝛏)d𝛏

Ω

 (1.2) 

to both sides of Eq. (1.1), which leads to conservation equations for the quantities 𝑚𝑖𝑗𝑘…, which are 

the moments about the origin of 𝑓. The PDEs obtained in this way are then discretized on the domain 

of interest and solved numerically, typically using the finite-volume method [12,13]. The literature 

reports many example applications where moment methods were used [9,10,14–43], including 

applications to aerosols [11,17,18], gas-particle flows [37,44,45], gas-liquid flows [22,22,39,46], 

combustion [27,43,47], sprays [24,32,35,48] and radiation transport [14], to mention a few. In this 

work we focus on the transport of moments of a univariate distribution, where 𝛏 contains only one 

scalar positive quantity, as it happens in the solution of population balance equations describing the 

evolution of the particle size in a particle population. 

A key difficulty in formulating numerical methods for the solution of PDEs describing the evolution 

of a moment vector is the discretization of the advection term. As illustrated by Wright [49], this 

difficulty consists in preserving the moment realizability2, which is systematically compromised if 

classical discretization schemes, different from first-order upwind, are used to discretize the advection 

 
2 A moment vector is said realizable on a support if a positive measure exists on the same support whose moments are 
the same as those in the considered moment vector. It is then in the moment space. 
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term [49]. The first-order upwind scheme, while used in most of the applications of moment methods 

found in the literature in order to avoid compromising moment realizability, is too dissipative, and 

requires extremely refined grid resolutions to achieve satisfactory results, seriously compromising the 

feasibility of simulations in applications involving large-scale domains or large gradients of the 

transported moment vector. Wright [49] examined several solutions to the problem of moment 

corruption due to advection, including the adoption of augmented schemes for vector transport, the 

transport of surrogate quantities related to the moment vector that needs to be advected, of quadrature 

weights and abscissae associated to the moment set in certain quadrature-based moment methods [50], 

and moment correction algorithms [49,51]. This latter approach consists in replacing the compromised 

moment vector with a valid one, obtained either by removing negative second-order differences [3] 

or enacting an optimization procedure to identify a moment vector that maximized ln⁡𝑚𝑘 [51].  

Kah et al. [32] developed a second-order realizable advection scheme for moment vectors of 

distribution with compact support, suitable for structured grids, in cases with moment vectors in the 

interior of the moment space. In their approach, instead of performing a direct spatial reconstruction 

of the moment vector of interest, the corresponding vector of canonical moments is considered. The 

boundedness of the canonical moments, which are necessarily positive scalars defined over ]0, 1[ is 

leveraged to formulate a limiter which ensures not only the boundedness of the numerical solution, 

but also the realizability of the vector of transported moments under a condition on the integration 

time step. The resulting scheme was applied together with adaptive mesh refinement in [52].  

Vikas et al. [53] proposed a quasi-high-order realizable advection scheme in the context of quadrature-

based moment methods. In their scheme, which was formulated on unstructured grids, the advection 

term is computed as a function of the quadrature approximation of the NDF [3,11], using a MUSCL-

type limited scheme for the reconstruction of the quadrature weights and a first-order upwind scheme 

for quadrature abscissae. The scheme ensures moment realizability if a condition on the integration 

time-step is satisfied. However, the formal order of accuracy of the scheme is limited by the first-order 

reconstruction of the quadrature abscissae. Vikas et al. [54] proposed a realizable scheme for diffusion 

problems, always in the context of quadrature-based moment methods. 

Alldredge and Schneider [55] formulated a discontinuous Galerkin scheme in the context of entropy-

based moment closures, coupling it with a strong stability preserving Runge-Kutta method for time 

integration. Since this approach relies on entropy-based closures, it is suitable for problems with 

moment vectors in the interior of the moment space but does not deal with the case of moment 
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vectors are the boundary of the moment space. 

Laurent and Nguyen [1] developed a second-order realizable scheme by considering the reconstruction 

of positive quantities related to the set of transported moments in what they have called 𝜁 scheme. 

This numerical scheme, which requires a CFL-like condition to ensure the realizability of the moment 

vector, was successfully applied to the transport of moment vectors of a regular NDF and of a bimodal 

NDF, with moments possibly at the boundary of the moment space. In both cases the scheme has 

shown the capability of preserving the realizability of the advected moment vector, while maintaining 

its accuracy.  

The nature of the 𝜁 scheme and, in particular, the version of this scheme called 𝜁 simplified scheme 

by Laurent and Nguyen [1], makes it an ideal candidate for its extension to unstructured grids with 

cells of arbitrary shapes because the scheme relies on a traditional MUSCL reconstruction, and only 

requires a local additional limitation to be applied to the reconstructed quantities on cell faces. The 

extension of this scheme to unstructured grids and its implementation into the OpenFOAM 

framework [56] are the topics of this article, the remainder of which is organized as follows: in Sec. 2 

the problem of moment transport is introduced. The 𝜁 simplified scheme for hexahedral structured 

grids of Laurent and Nguyen [1] is summarized in Sec. 3. Its generalization to unstructured grids with 

cells of arbitrary shapes is discussed in Sec. 4. Finally, the same one- and two-dimensional test cases 

used by Laurent and Nguyen [1] are used in Sec. 5 to verify the implementation of the numerical 

scheme, using hexahedral uniform grids. Then, the two-dimensional cases are repeated using a 

triangular grid, and the order of accuracy of the 𝜁 simplified scheme on unstructured grids is assessed. 

2. Moment transport and moment advection 

The focus of the present work is on the pure advection problem of a moment vector 𝐦N =

(𝑚0, … ,𝑚N−1) associated to a measure with support over ℝ+ , with a known velocity field 𝐔 , 

according to the set of equations 

 
𝜕𝑚𝑘

𝜕𝑡
+ ∇𝐱 ⋅ (𝑚𝑘𝐔) = 0, ∀𝑚𝑘 ∈ 𝐦N. (2.1) 

The solution of Eq. (2.1) is non-trivial because the numerical schemes used to discretize the time 

derivative and the divergence term need to guarantee the moment vector 𝐦N remains realizable. This 

condition can be expressed through a set of non-linear relationships the components of 𝐦N need to 
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satisfy. These conditions are represented, for moments associated to a measure with support on ℝ+, 

through the Hankel determinants [57,58]: 

 𝐻2𝑝 = |

𝑚0 … 𝑚𝑝

⋮ ⋱ ⋮
𝑚𝑝 … 𝑚2𝑝

| , 𝐻2𝑝+1 = |

𝑚1 … 𝑚𝑝+1

⋮ ⋱ ⋮
𝑚𝑝+1 … 𝑚2𝑝+1

|, (2.2) 

with 𝐻−2 = 𝐻−1 = 1. 

Necessary and sufficient condition for 𝐦N to be in the interior of the moment space is that 𝐻2𝑝 > 0 

and 𝐻2𝑝+1 > 0. Moreover, when 𝐦N is at the boundary of the moment space, some of these Hankel 

determinants are null. 

A discussion on realizable time integration schemes can be found, for example, in [53]. Since the focus 

of this article is on advection schemes, it suffices to remember that any time-integration scheme 

convex combination of explicit Euler steps is realizable under some restriction on the integration time 

step. 

As anticipated in the introduction, the objective of this article is to extend the second-order realizable 

advection scheme of Laurent and Nguyen [1] to unstructured grids. To such a purpose, let us consider 

a computational grid made of cells of arbitrary shape. The volume of a generic cell c is Ωc, and the 

number of faces of the same cell is Nf,𝑐. The subscript own indicates the reconstructed values of a 

variable at the cell face, assuming outgoing flux; the subscript nei indicates the reconstructed values of 

a variable at the cell face if the flux is going into the cell. For consistency with the convention adopted 

in OpenFOAM, we assume the flux of a transported property to be positive when outgoing with 

respect to the computational cell owning the face used to define the flux. 

Following Vikas et al. [53], and using the nomenclature introduced above, Eq. (2.1) can be rewritten 

in semi-discrete form to obtain the evolution equation of the moment 𝑚𝑘 defined at the center of 

each computational cells. Such equation reads 

 
𝜕𝑚𝑘,𝑐

𝜕𝑡
+
1

Ω𝑐
∑ [𝑚𝑘,own,𝑓max(𝐔𝑓 ⋅ 𝐒𝑓 , 0) + 𝑚𝑘,nei,𝑓min(𝐔𝑓 ⋅ 𝐒𝑓 , 0)] = 0

Nf,𝑐−1

𝑓=0

, (2.3) 

where 𝐒𝑓 is the vector normal to the surface of the cell face 𝑓, belonging to cell 𝑐, with magnitude 

equal to the surface area of the cell face |𝐒𝑓|  and pointing outward of the cell, and 𝐔𝑓  is the 

reconstructed value of 𝐔 at the same face. 
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A procedure needs to be developed to compute the moments 𝑚𝑘,own,𝑓 and 𝑚𝑘,nei,𝑓 to ensure the 

realizability of the advected moment vector 𝐦N  because, as discussed in the introduction, 

conventional finite-volume advection schemes, relying on reconstructions of order higher than one, 

do not guarantee the realizability of the transported moment set [49]. 

3. The simplified 𝜻 advection scheme 

This section summarizes the realizable 𝜁  simplified advection scheme [1], which represents the 

foundation of the scheme for unstructured grids subject of the present work. This scheme was 

developed for one-dimensional problems with uniform spatial discretization and extended to multiple 

dimensional problems with Cartesian grids through dimensional splitting. Only the one-dimensional 

scheme is presented here. 

In the 𝜁 simplified scheme, the moment vector 𝐦N is advected by considering the auxiliary vector 

𝛇N−1 = (𝜁0, … , 𝜁𝑁−2), with 

 𝜁𝑝 =
𝐻𝑝+1𝐻𝑝−2

𝐻𝑝𝐻𝑝−1
, 𝑝 = 0, 1, … , N − 2, (3.1) 

where 𝐻2𝑝 and 𝐻2𝑝+1 are the Hankel determinants in Eq. (1.2).  

These quantities are efficiently calculated using the QD algorithm [57], the Chebychev algorithm [1] 

or the Wheeler algorithm [59]. The adoption of the last two approaches is particularly convenient in 

the context of quadrature-based moment methods because the coefficients required to calculate the 

quantities 𝜁𝑝  correspond to the coefficients of the recurrence relationship of the orthogonal 

polynomials used to determine the quadrature formula. 

Once the vector 𝛇N−1 has been defined, the 𝜁 simplified advection scheme consists of the following 

steps: 

1. The zero-order moment 𝑚0  is advected using a conventional MUSCL scheme with the 

minmod limiter. 

2. The values of 𝜁𝑝 are reconstructed at each side of each cell face using the same MUSCL-type 

reconstruction as for 𝑚0, which ensures the positivity of the quantities 𝜁𝑝 is preserved. 

3. An additional limitation is conditionally applied to the slopes used to perform the 

reconstruction at the previous point, if needed to ensure the realizability of the advected 
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moment set. This additional limitation is defined based on the realizability of the moment 

vector [1,60] 

 𝐦∗ = 3𝐦−𝐦+ −𝐦−, (3.2) 

where 𝐦  is the moment vector at the cell center, 𝐦+  and 𝐦−  are the moment vectors 

computed from the values 𝜁𝑝
+ and 𝜁𝑝

− reconstructed at cell faces. If the moment vector defined 

by Eq. (3.2) is not realizable, an iterative procedure is used to reduce the slopes used to 

reconstruct 𝜁𝑝 on cell faces, to ensure the realizability of the moment vector at the cost of the 

accuracy of the reconstruction. Details of this procedure are reported in Laurent and Nguyen 

(2017), and its generalization to unstructured grids is discussed in this work. 

4. Once the reconstructed face values of 𝜁𝑝 which ensure the realizability of the entire advected 

moment set are found, the moment vectors 𝐦+ and 𝐦− are recomputed from the values ζ𝑝
+ 

and ζ𝑝
− [61]. 

5. The integration of the advection term proceeds computing the flux of each moment at each 

cell face based on the direction of the velocity at the centroid of the same face and updating 

the values of the moments at the cell center, as prescribed by Eq. (2.3). 

The scheme summarized above was proven [1] to preserve the realizability of the advected moment 

vector if the time step is adapted to maintain the value of the CFL number below 1/3, while 

converging to second-order accuracy with a sufficiently refined spatial discretization. 

The extension of the 𝜁 simplified scheme to unstructured grids requires the generalization of the 

definition of 𝐦∗ in Eq. (3.2), and of the CFL condition, which is expected to become a function of 

the number of faces of the grid cell. 

4. Generalization to unstructured grids 

The generalization of the 𝜁  simplified scheme to unstructured grids is achieved in this work by 

considering a co-located grid arrangement, where all the variables are stored at cell centroids, with the 

exclusion of the values at the boundary of the computational domain, where values are stored at face 

centroids. This approach is illustrated, for example, in Ferziger and Peric [13], and was adopted in the 

computational toolkit [56,62,63] used in this work. 

In order to evaluate the advection term considering the grid arrangement described above, values of 
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the velocity and of the advected quantities need to be known at cell faces. The reconstruction of the 

advected scalars, moments in our case, is illustrated in Sec. 4.1, following the approach implemented 

into OpenFOAM [56,62], based on the work of several authors [64–70] and summarized by Darwish 

and Moukalled [71]. 

4.1. Reconstruction on unstructured grids 

Let us consider a generic advected quantity whose value, stored at the centroid C of a generic cell of 

the computational mesh, is indicated with 𝜓C. The value of 𝜓 reconstructed on the cell face f is [67,71] 

 𝜓f = 𝜓C +
1

2
ℒ(𝑟f)(𝜓D − 𝜓C), (4.1) 

where ℒ(𝑟f) is the limiter function, which depends on the ratio [71] 

 𝑟f =
2∇𝜓C ⋅ 𝐫CD
𝜓D − 𝜓C

− 1, (4.2) 

with 𝑟𝑓 ≥ 0 for TVD schemes [71]. 

In these expressions, 𝜓D represents the downwind value at the center of the neighbor cell sharing face 

f with the cell whose center is situated in C. The vector 𝐫CD joins the centers C and D of the same two 

neighbor cells. The definition of the limiter function for a minmod limiter is [66,71]: 

 ℒ(𝑟f) = max(0,min(1, 𝑟f)). (4.3) 

The evaluation of the gradient of 𝜓 over the cell C in Eq. (4.2) is detailed in Darwish and Moukalled 

[71]. A second-order least-squares method is used in this work to ensure accuracy on grids with cells 

of arbitrary shape and non-uniform spatial distribution. 

4.2. Additional limitation for moment sets at the boundary of the moment space 

The condition in Eq. (3.2), used to identify cases when an additional limitation is needed for the 

reconstructed values of the quantities 𝜁𝑝, needs to be generalized to be applicable to unstructured 

grids. To this purpose, let Nf be the maximum number of faces of a cell of the computational grid. 

Since arbitrary shaped cells are considered, this value can be different for any cell, without additional 

complication of the numerical scheme. Let also the flux of the quantities be positive when outgoing 

with respect to the computational cell under consideration. The number of faces characterized by 

outgoing flux with respect to the owner cell will be indicated with Nf,o,c. The first step required to 



9 
 

extend the 𝜁 simplified scheme [1] to unstructured grids consists in computing the value of the zero-

order moment 𝑚0 and of the components 𝜁𝑝 of the vector 𝛇N−1 at both sides of each face internal to 

the computational domain3. The symbols 𝑚0,own and 𝑚0,nei are used to indicate the values of 𝑚0 

reconstructed, respectively, at the side of the owner and neighbor cell. Similarly, 𝜁𝑝,own and 𝜁𝑝,nei 

indicate the values of 𝜁𝑝 at the side of the owner cell and of the neighbor cell to the face, as discussed 

for 𝑚0. 

Once the reconstruction of 𝑚0 and 𝛇N−1 is obtained, the moments at each side of each cell face are 

recomputed from the vectors (𝑚0,own, 𝛇N−1,own)  and (𝑚0,nei, 𝛇N−1,nei)  using the algorithm 

proposed by Skibinsky [61]. 

At this point, it is determined if an additional limitation needs to be applied to the reconstructed values 

of 𝜁𝑝, to guarantee the realizability of the advected moment set. This is achieved by defining, in each 

computational cell 𝑐, the quantity 

 𝑚𝑘,𝑐
+ = ∑ 𝑚𝑘,𝑐,𝑓

Nf,o,c−1

𝑓=0

, (4.4) 

where 𝑚𝑘,𝑐,𝑓 = 𝑚𝑘,own,𝑓 is the value of the moment 𝑚𝑘 reconstructed on face 𝑓 of cell 𝑐, where the 

flux is outgoing. The quantities 𝑚𝑘,𝑐
+  are then used to define the components of the 𝐦∗ vector as 

 𝑚𝑘,𝑐
∗ = (Nf,o,c + 1)𝑚𝑘,𝑐 −𝑚𝑘,𝑐

+ , 𝑘 = 0,… , N − 1. (4.5) 

If the number of realizable moments in 𝐦∗ is smaller than the number of realizable moments in the 

cell, an additional limitation needs to be applied to the reconstructed values of the 𝜁𝑝 quantities. The 

procedure is analogous to the one described in [1], which is summarized here in a slightly modified 

fashion to clarify the details of its implementation into OpenFOAM. 

While not strictly necessary, the reconstructed values 𝜁𝑝,f  at cell faces are decomposed, for 

convenience in the implementation, into the value obtained from a first-order reconstruction 𝜁𝑝,f,up, 

and into a high-order correction 𝜁𝑝,f,h.o. This correction is then multiplied by a coefficient 𝜆𝑝,f ∈

[0, 1], which is the limiter that needs to be determined to ensure the realizability of the advected 

 
3 Faces of the computational grid are indicated as internal when they do not belong to a boundary of the computational 
domain. Values of moments at boundary faces are either known, if imposed at the boundary, or obtained from the only 
neighbor cell which owns the boundary face. 
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moment set: 

 𝜁𝑝,f = 𝜁𝑝,f,up + 𝜆𝑝,f𝜁𝑝,f,h.o.. (4.6) 

The value of 𝜆𝑝,f is found by considering the values of the limiters determined based on the owner 

and the neighbor cell of face f, and taking their minimum: 

 𝜆𝑝,f = min(𝜆𝑝,own, 𝜆𝑝,nei). (4.7) 

In each cell, the value of the limiter 𝜆𝑘,𝑐 is determined as follows: 

1. Set 𝜆𝑝,𝑐 = 1. 

2. Compute 𝐦𝑐
+ using 𝜁𝑙,f with 𝑙 ≤ 𝑘, and with 𝜁𝑝,f,up, for 𝑙 > 𝑝. 

3. Recompute 𝐦𝑐
∗  using the values of 𝐦𝑐

+ found at the previous step. 

4. Calculate the number of realizable moments in 𝐦𝑐
∗ . If this number is smaller than the number 

of realizable moments in 𝐦𝑐 , set 𝜆𝑝,𝑐 = 1/2. 

5. Recompute 𝜁𝑝,𝑐 from Eq. (4.6). 

6. Repeat the calculation at points 2 – 4 with the new value of 𝜁𝑝,𝑐. If the number of realizable 

moments in the updated 𝐦𝑐
∗  is smaller than the number of realizable moments in 𝐦𝑐 , set 

𝜆𝑝,𝑐 = 0. 

7. Repeat from 1 for all 𝑝 to define the limiter for each of the elements of 𝛇N−1. 

Once the cell values 𝜆𝑝,𝑐 are defined for each cell, the face limiters are computed according to Eq. 

(4.7), and the reconstructed values of 𝛇N−1,own and 𝛇N−1,nei are updated applying Eq. (4.6) to each of 

their components. The updated moment vectors 𝐦N−1,own and 𝐦N−1,nei are then found using the 

Skibinsky [61] algorithm to account for the additional limitation determined according to the 

procedure described above. These updated moment sets are used to define the advection term in the 

moment conservation equations (Eq. (2.3)). 

4.3. Courant – Friedrichs - Lewy condition for realizability 

The proposed scheme ensures the realizability of the advected moment set if the time step Δ𝑡 used to 

perform the integration satisfies a CFL condition obtained at the cell faces at which the flux is 

outgoing. If we consider an arbitrary cell with Nf,c faces, Nf,o,c of which have an outgoing flux, the 

maximum value of the CFL number is 
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 CFLmax =
1

2
max
c
(
∑ 𝐔𝑓 ⋅ 𝐒𝑓𝑓

𝑉c
)Δ𝑡, (4.8) 

where 𝑉c is the cell volume, 𝐔𝑓 the flow velocity at the cell face 𝑓 with surface 𝐒𝑓, belonging to cell c, 

and Δ𝑡 is the time step. Using the same notation, the maximum value of the time step to ensure 

moment realizability is defined by the condition 

 max
𝑐
[max

𝑓
(
𝐔𝑓 ⋅ 𝐒𝑓

𝑉𝑐
)] Δ𝑡 ≤ min

1

Nf,o,c + 1
, (4.9) 

where the minimum function on the right-hand side of Eq. (4.9) is introduced to account for the 

different number of faces cells may have in unstructured grids.  

This is proven by considering the moment vector 𝐦N,𝑐
𝑛  at time 𝑡𝑛, and integrate it according to Eq. 

(2.3) with a backward Euler step to obtain the updated moment vector 𝐦N,𝑐
𝑛+1 at time 𝑡𝑛+1. Assuming 

𝐔𝑓 ⋅ 𝐒𝑓 > 0 for 𝑓 = 1,… , Nf,o,c and 𝐔𝑓 ⋅ 𝐒𝑓 ≤ 0 for 𝑓 = Nf,o,c, … , Nf,c, it is possible to write: 

 𝐦N,c
𝑛+1 = 𝐦N,c

𝑛 −
Δ𝑡

𝑉c
∑ 𝐦N,own,𝑓

𝑛 𝐔𝑓 ⋅ 𝐒𝑓

Nf,o,c

𝑓=1⏟                    
𝒜

−
Δ𝑡

𝑉c
∑ 𝐦N,c

𝑛 𝐔𝑓 ⋅ 𝐒𝑓

Nf,c

𝑓=Nf,o,c+1⏟                
ℬ

. (4.10) 

in which only the term 𝒜 is of interest in the proof because ℬ is necessarily realizable. The moment 

vector 𝐦N,c
𝑛  can be expressed in terms of 𝐦c

∗ 

 𝐦N,c
𝑛 =

1

Nf,o,c + 1
(𝐦c

∗ + ∑ 𝐦N,own,𝑓
𝑛

Nf,o,c

𝑓=1

), (4.11) 

consequently:  

 𝒜 =
1

Nf,o,c + 1
𝐦c
∗ + ∑ (

1

Nf,o,c + 1
−
Δ𝑡

𝑉c
𝐔𝑓 ⋅ 𝐒𝑓)𝐦N,own,𝑓

𝑛

Nf,o,c

𝑓=1

. (4.12) 

By imposing the term in the summation is positive to ensure the realizability of the moment vector, 

the condition  

 
1

Nf,o,c + 1
≥
Δ𝑡

𝑉c
𝐔𝑓 ⋅ 𝐒𝑓⁡ (4.13) 

is obtained, which, applied to each value of 𝑓 and 𝑐 leads to Eq. (4.9). 
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It is worth observing that the definition in Eq. (4.9) automatically includes faces internal to the 

computational domain and faces lying on the boundary. Consequently, no special consideration for 

boundary conditions where the flux is imposed is needed to correctly define the maximum CFL 

required to ensure moment realizability. 

The condition in Eq. (4.13) reduces, in the case of a uniform one-dimensional discretization with step 

Δ𝑥, to 

 Δ𝑡 ≤
Δx

2𝑈𝑓
 (4.14) 

because Nf,o,c = 1 , assuming there is no mass and momentum source terms localized in the 

computational cell. The time-step restriction in multi-dimensional cases requires to consider how 

many cell faces have outgoing fluxes. Assuming a uniform discretization in both directions of a two-

dimensional case, the condition in Eq. (4.13) becomes: 

 Δ𝑡 ≤
Δx

(Nf,o,c + 1)𝑈𝑓
. (4.15) 

Since Nf,o,c ∈ {1, 2, 3}, the maximum restriction on the time-step size is possible when Nf,o,c = 3, 

which leads to 

 Δ𝑡 ≤
Δx

4𝑈𝑓
. (4.16) 

Following a similar reasoning, in a triangular grid, assuming triangles are equilateral with side length 

ℓ, the most restrictive constraint is achieved when two faces have outgoing flux (Nf,o,c = 2), leading 

to 

 Δ𝑡 ≤
ℓ

3𝑈𝑓
. (4.17) 

In comparison, the upwind scheme ensures realizability of the advected moment vector if [54] 

 Δ𝑡 ≤
Δ𝑥

𝑈𝑓
. (4.18) 
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5. Test cases 

5.1. One-dimensional advection of moments well inside the moment space 

The first test case for the implementation of the numerical scheme consists in a one-dimensional 

advection problem on [0,1] with periodic boundary conditions and with constant velocity equal to 

𝐔 = (1, 0, 0). The considered moment set, used as initial condition for the test case, is in the interiod 

of the moment space and defined through the following auxiliary functions: 

 𝛼(𝑥) = 3.5 + 1.5 sin 2𝜋𝑥, (5.1) 

 𝛽(𝑥) = 3.5 − 1.5 cos 2𝜋𝑥, (5.2) 

 𝑚̃𝑘(𝑥) = {

1 𝑘 = 0
𝑚𝑘−1(𝑥)[𝛼(𝑥) + 𝑘 − 1]

𝛼(𝑥) + 𝛽(𝑥) + 𝑘 − 1
𝑘 < N

, (5.3) 

 Θ(𝑥) = {

1

2
{1 + tanh [tan (2𝑥 −

1

2
)]} 𝑥 ≤

1

2
1

2
{1 + tanh [tan (

1

2
− 2𝑥)]} 𝑥 >

1

2

, (5.4) 

which allow the values of the initial moments to be computed as 

 𝑚𝑘(𝑥) = 𝑚̃𝑘(𝑥)Θ(𝑥). (5.5) 

The solutions obtained considering eight moments with 50, 100, 500 and 1000 uniformly distributed 

cells, after two flow-through times, are reported in Fig. 1. It is possible to observe from Fig. 1(a) that 

the grid resolutions of 50 and 100 cells are not sufficient to accurately preserve the moments because 

of the numerical diffusion caused by coarse grid resolution. However, the realizability of the moment 

set is preserved. The accuracy of the results significantly improves in the case of a grid resolution of 

500 cells (Fig. 1(c)), which allows the analytical solution to be reproduced nearly exactly. The solution 

obtained on the grid with 1000 cells (Fig. 1(d)) is visually indistinguishable from the one calculated on 

500 cells. Results are in agreement with those reported in the literature [1]. 
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In order to quantify the order of accuracy of the numerical scheme, the error of the numerical 

prediction with respect to the exact solution is calculated in each computational cell as 

 𝑒𝑘 =
|𝑚𝑘,𝑒𝑥𝑎𝑐𝑡 −𝑚𝑘,𝑛𝑢𝑚|

𝑚𝑘,𝑒𝑥𝑎𝑐𝑡
. (5.6) 

The logarithm of the error is reported as a function of the logarithm of the grid size ℎ = Δ𝑥 in Fig. 2, 

which illustrates that the second order of accuracy of the advection scheme is recovered for all the 

moments of the transported moment vector. Numerical values of the errors reported in Fig. 2 are 

shown in Table 1. 

The test case presented in this section serves as preliminary verification of the implementation of the 

𝜁 simplified scheme into OpenFOAM. However, the additional limitation of the 𝜁𝑝 quantities was not 

triggered while performing the simulations required to produce the results in Fig. 1. Therefore, a 

different test case was considered to also examine this aspect of the implementation of the scheme, as 
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Fig. 1: Moments of the regular NDF. Analytical solution (dashed lines) and numerical prediction (solid lines) with 
(a) 50, (b) 100, (c) 500 and (d) 1000 cells – Zeta scheme. 
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illustrated in Sec. 5.2, where a case involving a multimodal distribution, with moments potentially at 

the boundary of the moment space is considered. 

Table 1: Numerical values of the errors reported in Fig. 2 and corresponding order of the reconstruction of each moment. 

Cells h e0 Order m0  e1 Order m1 e2 Order m2 e3 Order m3 

50 0.02 0.0423 
 

0.0555 
 

0.0665 
 

0.0759 
 

100 0.01 0.0132 1.6851 0.0173 1.6792 0.0210 1.6625 0.0244 1.6359 

500 0.002 0.0007 1.8318 0.0009 1.8512 0.0011 1.8509 0.0012 1.8481 

1000 0.001 0.0002 2.0240 0.0002 1.9997 0.0003 2.0047 0.0003 2.0055 

Cells h e4 Order m4 e5 Order m5 e6 Order m6 e7 Order m7 

50 0.02 0.0849 
 

0.0934 
 

0.1013 
 

0.1087 
 

100 0.01 0.0276 1.6187 0.0307 1.6048 0.0337 1.5862 0.0368 1.5614 

500 0.002 0.0014 1.8426 0.0016 1.8331 0.0018 1.8235 0.0020 1.8160 

1000 0.001 0.0004 2.0023 0.0004 2.0006 0.0004 1.9994 0.0005 1.9851 

5.2. One-dimensional advection of moments at the boundary of the moment space 

The second test case considers moments of a bimodal NDF, which can be at boundary of the moment 

space. The initial condition is defined with the help of three weight functions, whose value depends 

on the position in the computational domain 𝑥 as indicated in Eqs. (5.7) - (5.9). 

 𝑤1(𝑥) = {
16𝑥2(1 − 𝑥)2 0 ≤ 𝑥 ≤ 1

0 otherwise
 (5.7) 

-5

-4

-3

-2

-1

0

-3.5 -3 -2.5 -2 -1.5 -1
L

o
g(

e k
)

Log(h)
Log(e0)

Log(e1)

Log(e2)

Log(e3)

Log(e4)

Log(e5)

Log(e6)

Log(e7)

Slope 1

Slope 2

Fig. 2: Logarithm of the error in the numerical prediction of the moments of the regular 
NDF case as a function of the logarithm of the grid size – Zeta scheme. 
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 𝑤2(𝑥) = {
256

81
(4𝑥 − 1)2(1 − 𝑥)2

1

4
≤ 𝑥 ≤ 1

0 otherwise

 (5.8) 

 𝑤3(𝑥) = {
9(3𝑥 − 1)2(1 − 𝑥)2

1

3
≤ 𝑥 ≤ 1

0 otherwise

 (5.9) 

Two other auxiliary functions are introduced as follows: 

 𝜆2 =

{
 
 

 
 𝜆2,min = 2 ⋅ 10

−2 0 ≤ 𝑥 ≤
1

3

𝜆2,min(2 − 3𝑥)
2(6𝑥 − 1) + 𝜆max(3𝑥 − 1)

2(5 − 6𝑥)
1

3
< 𝑥 ≤

2

3

𝜆2,max = 0.7
2

3
< 𝑥 ≤ 1

, (5.10) 

 𝜅2 =

{
 
 

 
 𝜅2,min = 3 0 ≤ 𝑥 ≤

1

3

𝜅2,min(2 − 3𝑥)
2(6𝑥 − 1) + 𝜆max(3𝑥 − 1)

2(5 − 6𝑥)
1

3
< 𝑥 ≤

2

3

𝜅2,max = 10
2

3
< 𝑥 ≤ 1

, (5.11) 

With these definitions, the value of the initial moments is found according to the expression: 

 𝑚𝑘(𝑥) = 𝑤1(𝑥)𝑥𝑖,1
𝑘 + 𝑤2(𝑥)(2𝑥𝑖,1)

𝑘
+ 𝑤3(𝑥)𝜆

𝑘(𝑥)Γ (1 +
𝑘

𝜅2
), (5.12) 

where 𝑥𝑖,1 = 0.02. The same cases considered in Sec. 5.1 were repeated with the initial condition 

defined by Eq. (5.12).  
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The comparison of the numerical solution and the exact solution is reported in Fig. 3. Similarly, to 

what is observed in the case of the moments of a regular NDF, also in the case of the moments of 

the bimodal distribution, the grid resolutions of 50 and 100 cells do not allow to exactly preserve the 

moments, which are satisfactorily preserved on the grid with 500 and 1000 cells. However, the 𝜁 

scheme ensures the realizability of the transported moment vector.  
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Fig. 3: Moments of the bimodal NDF. Analytical solution (dashed lines) and numerical prediction (solid lines) with 
(a) 50, (b) 100, (c) 500 and (d) 1000 cells – Zeta scheme. 
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The behavior of the error, defined by Eq. (5.7), in the case of the bimodal NDF is reported in Fig. 4 

and the corresponding numerical values are shown in Table 2.  

Table 2: Numerical values of the errors reported in Fig. 4 and corresponding order of the reconstruction of each moment. 

Cells h e0 Order m0 e1 Order m1 e2 Order m2 e3 Order m3 

50 0.02 0.0399 
 

0.0731 
 

0.0914 
 

0.1007 
 

100 0.01 0.0137 1.5393 0.0218 1.7427 0.0271 1.7557 0.0304 1.7284 

500 0.002 0.0009 1.7199 0.0012 1.7999 0.0013 1.9073 0.0015 1.8837 

1000 0.001 0.0002 1.8448 0.0004 1.7585 0.0004 1.6072 0.0005 1.4687 

Cells h e4 Order m4 e5 Order m5 e6 Order m6 e7 Order m7 

50 0.02 0.1083 
 

0.1165 
 

0.1231 
 

0.1284 
 

100 0.01 0.0339 1.6751 0.0374 1.6374 0.0408 1.5929 0.0439 1.5488 

500 0.002 0.0018 1.8360 0.0022 1.7668 0.0026 1.7121 0.0029 1.6885 

1000 0.001 0.0007 1.4168 0.0008 1.4466 0.0009 1.4692 0.0011 1.4385 

 

The chart shows that nearly second-order accuracy is achieved for low-order moments. However, the 

intervention of the additional limiter on the 𝜁 quantities impacts the accuracy of high-order moments. 

In any case, the order of accuracy of the 𝜁 scheme remains higher than one in all the cases considered 

in this test, which represents an extreme condition, with moments close to the boundary of the 

moment space. 
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Fig. 4: Logarithm of the error in the numerical prediction of the moments of the bimodal 
NDF case as a function of the logarithm of the grid size – Zeta scheme. 
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5.3. Two-dimensional advection of moments of a regular NDF 

The implementation of the second-order moment-preserving 𝜁  scheme was tested in a two-

dimensional case considering a computational domain defined as [0, 0.5] × [0, 0.5], with a steady 

Taylor-Green velocity field defined as: 

 𝐔 = (sin 2𝜋𝑥 cos 2𝜋𝑦 , − cos 2𝜋𝑥 sin 2𝜋𝑦) (5.13) 

The velocity on cell faces, needed to evaluate the advection flux, was computed by linearly 

interpolating the velocity field defined in Eq. (5.13) onto the cell faces. The initial value of the 

moments was defined as follows: 

 𝑚𝑘(𝑧) =
𝑚𝑘−1(𝛼2𝐷(𝑧) + 𝑘 − 1)

𝛼2𝐷(𝑧) + 𝛽2𝐷(𝑧) + 𝑘 − 1
𝛾2𝐷(𝑧), (5.14) 

where 

 𝑧 = 8√(𝑥 −
1

8
)
2

+ (𝑦 −
1

8
)
2

, (5.15) 

 𝛼2𝐷(𝑧) = 3.5 + 1.5 sin 2𝜋(1 − 𝑧), (5.16) 

 𝛽2𝐷(𝑧) = 3.5 − 1.5 cos 2𝜋(1 − 𝑧), (5.17) 

 𝛾2𝐷(𝑧) =
1

2
{1 + tanh [tan𝜋 (

1

2
− 𝑧)]}. (5.18) 

5.3.1. Calculations on quadrilateral grids 

The case illustrated in this section was simulated considering five grid resolutions with increasing level 

of refinement, respectively with 64, 128, 256, 512 in each spatial direction, with a maximum CFL 

number of 0.2. Results showing the predicted zero-order moment at 𝑡 = 0.8 are shown in Fig. 5. 

It is apparent from Fig. 5 that the numerical solution obtained on the two finest grid resolutions with 

(a) (b) (c) (d) 

Fig. 5: Zero-order moment of the regular NDF used in the two-dimensional test case on quadrilateral grids at t = 
0.8. (a) 642 cells, (b) 1282 cells, (c) 2562 cells, (d) 5122 cells. Zeta scheme. 
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2562 and 5122 cells, do not show significant differences. However, to provide a quantitative measure 

of the accuracy of the zeta scheme, and to validate its implementation into OpenFOAM in comparison 

to [1], the order of accuracy of the 𝜁 scheme is quantified numerically by taking the solution obtained 

on a uniform quadrilateral grid with 10242 cells as reference. The graph of the error is reported in Fig. 

6 (numerical values in Table 3), which shows that the slope of the error curves tends to 2 for higher 

grid resolutions, with a reduction of the formal of order of accuracy for moments of higher order. 

Table 3: Numerical values of the errors reported in Fig. 6 and corresponding order of the reconstruction of each moment. 

Cells h e0 Order m0 e1 Order m1 e2 Order m2 e3 Order m3 

64 0.0156 0.2253 
 

0.2451 
 

0.3089 
 

0.3970 
 

128 0.0078 0.0946 1.2527 0.1506 0.7025 0.2115 0.5466 0.2823 0.4921 

256 0.0039 0.0419 1.1748 0.0746 1.0130 0.1110 0.9299 0.1531 0.8829 

512 0.0020 0.0139 1.5931 0.0229 1.7030 0.0403 1.4637 0.0649 1.2384 

 

The time evolution of the first-order moment of the NDF and of the value of the corresponding 

limiter 𝜆0,c are reported in Fig. 7.  

It is observed that 𝜆0,c = 1 in most of the solution domain. The regions where a complete limitation 

is applied (𝜆0,c = 0), reducing the local accuracy to first order, is often where the solution presents 

very small positive values of the moment. The additional limitation through 𝜆0,c  preserves the 

realizability of the moment vector, while showing a limited impact on the accuracy of the solution, as 

-3

-2

-1

0

1

2

-3 -2.5 -2 -1.5
L

o
g(

e k
)

Log(h)

Log(e0)

Log(e1)

Log(e2)

Log(e3)

Slope 1

Slope 2

Fig. 6: Logarithm of the error in the two-dimensional numerical tests on hexahedral grid 
with regular NDF as a function of the logarithm of the grid size. 
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previously illustrated by the numerical study of the order of the scheme (Fig. 6). 

5.3.2. Calculations on triangular grids 

The two-dimensional case presented in this section was also considered to establish the accuracy of 

the 𝜁 advection scheme on triangular grids. Four grids were considered in these simulations, whose 

properties are summarized in Table 4. The value of the grid spacing ℎ was calculated according to 

[72], as  

 ℎ = √
1

𝑁𝑐𝑒𝑙𝑙𝑠
∑(Δ𝐴𝑖)

𝑖

, (5.19) 

where Δ𝐴𝑖 is the area of each cell polygon. 

Table 4: Properties of the unstructured grids considered in the numerical test cases. 

Grid N. of cells Domain area h 

A 3938 0.25 7.97 ⋅ 10−3 

B 15894 0.25 3.97 ⋅ 10−3 

C 64688 0.25 1.97 ⋅ 10−3 

D 255596 0.25 9.89 ⋅ 10−4 

(a) (b) (c) (d) 

Fig. 7: Time evolution of the first-order moment of the regular NDF considered in the test case on 
quadrilateral grid (resolution shown: 10242): (a) t = 0.2 s; (b) t = 0.4 s; (c) t = 0.6 s; (d) t = 0.8 s. 
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The contour plots of the zero-order moment obtained with the 𝜁 scheme on the triangular grids at 

𝑡 = 0.8⁡s, are reported in Fig. 8, which shows the results are visually identical to those obtained on 

quadrilateral grids and reported in Fig. 5. 

The behavior of the formal order of accuracy of the 𝜁 simplified scheme on triangular grids is shown 

in Fig. 9 (numerical values in Table 5), which shows comparable trends for all the moments to those 

observed on quadrilateral grids (Fig. 6), with the second-order accuracy recovered on the finest grids, 

for the lower-order moments. 

5.3.3. Comparison of first-order scheme and 𝜁 simplified scheme 

Results obtained with the first-order scheme on a quadrilateral grid are shown in Fig. 10 to highlight 

(a) (b) (c) (d) 

Fig. 8: Zero-order moment of the regular NDF used in the two-dimensional test case on triangular grids at t = 0.8. 
(a) Grid A, (b) Grid B, (c) Grid C, (d) Grid D. Zeta scheme. 

Fig. 9: Logarithm of the error in the two-dimensional numerical tests on triangular grids 
with regular NDF as a function of the logarithm of the grid size. 
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the significantly higher dissipation introduced by the first-order scheme, typically used for moment 

transport to avoid compromising the realizability of the advected moment vector.  

Table 5: Numerical values of the errors reported in Fig. 9 and corresponding order of the reconstruction of each moment. 

h e0 Order m0 e1 Order m1 e2 Order m2 e3 Order m3 

0.0080 0.5123 
 

0.4844 
 

0.4327 
 

0.4483 
 

0.0040 0.2858 0.8365 0.2720 0.8270 0.2640 0.7084 0.3034 0.5593 

0.0020 0.1383 1.0343 0.1367 0.9805 0.1540 0.7681 0.1983 0.6061 

0.0010 0.0494 1.4991 0.0534 1.3674 0.0702 1.1437 0.0965 1.0480 

 

The difference between the first-order scheme and the second-order zeta scheme is further highlighted 

in Fig. 11, where the zero-order moment obtained at 𝑡 = 0.8⁡s on a grid with 1282 cells with the two 

methods is compared. The results obtained with the 𝜁 simplified scheme clearly shows the reduced 

dissipation compared to the results obtained with the first-order scheme. 

(a) (b) (c) 

Fig. 10: Zero-order moment field at t = 0.8 on a quadrilateral grid with (a) 1282, (b) 
2562 and (c) 5122 cells – First-order scheme. 

(a) (b) 

Fig. 11: Comparison of zero-order moment field obtained on 
a 1282 quadrilateral grid at t = 0.8, with (a) first-order 
advection scheme and (b) zeta scheme. 
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Similarly to what done for the quadrilateral case, the time evolution of the first-order moment of the 

NDF is shown in Fig. 12, where the fields of 𝑚1 at different times appear to be identical to those 

shown in Fig. 7 for the quadrilateral case. However, a more careful examination of the behavior of 

the moment limiter 𝜆0,c shows that the region of the computational domain where the limitation is 

applied is larger for the case with triangular grid compared to the quadrilateral case. Several cells on 

the front of the region where 𝑚1 ≠ 0 are affected by the limitation, while, in the quadrilateral case, a 

smaller number of cells with 𝜆0,c ≠ 1 is observed. The last snapshot (Fig. 12(d)) also shows a small 

number of cells where 𝜆0,c = 0.5.  

5.4. Two-dimensional advection of moments of a bimodal NDF 

The 𝜁 simplified scheme is applied in this section to the case transport of moments of a bi-modal 

NDF in two dimensions. Only one triangular grid (Grid B in  Table 4) is considered. 

The initial conditions for the moments are obtained using Eq. (5.12), where the 𝑥  coordinate is 

replaced by 

(a) (b) (c) (d) 

Fig. 12: Time evolution of the first-order moment of the regular NDF in the test case on tetrahedral 

grid (Grid B) and the corresponding limiter 𝜆0,𝑐  used in the additional limitation of the 𝜁 

simplified scheme. (a) t = 0.2 s; (b) t = 0.4 s; (c) t = 0.6 s; (d) t = 0.8 s. 
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 𝑧 = 8√(𝑥 −
1

8
)
2

+ (𝑦 −
1

8
)
2

. (5.20) 

Fig. 13 shows the time evolution of 𝑚0 and 𝑚1 together with the limiter 𝜆0,c used in the additional 

limitation in the 𝜁 simplified scheme for the reconstruction of 𝑚1. The figure shows that to preserve 

the moment realizability, the additional limitation intervenes in a modest number of cells, as expected 

because of the moment vectors near the boundary of the moment space.  

Finally, it should be noted that the limitation applied to the second-order moment happens in some 

additional cells, compared to what shown in Fig. 13. This is shown, for example, in Fig. 14 (b), which 

shows the second-order moment for the case of the bimodal NDF and the corresponding value of 

the limiter 𝜆1,𝑐 used in the 𝜁 simplified scheme. The limiter is similarly applied to the third-order 

moment. 

(a) (b) (c) (d) 

Fig. 13: Time evolution of the first-order moment of the bi-modal NDF in 
the test case on tetrahedral grid (Grid B) and the corresponding limiter 

𝜆0,𝑐⁡used in the additional limitation of the ζ simplified scheme. (a) t = 0.2 

s; (b) t = 0.4 s; (c) t = 0.6 s; (d) t = 0.8 s. 
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6. Conclusions 

The second-order realizable 𝜁 simplified scheme proposed in Laurent and Nguyen [1] was extended 

to unstructured grids and implemented into the computational framework OpenQBMM [73], an 

extension for OpenFOAM [63] that implements quadrature-based moment methods. The 

implementation was verified by considering first two one-dimensional cases, the first involving 

moments of a regular NDF and the second where moments of a bimodal NDF are transported.  

The proposed implementation of the scheme into OpenQBMM was able to reproduce the results for 

the same cases reported in Laurent and Nguyen [1], showing convergence to second-order accuracy 

with grid refinement. The scheme was further verified on a two-dimensional case with uniform 

hexahedral discretization where the first four moments of a regular NDF are transported. Also in this 

case, results from Laurent and Nguyen [1] were satisfactorily reproduced. Finally, the same two-

dimensional case considered for verification on hexahedral grids was used to establish the accuracy of 

the scheme on triangular grids. The 𝜁 simplified scheme was able to reproduce the results and the 

behavior of the error affecting the solution observed on hexahedral grids also on triangular grids. 

Future work will consider the development of realizable numerical schemes for multivariate problems, 

where closure is provided by the conditional quadrature method of moments [74]. 

7. Source code and test cases 

The source code of the OpenQBMM framework [73] used to perform the calculations described in 

Fig. 14: (a) Second-order moment of the bi-modal NDF in the test case on tetrahedral grid 

(Grid B) at t = 0.8, and, (b), the corresponding field of the limiter 𝜆1,𝑐 used in the additional 

limitation of the ζ simplified scheme. 

(a) (b) 
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this article is available in [73,75], where also the test cases presented in the articles are available. The 

OpenFOAM class implementing the 𝜁 scheme on unstructured grids described in the manuscript is 

reported in Appedix A. 
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Appedix A 

The C++ source code of the main class that implements the 𝜁 scheme in OpenQBMM is reported in 

this appendix. This code is contained in OpenQBMM 5.0.0 for OpenFOAM 7 [75]. 

Header file: zetaUnivariateAdvection.H 

/*-------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | 

    \\  /    A nd           | Copyright (C) 2014-2018 Alberto Passalacqua 

     \\/     M anipulation  | 

---------------------------------------------------------------------------- 

License 

    This file is derivative work of OpenFOAM. 

  

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 

  

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 

  

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

Class 
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    Foam::zeta 

  

Description 

    Second-order univariate moment advection with zeta kinetic scheme. 

  

SourceFiles 

    zetaUnivariateAdvection.C 

  

\*-------------------------------------------------------------------------*/ 

  

#ifndef zetaUnivariateAdvection_H 

#define zetaUnivariateAdvection_H 

  

#include "univariateMomentAdvection.H" 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

  

namespace Foam 

{ 

namespace univariateAdvection 

{ 

  

/*-------------------------------------------------------------------------*\ 

                            Class zeta Declaration 

\*-------------------------------------------------------------------------*/ 

  

class zeta 

: 

    public univariateMomentAdvection 

{ 

    // Private data 

  

        //- Reference to zero-order moment field 

        const volScalarField& m0_; 

  

        //- Reconstructed m0 (owner) 

        surfaceScalarField m0Own_; 

  

        //- Reconstructed m0 (neighbour) 

        surfaceScalarField m0Nei_; 

  

        //- Number of zeta_k values 

        label nZetas_; 

  

        //- List of fields of zeta_k (n fields for n + 1 moments) 

        PtrList<volScalarField> zetas_; 

  

        //- List of interpolated zeta_k values (neighbour) 

        PtrList<surfaceScalarField> zetasNei_; 

  

        //- List of interpolated nodes (owner) 

        PtrList<surfaceScalarField> zetasOwn_; 

  

        //- List of interpolated zeta_k values (neighbour) 

        PtrList<surfaceScalarField> zetasUpwindNei_; 
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        //- List of interpolated nodes (owner) 

        PtrList<surfaceScalarField> zetasUpwindOwn_; 

  

        //- List of interpolated zeta_k values (neighbour) 

        PtrList<surfaceScalarField> zetasCorrNei_; 

  

        //- List of interpolated nodes (owner) 

        PtrList<surfaceScalarField> zetasCorrOwn_; 

  

        //- List of interpolated moments (neighbour) 

        PtrList<surfaceScalarField> momentsNei_; 

  

        //- List of interpolated moments (owner) 

        PtrList<surfaceScalarField> momentsOwn_; 

  

        //- Field to store the number of faces with outgoing flux per cell 

        mutable labelField nFacesOutgoingFlux_; 

  

        //- Field to store the number of realizable moments in each cell 

        mutable labelField nRealizableMoments_; 

  

        //- Field to store the number of realizable m* in each cell 

        mutable labelField nRealizableMomentsStar_; 

  

        //- List of limiters for zeta_k 

        PtrList<surfaceScalarField> limiters_; 

  

        //- List of cell limiters 

        PtrList<volScalarField> cellLimiters_; 

  

        //- Face velocity 

        const surfaceScalarField& phi_; 

  

  

    // Private member functions 

  

        //- Compute n values of zeta_k from n + 1 moments 

        void computeZetaFields(); 

  

        //- Updates reconstructed moments from the values of zeta 

        void updateMomentFieldsFromZetas 

        ( 

            const surfaceScalarField& m0f, 

            const PtrList<surfaceScalarField>& zetaf, 

            PtrList<surfaceScalarField>& mf 

        ); 

  

        //- Compute n + 1 moments from n values of zeta_k 

        void zetaToMoments 

        ( 

            const scalarList& zetaf, 

            scalarList& mf, 

            scalar m0 = 1.0 

        ); 

  

  

protected: 
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    // Protected member functions 

  

        //- Calculates the number of cells with outgoing flux 

        void countFacesWithOutgoingFlux(); 

  

        //- Computes the limiter used for additional limitation 

        void limiter(); 

  

        //- Reconstructs zeta_k 

        void interpolateFields(); 

  

        //- Applies additional limitation to zeta_k, if needed 

        void limitZetas(); 

  

  

public: 

  

    //- Runtime type information 

    TypeName("zeta"); 

  

  

    // Constructors 

  

        //- Construct from univariateMomentSet 

        zeta 

        ( 

            const dictionary& dict, 

            const scalarQuadratureApproximation& quadrature, 

            const surfaceScalarField& phi, 

            const word& support 

        ); 

  

  

    //- Destructor 

    virtual ~zeta(); 

  

  

    // Public member functions 

  

        //- Return the maximum Courant number ensuring moment realizability 

        virtual scalar realizableCo() const; 

  

        //- Update moment advection 

        virtual void update(); 

}; 

  

  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// 

  

} // End namespace univariateAdvection 

} // End namespace Foam 

  

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

// 

  

#endif 

  

// ************************************************************************* 

// 

  

Class implementation: zetaUnivariateAdvection.C 

/*-------------------------------------------------------------------------*\ 

  =========                 | 

  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 

   \\    /   O peration     | 

    \\  /    A nd           | Copyright (C) 2014-2018 Alberto Passalacqua 

     \\/     M anipulation  | 

----------------------------------------------------------------------------- 

License 

    This file is derivative work of OpenFOAM. 

  

    OpenFOAM is free software: you can redistribute it and/or modify it 

    under the terms of the GNU General Public License as published by 

    the Free Software Foundation, either version 3 of the License, or 

    (at your option) any later version. 

  

    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 

    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 

    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 

    for more details. 

  

    You should have received a copy of the GNU General Public License 

    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 

  

\*-------------------------------------------------------------------------*/ 

  

#include "zetaUnivariateAdvection.H" 

#include "upwind.H" 

#include "addToRunTimeSelectionTable.H" 

  

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * // 

  

namespace Foam 

{ 

namespace univariateAdvection 

{ 

    defineTypeNameAndDebug(zeta, 0); 

  

    addToRunTimeSelectionTable 

    ( 

        univariateMomentAdvection, 

        zeta, 

        dictionary 

    ); 
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} 

} 

  

// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * // 

  

Foam::univariateAdvection::zeta::zeta 

( 

    const dictionary& dict, 

    const scalarQuadratureApproximation& quadrature, 

    const surfaceScalarField& phi, 

    const word& support 

) 

: 

    univariateMomentAdvection(dict, quadrature, phi, support), 

    m0_(moments_(0)), 

    m0Own_ 

    ( 

        IOobject::groupName("m0OwnZeta", name_), 

        fvc::interpolate(m0_, own_, "reconstruct(m0)") 

    ), 

    m0Nei_ 

    ( 

        IOobject::groupName("m0NeiZeta", name_), 

        fvc::interpolate(m0_, nei_, "reconstruct(m0)") 

    ), 

    nZetas_(nMoments_ - 1), 

    zetas_(nZetas_), 

    zetasNei_(nZetas_), 

    zetasOwn_(nZetas_), 

    zetasUpwindNei_(nZetas_), 

    zetasUpwindOwn_(nZetas_), 

    zetasCorrNei_(nZetas_), 

    zetasCorrOwn_(nZetas_), 

    momentsNei_(nMoments_), 

    momentsOwn_(nMoments_), 

    nFacesOutgoingFlux_(m0_.size(), 0), 

    nRealizableMoments_(m0_.size(), 0), 

    nRealizableMomentsStar_(m0_.size(), 0), 

    limiters_(nZetas_), 

    cellLimiters_(nZetas_), 

    phi_(phi) 

{ 

    if (quadrature.momentOrders()[0].size() > 1) 

    { 

        FatalErrorInFunction 

            << "Zeta advection scheme can only be used for" << nl 

            << "univariate distributions." 

            << abort(FatalError); 

    } 

    // Populating zeta_k fields and interpolated zeta_k fields 

    forAll(zetas_, zetai) 

    { 

        zetas_.set 

        ( 

            zetai, 

            new volScalarField 

            ( 
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                IOobject 

                ( 

                    fieldName("zeta", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::AUTO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasNei_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaNei", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasOwn_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaOwn", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasUpwindNei_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaUpwindNei", {zetai}), 
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                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasUpwindOwn_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaUpwindOwn", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasCorrNei_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaCorrNei", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        zetasCorrOwn_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaCorrOwn", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 
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                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 0.0) 

            ) 

        ); 

  

        limiters_.set 

        ( 

            zetai, 

            new surfaceScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaLimiter", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 1.0) 

            ) 

        ); 

  

        cellLimiters_.set 

        ( 

            zetai, 

            new volScalarField 

            ( 

                IOobject 

                ( 

                    fieldName("zetaCellLimiter", {zetai}), 

                    phi.mesh().time().timeName(), 

                    phi.mesh(), 

                    IOobject::NO_READ, 

                    IOobject::NO_WRITE 

                ), 

                phi.mesh(), 

                dimensionedScalar("zero", dimless, 1.0) 

            ) 

        ); 

    } 

  

    // Setting face values of moments 

    forAll(momentsNei_, momenti) 

    { 

        momentsNei_.set 

        ( 

            momenti, 

            new surfaceScalarField 

            ( 

                fieldName("momentNeiZeta", {momenti}), 

                fvc::interpolate(moments_(momenti)) 

            ) 

        ); 
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        momentsOwn_.set 

        ( 

            momenti, 

            new surfaceScalarField 

            ( 

                fieldName("momentOwnZeta", {momenti}), 

                fvc::interpolate(moments_(momenti)) 

            ) 

        ); 

    } 

} 

  

  

// * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 

  

Foam::univariateAdvection::zeta::~zeta() 

{} 

  

  

// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * // 

  

void Foam::univariateAdvection::zeta::interpolateFields() 

{ 

    IStringStream m0OwnLimiter("Minmod"); 

    IStringStream zetaOwnLimiter("Minmod"); 

  

    tmp<surfaceInterpolationScheme<scalar>> m0OwnScheme 

    ( 

        fvc::scheme<scalar>(own_, m0OwnLimiter) 

    ); 

    tmp<surfaceInterpolationScheme<scalar>> zetaOwnScheme 

    ( 

        fvc::scheme<scalar>(own_, zetaOwnLimiter) 

    ); 

  

    IStringStream m0NeiLimiter("Minmod"); 

    IStringStream zetaNeiLimiter("Minmod"); 

  

    tmp<surfaceInterpolationScheme<scalar>> m0NeiScheme 

    ( 

        fvc::scheme<scalar>(nei_, m0NeiLimiter) 

    ); 

    tmp<surfaceInterpolationScheme<scalar>> zetaNeiScheme 

    ( 

        fvc::scheme<scalar>(nei_, zetaNeiLimiter) 

    ); 

  

    m0Own_ = m0OwnScheme().interpolate(moments_(0)); 

    m0Nei_ = m0NeiScheme().interpolate(moments_(0)); 

  

    forAll(zetas_, zetai) 

    { 

        zetasNei_[zetai] = zetaNeiScheme().interpolate(zetas_[zetai]); 

        zetasOwn_[zetai] = zetaOwnScheme().interpolate(zetas_[zetai]); 

  

        zetasUpwindNei_[zetai] = 

            upwind<scalar>(zetas_[zetai].mesh(), nei_).flux(zetas_[zetai]); 
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        zetasUpwindOwn_[zetai] = 

            upwind<scalar>(zetas_[zetai].mesh(), own_).flux(zetas_[zetai]); 

  

        zetasCorrNei_[zetai] = zetasNei_[zetai] - zetasUpwindNei_[zetai]; 

        zetasCorrOwn_[zetai] = zetasOwn_[zetai] - zetasUpwindOwn_[zetai]; 

    } 

} 

  

void Foam::univariateAdvection::zeta::zetaToMoments 

( 

    const scalarList& zetaf, 

    scalarList& mf, 

    scalar m0 

) 

{ 

    scalarSquareMatrix S(nMoments_, 0.0); 

  

    for (label i = 0; i < nZetas_; i++) 

    { 

        S[0][i] = 1.0; 

    } 

  

    for (label i = 1; i < nZetas_; i++) 

    { 

        for (label j = i; j < nZetas_; j++) 

        { 

            S[i][j] = S[i][j - 1] + zetaf[j - i]*S[i - 1][j]; 

        } 

    } 

  

    scalarList prod(nMoments_, 1.0); 

  

    prod[1] = zetaf[0]; 

  

    for (label i = 2; i < nZetas_; i++) 

    { 

        prod[i] = prod[i - 1]*zetaf[i - 1]; 

    } 

  

    // Resetting moments to zero 

    mf = 0.0; 

  

    // Computing moments 

    mf[0] = 1.0; 

    mf[1] = zetaf[0]; 

  

    for (label i = 2; i < nMoments_; i++) 

    { 

        for (label j = 0; j <= i/2; j++) 

        { 

            mf[i] += prod[i - 2*j]*sqr(S[j][i - j]); 

        } 

    } 

  

    if (m0 != 1.0) 

    { 
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        for (label mi = 0; mi < nMoments_; mi++) 

        { 

            mf[mi] *= m0; 

        } 

    } 

} 

  

void Foam::univariateAdvection::zeta::computeZetaFields() 

{ 

    // Cell-center values 

    forAll(m0_, celli) 

    { 

        if (m0_[celli] >= SMALL) 

        { 

            univariateMomentSet m(nMoments_, support_); 

  

            for (label mi = 0; mi < nMoments_; mi++) 

            { 

                m[mi] = moments_(mi)[celli]; 

            } 

  

            nRealizableMoments_[celli] = m.nRealizableMoments(); 

  

            scalarList zetas(m.zetas()); 

  

            for (label zetai = 0; zetai < nZetas_; zetai++) 

            { 

                zetas_[zetai][celli] = zetas[zetai]; 

  

                if (zetas_[zetai][celli] > 1.0e-7) 

                { 

                    zetas_[zetai][celli] = zetas[zetai]; 

                } 

                else 

                { 

                    zetas_[zetai][celli] = 0.0; 

                } 

            } 

        } 

    } 

  

    // Boundary conditions 

    const volScalarField::Boundary& bf = zetas_[0].boundaryField(); 

  

    forAll(bf, patchi) 

    { 

        const fvPatchScalarField& m0Patch = bf[patchi]; 

  

        forAll(m0Patch, facei) 

        { 

            if (m0_.boundaryField()[patchi][facei] >= SMALL) 

            { 

                univariateMomentSet m(nMoments_, support_); 

  

                for (label mi = 0; mi < nMoments_; mi++) 

                { 

                    m[mi] = moments_(mi).boundaryField()[patchi][facei]; 
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                } 

  

                scalarList zetas(m.zetas()); 

  

                for (label zetai = 0; zetai < nZetas_; zetai++) 

                { 

                    volScalarField& zi = zetas_[zetai]; 

                    volScalarField::Boundary& ziBf = zi.boundaryFieldRef(); 

                    ziBf[patchi][facei] = zetas[zetai]; 

                } 

            } 

        } 

    } 

} 

  

void Foam::univariateAdvection::zeta::countFacesWithOutgoingFlux() 

{ 

    const fvMesh& mesh(phi_.mesh()); 

    const labelList& own = mesh.faceOwner(); 

    const labelList& nei = mesh.faceNeighbour(); 

  

    nFacesOutgoingFlux_ = 0; 

  

    // Counting internal faces with outgoing flux 

    for (label facei = 0; facei < mesh.nInternalFaces(); facei++) 

    { 

        if (phi_[facei] > 0) 

        { 

            nFacesOutgoingFlux_[own[facei]] += 1; 

        } 

        else if (phi_[facei] < 0) 

        { 

            nFacesOutgoingFlux_[nei[facei]] += 1; 

        } 

    } 

  

    // Adding boundary faces with outgoing flux 

    const surfaceScalarField::Boundary& phiBf = phi_.boundaryField(); 

  

    forAll(phiBf, patchi) 

    { 

        const fvsPatchScalarField& phiPf = phiBf[patchi]; 

        const labelList& pFaceCells = mesh.boundary()[patchi].faceCells(); 

  

        forAll(phiPf, pFacei) 

        { 

            if (phiPf[pFacei] > 0) 

            { 

                nFacesOutgoingFlux_[pFaceCells[pFacei]] += 1; 

            } 

        } 

    } 

} 

  

void Foam::univariateAdvection::zeta::limitZetas() 

{ 

    const labelUList& owner = phi_.mesh().owner(); 



40 
 

    const labelUList& neighb = phi_.mesh().neighbour(); 

    const scalarField& phiIf = phi_; 

    const surfaceScalarField::Boundary& phiBf = phi_.boundaryField(); 

    const label nInternalFaces = phi_.mesh().nInternalFaces(); 

  

    countFacesWithOutgoingFlux(); 

  

    forAll(cellLimiters_, li) 

    { 

        forAll(cellLimiters_[0], celli) 

        { 

            cellLimiters_[li][celli] = 1.0; 

        } 

    } 

  

    // First check on m* to identify cells in need of additional limitation 

    scalarRectangularMatrix mPluses(nMoments_, m0_.size(), 0.0); 

  

    // Find m+ (moments reconstructed on cell faces with outgoing flux) 

    for (label facei = 0; facei < nInternalFaces; facei++) 

    { 

        const label own = owner[facei]; 

        const label nei = neighb[facei]; 

  

        if (phi_[facei] > 0.0) 

        { 

            for (label mi = 0; mi < nMoments_; mi++) 

            { 

                mPluses[mi][own] += momentsOwn_[mi][facei]; 

            } 

        } 

        else 

        { 

            for (label mi = 0; mi < nMoments_; mi++) 

            { 

                mPluses[mi][nei] += momentsNei_[mi][facei]; 

            } 

        } 

    } 

  

    // Adding boundary faces with outgoing flux 

    forAll(phiBf, patchi) 

    { 

        const fvsPatchScalarField& phiPf = phiBf[patchi]; 

  

        const labelList& pFaceCells 

            = phi_.mesh().boundary()[patchi].faceCells(); 

  

        forAll(phiPf, pFacei) 

        { 

            if (phiPf[pFacei] > 0) 

            { 

                for (label mi = 0; mi < nMoments_; mi++) 

                { 

                    mPluses[mi][pFaceCells[pFacei]] +=  

                        momentsOwn_[mi][pFacei]; 

                } 
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            } 

        } 

    } 

  

    // Compute m* and find how many moments are realizable 

    univariateMomentSet mStar(nMoments_, support_); 

  

    forAll(m0_, celli) 

    { 

        if (m0_[celli] > 0) 

        { 

            for (label mi = 0; mi < nMoments_; mi++) 

            { 

                mStar[mi] 

                    = scalar(nFacesOutgoingFlux_[celli] + 1) 

                        *moments_(mi)[celli] - mPluses[mi][celli]; 

            } 

  

            nRealizableMomentsStar_[celli] = mStar.nRealizableMoments(false); 

        } 

        else 

        { 

            nRealizableMomentsStar_[celli] = nRealizableMoments_[celli]; 

        } 

    } 

  

    // In each cell where the the number of realizable m* is less than the 

    // number of realizable m, limitation is attempted 

    const cellList& mCells(phi_.mesh().cells()); 

  

    forAll(m0_, celli) 

    { 

        if (nRealizableMomentsStar_[celli] < nRealizableMoments_[celli]) 

        { 

            const cell& mCell(mCells[celli]); 

  

            // Start search for the zetas to limit 

            for (label p = 0; p < nRealizableMoments_[celli] - 1; p++) 

            { 

                scalarList mPlus(nMoments_, 0.0); 

  

                // Check if zeta_p needs limiting by evaluating m* with 

                // zeta_k, k > p from constant reconstruction 

  

                // Update mPlus for a face to update m* 

                forAll(mCell, fi) 

                { 

                    const label facei = mCell[fi]; 

  

                    if (phi_.mesh().isInternalFace(facei)) 

                    { 

                        if (phi_[facei] > 0) 

                        { 

                            scalarList zOwn(nZetas_, 0.0); 

                            scalarList mOwn(nMoments_, 0.0); 

  

                            for (label zi = 0; zi <= p; zi++) 
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                            { 

                                zOwn[zi] = zetasOwn_[zi][facei]; 

                            } 

  

                            for (label zi = p + 1; zi < nZetas_; zi++) 

                            { 

                                zOwn[zi] = zetasUpwindOwn_[zi][facei]; 

                            } 

  

                            zetaToMoments(zOwn, mOwn, m0Own_[facei]); 

  

                            for (label mi = 0; mi < nMoments_; mi++) 

                            { 

                                mPlus[mi] += mOwn[mi]; 

                            } 

                        } 

                    } 

                } 

  

                // Compute m* 

                for (label mi = 0; mi < nMoments_; mi++) 

                { 

                    mStar[mi] 

                        = scalar(nFacesOutgoingFlux_[celli] + 1) 

                          *moments_(mi)[celli] - mPlus[mi]; 

                } 

  

                nRealizableMomentsStar_[celli] 

                    = mStar.nRealizableMoments(false); 

  

                // Check if zeta_p needs limitation 

                if (nRealizableMomentsStar_[celli] <  

                    nRealizableMoments_[celli]) 

                { 

                    mPlus = 0; 

  

                    // Limit zeta_p 

                    forAll(mCell, fi) 

                    { 

                        const label facei = mCell[fi]; 

  

                        if (phi_.mesh().isInternalFace(facei)) 

                        { 

                            if (phi_[facei] > 0) 

                            { 

                                zetasOwn_[p][facei] 

                                    = zetasUpwindOwn_[p][facei] 

                                    + 0.5*(zetasCorrOwn_[p][facei]); 

  

                                cellLimiters_[p][celli] = 0.5; 

  

                                scalarList zOwn(nZetas_); 

                                scalarList mOwn(nMoments_, 0.0); 

  

                                for (label zi = 0; zi < p; zi++) 

                                { 

                                    zOwn[zi] = zetasOwn_[zi][facei]; 
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                                } 

  

                                zOwn[p] = zetasOwn_[p][facei]; 

  

                                for (label zi = p + 1; zi < nZetas_; zi++) 

                                { 

                                    zOwn[zi] = zetasUpwindOwn_[zi][facei]; 

                                } 

  

                                zetaToMoments(zOwn, mOwn, m0Own_[facei]); 

  

                                for (label mi = 0; mi < nMoments_; mi++) 

                                { 

                                    mPlus[mi] += mOwn[mi]; 

                                } 

                            } 

                        } 

                    } 

  

                    // Compute m* 

                    for (label mi = 0; mi < nMoments_; mi++) 

                    { 

                        mStar[mi] 

                            = scalar(nFacesOutgoingFlux_[celli] + 1) 

                              *moments_(mi)[celli] - mPlus[mi]; 

                    } 

  

                    nRealizableMomentsStar_[celli] 

                        = mStar.nRealizableMoments(false); 

  

                    if 

                    ( 

                        nRealizableMomentsStar_[celli] 

                      < nRealizableMoments_[celli] 

                    ) 

                    { 

                        cellLimiters_[p][celli] = 0.0; 

                    } 

                } 

            } 

        } 

    } 

  

    // Setting limiters on internal faces based on cell limiters 

    forAll(phiIf, facei) 

    { 

        const label own = owner[facei]; 

        const label nei = neighb[facei]; 

  

        if (phi_[facei] > 0) 

        { 

            for (label zi = 0; zi < nZetas_; zi++) 

            { 

                limiters_[zi][facei] = cellLimiters_[zi][own]; 

            } 

        } 

        else 
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        { 

            for (label zi = 0; zi < nZetas_; zi++) 

            { 

                limiters_[zi][facei] = cellLimiters_[zi][nei]; 

            } 

        } 

    } 

  

    // Setting limiters on boundary faces 

    forAll(phiBf, patchi) 

    { 

        const fvsPatchScalarField& phiPf = phiBf[patchi]; 

  

        const labelList& pFaceCells 

            = phi_.mesh().boundary()[patchi].faceCells(); 

  

        forAll(phiPf, pFacei) 

        { 

            if (phiPf[pFacei] > 0) 

            { 

                for (label zi = 0; zi < nZetas_; zi++) 

                { 

                    limiters_[zi][pFacei] 

                        = cellLimiters_[zi][pFaceCells[pFacei]]; 

                } 

            } 

        } 

    } 

  

    for (label zi = 1; zi < nZetas_; zi++) 

    { 

        zetasOwn_[zi] = zetasUpwindOwn_[zi] +  

            limiters_[zi]*zetasCorrOwn_[zi]; 

         

        zetasNei_[zi] = zetasUpwindNei_[zi] +  

            limiters_[zi]*zetasCorrNei_[zi]; 

    } 

} 

  

Foam::scalar Foam::univariateAdvection::zeta::realizableCo() const 

{ 

    const fvMesh& mesh(phi_.mesh()); 

    const labelList& own = mesh.faceOwner(); 

    const labelList& nei = mesh.faceNeighbour(); 

  

    scalarField internalCo(m0_.size(), 0.0); 

  

    for (label facei = 0; facei < mesh.nInternalFaces(); facei++) 

    { 

        if (phi_[facei] > 0) 

        { 

            internalCo[own[facei]] += 1; 

        } 

        else if (phi_[facei] < 0) 

        { 

            internalCo[nei[facei]] += 1; 

        } 
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    } 

  

    internalCo = 1.0/(internalCo + 1.0); 

  

    return gMin(internalCo); 

} 

  

void Foam::univariateAdvection::zeta::update() 

{ 

    if (m0_.size() != nFacesOutgoingFlux_.size()) 

    { 

        nFacesOutgoingFlux_.resize(m0_.size()); 

        nRealizableMoments_.resize(m0_.size()); 

        nRealizableMomentsStar_.resize(m0_.size()); 

    } 

  

    // Compute zeta fields 

    computeZetaFields(); 

  

    // Reconstructing zeta_k on cell faces 

    interpolateFields(); 

  

    // Recompute moments at sides of cell faces 

    updateMomentFieldsFromZetas(m0Nei_, zetasNei_, momentsNei_); 

    updateMomentFieldsFromZetas(m0Own_, zetasOwn_, momentsOwn_); 

  

    // Apply additional limitation to zeta_k if needed 

    limitZetas(); 

  

    // Recompute moments at sides of cell faces 

    updateMomentFieldsFromZetas(m0Nei_, zetasNei_, momentsNei_); 

    updateMomentFieldsFromZetas(m0Own_, zetasOwn_, momentsOwn_); 

  

    // Calculate moment advection term 

    dimensionedScalar zeroPhi("zero", phi_.dimensions(), 0.0); 

  

    forAll(divMoments_, divi) 

    { 

        divMoments_(divi) = 

            fvc::surfaceIntegrate 

            ( 

                momentsNei_[divi]*min(phi_, zeroPhi) 

              + momentsOwn_[divi]*max(phi_, zeroPhi) 

            ); 

    } 

} 

  

void Foam::univariateAdvection::zeta::updateMomentFieldsFromZetas 

( 

    const surfaceScalarField& m0f, 

    const PtrList<surfaceScalarField>& zetaf, 

    PtrList<surfaceScalarField>& mf 

) 

{ 

    forAll(zetaf[0], facei) 

    { 

        scalarList zf(nZetas_); 
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        for (label zetai = 0; zetai < nZetas_; zetai++) 

        { 

            zf[zetai] = zetaf[zetai][facei]; 

        } 

  

        scalarList mFace(nMoments_, 0.0); 

        zetaToMoments(zf, mFace, m0f[facei]); 

  

        for (label mi = 0; mi < nMoments_; mi++) 

        { 

            mf[mi][facei] = mFace[mi]; 

        } 

    } 

  

    // Boundary conditions 

    const surfaceScalarField::Boundary& bf = zetaf[0].boundaryField(); 

  

    forAll(bf, patchi) 

    { 

        const fvsPatchScalarField& m0Patch = bf[patchi]; 

  

        forAll(m0Patch, facei) 

        { 

            scalarList zf(nZetas_); 

  

            for (label zetai = 0; zetai < nZetas_; zetai++) 

            { 

                zf[zetai] = zetaf[zetai].boundaryField()[patchi][facei]; 

            } 

  

            scalarList mFace(nMoments_, 0.0); 

            zetaToMoments(zf, mFace, m0f.boundaryField()[patchi][facei]); 

  

            for (label mi = 0; mi < nMoments_; mi++) 

            { 

                mf[mi].boundaryFieldRef()[patchi][facei] = mFace[mi]; 

            } 

        } 

    } 

} 

  

// *********************************************************************** // 
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