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This paper presents a generalization of an analytical model of an axial flux permanent magnet machine to any magnet shape. It uses an existing model which computes the 3D magnetic flux density by the separation of variables and finite difference method. The original magnet shape is modified by adding a radial dependence to the arc pole. It will be shown that this radial dependency has no impact on the problem's resolution. As an example, the model will be computed for a circular magnet shape and will be compared to a finite element analysis.

I. INTRODUCTION

HE structures of Axial Flux Permanent Magnet (AFPM) machine structures are still under development [START_REF] Shokri | Comparison of performance characteristics of axial-flux permanent magnet synchronous machine with different magnet shapes[END_REF]. Thus, modeling some of their particularities is becoming an issue. In axial flux surface mounted permanent magnet machines, permanent magnets are often considered as sector shaped magnets (trapezoidal form like in Fig. 1). However others magnet shapes can be found in some AFPM structures [START_REF] Shokri | Comparison of performance characteristics of axial-flux permanent magnet synchronous machine with different magnet shapes[END_REF], [START_REF] Pahlavani | Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations[END_REF]. Nevertheless, considering 3D analytical modeling, despite the variety of the methods used, only sector shaped magnets have been considered [START_REF] Huang | 3-D analytical modeling of no-load magnetic field of ironless axial flux permanent magnet machine[END_REF], [START_REF] Jin | 3-D analytical magnetic field analysis of axial flux permanent magnet machine[END_REF], [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF].

This paper proposes to generalize the model described in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF] which considers sector shape magnets with regard to different magnet shape. A radial dependence of the arc pole is put forward. From the mathematical point of view, it will be shown that this radial dependency of the arc pole has no impact on the development of the initial solution. Subsequently, the solution will be computed for circular shaped magnets and compared to FEA.

II. THE AXIAL FLUX SURFACE MOUNTED PERMANENT MAGNET MACHINE

A representation of a pair of poles of a surface mounted permanent magnet axial flux motor is shown in Fig. 1.

The 3D hybrid analytical finite difference (FD) model presented in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF] is easy to set up. Furthermore, it is also valid for modeling multi-stage machines thanks to the image method. This paper proposes to extend this model to more complex magnet shapes. 

III. GENERALIZATION OF THE MAGNET SHAPE

In [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF], the arc pole α p is constant. The method can be extended to complex magnet shapes as the example shown in Fig. 2. For this type of magnet shape the arc pole can be described as a function of the radial position r. This paper will compute the axial magnetic flux density B z in the same way it is done in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF] adding this radial dependency of the arc pole α p (r). The arc pole is computed for each discretized radius. This discretization is performed by the 1D FD method developed in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF]. As in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF], the following assumptions are made: -Because of the air-space between the magnets, we assume that the permeability of magnets and the air is the same and equal to µ 0 .

-Back-irons have infinite permeability so the boundary conditions (BC) at the planes z = 0 and z = h m + g are taken as normal flux boundary conditions. Where g is the airgap width and h m the permanent magnet width.

-The problem is limited in the radial direction with parallel flux boundary conditions on cylinders at r = R 0 and r = R 1 .

Using magnetic scalar potential formulation (MSP), Ω, the partial differential equation to be solved is deduced from Maxwell equations: ∆Ω = 𝑑𝑖𝑣 𝑴 (1) To reduce the number of regions to consider, the image method is used to replace the normal flux BC by a periodical extension in the axial direction. This leads to a double Fourier where p is the number of pole pairs and M nk and M n0 are the Fourier series coefficients.

Therefore, there are three regions to be considered separated by cylindrical surfaces at r = R int and r = R ext . Air regions I (R int ≥ r ≥ R 0 ) and III (R 1 ≥ r ≥ R ext ), and the PM region II (R ext ≥ r ≥ R int ). The new magnet shape has to be included in the magnet region between R int and R ext . The radial dependency of α p (r) implies that the Fourier series coefficients are now r dependent.

All the magnets are axially magnetized. Therefore, the magnetization 𝑴 has only a component in the axial direction. The second member of the equation is reduced to:

𝜕𝑀 𝑧 𝜕𝑧 = ∑ ∞ 𝑛=1,3,5 ∑ (- 𝑘𝜋 ℎ 𝑚 +𝑔 ) 𝑀 𝑛𝑘 (𝑟) 𝑐𝑜𝑠(𝑛𝑝𝜃) . 𝑠𝑖𝑛 ( 𝑘𝜋 ℎ 𝑚 +𝑔 𝑧) (5) ∞ 𝑘=1
Here, the partial derivative in accordance with the axial coordinate has no influence over the arc pole α p (r).

The method of separation of variables used in [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF] is still valid even if the arc pole α p (r) depends on the radial position. The final expression of the axial magnetic flux density is now:

𝐵 𝑧 = -𝜇 0 (∑ ∞ 𝑛=1,3,5 ∑ 𝑣 𝑛𝑘 cos(𝑛𝑝𝜃) . ( 𝑘𝜋 ℎ 𝑚 +𝑔 ) cos ( 𝑘𝜋 ℎ 𝑚 +𝑔 𝑧) ∞ 𝑘=1 + 𝑀 𝑧 (𝑟, 𝜃, 𝑧)) (6) 
where v nk are functions of 𝑟. Differential equations are solved by FD method for each azimuthal n and axial k harmonics to compute these functions. The 1D FD method discretizes the problem in the radial direction.

IV. COMPARISON WITH FEA

As an example, circular magnet shape will be considered in this study as shown in Fig. 3. For each discretized radius, the arc pole is calculated in order to create a circular shape. The FEA is carried out on ANSYS/Emag 3D [START_REF]ANSYS Mechanical APDL Low Frequency Electromagnetic Analysis 215 Guide[END_REF] and based on a magnetic scalar potential formulation. The FEA is done under the same condition as the model, that means on one pair of poles of the machine and the same assumptions are made (the permeability of the magnets and BC).

Both computation methods are compared on a radial line at z = h m + g/2 and for several angles θ = 0 (in front of the symetrical axis), θ = 5.5° and θ = 7.5°.

The results are computed for 16 harmonics. The root mean square (RMS) error between the hybrid model and the FEA on Fig. 4 are about 1.2% for the three plots. The RMS errors are below 2% if we consider the influence of θ and z independently. Back electromotive force and torque can be easily computed from the B z component of the magnetic flux density [START_REF] Carpi | Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine[END_REF].

V. CONCLUSION

This paper presents a generalization of a 3D analytical model of AFPM with sector shaped magnets to AFPM with more complex magnet shapes. The method is validated with circular shaped magnets.
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 1 Fig. 1. A 3-D representation of a pair of poles of the AFPM machine.

Fig. 2 .

 2 Fig. 2. Complex magnet shapes with arc pole depending on radial position.

T

  series description of the magnetization of the permanent magnets in the azimuthal and axial directions: 𝑀 𝑧 (𝑟, 𝜃, 𝑧) = ∑ ∞ 𝑛=1,3,5 ∑ 𝑀 𝑛𝑘 (𝑟) cos 𝑛𝑝𝜃 .
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 3 Fig. 3. 3-D view of the AFPM machine with circular shaped magnets.

Fig. 4 .

 4 Fig. 4. Axial flux density as a function of the radial coordinate computed by hybrid analytical-FD method and FEM.