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Abstract7

Annotation of images in supervised learning is notably costly and time-consuming. In order to reduce this cost, our8

objective was to generate images from a small dataset of annotated images, and then use those synthesized images9

to help the network’s training process. In this article, we tackled for illustration with agricultural material the10

difficult segmentation task of apple scab on images of apple plant canopy by using convolutional neural networks.11

We devised two novel methods of generating data for this use case: one based on a plant canopy simulation and12

the other on Generative Adversatial Networks (GANs). As a result, we found that simulated data could provide an13

important increase in segmentation performance, up to a 17% increase of F1 score (a measure taking into account14

precision and recall), compared to segmenting with weights initialized on ImageNet. In this way, we managed to15

obtain, with small datasets, higher segmentation scores than the ones obtained with bigger datasets if using no such16

augmentations. Moreover, we left our annotated dataset of scab available for the plant science imaging community.17

The proposed method is of large applicability for plant diseases observed at a canopy scale.18

1. Introduction19

In computer vision applied to agriculture, machine learning techniques are currently progressing very rapidly20

(Minervini et al., 2015; Pound et al., 2017; Kamilaris and Prenafeta-Boldú, 2018). Two categories of methods21

are usually distinguished in machine learning depending on whether it is supervised or unsupervised. Supervised22

techniques require annotation, a task that is possibly time-consuming when dealing with images with complex struc-23

tures, such as texture, or with large dataset of images, as in phenomics for plant sciences. This task is even more24

time-consuming now with the success of deep learning methods. These methods show great success (Goodfellow25

et al., 2016) on a variety of image processing tasks of seemingly unlimited complexity thanks to sufficiently large26

neural networks. However, as these networks are composed of many computational units, they typically require a27

great quantity of annotated data compared to other learning methods. Yet, in the case of plant disease detection,28

annotated datasets of infected plants are often very small. Often, the severity of a given infection is judged by29

the quantity of visible lesions: Hence, image segmentation i.e. pixelwise classification is needed, which requires30

pixelwise annotation, which is tedious and difficult.31

32

Our goal was to obtain the best segmentation score possible using a neural network based segmentation and data33

simulation techniques with very small size of the datasets. We investigated the possibility to circumvent manual an-34

notation by the generation of synthetic annotated data. Such generators fall in three broad categories:(i) Standard35

data augmentation, which has just started to be tested in plant sciences, (ii) computer graphics techniques of image36

rendering and (iii) generative adversarial networks (GANs) (Goodfellow et al., 2014) which is a new approach, not37

based on computer graphic model but on machine learning. These three kinds of generators have only recently been38

tested separately in plant sciences (Pawara et al., 2017; Ubbens et al., 2018; Giuffrida et al., 2017) mainly with39

images of single healthy plants. In this work, we implemented and compared an example of each of these categories40

on the same plant disease use case at the observation scale of the canopy.41

42

We focus on apple scab which is an infection afflicting apple trees and in general trees of the Malus genus. This43

infection is caused by fungus Venturia inaequalis, which leads to brown lesions on the leaves and the fruits. It44

requires more than ten fungicide treatments per year to be controlled and can be considered as the most serious45

disease for apple plantations (Bowen et al., 2011). Quantifying the development of scab is of great importance46

for studying interactions of apple scab and apple trees, as well as for analyzing the evolution of pathogenicity in47

Venturia inaequalis populations and for breeding scab-resistant apple cultivars. In order to improve its treatment,48
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early detection, i.e. before visible symptoms would be valuable. The life cycle of the fungus starts by a phase49

under the leaf’s cuticle (invisible to the naked eye), before rupturing to the leaf’s surface, at which point infection50

is visible but already very advanced (Oerke et al., 2011). However, the early stage is detectable by observation51

of other wavelengths than the visible spectrum. Indeed, in that stage, the fungus blocks the host leaf’s water52

evacuation, which in turn modifies the temperature of infected zones. Infrared imagery, which provides information53

on temperature, is therefore suitable for early detection (Belin et al., 2013; Delalieux et al., 2009). The infrared54

domain has shown optimal contrast compared to RGB (Oerke et al., 2011; Chéné et al., 2012; Belin et al., 2013;55

Benoit et al., 2016). The detection of apple scab was implemented on individual plants at a very early stage of56

development where plants had a very limited amount of leaves (Oerke et al., 2011; Chéné et al., 2012). In a real57

agronomic and biological research environment, populations of trees are grown and the observation scale of plants58

is rather at canopy level.59

This work is positioned along the following lines toward the closest related literature on data augmentation.60

Most simulation of plant images has been conducted by the implementation of biological models to generate 3D61

scenes. These simulations are then coupled with an artificial acquisition system in order to generate 2D images.62

Full plant simulation framework have been developed, enabling researchers to model a wide variety of crops and63

plants, along with many physical measurements on these models (Pradal et al., 2008). Some of these simulations64

were used to boost machine learning algorithms. For example simulator of root images were developed, which also65

generated annotation masks for a segmentation task (Benoit et al., 2014). Closer to our work, some simulators66

were designed to serve as dataset augmentation. In recent years, a weed simulator was designed to improve weed67

detection (Di Cicco et al., 2017), and high-quality 3D scenes of pepper plants were generated for a model of species68

identification (Barth et al., 2018). Some researchers focused, like this work, at the leaf level: 3D Arabidopsis leaves69

were generated in order to improve leaf segmentation (Ward et al., 2018). While these elaborate models generate70

highly realistic images, they often require many complex steps going through sometimes proprietary software, such71

as Blender. The model-based simulator presented here is deliberately simpler than the ones presented. It was72

simply based on a Python script and an open-source dataset, and worked in two dimensions. Also, it simulated73

scab disease, which is a finer level of detail than simulating whole species. Generative Adversarial Networks have74

now much improved from their debuts (Goodfellow et al., 2014). While the original GAN strived to generate images75

from a given true image distribution, the key concept of generating images for a given conditional distribution was76

then introduced (Mirza and Osindero, 2014). The condition the authors used was a class label: the conditional77

GAN, or cGAN, learned to generate images of specific digits from the MNIST dataset (instead of learning to78

generate all digits indifferently). This was shown to actually improve the visual quality of GAN results on that79

dataset compared to using no labels, and it also paved the way for a new range of applications for this kind of80

network. For exemple, one example of using such cGANs for data synthesis is generating different kinds of liver81

legion images in order to improve their classification (Frid-Adar et al., 2018). The cGAN’s principle was generalized82

by providing images and strings as inputs instead of class labels (Isola et al., 2017). Images as inputs contain83

much more information than integer labels. Thus, the objective of such cGANs shifted from actual generation84

to domain transform, e.g. transforming maps to satellite images. Segmentation was also studied by (Isola et al.,85

2017), considering the image and its annotation as the two domains of interest. While results were quite visually86

impressive, such segmentation was not competitive with benchmarks of dedicated segmentation networks. The87

process of generating annotation from images (or vice-versa) has since been applied as a mean of data synthesis88

to augment datasets before performing segmentation with those dedicated networks. In plant sciences, a recent89

example concerns Arabidopsis leaf counting, where a cGAN was trained to generate plant images using the number90

of leaves as the label (Giuffrida et al., 2017). Similar work has been conducted where the cGAN’s labels were masks91

of manually segmented Arabidopsis leaves (Zhu et al., 2018). New segmented masks were then generated and used92

as labels to the cGAN. The approach for data augmentation by GAN generation we explored differed from these93

attempts, as we did not wish to have to generate plausible masks to train a cGAN on as in (Zhu et al., 2018).94

Indeed, this is time-consuming, introduces new parameters to the model and requires expertise that is not always95

available. The architecture we used was capable of generating images and their annotation simultaneously and had96

therefore a more generative nature than that of (Isola et al., 2017). Our model was similar to works where GANs97

were trained on image-annotation pairs (Neff et al., 2017). The experiment for which data was generated in their98

case was however quite different, as it was mainly showed that for the concerned dataset, replacing part of the99

training images by simulated images yielded results that were similar to those obtained using only the real images.100

By contrast here, we showed situations where adding simulated images to the train set could actually improve results.101

102

To sum up, our paper focuses on novel data augmentation strategies applied to boost the supervised segmentation103

of apple scab observed at a canopy level. No prior work has been done on apple scab segmentation at the canopy104

level. Thus, we compare segmentation results when training on a ”full” training dataset, i.e. a training dataset105
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where adding new annotated images does not significantly improve results to a reduced part of this training dataset106

augmented by our strategies. This course of action is illustrated in Fig. 1. The rest of the article is organized as107

follows. Our methodology is presented in section 2. Results of the experiments are presented in section. 3 and108

discussed in section. 4.109

Figure 1: Global illustration of the work. We simulated annotated data from a small set of real annotated images through various
simulators. We tested if simulated data increased segmentation score, and also compared this hybrid dataset to a ”full” dataset with
more real images - whose creation required more manual annotation than for the hybrid dataset.

2. Material and methods110

111

2.1. Data acquisition112

Images of apple plants were acquired in April 2018 at INRA Angers greenhouses. The camera used was developed113

by company Carbon Bee, capable of acquiring images both in visible and infrared light. The camera was held by114

hand at 2m above the ground, facing downwards. The apple plants in the camera’s field of view were set on trays115

and peaked at about 1.5m from the ground. Acquisitions were done around noon and the camera gain was set for an116

optimal dynamic range without saturation. A dataset of 11 infrared (IR) images of 2592×1944 pixels, representing117

apple (Malus × domestica Borkh) plants inoculated with scab (Fig. 2) was acquired. While the number of images118

may seem small for a deep learning-based approach, it should be noted that each image represented 50 apple plants,119

which led to several hundred visible leaves, among which 15 to 40 were afflicted with scab. We annotated this120

dataset using GIMP by assigning either a ”scab” or a ”not scab” label to each pixel as visible in Fig. 2. This121

dataset presented several challenges from a computer vision point of view:122

• The segmentation task at hand concerned small local structures to be localized in an image several orders of123

magnitudes larger than them. Hence, structural information, such as texture, was somewhat limited as scab124

lesions were captured from an important distance compared to their size.125

• Localization of scabbed leaves was fairly easy for human eyes, but a pixelwise localization was difficult because126

of a ”gradient” aspect of scab. The amount of fungi on apple scab spots was indeed more concentrated at the127

center of these spots and this created a fading of the contrast. Thus, pixelwise annotation was very challenging128

even for an agronomic expert, and we expected it to to be a challenge for segmentation networks as well.129

• Because of the difference in reflectance that scab lesions cause on leaves, scab could seem easily detectable at130

first glance. However, some factors complicated this distinction: other structures such as leaf veins also caused131

contrasted areas on the leaves. Moreover, the multi-layer structure of the scene led to leaves that showed very132

different gray level intensities depending on their distance from the soil and occlusions by other leaves.133
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• Images were unevenly illuminated due to spatial non-homogeneity in natural lighting. Moreover, they suffered134

from a slight vignetting effect, meaning more light reached the sensor’s center than its borders, leading to images135

with dark borders.136

(a) An infrared image of an apple tree canopy afflicted
by apple scab.

(b) Manual annotation (orange) of scab on the image
(a).

Figure 2: Illustration of plant disease and observation scale considered in this article for the comparative test of data augmentation
strategies.

2.2. Network training137

This section presents the segmentation network and training specifics we used for all of our segmentation138

experiments.139

2.2.1. Architecture140

We used the SegNet segmentation network (Badrinarayanan et al., 2017). While not being state-of-the-art for141

segmentation tasks anymore (Cordts et al., 2018), the goal of this paper was to prove the usefulness of simulated142

images; we only compared results on different train sets and did not strive for absolute best performance. We143

therefore chose SegNet because robust implementations were available and its inner workings were extensively144

studied and understood (Noh et al., 2015) compared to more recent networks. For all experiments, we used145

the following parameters: learning rate = 10−4, batch size = 5, SGD optimizer with momentum = 0.99 and146

weight decay = 5× 10−4. These parameters were set by starting with standard values for image segmentation with147

SegNet, then adjusted through a grid search to prevent overfitting and to yield the best results on the validation148

set. We implemented class balancing because of the high class imbalance in the dataset (Badrinarayanan et al.,149

2017).150

2.2.2. Dataset preparation151

The original images were tiled into sub-images of 64×64 pixels, with no overlap. This was done for computational152

efficiency and to enable easier generation of images by GAN, which are known to be stable for images of these sizes.153

During the tiling process, only tiles where at least one pixel had been annotated as ”scab” were kept. This strongly154

helped to reduce class imbalance: in the original dataset, only 2% of pixels were annotated as ”scab”. After tiling,155

the scab proportion was 10%. Tiling was not as harmful for segmentation for this dataset as it could have been156

for other types of images. Images from the dataset represented a global scene of apple plants, while symptoms of157

interest were fairly local: scab symptoms were independent from plant to plant, and from leaf to leaf. In other158

words, the general structure of the scene brought almost no information to the local structure of the features of159

interest. This is not the case in other well-known segmentation datasets such as CamVid (Brostow et al., 2009),160

where general spatial structure is important. It would therefore have brought no additional information to the161

network to train on images where several plants were seen together than to train on these plants alone. The dataset162

was split into train, validation and test sets with respectively 535, 178 and 178 tiles. Out of the 535 tiles of the163

training set, 107 (20%) were kept as the ”reduced dataset” and used in our experiments. The rest of the dataset164

was kept for comparison of performance with real images. We believed that this reduced quantity of data would be165

small enough for data augmentation strategies to be useful, and large enough to ensure stable stable segmentation166

results (in particular regarding overfitting). Moreover, annotating datasets for segmentation is more manageable167

when these datasets are small. We believe that datasets the size of the ”reduced dataset” are close in size to many168

of the ones used for machine learning in plant sciences.169
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2.2.3. Training and evaluation170

Training was done on the train set and stopped when the score on the validation set had not been improved for
50 epochs. The inference was then carried out on the test set with weights that had yielded the lowest validation
loss. The well-known metric ”accuracy” (true positives + true negatives over whole population) would have been
inadequate to assess the quality of a detection on such an unbalanced dataset: for example, a detection of no scab in
an image where 10% of an image were scab led to an accuracy of 90%. Therefore, the metric used for performance
evaluation was the F1 score (referred to as simply ”score” when discussing the results in section 3), defined as

F1 = 2
precision× recall

(precision+ recall)
.

This metric is the harmonic mean of precision and recall, defining scab as the class of interest. Precision is the171

ratio between how many scab pixels the algorithm has marked as such (true positives) and how many pixels the172

algorithm has marked as scab (true positives + false positives). Recall is the ratio between true positives and how173

many scab pixels are in the image (true positives + false negatives). A segmentation with a high F1 score therefore174

has high precision and high recall, meaning few false positives and false negatives. This metric was a relevant choice175

in such 2-class segmentation cases with heavy class imbalance (Brownlee, 2015).176

2.3. Data augmentation strategies177

The studied dataset was quite small and segmentation results were quite poor. In this section, we present the178

different augmentation strategies we implemented for the dataset. Two of them are novel and are described in179

details in Sections. 2.3.2 and 2.3.3. Our implementation of standard data augmentation, which is a type of data180

simulation very commonly used in neural network based segmentation, is also presented in section. 2.3.1.181

2.3.1. Standard data augmentation182

When we implemented standard data augmentation (SDA), we considered the following transformations (Pawara183

et al., 2017): flip (horizontal or vertical), rotation (90, 180 or 270 degrees), perspective transform by homography,184

scaling (×0.8 - ×1.2) and Gaussian blur (σ = 1 - 2). These transformations were justified by the fact that they185

could actually occur across images. Rotations and flips were suitable here, as images represented mainly texture186

and were therefore globally isotropic. Scaling and homography were justified by the fact that images had been187

acquired with an infrared camera manually held over the apple tree at a distance: the camera could have fluctuated188

during the acquisition trial. This fluctuation also justified Gaussian blur: the focal of the camera was fixed so that189

fluctuations of the distance of the camera to plants resulted in a blurring effect. Augmenting a given image meant190

applying each of these transformations with a certain probability. These probabilities ranged from 0.2 to 0.5. The191

exact probability depended on the transformation and was meant to reflect the empirical frequency we thought that192

specific transformation would be useful for the model to generalize better. We devised two ways of augmenting the193

data:194

• offline SDA: We augmented each image in the train set a number naug of times, multiplying the train set size by195

naug.196

• online SDA: The train set was left untouched before training starts, but during the training process, transfor-197

mations were applied to each (original) image at each epoch. It was quite possible that for a relatively small198

number of epochs, a given image is transformed differently at each epoch. Therefore, the number of different199

images shown to the network during training with such SDA was actually close to ntrain × nepochs.200

2.3.2. Model-based simulator201

We now present the simulator that we devised specifically for generating canopy images. It assumed (i) that the202

scenes of Fig. 2 could be reproduced by replication of leaves put on top of one another similarly to the ”dead leaves203

model” (Matheron et al., 1975) and (ii) that the apple scab on apple leaves could be characterized as a texture204

defined by its first and second order statistics. The general pipeline was the following:205

1. Randomly draw an isolated apple leaf image from an existing leaf dataset;206

2. Generate simulated scab texture and apply it on the leaf;207

3. Place the ”scabbed” leaf in the scene in a structured way.208

The procedure is illustrated in Fig. 3, and the different steps are explained more thoroughly below.209

210
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Figure 3: Model-based simulator algorithm. Information from real images and real leaves from a dataset (blue arrows) were used to
create a realistic-looking scene. An example output can be seen in Fig. 4.

1. Leaf images: We used the LeafSnap dataset (Kumar et al., 2012) of apple tree leaves set flat and isolated on211

a uniform background. Images from the train set were used to capture statistics necessary for scab texture212

synthesis.213

Regarding the texture generation step, we chose to implement a ”procedural” process, meaning texture was214

generated from a filtered Gaussian white noise (McCombs, 2005). The process consisted in fitting the first215

(mean, standard deviation) and second (autocorrelation) order statistics to the ones recorded on the train set.216

This simple procedure assumed the apple scab contrast is stationary and captured by a Gaussian random process.217

2. Scab pattern: To simulate scab placement on leaves, we studied typical shapes of scab infection in infrared light218

(Oerke et al., 2011). To reproduce this spatial distribution, we used a speckling algorithm that gave results219

visually similar to real images. This algorithm is based on taking the Fourier transform of a 2D array of 20× 20220

random complex numbers and yields a pattern of spots whose sizes are controllable. We then added a Gaussian221

intensity to these ”spots” to produce images closer to real ones.222

3. Canopy: Once the leaves were ”scabbed”, we placed them in the scene, which started off as an artificial image of223

soil, generated in the same way as scab texture. The goal was to place them with certain occlusion and recovery224

patterns so that they matched real images as closely as possible. Our approach consisted in simulating apple225

”plants”. We defined a certain number of randomly placed seeds, and iteratively added around each of these226

seeds a leaf. The placement of a leaf on a given seed was inspired by biological knowledge and observation of227

real images. In particular, angles between leaves of a plant are well defined because it is known that a plant tries228

to expose as many as possible to sunlight. This procedure resembled the ”dead leaves model”, a process proved229

to simulate images with statistical properties similar to the ones in natural images, such as scale invariance of230

statistics (Ruderman and Bialek, 1994; Lee et al., 2001).231

To further account for the third dimension of the scene, the top halves of leaves were bent by homography.232

Moreover, leaves placed later in the iterative process were made bigger and more luminous than former ones, in233

order to simulate perspective. Luminosity and size changes were handled in an affine way, meaning leaves grew234

linearly brighter and bigger as they were placed closer to the top. Leaf luminosity was changed by multiplying235

the intensity of images.236

Results can be seen in Fig. 4. Note that the simulator also generated annotation (pixels that represent scab) in237

addition to the IR images.238

239

Ablation study: To learn more on which parts of the simulation were actually helping on pre-training, we240

conducted an ablation study, ”knocking out” specific features of the simulator described in Section 2.3.2. We then241

pre-trained the model with these ”ablated” images. The list of functions we isolated and knocked out one by one,242

keeping the others constant, was the following:243
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• Structure: leaves were kept in layers, but not organized in ”apple plants”. They were instead randomly positioned244

and rotated.245

• Texture: scab texture was generated using only mean and standard deviation of real scab texture images and not246

autocorrelation (1), or only autocorrelation without the first order statistics (2).247

• Size: leaves from different layers were not resized as a function of the layer they were in.248

• Lighting: leaves from different layers’ gray level intensity were not changed as a function of the layer they were249

in.250

• Bend: leaves were not bent by homography.251

• Gradient: Scab texture was applied to leaves without any ”gradient” effect.252

• Vignetting: no vignetting effect was added to the image.253

• Leaf species : leaves were not apple tree ones (Malus pumila), instead mulberry (Broussonettia papyrifera) ones.254

Figure 4: An example of an image coming from the model-based simulator.

2.3.3. GAN simulator255

Another way to generate more images from a train set is by using GANs. We used Deep Convolutional GAN256

(DCGAN) (Radford et al., 2015) architecture, with the Wasserstein GAN (WGAN) (Arjovsky et al., 2017) training257

process. We tried implementation techniques to improve training stability (Salimans et al., 2016). The only change258

that improved results was increasing the number of filters in the generator part of the network while leaving the259

discriminator’s number of filters to their default value. Training was done for approximately 100,000 generator260

iterations, where the loss function did not decrease anymore and simulated images were stable. The difference with261

traditional image generation by GAN is that the training images we used were concatenated images of IR images262

(dimension H×W ×1) and their binary manual annotation (dimension H×W ×1), yielding an ”annotated image”263

(dimension H ×W × 2) for the GAN to train on. Thus, the annotation of a given image was simply encoded as the264

second channel of that image. There was therefore no need to manually create label images for generation afterward265

(Zhu et al., 2018): a GAN trained in such a way is capable of generating IR images and their associated annotation.266

The algorithm is illustrated in Fig. 5.267

2.4. Evaluating the simulated images268

Once simulated images were created using the simulators described in the previous section, we added them to269

the train set. We studied two ways of using this additional data to help with the training process. To our knowledge,270

there has been no research showing that one way of using additional data is more efficient than the other.271

• Combining: Create a new train set by adding simulated data to the train set: this seemed like the most natural272

way of augmenting the train set, as the network would train simultaneously on real and synthesized images.273

(Ward et al., 2018). The training batches were constrained to contain 50% of real images and 50% of synthesized274

images. We did not enforce such constraints and rely on the stochasticity of batch formation to generate well-275

mixed batches.276
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Figure 5: Our GAN-based algorithm description. G and D refer to generator and discriminator network, respectively. Grayscale images
are IR images while binary images represent their corresponding annotation.

• Pre-training: Train a network on simulated data and fine-tune it on real images. Using features learned on a277

dataset to infer on another one, with or without fine-tuning, is one of the earliest practices of neural network278

training (Yosinski et al., 2014). For example, many applications use weights initialized to ones learned on the279

ImageNet dataset (Deng et al., 2009; Sharif Razavian et al., 2014). This is based on the idea that most natural280

images contain similar local patterns, and therefore neurons trained on a generic classification task such as281

classification on ImageNet are useful for a wide variety of applications. However, we hypothesized that one can282

achieve better results on a given segmentation task when pre-training on a task close to the final objective instead283

of on a more generic task.284

For all ”pre-training” experiments, we used datasets with 5,000 training images. For all ”combining” experiences,285

we tried 4 different simulated dataset sizes corresponding to 0.25, 1, 4 and 8 times the number of real images in the286

dataset. Results presented in section 3 are shown for the quantities of images that yielded the best scores.287

288

2.5. Comparing with real annotation289

To compare the performance of our simulators with real data, we computed segmentation scores of the full290

dataset of 535 images. More precisely, we created from this full dataset 10 reduced train sets nested into each other,291

i.e. d1 ∈ d2 ∈ ... ∈ d9 ∈ dfull, where dfull is the dataset of 535 images. We then trained the network on each of292

the reduced train sets and computed the segmentation scores on the same test set. To complete our analysis, we293

computed the score on these different train set sizes for different augmentation strategies:294

• case 1 : Only pre-training on ImageNet, with no other augmentation (base case);295

• case 2 : Pre-training on ImageNet and using (online) SDA, which is still a basic use case of many segmentation296

routines;297

• case 3 : Pre-training on data generated by the model-based simulator and using (online) SDA, which is the298

scenario we introduced in this paper that provided the highest performance.299

3. Results300

In this section, we present segmentation scores obtained after training the network presented in Section. 2.2 on301

the dataset presented in Section. 2, using the various data simulation strategies described in Section. 2.3. Results for302

a given strategy vary from a run to another, because of the stochasticity of neural network initialization, accentuated303

by the small dataset sizes. Therefore, all results are averaged over 30 runs, such that score variation between means304

of batches of 30 runs was under 0.5%. The results are presented in Table 1. With no augmentation whatsoever,305

the score was 0.424.306
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Table 1: Segmentation scores for the different dataset augmentation strategies. The ImageNet dataset is typically used for pre-training,
and there was no sense in combining it with our dataset as images classification task wildly differ from our case.

Helper dataset Combining Pre-training

None 0.424± 0.013
ImageNet - 0.472±0.009
SDA (offline) 0.559±0.007 0.519±0.006
SDA (online) 0.574±0.010 -

Model-based simulator 0.509±0.005 0.602±0.007
GAN-based simulator 0.496±0.011 0.494±0.010

Results for the ablation study of the model-based simulator are presented in Fig. 6.307

Figure 6: Segmentation scores for the different configurations of the ablation study of the model-based simulator. The X-axis indicates
the specific feature of the simulator that was ”knocked out” for that experiment. ”No abl.” refers to an experiment with no ablations
(using the full simulator, as in Table 1). ”All abl.” refers to an experiment where all ablations described in Section 4.2 were applied at
once.

We also tested combinations of augmentation strategies: namely adding online data augmentation to train sets308

partly composed of model-based or GAN-based data.309

Table 2: Segmentation scores for the different dataset augmentation strategies combined.

Helper dataset Combining Pre-training

Model-based simulator + SDA (online) 0.580±0.004 0.643±0.005
GAN-based simulator + SDA (online) 0.599±0.008 0.529±0.007

Results of the comparison of data simulation and actual real data annotation are presented in Fig. 7.310
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Figure 7: Impact of train set size on segmentation score. The X-axis indicates the proportion of train set kept for training from the full
train set (535 images), while validation and test set stay the same size. The Y-axis indicated the segmentation score on the test set.
The sub-train set presented in this article up to this point used 0.20 of the train set (marked by the vertical purple line). The different
curves correspond to different types of augmentations, as indicated in the legend.

4. Discussion311

Let us call the strategy of pre-training on ImageNet the ”base case”, as it is a widely used technique in machine312

learning algorithms. The result for the base case was a score of 0.472 (Table 1). This value corresponded to typical313

values of precision and recall of about 0.533 and 0.424, respectively. For all of our results, we observed relative314

values of precision and recall close to this case (values are quite close, with precision being higher than recall).315

To avoid overloading the presentation of the results, precision and recall are not mentioned in Tables 1 and 2.316

Segmentation suffered from both low precision and low recall. By observing outputs from the model, we noted317

that low recall came from entire scab lesions being missed. Low precision came from a segmentation ”halo” of318

false positives around detected regions. A possible explanation for this effect was class balancing (see section 2.2),319

which strongly penalized false negatives to the point where the network became ”overcautious” and classified all320

areas where the decision was difficult (in particular pixels in the aforementioned ”gradient zone” (section 2.1)) as321

”scab”, leading to these false positives ”halos”.. Let us now discuss the impact of the different simulation strategies,322

compared to this base case. While comparing results, it is worth noting that experiments ran with 30 runs led to323

a standard deviation of the score typically under 1% (Table 1).324

4.1. Standard data augmentation325

SDA yielded very convincing progress for this dataset compared to the base case, especially in configurations326

where it was used directly in combination with our original images. In the offline version, the improvement compared327

to the base case was 8%. We suspect that with more images, we could have reached similar scores to the online328

version, which yielded a 10% improvement. This confirmed our intuition that SDA was well adapted to our case:329

a training image flipped in any direction, rotated in any direction, blurred and/or with changed perspective led to330

an image that could very much resemble images from the test set. The important positive impact of SDA on plant331

dataset segmentation is consistent with previous findings (Pawara et al., 2017).332

4.2. Model-based simulator333

Using the model-based simulator yielded interesting results: the simulated images were efficient in a pre-training334

scenario (+12%). This showed that images outputted by the simulator were at least somewhat realistic from the335

networks point of view. However, results when using these simulated images in a combined train set were not much336

higher than the ones obtained on the base case (+ 3%). The score difference of using these model-based simulated337

images as pre-training or combining was interesting, as it illustrated the important difference between these two338

methods of using extra data. In our case, model-based simulated images were very useful in pre-training, meaning339

they were efficient in leading training of weights ”on the right tracks”, but were too different from real data to be340

beneficial if added directly in the train set.341

342

The ablation study (Fig. 6) gives us some insight on the usefulness of our simulator, by showing at which point343

each of the simulator’s features was useful. The ”gradient” effect of scab texture and leaf homography seemed to344
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have the most impact (3% difference with the full simulator) while placing leaves in ”plant” structure seems to have345

been almost useless. It is worth noting that even with all the features tested in this ablation study taken out at once346

(”All” result in Fig. 6), results were still an 8% gain from the base case. It seems that the mere fact of pre-training347

on images of real leaves greatly helped the network when training on the scab dataset. We hypothesized that the348

success of this ”simple” pre-training could be explained by the same reasons pre-training on ImageNet helps most349

training tasks: features learned when pre-training on leaves seem generic enough to be useful to any ”plant-related”350

training tasks.351

4.3. GAN-based simulator352

Compared to the above augmentations, improvement by the GAN generator was sizably smaller: 2% regardless353

the way data is used. One possible cause for the smallness of this effect was the difficulty for the GAN to converge354

to convincing images. Fig. 8 presents different experiments on training the GAN on the train set, which can be seen355

as intermediary steps to our full training process. While the visual quality of a simulated image did not necessarily356

strictly correlate with the image’s capacity to improve the segmentation process of a real dataset, we believed that357

the former was a proxy for the latter.358

359
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Figure 8: Different experiments (orange squares) to study the difficulties of the GAN based simulator. Each experiment shows 9
examples of original images the GAN trained on (right) and 9 examples of the generator’s output after convergence (left). When two
blocks of 9 images are presented on top of another (exps. A and B), they represent an annotated (2-channel) image. Each binary
image corresponds to the annotation of the IR image at a similar position. Exp. A is a case we present in this article: training on the
annotated image. In Exp. B, we replaced annotations by ”dummy” binary channels, all representing a white circle on black background.
Exp. C presents GAN training done only on annotations.

The generation presented in this article is shown in Fig. 8 A: simulated images seemed relevant because they360

captured global distribution and structure of IR images and created annotations that seemed realistic when consid-361

ered on their own. However, they were not satisfactory in the sense that they failed to represent fine structures of362

original IR images (leaf veins and contours), they had artifacts and annotation structures seemed partly unrelated363

to their associated IR image. Fig. 8 B shows an experiment where the IR images were associated with a ”fake”364

annotation unrelated to the images. Results were visually satisfying, indicating that our GAN algorithm was capa-365

ble of generating 2 channel images including a grayscale one and a binary one. Fig. 8 C presents GAN-simulated366

images from the binary images only. The GAN seemed to be perfectly capable of generating such binary structures.367

Thus, the difficulty resided in generating an IR image and a relevant binary channel, i.e. an annotation, as we368

saw with the difference between Fig. 8 A and B. Our intuition was that in order to create these annotated images,369

the GAN’s discriminator’s role was much more complex than when creating ”simple” grayscale images. When the370

discriminator had to decide whether an annotated IR image came from a real or fake distribution, it had to judge371

(among other things) if the two channels were consistent with each other, i.e. it considered the image as a whole. In372

order to be able to decide about that, the discriminator had to find features in the IR channel that could robustly373

explain pixel values in the annotation channel: in other words, the discriminator had to act as a segmentation374

network. We believed that this is what made the task difficult for the GAN system and explained poorer results in375

exp. A.376

4.4. Multiple augmentations377

Our best results were obtained when combining pre-training on the model-based simulator and adding online378

SDA (Table 2): a 17% increase compared to the base case. This showed that different methods of augmentation379

could be combined very efficiently.380

4.5. Comparing with real annotation381

Fig. 7 shows the network’s scores on train datasets of varying size, with or without the augmentation techniques382

discussed in this article. We made the following observations. Firstly, the gains from the different augmentation383

strategies we observed in this article (vertical purple line on Fig. 7) also appeared for other train set sizes. Next,384

regardless of the chosen augmentation strategy, segmentation score as a function of train set size was similar to a385

logarithmic growth. This was quite intuitive : when showing new images to a network learning on a very small386

train set, these new images were very likely to show new patterns and structures, never seen before by the network.387

The more images were added, the more the network had seen ”everything there is to see”, and the less it learned388

from new images. A corollary of this kind of growth was that scores tended to saturate. With the full train set,389

we seemed to have not reached full saturation yet. Interestingly, the gap between cases 1 and 2 did not seem to390

decrease as new images were added. This was a surprising result for us, as we would have expected the curves391

to converge as we added new images (SDA becoming less and less useful as we cover more and more cases), as it392
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was the case for the gap between cases 2 and 3. It seemed here that SDA may enable to get on the whole better393

results compared to adding some new ”real” data. Especially for small train set sizes, we saw the usefulness of data394

augmentation strategies for saving annotation effort. For example, to get a score similar to the one obtained by395

annotating 150 images (30%) of the train set in case 1, one would need only about 30 images in case 2 and 10 in396

case 3. Finally, regardless of the type of augmentation, we found these curves to be interesting from a theoretical397

and practical point of view. Consider the case where one computes one of these curves for a dataset A, and also398

wishes to work on a dataset B that seems quite similar to A according to certain metrics (in our example, if A399

is our scab dataset, a similar B dataset could be images of another type of biotic stress on another plant species’400

leaves for example, with camera position and plant density close to A). Then one could assume that the ”data401

utility curve” of A and B are similar, and therefore infer beforehand the sufficient quantity of B data to annotate402

for ”best possible” segmentation performance. In the case of segmentation annotation, especially in a domain like403

agronomy where expert intervention is needed, knowing this kind of information can be very valuable.404

4.6. Extension to other plant diseases405

Many plant diseases show general structure close to the one of apple scab. For example, downy mildew of406

grapevines, late blight of potatoes and early symptoms of fusarium wilt will resemble small textured lesions ap-407

pearing on leaves. The GAN-based simulator is in theory an image-agnostic tool, applicable to other segmentation408

tasks. Since GANs rely on finding some structure in data in a latent space, we believe the results presented here409

would be reproducible for these other diseases where image structure is close to our scab database. We believe that410

our model-based simulator could also be extended to these other types of plant diseases characterized by blobs on411

the leaves. Indeed, contrast, size, spatial distribution and texture of the lesions, size, density, and the species of412

leaves are all parameters of this simulator which could be tuned.413

414

An extension of our simulator would be to be able to handle color images. While IR imagery was proved to be an415

appropriate modality for apple scab, standard RGB images can also provide valuable information on a wide range416

of plant diseases (Mahlein, 2016). In such RGB images, leaf edges are more clearly defined, perspective and leaf417

veins appear much more distinctly. An interesting perspective would be to provide both RGB and IR images to the418

network. Such multi-modal images are moreover becoming increasingly easier to acquire thanks to the development419

of convenient multi-modal image sensors for the plant science domain (Lowe et al., 2017).420

5. Conclusion and future works421

We have tackled the difficult and open problem in plant science of apple scab segmentation at canopy level. Like422

many segmentation tasks, the train set was quite small, and with this in mind we designed novel ways of generating423

new annotated data from the existing train set. This new data helped us achieve a much better segmentation,424

especially when different types of augmentation were combined.425
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Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, É., Chapeau-Blondeau, F.,452
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