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Optimal projection of observations
in a Bayesian setting

L. Giraldi, O. P. Le Maître, I. Hoteit, O. M. Knio

Abstract
Optimal dimensionality reduction methods are proposed for the Bayesian

inference of a Gaussian linear model with additive noise in presence of
overabundant data. Three different optimal projections of the observa-
tions are proposed based on information theory: the projection that mini-
mizes the Kullback-Leibler divergence between the posterior distributions
of the original and the projected models, the one that minimizes the ex-
pected Kullback-Leibler divergence between the same distributions, and
the one that maximizes the mutual information between the parameter
of interest and the projected observations. The first two optimization
problems are formulated as the determination of an optimal subspace and
therefore the solution is computed using Riemannian optimization algo-
rithms on the Grassmann manifold. Regarding the maximization of the
mutual information, it is shown that there exists an optimal subspace that
minimizes the entropy of the posterior distribution of the reduced model;
a basis of the subspace can be computed as the solution to a generalized
eigenvalue problem; an a priori error estimate on the mutual information
is available for this particular solution; and that the dimensionality of the
subspace to exactly conserve the mutual information between the input
and the output of the models is less than the number of parameters to
be inferred. Numerical applications to linear and nonlinear models are
used to assess the efficiency of the proposed approaches, and to highlight
their advantages compared to standard approaches based on the principal
component analysis of the observations.

1 Introduction
We consider the problem of Bayesian inference in the case of overabundant data.
The goal is to compute an optimal approximation of the posterior distribution
by projection of the observations. These projections are computed solving the
following optimization problem

min
V
J
(
P (X | Y = y), P (X |W = V T y)

)
,

where X is the inferred parameter, Y the observations of the Bayesian model
with values in Rn, y ∈ Rn the data, W = V TY the reduced observations with
values in Rr, V ∈ Rn×r the deterministic matrix defining the projection from
the full to the reduced observations, and J a functional defining the optimality
criterion.
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In the literature, the most popular dimensionality reduction techniques re-
sult from the optimal approximation of the observations Y with respect to the
L2 norm defined by

‖Y ‖2L2 = E(Y TY ),

with E the expectation operator. A best low-rank approximation of Y with
respect to the L2 norm is computed by a singular value decomposition. Then,
with V being the matrix composed of the dominant left eigenvectors of Y , the
approximation is given by Y ≈ VW where W = V TY . The reader could refer
to [15, Section 4.4.3] for the presentation of the singular value decomposition
in a general case. When applied to the centered random vector Y − E(Y ), this
decomposition is also called truncated Karhunen-Loève expansion [20, 21, 22],
or principal component analysis [17, 19, 26].

Let Ω denote a sample space. When considering the random vector as a
map Ω→ Rn, an approximation of the observations Y can be used to define the
matrix V based on the L∞ norm defined by

‖Y ‖L∞ = sup
ω∈Ω

max
1≤i≤n

|Yi(ω)|.

The empirical interpolation method [4] provides an approximation of the form
ω 7→ VW (ω) of a parametric vector ω 7→ Y (ω) based on this supremum norm.
Given that computing the supremum is not tractable, the sample space is re-
stricted to a finite sample ΩN = {ωi}Ni=1 ⊂ Ω and the norm is approximated
by

‖Y ‖L∞ ≈ max
ω∈ΩN

max
1≤i≤n

|Yi(ω)|.

The interpolation is then defined to be exact on a subsample {ω?j }rj=1 ⊂ ΩN ,
and on a restricted number of indices {ij}rj=1 ⊂ {1, . . . , n}. The interpolation
points ((ω?j , ij))rj=1 are selected in a greedy fashion using the supremum norm
of the error, such that

(ω?r , ir) = arg max
ω∈ΩN

max
1≤i≤n

∣∣∣∣∣∣Yi −
r−1∑
j=1

VijWj

∣∣∣∣∣∣ .
The approach reduces to the interpolation of the matrix Mij = Yi(ωj) and
is therefore very close to the cross approximation method [5] for the low-rank
interpolation of a matrix. A detailed comparison between the singular value
decomposition, the empirical interpolation method and the cross approximation
is provided in [6]. A weighted variant of the empirical interpolation method was
introduced in [8] in order to take into account probability measures. Given a
positive weight w : Ω→ R+, the supremum norm is modified such that

‖Y ‖wL∞ = sup
ω∈Ω

max
1≤i≤n

w(ω)|Yi(ω)|,

yielding different interpolation points. While the approximations based on the
L2 and L∞ norms are widely used, they are optimal with respect to the output
of the model and are not directly related to the distribution of the parameter
to infer. An exception to this rule is [13] where a weighted singular value
decomposition was used to accommodate uniform priors.
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Geppert et al. [12] propose to reduce the number of observations in a Bayesian
regression framework using random projections. The methodology relies on ε-
subspace embeddings that are particular maps of the form Π ∈ Rr×n satisfying

(1− ε) ‖Bx‖2 ≤ ‖ΠBx‖2 ≤ (1 + ε) ‖Bx‖2 ,

for a particular B ∈ Rn×q, and for any x ∈ Rq with a probability 1 − α. In
order to obtain an error on the posterior distribution of order ε in terms of
the Wasserstein metric, it is shown that the number of observations required
is O((q + log(1/α))/ε2), O(q log(q/α)/ε2) or O(q2/(αε2)), depending on the
embedding. Even though the dimension r can be drastically smaller than the
original number of observations, n, it can still be relatively large for a small risk
α and a small error ε.

Another related technique is introduced in a series of papers [9, 28, 29].
Given a Gaussian linear model, the goal is to directly compute an approximate
posterior covariance matrix as a low-rank update of the prior covariance. Given
a particular loss function depending only on the covariance, it is shown that an
optimal low-rank update can be derived from a generalized eigenvalue problem.
The resulting distribution is then optimal in terms of the Hellinger distance
and Kullback-Leibler divergence under the assumption that the mean is exactly
recovered. An optimal mean is also derived as a linear projection of the data
by minimizing the Bayes risk defined as the expected Mahalanobis distance
between the parameter of interest X and the approximate mean. Regarding this
methodology, two disadvantages are notable: there is an inconsistency between
the optimality criteria of the mean and the covariance, and the computation
of the different matrices requires the inversion of the covariance matrix of the
noise, which is of large dimension n× n.

In this work, the approximate mean and covariance are defined similarly,
namely as an affine function of the data and as a low-rank update of the
prior covariance, respectively. However, they result from the optimal projec-
tions of the statistical model using criteria from information theory, namely the
Kullback-Leibler divergence, the expected Kullback-Leibler divergence, and the
mutual information, which is the first contribution of this paper. The second
contribution concerns the choice of the practical numerical algorithm for the
minimization of the expected Kullback-Leibler divergence between the poste-
rior distributions of the full and reduced model. It is moreover shown that a
solution to the optimization problem defined as the maximization of the mutual
information I(X,W ) between the parameter X and the reduced observations
W is given by the solution of a generalized eigenvalue problem that does not
require the inversion of a large matrix. We can moreover estimate the loss
I(X,Y ) − I(X,W ) and show that no more than q projections are required to
recover the full mutual information, where q is the size of X. The last contribu-
tion of this work concerns the illustration of the method on linear and nonlinear
examples.

This paper is organized as follows. In Section 2, the full and reduced linear
models are presented in the Gaussian case, as well as other required definitions.
The posterior distributions are then provided explicitly in closed form. Section 3
introduces the three different optimization problems that are used to define the
alternative optimal projections of the observations. The analysis of the corre-
sponding optimal subspace and the numerical algorithms for their computation
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are then provided. The methodologies are finally applied and illustrated to a
Bayesian linear regression problem in Section 4 and to a nonlinear problem in
Section 5. Major conclusions are summarized in Section 5.4.

2 Linear Gaussian model
2.1 Models
We consider an abstract probability space (Ω,F ,P), where Ω is the sample
space, F is a σ-algebra and P a probability measure. Given an Rn-valued
random vector Z, we denote by P (Z) the pushforward probability measure
such that P (A) = P(Z−1(A)) for any set A in the Borel algebra of Rn, and fZ
the probability density function defined with respect to the Lebesgue measure.

We consider the following linear model

Y = BX + E, (1)

where B ∈ Rn×q is the design matrix, X is the random parameter we want to
infer and E is the random noise. The random vector X (resp. E) is supposed to
follow the multivariate normal distributionN (mX , CX) (resp.N (mE , CE)) with
mean mX ∈ Rq (resp. mE ∈ Rn) and covariance CX ∈ Rq×q (resp. CE ∈ Rn×n).
The input parameter X and the noise E are assumed to be independent.

In order to compress the amount of data used for the inference, we introduce
V = (vi)ri=1 ∈ Rn×r, a reduced basis of observations. In the following, the
term reduced space may be used for V , as we look for the projection of the
observations on the space spanned by the columns of V . The linear model
expressed in the reduced coordinates is therefore

W = V TBX + V TE, (2)

and the reduction is efficient if, for r � n, the posterior distribution P (X |W )
is close to P (X | Y ) in some sense defined in Section 3. Our main goal is to
compute a suitable matrix V which satisfies this condition.

In order to subsequently apply the different methodologies to nonlinear mod-
els of the form

Y = A(X) + E,

it is beneficial to consider the random vector A(X) = BX. In the linear case,
this random vector follows the distribution N (mA, CA) where

mA = BmX and CA = BCXB
T .

We also denote by CAX the covariance between A and X, that is

CAX = E
(

(A(X)−mA) (X −mX)T
)

= BCX .

Given the structure of the problem, the random vectors Y and W are also
distributed according to the multivariate normal distribution N (mY , CY ) and
N (mW , CW ), respectively, withmY = mA+mE , CY = CA+CE ,mW = V TmY ,
and CW = V TCY V . The extension of the approach to nonlinear problems is
based on the three quantities mA, CA and CAX .
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2.2 Posterior distributions
Given the linear Gaussian structure of Equation (1), an observation y of Y , and a
reduced basis V , the posterior distributions P (X | Y = y) and P (X |W = V T y)
can be analytically derived. The result is summarized in Proposition 2.1.

Proposition 2.1. The posterior distribution P (X | Y = y) follows the multi-
variate normal distribution N (m?, C?), where

C? = CX(CX + CTAXC
−1
E CAX)−1CX = CX − CTAXC−1

Y CAX , (3)

and
m? = G?(y −mY ) + h?, (4)

with G? = CTAXC
−1
Y and h? = C?C

−1
X mX +G?mA.

Regarding the posterior distribution of the reduced model, if the matrix V ∈
Rn×r is full-rank, the distribution P (X | W = V T y) follows the multivariate
normal distribution N (mV , CV ), where

CV = CX

(
CX + CTAXV

(
V TCEV

)−1
V TCAX

)−1
CX (5)

= CX − CTAXV
(
V TCY V

)−1
V TCAX ,

and
mV = GV V

T (y −mY ) + hV , (6)

with
GV = CTAXV (V TCY V )−1,

and
hV = CV C

−1
X mX +GV V

TmA.

Proof. See Appendix A.

Regarding Proposition 2.1, we can first notice that the two expressions

C? = CX(CX + CTAXC
−1
E CAX)−1CX

and CV = CX

(
CX + CTAXV

(
V TCEV

)−1
V TCAX

)−1
CX

show that the matrices C? and CV are always symmetric positive definite, even
for a nonlinear model. In the following, we denote by GLr the set of invert-
ible matrices in Rr×r, and obtain an invariance property expressed in Proposi-
tion 2.2.

Proposition 2.2. For all matrices M ∈ GLr, we have

mVM = mV and CVM = CV .

Therefore, the posterior distribution P (X |W = V T y) ∼ N (mV , CV ) is invari-
ant under invertible linear transformation of the matrix V on the right.

Proof. See Appendix B.
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In practice, this proposition means that V is less important than range(V )
in the determination of the posterior distribution. Indeed, rescaling, rotating
or permuting the observations in Equation (2) does not affect the posterior
distribution P (X |W = V T y).

Formally, the Grassmann manifold Gr(r, n) defined as the set of r dimen-
sional subspace of Rn is therefore the set of interest to determine the optimal
reduced observations. In this work, we identify Gr(r, n) with the quotient mani-
fold Rn×r∗ /GLr following [2], where Rn×r∗ is the set of full rank matrices of Rn×r
and the quotient space is defined by

Gr(r, n) = Rn×r∗ /GLr =
{

[V ]; V ∈ Rn×r∗
}
, where [V ] = {VM ; M ∈ GLr} .

Finally, Proposition (2.2) means that it is more important to identify the equiv-
alence class [V ] ∈ Rn×r∗ than a particular matrix V ∈ Rn×r∗ .

The next section presents the different proposed optimization problems,
where the Grassmann manifold Gr(r, n) has an important role.

3 Optimality criteria for the definition of the
reduced basis

3.1 Kullback-Leibler divergence minimization
Given two distributions P (Z0) and P (Z1), the Kullback-Leibler divergence be-
tween them is defined by

DKL (P (Z0) ‖ P (Z1)) = EZ0

(
log fZ0

fZ1

)
. (7)

This divergence quantifies the “information lost when [P (Z1)] is used to approx-
imate [P (Z0)]” according to [7, Section 2.1]. The Kullback-Leibler divergence
is always positive and null if and only if the two distributions are identical,
therefore defining a generalized distance between distributions.

This interpretation of the Kullback-Leibler divergence leads us to consider
the following functional J0 : Rn×r∗ → R defined by

J0(V ) = DKL
(
P (X | Y = y) ‖ P (X |W = V T y)

)
.

The domain definition of J0 must be restricted to the set of full rank matrices
Rn×r∗ in order to comply with Proposition 2.1 characterizing the posterior dis-
tributions. Given that we are working with Gaussian distributions, the compu-
tation of the Kullback-Leibler divergence is always well-posed (i.e. fZ1 is always
stricly positive in Equation (7)). The general expression of the Kullback-Leibler
divergence between two Gaussian distribution is given in Proposition 3.1.

Proposition 3.1. Assuming that Z0 ∼ N (m0, C0) and Z1 ∼ N (m1, C1) are
Rq-valued random variables, the Kullback-Leibler divergence between P (Z0) and
P (Z1) is expressed by

DKL (P (Z0) ‖ P (Z1)) = 1
2 (D`d (C0, C1) + DC1 (m0,m1)) ,
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where D`d(C0, C1) is the Bregman log det divergence between C0 and C1 defined
by

D`d (C0, C1) = tr
(
C0C

−1
1
)
− log det

(
C0C

−1
1
)
− q,

and DC1(m0,m1) is the Mahalanobis divergence defined by

DC1 (m0,m1) = (m0 −m1)TC−1
1 (m0 −m1).

Proof. See Appendix C.

As a consequence of Proposition 3.1, the functional J0 has a closed form
depending on m?, C?, mV and CV :

J0(V ) = DKL
(
P (X | Y = y) ‖ P (X |W = V T y)

)
(8)

= 1
2 (D`d (C?, CV ) + DCV

(m?,mV ))

= 1
2
(
tr
(
C?C

−1
V

)
− log det

(
C?C

−1
V

)
− q

+ (m? −mV )T C−1
V (m? −mV )

)
.

Given Proposition 2.2, for all M ∈ GLr, we have J0(VM) = J0(V ). It means
that we are in fact interested in the map defined on Gr(r, n) by [V ] 7→J0(V ).
The minimization problem of interest is therefore

min
[V ]∈Gr(r,n)

DKL
(
P (X | Y = y) ‖ P (X |W = V T y)

)
. (9)

We can show that the following result holds.

Theorem 3.2. There exists a solution to Problem (9).

Proof. See Appendix D.

Note that the minimization of the Kullback-Leibler divergence in Prob-
lem (9) results in an a posteriori reduction in the sense that a realization y
of Y is required to evaluate the cost function. In the following, other function-
als are proposed that circumvent this issue.

3.2 Expected Kullback-Leibler divergence minimization
The first possibility to remove the dependence on the data is to work on the
expected Kullback-Leibler divergence with respect to the observation, where the
measurement Y is treated as a random variable. Similarly to Section 3.1, let
J1 : Rn×r∗ → R be defined by

J1(V ) = EY
(
DKL

(
P (X | Y ) ‖ P (X |W = V TY )

))
.

The expected Kullback-Leibler divergence admits a closed form as well, pre-
sented in the next proposition.

Proposition 3.3. We have the following equality

J1(V ) = 1
2 (D`d (C?, CV ) + EY (DCV

(m?,mV ))) , (10)

7



where

EY (DCV
(m?,mV )) =

tr
(
C−1
V

(
G? −GV V T

)
CY
(
G? −GV V T

)T)+ (h? − hV )C−1
V (h? − hV ).

Proof. See Appendix E.

Using Proposition 2.2 and Equation (10), we can show that J1(V ) =
J1(VM) for all matrices M ∈ GLr. We are therefore interested in finding
the optimal equivalence class [V ] and solving the minimization problem

min
[V ]∈Gr(r,n)

EY
(
DKL

(
P (X | Y ) ‖ P (X |W = V TY )

))
. (11)

As in Section 3.1, we can prove the following result.

Theorem 3.4. There exists a solution to Problem (11).

Proof. The proof is similar to the one in Appendix D, replacing J0 by J1.

Remark 3.5. The minimization of the log det divergence D`d(C?, CV ) has also
been considered, being the data-free part of the Kullback-Leibler divergence. It
has been ignored in the paper as it did not bring additional insights on the optimal
construction of the reduced observations.

3.3 Mutual information maximization and entropy mini-
mization

In this section the Shannon entropy and the mutual information are introduced.
The entropy H(Z) (sometimes denoted H(P (Z))) quantifies the uncertainty or
the amount of information contained in a random variable Z ∼ P (Z) and is
defined by

H(Z) = EZ(− log(fZ(Z))).

The mutual information I(Z0, Z1) between the two random variables Z0 ∼
P0(Z0) and Z1 ∼ P1(Z1) is a measure of the information that Z0 contains
about Z1, and is defined by

I(Z0, Z1) = H(Z0) +H(Z1)−H(Z0, Z1),

where H(Z0, Z1) is the entropy of the joint distribution of Z = (Z0, Z1). From
this definition, it is clear that the mutual information is symmetric.

The new definition of the reduced basis, introduced in this section, is related
to the definition of the mutual information. We would like the reduced obser-
vations W to contain as much information as possible about X. We therefore
consider the following maximization problem

max
V ∈Rn×r

∗

I(W,X). (12)

Note that another expression of the mutual information is

I(W,X) = EW (DKL (P (X |W ) ‖ P (X))),
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showing that this strategy aims at maximizing the expected information gain
between the prior and the posterior distributions of X.

The optimization problem in Equation (12) admits a simple solution pre-
sented in Theorem 3.6. Moreover, we shall show that the maximization of the
mutual information is equivalent to the minimization of the entropy of the pos-
terior distribution P (X |W = V T y).

Theorem 3.6. The following equalities hold

I(W,X) = 1
2 log det

((
V TCY V

) (
V TCEV

)−1)
and H(P (X |W = V T y)) = −I(W,X) + 1

2 log detCX + q

2 log(2πe).

As a consequence, the maximization of the mutual information I(W,X) and the
minimization of the entropy of the posterior distribution H(P (X | W = V T y))
with respect to V admit the same solutions for any realization y of Y . We have
the equality

max
V ∈Rn×r

∗

I(W,X) = 1
2

r∑
i=1

log λi, (13)

where (λi)ri=1 are the r dominant eigenvalues of the following generalized eigen-
vector problem

CY v = λCEv, λ ∈ R, v ∈ Rn. (14)

A solution to the optimization Problem (13) is given by the matrix V with
columns being eigenvectors (vi)ri=1 associated to the dominant eigenvalues of
Problem (14).

Proof. See Appendix F.

Several remarks follow this result. First, the map J2 : V 7→ I(W,X) is also
invariant under the transformation J2(VM) = J2(V ) for any invertible matrix
M ∈ GLr, and therefore the solution should be searched in the Grassmann
manifold. However in the present case, a particular solution admits a simple
characterization.

The generalized eigenvalue problem in Equation (14) is used to define the
optimal mean in [29] to minimize the Bayes risk. It is however unclear how this
optimal mean is related to the mean defined in Equation (6). Note moreover
that the computation of the optimal mean from [29] requires the inversion of
the matrix CE , which is not needed in the presently developed approach.

Another interesting feature of Theorem 3.6 is that it provides an a priori
estimate for the reduction error, based on the mutual information, summarized
in the following Corollary 3.7.

Corollary 3.7. Let V ∈ Rn×r be a particuler solution to Problem (13) and W
be the reduced model associated to V , and (λi)ni=1 be the eigenvalues associated
to Problem (14) sorted in a decreasing order. Then, the relative error on the
mutual information is given by

I(Y,X)− I(W,X)
I(Y,X) = 1−

∑r
i=1 log λi∑n
i=1 log λi

.

9



In fact, the entire spectrum of CY is not required to estimate the error. In
practice, we only need to determine the eigenvalues νi associated to the following
problem

CAv = νCEv, ν ≥ 0, v ∈ Rn. (15)
If λ is an eigenvalue associated to Problem (14), then ν = λ−1 is an eigenvalue
associated to Problem (15). Considering Problem (15) is beneficial in practice
because CA is at most a rank-q matrix. This remark leads to the following
important result on the number of required projections to get the same mutual
information between the observations and the parameter of interest, for the full
and the reduced model.

Corollary 3.8. Let V ∈ Rn×r be a solution to Problem (13) and W be the re-
duced model associated to V , and (λi)ni=1 be the eigenvalues associated to Prob-
lem (14), sorted in a decreasing order. Let (νi)ni=1 be the eigenvalues associated
to Problem (15) (i.e. λi = 1 + νi), and let m ≤ q � n be the rank of B ∈ Rn×q
(see Equation (1)). Then CA = BCXB

T is a rank-m matrix, and the relative
error on the mutual information is given by

I(Y,X)− I(W,X)
I(Y,X) = 1−

∑r
i=1 log(1 + νi)∑m
i=1 log(1 + νi)

. (16)

The condition r ≥ m implies that I(W,X) = I(Y,X) and the mutual informa-
tions between the observations and the parameter of interest are the same for the
full and the reduced model. In particular, the condition is satisfied for m = q.

As a side note, the principal component analysis of the observations Y yields
a reduced basis defined as the dominant eigenvectors of CY . Therefore, the
resulting reduced space is optimal with respect to the mutual information in the
case of a white noise, i.e. CE = σ2In. However, denoting (χi)ni=1 the eigenvalues
of CY sorted in a decreasing order, the corresponding estimate of the relative
reduction error on the mutual information is given by

I(Y,X)− I(W,X)
I(Y,X) = 1−

∑r
i=1 log

(
χi

σ2

)∑n
i=1 log

(
χi

σ2

) .
Note that the usual error criteria used in the principal component analysis
between the random variable Y and its rank-r truncated version Yr controls the
L2 norm and is given by (see e.g. [6, Proposition 2.1])

E
(
‖Y − Yr‖22

)
E
(
‖Y ‖22

) = 1−
∑r
i=1 χ

2
i∑n

i=1 χ
2
i

.

3.4 Numerical solution to the optimization problems
For any functional J ∈ {J0,J1,J2} involved in the optimization problems
presented in Section 3, the following property holds

J (V ) = J (VM), ∀M ∈ GLr.

As a consequence of this invariance, there exists an infinite number of solutions
to the optimization problems and the Hessian of the functional ∇2J is ill-
conditioned in a neighbourhood of a solution. The main consequence is that
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we cannot use a standard Newton algorithm to solve these nonlinear problems
without regularizing the optimization problem first.

In order to circumvent this issue, we consider here the restriction of the opti-
mization problem to the Grassmann manifold Gr(r, n), replacing the search for
a n×r matrix by the search of a r-dimensional linear subspace of Rn×n. In order
to solve Problems (9) and (11) we choose to use a specific algorithm exploiting
the smooth manifold structure of Gr(r, n), that is the Riemannian trust-region
algorithm [1] implemented in the Pymanopt library [32]. The derivatives of
the cost functions are computed by automatic differentiation with the autograd
library [24].

Given a finite dimensional vector space V equipped with the inner product
〈·, ·〉V and the associated norm ‖·‖V , the trust-region algorithm consists in cor-
recting the current iterate V ∈ V with W ∈ V using a quadratic approximation
of the functional J . W is defined as the solution to

min
W∈V

m(W ) = J (V ) + 〈∇J (V ),W 〉V + 1
2
〈
∇2J (V )W,W

〉
V ,

such that ‖W‖2V ≤ ∆2, where ∇J (resp. ∇2J ) is the gradient (resp. Hessian)
of J . The trust-region radius ∆ is adapted at each iteration of the algorithm
based on the quantity

ρ = J (V )−J (V +W )
m(0)−m(W ) .

If ρ is close to 1, the quadratic approximation is good and the radius ∆ can be
expanded. Otherwise, ∆ is shrinked.

The Riemannian version of the algorithm consists in considering the tangent
space to the manifold for the search space, which is locally mapped to the
smooth manifold. Formally, let M be a smooth manifold equipped with the
Riemannian metric 〈·, ·〉M,V and the associated norm ‖·‖M,V defined on the
tangent space TVM to M at V . We denote by RV : TVM→M a retraction
which is a first-order approximation of the exponential map that maps locally
the tangent space to the manifold. The retraction is such that RV (0) = V . The
correction is now defined as

min
W∈TVM

m(W ) = J (V ) + 〈∇J (V ),W 〉M,V + 1
2
〈
∇2J (V )W,W

〉
M,V

, (17)

such that ‖W‖2M ≤ ∆2, where ∇J (resp. ∇2J ) is the Riemannian gradient
(resp. Riemannian Hessian) of J . The correction that belongs to the tangent
space is mapped to the manifold using the retraction, such that the new iterate
is defined by RV (W ). The trust-region radius is now adapted according to the
ratio

ρ = J (V )−J (RV (W ))
m(0)−m(W ) .

The quadratic subproblem presented in Equation (17) is solved with a truncated
conjugate gradient method. We refer the reader to [1] for an exhaustive descrip-
tion and analysis of the algorithm as well as its application on the Grassmann
manifold.
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4 Application to Bayesian linear regression
4.1 Inference problem
The goal of this section is to illustrate the results of Section 3, and numerically
assess the methods in the case of a Bayesian polynomial regression. Given a
uniformly distributed sample (si)ni=1 in (−1, 1), we want to infer the random
variable, X, from the following linear model

Yi =
q−1∑
j=0

Tj(si)Xj + E(si), ∀i ∈ {1, . . . , n}, (18)

where Tj is the Chebyshev polynomial of the first kind [14] of order j and q = 30.
The two moments of the prior distribution of X ∼ N (mX , CX) are defined by

(mX)i = −1 + 2 i− 1
q − 1

and
(CX)ij = σ2

X

(
1 +
√

1200 |i− j|(q − 1)

)
exp

(
−
√

1200 |i− j|(q − 1)

)
,

with σX = 1. Note that the covariance CX is a Matérn 3/2 covariance matrix,
prescribing that polynomial coefficients associated to Chebyshev polynomials
with distant degrees are less correlated than close ones. The noise E is a station-
ary Gaussian process with mean and covariance functions defined respectively
by µE(s) = cos(4πs) and

kE(s, s′) = σ2
E,1 exp

(
−|s− s

′|
`E

)
+ σ2

E,2δ(s− s′),

with σE,1 = 0.6, `E = 0.05, and σE,2 = 10−3. The model presented in
Equation (18) is equivalent to the linear model from Equation (1) with Bij =
Tj−1(si).

Figure 1 illustrates the data y used for the observations and the maximum
a posteriori fit Bm? + mE . The rest of Section 4 is dedicated to the optimal
estimation of the posterior distribution P (X | Y = y) using P (X | W = V T y),
where V has been computed according to the criteria introduced in Section 3.

4.2 Numerical results
We first consider three types of approaches for the computation of the reduced
space V based on the principal component analysis. They are denoted PCA-A,
PCA-Y and PCA-YN and are respectively computed as the dominant eigenvec-
tors of the three following eigenvalue problems

CAv = λv, CY v = λv and CY C
−1
E v = λv. (19)

PCA-A corresponds to the principal component analysis of A(X)= BX, PCA-Y
to the analysis of Y , and PCA-YN to the analysis of Y using the Mahalanobis
distance, the metric induced by the inverse of the noise covariance C−1

E . The

12
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Figure 1: Comparison between the observations y and the MAP estimate Bm?+
mE .

latter has been successfully used in a Bayesian inference context in [13], where
the metric is directly involved in the posterior distribution due to uniform priors.

We denote by KLD (resp. EKLD, MI) the solutions obtained using the mini-
mization of the Kullback-Leibler divergence (resp. minimization of the expected
Kullback-Leibler divergence, maximization of the mutual information).

For a particular realization y, we compute the Kullback-Leibler divergence
between the posterior distribution P (X | W = V T y) and P (X | Y = y), and
analyze its dependence on the dimension of the reduced space, r. The results
are plotted in Figure 2 for the different dimensionality reduction methods. We
conclude that the information theoretic based methods (KLD, EKLD, MI) with
r = q dimensions yield the exact posterior distribution within machine accuracy,
and outperform the PCA-based approaches. Given that we are measuring the
error using the Kullback-Leibler divergence, the KLD method performs better
than the others. We can however note that the EKLD and MI techniques are
robust to the realization y. We will observe below that the PCA methods require
a dimension of the order of the total number of observations, n, to achieve a
similar accuracy.

Figure 3 depicts the dependence the expected Kullback-Leibler divergence
between the posterior distributions of the reduced and the full models on the
dimension of the reduced spaces; plotted are results obtained using the different
projection techniques. Similar to Figure 2, the information theoretic approaches
converge to the posterior distribution with subspaces of dimension r = q, which
is not the case for the PCA methods. We also note that even when the expected
Kullback-Leibler divergence is used as error criterion, the EKLD method does
not really improve the speed of convergence of the distributions compared to
the other information theoretic approaches.

Figure 4 illustrates the relative error with respect to the dimension of the
reduced space between the mutual information of:

• the observations and the parameter of interest, I(Y,X); and,

• the projected observations and the parameter of interest.
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Figure 2: Kullback-Leibler divergence versus the dimension of the reduced space
for the different numerical methods.
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Figure 3: Expected Kullback-Leibler divergence versus the dimension of the
reduced space for the different numerical methods.
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We are in fact looking at the criterion introduced in Corrolaries 3.7 and 3.8. We
note that for r ≥ q = 30, all the information theoretic methods converge to the
minimal value of the relative error. This behavior is predicted by Corollary 3.8
for the MI approach, as illustrated in the figure by the fact that the error
estimator (16) overlaps with the error of the MI approach. Again, the PCA
based methods perform poorly when compared to the information theoretic
approaches.
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Figure 4: Relative error between the mutual information of the observations and
the parameter of interest of the full model and the one of the reduced model and
error estimator (16) versus the dimension of the reduced space for the different
numerical methods.

In Figure 5, the different divergences and the absolute error on the en-
tropy with respect to the dimension of the reduced space are illustrated for the
PCA-based methods for larger values of the dimension and compared to the
MI approach. The absolute error on the entropy is equivalent to the error on
the mutual information up to a constant according to Theorem 3.6. One can
see that the dimension of the reduced space must be an order of magnitude
larger compared to the MI technique to reach the same accuracy for all three
convergence criteria.

In Figure 6, the normalized singular values (σi/σ1)ni=1 computed for the PCA
methods are illustrated. The singular values are defined by

σi =
√
λi, such that σ1 ≥ σ2 ≥ . . . ≥ σn,

where (λi)ni=1 are the eigenvalues involved in Equation (19). It is shown that
the spectrum resulting from the PCA-YN method decays faster than the other
approaches. Moreover note that the eigenvalues involved in the MI approach
(i.e. eigenvalues of Problem (14)) are strictly equal to the eigenvalues of the
PCA-YN technique, see [13] for more details.

For the last experiment, we only consider the PCA-Y and MI approaches.
The convergence of the Kullback-Leibler divergence, the expected Kullback-
Leibler divergence, and the entropy with respect to the dimension of the reduced
space is plotted in Figure 7 for the PCA-Y and MI methods using an even larger
number of observations (n = 2000). For a dimension r = 30, the three quantities
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Figure 5: Kullback-Leibler divergence (top), expected Kullback-Leibler diver-
gence (middle), and entropy (bottom) versus the dimension of the reduced space
for PCA-A, PCA-Y, PCA-YN and MI methods.
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Figure 6: Normalized singular values for the PCA-A, PCA-Y, PCA-YN meth-
ods.

of interest are null within machine precision for the MI method, whereas the
PCA-Y approaches needs a dimension r = 700 to get a value of 10−2 nat. This
highlights that the accuracy of the MI method is more related to the number of
parameters (q = 30) than the number of observations (n = 500 in Figures 2, 3,
and 4, and n = 2000 in Figure 7) as predicted by Corollary 3.8 for the relative
error on the mutual information.
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Figure 7: Kullback-Leibler divergence, expected Kullback-Leibler divergence,
and the entropy for the PCA-Y and MI methods versus the dimension of the
reduced space for a larger number of observations (n = 2000).

4.3 Summary
We have seen that regarding the accuracy on the posterior, the KLD, EKLD,

and MI approaches perform much better in terms of Kullback-Leibler divergence
than the PCA approaches. On the other hand, in terms of computational efforts
to evaluate the basis, the PCA methods and the MI technique only require
the solution to an eigenvalue problem, whereas the others need more advanced
strategies like the Riemannian optimization algorithm presented in Section 3.4.
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The maximization of the mutual information therefore exhibits a good balance
between posterior distribution accuracy and computational difficulty, further
providing an a priori error estimate as well as an upper bound on the number
of required projections.

5 Application to nonlinear problems
We focused in the previous sections on the case of a linear problem where X,
A(X) and E follow the multivariate normal distribution. In [13], we showed
that when A is nonlinear and X is drawn according to a uniform distribution,
the PCA-YN is an appropriate dimensionality reduction method. The reason is
that the probability density function of the posterior distribution of X is

log fX(X | Y = y) = −1
2 ‖y −A(X)‖2C−1

E
+ constant,

and that the PCA-YN aims to approximate the random variable Y with re-
spect to the Mahalanobis norm ‖·‖C−1

E
. This illustrates that the appropriate

dimensionality reduction method depends on the statistical model used for the
inference.

In this section, we assess the benefits of the proposed approaches when
the normality assumption is violated for A(X), specifically using a log-normal
model. In particular, we numerically evaluate the robustness of the approach
using two values of the variance of the underlying Gaussian random vector, i.e.
a small variance yielding a model that could be well approximated with a Gaus-
sian process, and a large variance where the Gaussian assumption no longer
holds. The last example also involves dimensionality reduction in a large-scale
data setting, where the number of observations is drastically reduced.

5.1 Inference problem
For s ∈ (−1, 1)2, let F be a centered stationary Gaussian process with covariance
function given by

kF (s, s′) = σ2
F,1 exp

(
−‖s− s′‖2

2`2F

)
+ σ2

F,2δ(s− s′).

The nonlinear regression model of interest is based on the PCA of the random
vector (F (si))ni=1, where (si)ni=1 is a uniformly distributed sample in (−1, 1)2.
Let CF be the covariance matrix of the random vector, and its eigenpairs
(λi, wi)ni=1 ∈ (R+ × Rn)n ordered such that λ1 ≥ . . . ≥ λn. The nonlinear
model of interest is then given by

Yi = exp

 q∑
j=1

BijXj

+ E(si), where Bij = (wj)i.

The prior distribution of X is deduced from the PCA of F . Given that F is
a Gaussian process, X is chosen to follow the multivariate normal distribution
N (0, CX) such that (CX)ij = λiδij . The noise E is a centered Gaussian process
independent of X and F with covariance function

kE(s, s′) = σ2
E,1 exp

(
−‖s− s′‖

`E

)
+ σ2

E,2δ(s− s′).
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The synthetic data y are generated using the nonlinear model

Ỹi = exp (F (si)) + E(si), ∀i ∈ {1, . . . , n}.

We are therefore introducing a model error accounting for the truncation to q
terms of the PCA-based expansion of F .

In the applications below, the number of parameters is set to q = 20. Two
different sets of values for the standard deviation parameters (σF,1, σF,2, σE,1
and σE,2) will be tested to control the nonlinearity of the mapping between the
predictions and the observations. The correlation lengths are set to `F = 0.2
and `E = 0.05. Finally, we shall use n = 2, 000 observation points.

5.2 Computation of the bases and error estimation
To compute the reduced bases, we rely on the expressions of the linear case which
need the determination of the second moments of the nonlinear model A(X) =
(Ai(X))ni=1, where Ai(X) = exp((BX)i). The analytical expressions of the
mean mA = E(A(X)) and the covariances CA = E((A(X)−mA)(A(X)−mA)T )
and CAX = E((A(X)−mA)(X −mX)T ) are given by

(mA)i = exp
(

1
2Dii

)
, (CA)ij = exp

(
1
2 (Dii +Djj)

)
(exp (Dij)− 1),

and (CAX)ij = (mA)i (BCX)ij ,

where D = BCXB
T .

To assess the reduction error, the Kullback-Leibler divergence and the mu-
tual information are not available in closed form. Their accurate numerical
estimation is challenging and would require prohibitive sampling of the poste-
rior distributions, for instance using a Markov-Chain Monte Carlo method, and
an estimation of the probability density function with inherent source of error.
The situation is even more complicated for the expected Kullback-Leibler di-
vergence, requiring a repetitive sampling of the posterior distribution for the
estimation of only one value of this quantity. Therefore, we choose to character-
ize the reduction error by its impact on the MAP value of the parameter. The
MAP is computed by solving

max
x

log fX(x | Y = y)⇔ max
x

log fY (y | X = x) + log fX(x), (20)

for the full (unreduced) approach and, in the case of the reduced models,

max
x

log fX(x |W = V T y)⇔ max
x

log fW (V T y | X = x) + log fX(x). (21)

These optimization problems are solved with a trust-region Newton method,
using automatic differentiation for the evaluation of the gradient and the Hessian
of the log density function.

We denote by xMAP (resp. xMAP
V ) the MAP estimate of the full (resp. re-

duced) model. Since xMAP is a stationary point of the log density function of
the posterior distribution, the second-order Taylor expansion of fX(· | Y = y)
is given by

log fX(x | Y = y) ≈ log fX(xMAP | Y = y)

+ 1
2(x− xMAP)T∇2 log fX(xMAP | Y = y)(x− xMAP).
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Approximating locally the distribution by the multivariate normal distribution
N (xMAP, CMAP), where

CMAP = −(∇2 log fX(xMAP | Y = y))−1,

gives the so-called Laplace approximation of the distribution [31]. Similarly,
the posterior distribution of the reduced model will be approximated by the
multivariate normal distribution N (xMAP

V , CMAP
V ) where

CMAP
V = −(∇2 log fX(xMAP

V |W = V T y))−1.

In the following, we monitor the convergence of xMAP
V to xMAP with the

dimension of the reduced space, as well as the convergence of the Hessian
(CMAP

V )−1 to (CMAP)−1 in Frobenius norm. Note that it is empirically checked
that the posterior distribution is unimodal by solving 200 times the Prob-
lems (20) and (21) with random initial guesses drawn according to the prior
distribution. We denote by ε and εH the (Ỹ -averaged) relative errors on the
MAP and Hessian, respectively defined by

ε =
E
Ỹ

(∥∥xMAP
V − xMAP

∥∥)
E
Ỹ

(‖xMAP‖) and εH =
E
Ỹ

(∥∥∥(CMAP
V

)−1 −
(
CMAP)−1

∥∥∥
Fro

)
E
Ỹ

(∥∥∥(CMAP)−1
∥∥∥

Fro

) .

(22)
The expectations appearing in the errors ε and εH are estimated by a crude
Monte-Carlo method with a sample of size 70. This low sample size was found
enough to obtain sufficiently correct error estimates, reflecting the robustness of
all approaches which exhibit moderate dependences of the reduction error with
the particular realization of Ỹ .

5.3 Weak nonlinearity
In this section, the case of a weak nonlinearity is considered, setting the standard
deviations to

σF,1 = 0.3, σF,2 = 0.001, σE,1 = 0.1, and σE,2 = 0.001.

The error estimates ε and εH introduced in Equation (22) are plotted in Fig-
ure 8 against the dimension of the reduced space. First, we observe that all
the methods converge in terms of ε or εH . All the principal component analysis
based approaches perform poorly compared to the information theoretic tech-
niques introduced here, with more than one order of magnitude difference when
considering a reduced space of dimension 100. As a consequence, the normality
assumption for the computation of the reduced basis is shown to improve the
quality of the posterior distribution even when the statistical model does not
have a Gaussian structure anymore.

It is interesting to note that the maximization of the mutual information (MI
method) yields a basis that performs slightly better than the KLD or the EKLD
approaches regarding the error on the MAP parameter ε. The difference is less
significant when considering the error on the Hessian εH but the information
theoretic methods converges faster than the principal component analysis based
approaches which tend to stagnate.
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Figure 8: Error ε and εH versus the dimension of the reduced space for the case
of a weak nonlinearity.
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A comparison between the MAP estimates of the field, A(xMAP) andA(xMAP
V ),

for the same sample y of Ỹ and the PCA-Y and MI methods is provided in
Figure 9 for the reduction with r = 60. The plots highlight the better approxi-
mation for the MI method.
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Figure 9: Contour plot of A(xMAP) (dashed lines) and A(xMAP
V ) (solid lines) for

the PCA-Y (left) and the MI (right) methods with a dimension of the reduced
space r = 60.

5.4 Strong nonlinearity
A strong nonlinearity is considered by considerably increasing σF,1 and σE,1
compared to Section 5.3. The standard deviations are now set to

σF,1 = 1.5 and σE,1 = 0.6,

while σF,2 and σE,2 are identically set to 0.001. We expect now that the Gaus-
sian assumption to be less useful than in Section 5.3.

Figure 10 depicts the convergence of the error estimators ε and εH with
respect to the dimension of the reduced space for the different methods. In
contrast to Section 5.3, all the approaches exhibit a similar convergence in terms
of the error criteria ε and εH . Note that the PCA-Y method performs slightly
better, especially for the error on the Hessian matrix. One major difference
with the previous convergence curves reported previously in Figure 8 is the
larger dimension of the reduced space needed to achieve a given relative error.
Indeed, the dimension of the reduced space varies from 1 to 100 in Figure 8 and
from 1 to 1000 in Figure 10. It indicates that a larger amount of observations
is required to identify the posterior distribution of the model parameters, with
similar relative accuracy, because of the non-linearities. Even if the normality
assumption is violated, the information theoretic approaches are shown to be
robust and converge to the original posterior distribution at the same rate as
the PCA based methods.

The estimates A(xMAP) and A(xMAP
V ) of the field are compared in Figure 11

for the PCA-Y and MI methods and dimension r = 400 and the same sample
of Ỹ . It confirms that for this highly non-linear case and this dimension of the
reduced space, the two reduction approaches yield similar accuracy.
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Figure 10: Error estimates versus the dimension of the reduced space for the
case of a strong nonlinearity.
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Figure 11: Contour plot of A(xMAP) (dashed lines) and A(xMAP
V ) (solid lines) for

the PCA-Y (left) and the MI (right) methods with a dimension of the reduced
space r = 400.
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5.5 Large-scale problem
The objective of this section is to demonstrate the feasibility, robustness and
efficiency of the proposed information-based reduction method in the context
of large-scale simulations and large-dimensional observations. To this end, we
consider the problem of identifying three values κΩ1,2,3 associated with the three
subdomains, Ω1,2,3, of the two-dimensional domain Ω depicted in the left plot
of Figure 12. These κΩj

are independent and follow a log-normal distribution
with parameters µκ, σκ. They are therefore expressed as

κΩj
= exp [µκ + σκXj ] , Xj ∼ N (0, 1).

Thus, the vector of parameters to be inferred is X ∈ Rq, q = 3. For simplicity,
but without loss of generality, we shall use hereafter µκ = 0 and σκ = 1. The
inference uses a large set of n ≈ 32, 000 observations Yi modeled as

Yi = Ai(X) + Ei, (23)

where Ai(X) := U(xi) is the solution at the observation point xi ∈ Ω of the
elliptic partial differential equation with uncertain parameters κΩj

:

∇ · (κ(x)∇U(x)) = −1, κ(x ∈ Ωj) = κΩj
.

The model equation is equipped with homogeneous Dirichlet (resp. Neumann)
boundary conditions on the vertical and horizontal (resp. oblique) boundaries
of Ω. The model for the Ei is again the independent centered Gaussian model
with variance σ2

ε .

Ω1

Ω2 Ω3

Ω1

Ω2 Ω3

Ω1

Ω2 Ω3

Figure 12: Left plot: Schematic of the problem domain (contained in a 3 × 3
square) and its three subdomains, Ωj , over which κ = κj is constant. Centre
plots: centroids location for 20 and 100 clusters. Right plot: observation points
xi.

For the reduction, we consider the maximization of the mutual information
(MI), requiring the solution of (15). Since CE is diagonal, the reduced basis is
given by the dominant eigenspace of CA. Different approaches can be used to
estimate CA. Here, we rely on a Polynomial Chaos (PC) method [21], exploiting
the low dimensionality ofX, and a standard, second-order finite element method
for the spatial discretization of the elliptic problem on a very fine mesh. As
expected from the low dimensionality of X, the decay of the spectrum of CA
is very fast. In Figure 13 we plot the first five dominant modes of CA using
the observation points shown in the right plot of Figure 12. Note that these
observation points cover well the entire domain Ω.
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Figure 13: The five leading reduced modes (from left to right) of the MI method
plotted against the n ≈ 32, 000 observation points shown in the right plot of
Figure 12.

For comparison purposes, we also consider more reduction approaches based
on observation clustering. Indeed, the amount of observations (n ≈ 32, 000)
appears an overkill to learn just q = 3 parameters. It is consequently tempting to
disregard some observations and retain only k > 0 of them to carry the inference.
However, we want to maintain a sufficient coverage of the domain, and so we
rely on a clustering method (k-means [16, 23]) to partition the observations set
into k > 0 distinct subsets, minimizing the Euclidean distances between the
xi and their respective cluster’s centroids. The k-means procedure randomly
generates clusters with a roughly equal number of observations. In each cluster,
the position xi of the selected observation is the one closest to the corresponding
cluster centroid. Two examples of selected observation points are depicted in the
two center plots of Figure 12, for k = 20 and 100 clusters respectively. We shall
refer to this reduction approach as “Centroids.” Disregarding all observations
but the k-th closest to the centroids is clearly a brutal reduction approach,
which is more susceptible to be affected by the noise compared to an approach
involving the projection of all observations. Consequently, one may prefer to
average (with equal weight) all the observations belonging to a cluster to define
the corresponding reduced observation. This approach is referred to Cluster
Averages (CAv) in the following.

The MI, Centroids and CAv reduction approaches are compared for three
noise levels. The measurements yi are randomly generated from (23) and plotted
in Figure 14 to appreciate the noise to signal ratio.

Figure 14: Measurements yi for noise level σε = 0.01, 0.1 and 0.5 from left to
right.

To quantify the reduction errors, we consider as before the distance to the
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unreduced MAP point and Hessian:

ε̂(y) =
∥∥xMAP

V − xMAP
∥∥

‖xMAP‖
and ε̂H(y) =

∥∥∥(CMAP
V

)−1 −
(
CMAP)−1

∥∥∥
Fro∥∥∥(CMAP)−1

∥∥∥
Fro

.

Note that we do not average over random observations Y , and restrict the
analysis to a unique measurement y, because of the involved computational
times. The convergence of the errors ε̂(y) and ε̂H(y) with the dimension of
the reduced spaces is reported in Figure 15, for the three approaches and the
highest noise level (σε). It is seen that the MI reduction converges for roughly
10 reduced modes, and outperforms the cluster-based reduction methods that
converges at a much lower rate. As one may have expected, the convergence of
the errors in the cluster-based methods is also noisier than in MI, with Centroids
exhibiting higher sensitivity to noise than CAv.

0 20 40 60 80 100
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10−4

10−1

Dimension of the reduced space

ε̂(
y

)

MI
Centroids
CAv

0 20 40 60 80 100
10−7

10−4

10−1

Dimension of the reduced space

ε̂ H
(y

)

MI
Centroids
CAv

Figure 15: Convergence with the reduction dimension of the MI, Centroids and
Cluster Averages errors on MAP (ε̂(y), left) and Hessian (ε̂H(y), right). Case of
high noise level σε = 0.5.

However, the slow convergence of the cluster-based methods is due to the
large noise in the previous example. This can be appreciated form the results
reported in Figure 16, which show that ε̂ and ε̂H decrease with the noise level
in the CAv method, but that the convergence rate remains the same. Also note
that the convergence rate of the MI method appears to be insensitive to the
noise level.

5.6 Summary
The numerical experiments of Sections 5.3–5.5 suggest that the information the-
oretic approaches yield robust reductions even though they were developed for
linear Gaussian models. We have shown in particular that they perform better
then the PCA-based approaches, except in the strongly nonlinear case where all
approaches behave similarly. Moreover, the solution to the maximization of the
mutual information is significantly simpler to compute than in the KLD and
EKLD techniques. Indeed, it only requires the solution of an eigenvalue prob-
lem and has therefore a computational complexity similar to the computation
of the principal component analysis.

Moreover, the proposed approaches are robust to model errors as illustrated
in Section 5.5. Indeed, even if we truncate the PCA-based expansion of the
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Figure 16: Convergence with the reduction dimension of the MI (solid lines) and
CAv (dashed lines) MAP errors (ε̂(y), left) and Hessian errors (ε̂H(y), right).
Plotted are the errors for different noise intensities as indicated.

Gaussian process, F , the information theoretic reduction methods provide the
lowest errors on the posterior distribution approximation.

6 Conclusions and perspectives
6.1 Conclusions

Different optimal reductions of observations by projection in a Bayesian
framework are investigated in this work. The proposed methods are optimal
in an information theoretic sense and aim at conserving the information about
the posterior distribution of interest for Gaussian linear models with correlated
additive noise.

Three optimization problems are proposed. First, the Kullback-Leibler di-
vergence between the posterior distribution of the full and the reduced models
is minimized. This corresponds to an a posteriori approach in the sense that
a realization of the observations (a measurement) is required to compute the
optimal projection. Second, we consider the minimization of the expected value
of the previous Kullback-Leibler divergence, where the expectation is taken with
respect to the observations. As a consequence, no measurement is required to
compute the optimal reduced space and this strategy yields an a priori tech-
nique. The last proposed approach is the maximization of the mutual informa-
tion between the projected observations and the parameters of interest. This
last approach is equivalent to the minimization of the entropy of the posterior
distribution.

Solving the first two optimization problems requires specific numerical al-
gorithms. We use in this work the Riemannian trust-region algorithm on a
manifold that take into account the invariance of the problems. In contrast, the
mutual information maximization only requires the solution to a generalized
eigenvalue problem. The computational cost and efficiency of the Riemannian
algorithms will be addressed in a future work when large scale model will be
considered.

Regarding the resulting posterior distributions, the three approaches are
similar in terms of (possibly expected) Kullback-Leibler divergence and mutual
information, and perform much better, on the considered examples, than the
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methods based on the principal component analysis of the observations. We
advocate therefore that the mutual information maximization is the most ap-
propriate approach for the determination of the optimal observation projection,
given the balance between accuracy and computational complexity. For this
particular approach, an a priori error estimate on the mutual information loss is
readily available as well as a bound on the number of required projections. It is
shown that no more projections than the rank of the linear model are required,
which is in particular lower than the number of parameters to be inferred.

Moreover, we addressed the linear Gaussian case in this work. However, the
proposed approaches only require the first two moments of the distributions and
have been successfully applied to nonlinear non-Gaussian examples, in which
optimality is no longer ensured.
6.2 Perspectives
In future works, the method will be applied to extreme hydrological flow prob-
lems (e.g. [13, 30]). In particular, we plan to apply the approach to the frame-
work of Ensemble Kalman filters (EnKF) [11] for large datasets. The EnKF is
a recursive Bayesian estimation technique for dynamical models of the form

X(k+1) = HX(k) + L(k),

Y (k+1) = BX(k+1) + E(k),

where X(0), L(k), and E(k) are independent Gaussian vectors. Note that the
equation above is the same as (1). To estimate the posterior distribution of
X(k+1), the Kalman filter requires the inversion of the covariance matrix CY (k+1)

at each iteration of the discrete dynamical system. However, in the EnKF,
CX(k+1) is estimated using a Monte-Carlo estimator with a sample size that can
be much lower than the total number of observations n. As a consequence, the
covariance of the forward state X(k+1) is low-rank and we showed in this paper
that a low number of projections of the observations are enough to recover the
mutual information between the estimated distribution of the state X(k+1) and
the observations Y (k+1).

Additional challenges arise when the datasets are high dimensional. Consid-
ering the mutual information based technique, the problem could be first tackled
using high performance computing. Given that we a priori know an upper bound
on the number of projections that is already low, we only need an efficient matrix
product computation (e.g. [10]) to implement the algorithm from [1]. Further
developments are required to appropriately use these approaches in a streaming
environment.
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A Proof of Proposition 2.1
According to Bayes’ theorem, the posterior distribution is such that

fX(x | Y = y) ∝ fY (y | X = x)fX(x),
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or equivalently,

log fX(x | Y = y) = log fY (y | X = x) + log fX(x) + k0

= −1
2

(
(y −Bx−mE)T C−1

E (y −Bx−mE)

+ (x−mX)T C−1
X (x−mX)

)
+ k1,

where k0 and k1 are constants. Because the log probability density function is
quadratic with respect to x, we conclude that the posterior distribution is also a
multivariate normal distribution, i.e. P (X | Y = y) ∼ N (m?, C?). This implies
that, up to a constant k2, the following equality holds

log fX(x | Y = y) = −1
2

(
(x−m?)T C−1

? (x−m?)
)

+ k2.

Identifying the quadratic terms in x and using theWoodbury matrix identity [18,
Equation (29)] gives

C−1
? = C−1

X +BTC−1
E B = C−1

X

(
CX + CTAXC

−1
E CAX

)
C−1
X

and C? = CX − CXBT
(
CE +BCXB

T
)−1

BCX = CX − CTAXC−1
Y CAX .

Identifying the linear term w.r.t. x yields

C−1
? m? = C−1

X mX +BTC−1
E (y −mE)

= BTC−1
E (y −mY ) +BTC−1

E mA + C−1
X mX .

We finally have
m? = G? (y −mY ) + h?,

with

G? = C?B
TC−1

E = CTAX(I− C−1
Y CA)C−1

E = CTAXC
−1
Y ,

h? = C?C
−1
X mX +G?mA.

For the posterior distribution of the reduced model, we substitute (y−mY ),
CY , mE , CE , mA, CAX , and CA respectively by V T (y−mY ), V TCY V , V TmE ,
V TCEV , V TmA, V TCAX , and V TCAV in the full model. The fact that V is
full-rank ensures that V TCY V , V TCEV and

CX + CTAXV (V TCEV )−1V TCAX

are symmetric positive definite matrices and hence are invertible.

B Proof of Proposition 2.2
For M ∈ GLr we have

CAXVM(MTV TCEVM)−1MTV TCAX = CAXV (V TCEV )−1V TCAX ,

so we deduce that CVM = CV . Moreover, given that

GVM = CTAXVM(MTV TCY VM)−1 = CTAXV (V TCY V )−1M−T = GVM
−T ,

we conclude that GVM (VM)T = GV V
T , hVM = hV and finally mVM = mV .
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C Proof of Proposition 3.1
Using the definition of the Kullback-Leibler divergence (7), we have

DKL (P (Z0) ‖ P (Z1)) = EZ

(
log
(

det(C1) 1
2

det(C0) 1
2

)

−1
2 (Z −m0)T C−1

0 (Z −m0) + 1
2 (Z −m1)T C−1

1 (Z −m1)
)
.

Given that Z ∼ P (Z0), we deduce that

EZ
(

(Z −m0)T C−1
0 (Z −m0)

)
= EZ

(
tr
(

(Z −m0)T C−1
0 (Z −m0)

))
(24)

= tr(EZ((Z −m0)(Z −m0)T )C−1
0 )

= tr(C0C
−1
0 ) = q.

Moreover we have

EZ
(

(Z −m1)T C−1
1 (Z −m1)

)
= EZ((Z −m0 +m0 −m1)TC−1

1 (Z −m0 +m0 −m1))

= EZ
(

(Z −m0)T C−1
1 (Z −m0) + (m0 −m1)T C−1

1 (m0 −m1)

+2 (Z −m0)T C−1
1 (m0 −m1)

)
.

Using the same trace technique as in Equation 24, and using the fact that
EZ(Z) = m0, the term EZ((Z −m1)TC−1

1 (Z −m1)) is equal to

EZ
(

(Z −m1)T C−1
1 (Z −m1)

)
= tr

(
C0C

−1
1
)

+ (m0 −m1)T C−1
1 (m0 −m1) ,

yielding the final result

DKL (P (Z0) ‖ P (Z1)) =
1
2

(
tr
(
C0C

−1
1
)
− log det

(
C0C

−1
1
)
− q + (m0 −m1)T C−1

1 (m0 −m1)
)
.

D Proof of Theorem 3.2
First, the map J0 is smooth (∈ C∞) as the sum and composition of smooth
functions, noting that the determinant is always strictly positive.

Let π : Rn×r∗ → Gr(r, n) denotes the canonical projection defined by π(V ) =
[V ]. Let K0 : Gr(r, n)→ R be the map defined by J0(V ) = K0 ◦ π(V ). K0 is
in fact the functional we are minimizing in Problem (9).

According to [3, Proposition 3.4.5], the smoothness of J0 implies that K0
is smooth and in particular continuous. According to [25, Lemma 5.1] Gr(r, n)
is compact, the extreme value theorem concludes the proof.
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E Proof of Proposition 3.3
Since only m? and mV depend on Y in Equation (8), the expected Kullback-
Leibler divergence admits the form

EY
(
DKL

(
P (X | Y ) ‖ P (X |W = V TY )

))
=

1
2 (D`d (C?, CV ) + EY (DCV

(m?,mV ))) .

Note that m? = G?(Y −mY ) + h? and mV = GV V
T (Y −mY ) + hV , hence

m? −mV = (G? −GV V T )(Y −mY ) + (h? − hV ),

and

EY (DCV
(m?,mV )) =

tr
(
C−1
V

(
G? −GV V T

)
CY
(
G? −GV V T

)T)+ (h? − hV )C−1
V (h? − hV ),

which yields the final result.

F Proof of Theorem 3.6
For a normally distributed Rn-valued random variable Z ∼ N (mZ , CZ), the
entropy H(Z) is given by

H(Z) = 1
2 log(det(CZ)) + n

2 log(2πe).

Given that X and W are normally distributed, we immediatly deduce

H(X) = 1
2 log(det(CX)) + q

2 log(2πe),

and H(W ) = 1
2 log(det(V TCY V )) + r

2 log(2πe).

In order to compute the joint-entropy H(W,X), we need to characterize the
covariance of (W,X). Note that we already know that (W,X) is drawn according
to a Gaussian distribution. In order to obtain the covariance C(W,X), we identify
the quadratic terms in the following equality between the probability density
functions:

log f(W,X)(W,X) = log fW (W | X) + log fX(X),
where the likelihood fW (W | X) is directly deduced from Equation (2). The
conditional random distribution P (W | X) follows the Gaussian distribution
N (V T (AX +mE), V TCEV ). Identifying the quadratic terms yields

C−1
(W,X) =

( (
V TCEV

)−1 −
(
V TCEV

)−1
V TA

−ATV
(
V TCEV

)−1
C−1
X +ATV

(
V TCEV

)−1
V TA

)
.

According to [27, Section 9.1.2], the determinant of the precision matrix C−1
(W,X)

is given by
det
(
C−1

(W,X)

)
= det

((
V TCEV

)−1)det
(
C−1
X

)
.
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We immediatly have

H(W,X) = 1
2 log det(C(W,X)) + r + q

2 log(2πe)

= −1
2 log det(C−1

(W,X)) + r + q

2 log(2πe)

= −1
2

(
log det

(
C−1
X

)
+ log det

((
V TCEV

)−1))+ r + q

2 log(2πe),

and the mutual information reduces to

I(W,X) = 1
2

(
log det

(
V TCY V

)
+ log det

((
V TCEV

)−1))
= 1

2 log det
((
V TCY V

) (
V TCEV

)−1)
,

which proves the first equality.
Regarding the entropy of the posterior distribution, we know that P (X |

W = V T y) ∼ N (mV , CV ), yielding

H(P (X |W = V T y)) = 1
2 log det(CV ) + q

2 log(2πe),

and the entropy does not depend on the realization y of Y . Using Equation (5),
we have

log det (CV )

= log det
(
C

1
2
X(I− C

1
2
XB

TV
(
V TCY V

)−1
V TBC

1
2
X)C

1
2
X

)
= log det

(
I− C

1
2
XB

TV
(
V TCY V

)−1
V TBC

1
2
X

)
+ log detCX

= log det
(
V TCY V − V TBCXBTV

)
− log det

(
V TCY V

)
+ log detCX .

The last equality is obtained using the identity det(I + MN) = det(I + NM),
with M = (V TCY V )−1/2V TBC

1/2
X and N = MT and factorizing the resulting

expression by (V TCY V )−1/2 on the left and right in the determinant. We finally
find that

log det (CV )
= log det

(
V TCY V − V TCAV

)
− log det

(
V TCY V

)
+ log detCX

= log det
(
V TCEV

)
− log det

(
V TCY V

)
+ log detCX

= log detCX − log det
((
V TCY V

) (
V TCEV

)−1)
,

and the entropy is

H(P (X |W = V T y)) =

− 1
2 log det

((
V TCY V

) (
V TCEV

)−1)+ 1
2 log det(CX) + q

2 log(2πe),

that proves the second equality.
For the last part of the proof, we consider the maximization problem

max
V ∈Rn×r

∗

log det
((
V TCY V

) (
V TCEV

)−1) = max
V ∈Rn×r

∗

2 I (W,X) . (25)
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First let us introduce a change of variable, setting U = C
1
2
EV . The optimization

problem becomes

max
U∈Rn×r

∗

det
((
UTC

− 1
2

E CY C
− 1

2
E U

) (
UTU

)−1)
.

Then, the quantity K(U) = det((UTCY U)(UTU)−1) is invariant under any
invertible linear transformation on the right, meaning that K(U) = K(UQ) for
any Q ∈ Rr×r invertible. With St(r, n) denoting the Stiefel manifold defined by

St(r, n) = {M ∈ Rn×r; MTM = Ir},

there exists a matrix Û ∈ St(r, n) such that K(U) = K(Û). Such a matrix Û
can be computed using, for instance, a thin QR factorization. We can therefore
consider the following equivalent optimization problem

max
U∈St(r,n)

det
(
UTC

− 1
2

E CY C
− 1

2
E U

)
. (26)

In order to conclude the proof, we need the following result.

Lemma F.1. Let K ∈ Rn×n be a symmetric positive definite matrix with eigen-
values (λi)ni=1 in a decreasing order. Then we have

max
U∈St(r,n)

log det
(
UTKU

)
=

r∑
i=1

log λi. (27)

Moreover, any solution to the optimization Problem (27) is an invariant sub-
space of K and a particular solution is given by the matrix U whose columns
are the eigenvectors of K associated to the eigenvalues (λi)ri=1.

Proof. First, a solution to Problem (27) exists using the fact that F : U 7→
log det(UTKU) is continuous and St(r, n) is compact. It is closed as the inverse
image of {0} by the continuous function U 7→ UTU − I, and bounded because
‖U‖2Fro = r for all U ∈ St(r, n). The extreme value theorem implies the existence
of a maximizer.

Let us introduce the map H : Rn×r × Rr×r → R be defined by

H (U,Ψ) = 2 tr
((
UTU − I

)
Ψ
)
,

and consider the Lagrangian function L (U,Ψ) = F (U) + H (U,Ψ) associated
to the constrained optimization Problem (27). An optimal solution (U?,Ψ?)
satisfies the equation

DUL (U?,Ψ?)[δU ] = 0, ∀δU ∈ Rn×r,

where DUL (U?,Ψ?)[δU ] denotes the Gâteaux derivative of the Lagrangian L
at U? in the direction δU with respect to the first parameter. Given the formula

d
dt log det (U + tδU) = 2 tr

(
(U + tδU)−1

δU
)
,

we conclude that the Gâteaux derivative DUF (U)[δU ] is

DUF (U)[δU ] = 2 tr
((
UTKU

)−1
UTKδU

)
,
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and similarly we have

DUH (U)[δU ] = 2 tr((Ψ? + ΨT
? )UT δU).

Hence, for all δU ∈ Rn×r, a solution U? to Problem (27) satisfies

DUL (U?,Ψ?)[δU ] = 2 tr
(((

UT? KU?
)−1

UT? K + (Ψ? + ΨT
? )UT?

)
δU
)

= 0.

The result holding for all δU , we conclude that U? satisfies(
UT? KU?

)−1
UT? K + (Ψ? + ΨT

? )UT? = 0
⇔ KU? = −U?(Ψ? + ΨT

? )UT? KU?.

Finally, multiplying this last equation on the left by UT? and on the right by
(UT? KU?)−1 gives that Ψ? + ΨT

? = −Ir and

KU? = U?U
T
? KU?,

meaning that U? spans an r-dimensional invariant subspace of K.

To conclude the proof, let U be the r-dimensional subspace spanned by the
columns of U?, i.e. U = rangeU?, and consider K as a linear map on Rn.

K being diagonalizable, the restriction K|U of K to its invariant subspace
U is also diagonalizable. Hence there exists an orthonormal basis of U formed
of eigenvectors of K|U and therefore of eigenvectors of K. Given the invariance
F (UQ) = F (U) for every orthogonal matrix Q ∈ Rr×r, we can arbitrary set
the columns of U? to be eigenvectors of K. As a consequence, the determinant
is

log det(UT? KU?) =
∑
i∈I

log λi,

where I is a subset of {1, . . . , n} such that #I = r. The sum is maximized by
picking the r largest eigenvalues (λi)ri=1, and therefore a solution U? is given by a
matrix whose columns corresponds to r eigenvectors associated to the dominant
eigenvalues.

Since C−
1
2

E CY C
− 1

2
E is symmetric positive definite, Lemma F.1 gives first that

a solution to Problem (26) is given by the matrix U whose columns are the
dominant eigenvectors of C−

1
2

E CY C
− 1

2
E . Using the equality V = C

− 1
2

E U , we
finally find that a solution to Problem (27) is given by the matrix V whose
columns are r dominant eigenvectors associated to the generalized eigenvalue
problem

CY v = λCEv, λ ∈ R, v ∈ Rn.
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