
HAL Id: hal-02330745
https://hal.science/hal-02330745

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Ensemble Kalman Filter and Multiresolution
Analysis for Efficient Assimilation into Adaptive Mesh

Models
A Siripatana, L Giraldi, Olivier Le Maitre, I. Hoteit, O M Knio

To cite this version:
A Siripatana, L Giraldi, Olivier Le Maitre, I. Hoteit, O M Knio. Combining Ensemble Kalman Filter
and Multiresolution Analysis for Efficient Assimilation into Adaptive Mesh Models. Computational
Geosciences, 2019, 23 (6), pp.1259-1276. �10.1007/s10596-019-09882-z�. �hal-02330745�

https://hal.science/hal-02330745
https://hal.archives-ouvertes.fr


Combining Ensemble Kalman Filter and

Multiresolution Analysis for Efficient Assimilation

into Adaptive Mesh Models

A. Siripatana, L. Giraldi, O. P. Le Mâıtre, I. Hoteit, O. M. Knio

Abstract

A new approach is developed for efficient data assimilation into adap-
tive mesh simulations with the ensemble Kalman filter (EnKF). The EnKF
is combined with a wavelet-based multi-resolution analysis (MRA) scheme,
namely to enable robust and efficient assimilation in the context of reduced-
complexity, adaptive spatial discretization. The wavelet representation
of the solution enables us to use a different meshes that are individu-
ally adapted to the corresponding member of the EnKF ensemble. The
analysis step of the EnKF is then performed by involving coarsening, re-
finement, and projection operations on the members. Depending on the
choice of these operations, five variants of the MRA-EnKF are introduced,
and tested on the one dimensional Burgers equation with periodic bound-
ary condition. The numerical results suggest that, given an appropriate
tolerance value for the coarsening operation, four out of the five proposed
schemes significantly reduce the computational complexity of the data as-
similation, with marginal accuracy loss with respect to the reference EnKF
solution. Overall, the proposed framework offers the possibility of capi-
talizing on the advantages adaptive mesh techniques, and the flexibility of
choosing suitable context-oriented criteria for efficient data assimilation.

1 Introduction

Numerical simulations of physical problems are always subjected to uncertainty
due to limited knowledge of the systems under consideration [1]. These include
the approximation of physics, boundary and initial conditions, model parame-
ters and imperfect model discretization strategies [33]. The sensitivity of the
model solution to errors from these sources must generallly be identified, quan-
tified and reduced to improve model prediction.

Recently, uncertainty propagation/reduction methods based on Bayesian in-
ference have been widely applied to enhance the predictive capability of the
geophysical fluid dynamics and hydrological models in number of studies [39,
40, 18, 38, 37]. Within the Bayesian framework, uncertainty in model input is
represented using random variables with known probability laws. Once data be-
comes available, this prior knowledge is updated via Bayes formula, which yields
generally yields a correlated posterior with reduced uncertainty. Two popular
approaches in Bayesian inversion have been extensively used in modeling com-
munity. The first approach uses a Markov Chain Monte Carlo (MCMC) method
to sample the posterior distribution. MCMC techniques require a large number
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of model runs in order to create a large enough sample representing the posterior
distribution [22, 17, 35]; this often renders the direct application of MCMC to
sample large-scale models a computationally prohibitive exercise. Another pop-
ular approach derived from the Bayesian rule is the filtering method, in which
the distribution is updated sequentially as the data become available [41]. The
distribution is updated according to the statistical distance between the state
and the observations [15]. Among many Bayesian filters, the most popular filter-
ing approach in the field of geophysical fluid dynamics is the so-called Ensemble
Kalman Filter (EnKF) and its variants [9, 8, 3, 25, 42, 23]. Motivated by a
Monte Carlo approach, EnKF represents the statistics through ensemble mem-
bers. These members, which represent realizations of the state, are integrated
using the physical model to estimate forecast. Once data become available,
in the so-called analysis step, a linear Kalman update is applied to the fore-
cast. Despite its Gaussian underpinning, one of the main advantages of EnKF
methods over MCMC techniques is ability of the former to accommodate large
dimensional state vectors [36, 12, 29, 24, 2].

In fluid dynamics simulations, the loss of solution accuracy due to limited
spatial resolution can constitute a major source of error. Traditionally, a mesh is
used that is sufficiently fine to capture both the large and small-scale dynamics,
at the cost of a heavy computational burden. This motivated the development
of adaptive mesh refinement (AMR) methods that allow the mesh to adapt its
resolution locally according to the features of the solution [7, 28, 4, 13, 6]. AMR
enables the simulated mesh to adapt both in space and time, assigning high spa-
tial resolution to the areas in which the solution varies rapidly, and coarsening
the mesh in regions of mild variations. This makes AMR particularly useful in
capturing sharp fronts or shock formation [5, 19]. By limiting the fine mesh res-
olution to regions in which it is required, AMR-based simulations significantly
reduce computational complexity and accordingly enhance computational per-
formance. AMR approaches can be separated into two main classes. The first
AMR class splits computational cells into the finer cells on the same grid [10],
whereas the second one constructs the adaptive grid over a multi-level mesh
structure [7].

Recently, the possibility of performing data assimilation using adaptively dis-
cretized models grasped the attention of the ocean and hydrodynamics modeling
community [6, 31, 32, 14, 26]. However, the literature dealing with the problem
of integrating AMR and data assimilation techniques is scarce. Variational data
assimilation methods such as 3D-VAR and 4D-VAR are applied to the adaptive
mesh ocean and meteorological model in [16] and [34], respectively. The first
attempt to combine a sequential data assimilation method, i.e. the EnKF, with
an adaptive ocean model was proposed in [14]. The recent contribution by [26]
is the first attempt to intensively investigate the implementation of EnKF with
multi-level AMR for large-scale coastal ocean model. To address difficulties in
computing the mean and error covariance required in the analysis step of the
EnKF, in [26] the updates were performed by projecting each ensemble member
from their own mesh to a “supermesh,” which merges all the meshes associated
with the ensemble members.

In this paper, new approaches combining EnKF and adaptive mesh models
are proposed and analyzed. We rely on a Multiresolution Analysis (MRA) [21]
approach to decompose the model solution into Haar wavelets. A convenient
tree structure representation is used for this purpose [43]. Depending on the cri-
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terion specified by the user, the leaves and interior nodes of the tree are removed
or added to adapt the mesh. We design our combined MRA-EnKF schemes in
such a way that the adaptive mesh refinement is integrated with the forecast
steps of the EnKF in a straightforward fashion, similar to the multi-level AMR
proposed in [26]. However, by defining different spaces for the projection in the
Kalman update equation, we propose several MRA-EnKF variants. To analyze
the performance of these alternative constructions, we focus our attention on a
simplified system, namely the one-dimensional Burger’s equation in a periodic
domain. This setting enables us to efficiently analyze the behavior of all con-
structions considered, and to contrast their performance, both in terms of the
approximation accuracy and computational cost, and consequently assess their
relative merit. At the same time, the experiences gained still enable us to draw
significant inferences regarding generalizations to multi-dimensional settings, as
recently performed in [14, 26].

The paper is organized as follows. We outline the background of the EnKF
and MRA in Section 2. In Section 3, we discuss in detail the derivation of MRA-
EnKF method and its variants. The test problem and the numerical scheme for
our experimentation are presented in Section 4. The results of the numerical
experiments are presented and discussed in Section 5. Main conclusions are
summarized in Section 6.

2 Background

2.1 Multiresolution analysis

We consider the following transient hyperbolic partial differential equation on
the one-dimensional domain Ω = (0, L)

∂tu+ ∂xf(u) = 0, (1)

u(x, 0) = u0, (2)

u(0, t) = u(L, t), (3)

where u is a scalar field and u0 is the initial condition. We consider a reg-
ular discretization of the domain in N cells of fixed size h. The boundaries
of the cells are denoted (xi)

N
i=0 where xi = ih. The equation is spatially dis-

cretized using a finite volume scheme, and advanced in time using an explicit
time integration scheme with an adaptive time step, λ, that is restricted by the
Courant-Friedrichs-Lewy condition. The resulting discrete system of equations
is denoted by

us+1 = us − λs
(
f +,s − f −,s

)
(4)

where us ∈ RN is the solution vector, f +,s and f −,s are the numerical fluxes at
time t = ts. The solution is represented using the piecewise constant expansion

u(x, ts) ≈ U(x, ts) =

N∑
i=1

usiχi(x),

where χi is the characteristic function of the cell (xi−1, xi). To simplify the
notation, the variable ts is omitted in the rest of the section.
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In order to compress the approximation of u, we introduce a multiresolution
analysis method based on the Haar transform. To this end, we consider the
mother wavelet function ψ0(x) and the associated scaling function φ0(x) defined
by

ψ0(x) =


1 for 0 ≤ x < 1

2 ,

−1 for 1
2 ≤ x < 1,

0 otherwise,

and φ0(x) =

{
1 for 0 ≤ x < 1,

0 otherwise.

We define a rescaled version of the Haar functions according to:

φ(x) =
1

L
1
2

φ0
( x
L

)
and ψn,j(x) =

2
n
2

L
1
2

ψ0
(

2n
x

L
− j
)
,

where two integer subscripts n and j indicate the resolution level and the posi-
tion index of the rescaled Haar functions, respectively. This above family con-
stitutes an orthonormal system with the inner product defined by 〈v, w〉L2 =∫ L

0
v(x)w(x)dx. An expansion of U can be computed by direct projection, i.e.

U(x) = 〈U, φ〉L2 φ(x) +
∑
n

∑
j

〈U, ψn,j〉L2 ψn,j(x).

In this work, we restrict ourself to the case N = 2n0 . Given the piecewise
constant structure of u at each time step, the same wavelet transform of the
discrete solution can be efficiently computed using a fast Haar transform [20].
The exact resulting expansion is

U(x) = v0φ(x) +

n0−1∑
n=0

2n−1∑
j=0

vn,jψn,j(x), (5)

where v0 is the so-called average coefficient and vn ∈ R2n

is the vector of detail
coefficients at level n. It is convenient to index the details using a binary tree
structure TP such that:

• the root of the tree is the pair (0, 0),

• for each non leaf node (n, j), the left (resp. right) son is (n+ 1, 2j) (resp.
(n+ 1, 2j + 1)),

• the maximum height of the tree is n0.

The subscript P indicates that we are considering the perfect binary tree sat-
isfying the above constraints. We denote by I(TP ) the set of interior nodes of
the tree and L(TP ) the set of leaves. (Note that the basis functions, ψn,j , are
indexed in the same fashion as their support.). For a node α = (n, j), the sup-
port of ψα is Ωα = [ L2n j,

L
2n (j + 1)), and the support of the function associated

to its left and right sons denoted by α` and αr respectively form a partition of
the support of the parent, i.e.

Ωα`
∪ Ωαr

= Ωα and Ωα`
∩ Ωαr

= ∅.
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The wavelet expansion of U is then written as

U(x) = v0φ(x) +
∑

α∈I(TP )

vαψα(x),

here the sum is taken over the interior nodes of the tree.
We introduce a thresholding operator Πε that satisfies

‖U−Πε(U)‖L2 ≤ ε.

The operator is defined such that the basis function associated to α = (n, j) is
discarded if the following three conditions are satisfied:

• the coefficient vα satisfies

|vα| ≤ 2−
n
2 n
− 1

2
0 ε, (6)

• all the nodes of the left and right subtrees of α satisfy condition (6),

• the subtree T of TP associated to Πε(U) is graded.

The graded condition means that the ratio of the sizes between two consecutive
cells does not exceed two. A graded tree is such that, for two interior nodes
α1 = (n1, j1) and α2 = (n2, j2) with adjacent associated support Ωα1

, Ωα2
, the

difference of depth is smaller than or equal to one. Formally, if there exists
x ∈ Ω such that Ωα1

∩ Ωα2
= {x}, then |n1 − n2| ≤ 1, where Ωα is the closure

of Ωα. This condition is naturally extended to the boundary (i.e. in the case
x = 0 or x = L). As a consequence, the function Πε(U) can be written as

Πε(U)(x) = v0φ(x) +
∑

α∈I(T )

vαψα(x). (7)

We also introduce the refinement operator R which is such that, for any
function w ∈ UT , R(w) = w and the interior node α ∈ I(T ) is split once if one
son of α is a leaf and the depth of α is strictly smaller than n0−1. An adaptive
version of the scheme in Equation (4) can be defined as:

us+1 = Πε

(
R(us)− λ̃s(f̃

+,s
− f̃

−,s
)
)

where λ̃s, f̃
+,s

and f̃
−,s

are extended versions of λs, f +,s and f −,s accounting
for the anisotropic discretization. In the following, we denote by UT the subspace
of L2((0, L)) defined by

UT = span{φ}+ span{ψα; α ∈ T }.

Hence, if T0 is a subtree of T1, we have UT0 ⊂ UT1 .

2.2 Ensemble Kalman filter

The Kalman filter is a technique to estimate the state of a dynamical system
using a sequence of measurements, under the assumption that the underlying
distributions are Gaussian. We consider here the ensemble Kalman filter where
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the moments of the Gaussian distributions are estimated using a discrete sample.
The dynamical model is defined as follows:

vk =M(vk−1) + εk,

yk = Hvk + ηk,

whereM is the dynamical operator describing time evolution of the state from
the assimilation step k − 1 to k, and H the linearized observation operator.

In this work, vk is a R#T -valued random vector representing the state con-
tains the expasion coefficients (vα)α∈I(T ) as in Equation (7), where #T denotes

the number of internal nodes in T . yk is a Rm-valued random observation vec-
tor. εk is the model error and ηk is the observation error. We assume that εk

and ηk are Gaussian with zero mean and covariance matrices P , and R, respec-
tively, i.e., εk ' N (0, P ) and ηk ' N (0, R). v0, εk and ηk are assumed to be
mutually independent. For the sake of clarity, we omit the superscript k in the
rest of the section.

Given an ensemble of Q forecasts V f = (vfq )Qq=1 ∈ R#T ×Q and the realiza-
tion of the data y, the stochastic EnKF [15, 42] updates the forecasts according
to:

V a = V f + CHT (HCHT +R)−1(Y −HV f ), (8)

where Y = (y + ξq)
Q
q=1 ∈ Rm×Q is the matrix of perturbed data, and C is the

sample covariance

C =
1

Q− 1

Q∑
q=1

(
vfq − v̄f

) (
vfq − v̄f

)T
with v̄f =

1

Q

Q∑
q=1

vfq .

In the Kalman filter, when using the analytical mean and covariance (as opposed
to the empirical mean and covariance), the analysis estimate V a is shown to be
the best linear unbiased estimate of the true state [27, 15].

We denote by hq, h̄, CH and M the quantities defined by

hq = Hvfq , h̄ =
1

Q

Q∑
q=1

hq, CH =
1

Q− 1

Q∑
q=1

(hq − h̄)(hq − h̄)T ,

and M = (CH +R)−1.

Equation (8) can thus be recast as

vaq = vfq +
1

Q− 1

Q∑
r=1

(vfr − v̄f )(hr − h̄)TM(y + ηq − hq).

Let Gqr, Ḡq and Fqr be defined by

Gqr =
1

Q− 1
(hr− h̄)TM(y+ηq−hq), Ḡq =

1

Q

Q∑
r=1

Gqr, and Fqr = Gqr−Ḡq.

We can show then that

vaq = vfq +

Q∑
r=1

Fqrv
f
r , (9)
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where we can remark that the matrix F only depends on the members of the
ensemble through the measurements (hq)

Q
q=1. Moreover, given the linear nature

of the update of the members, the functional representation of the members is
also updated under the form

Ua
q (x) = Uf

q (x) +

Q∑
r=1

FqrU
f
r (x). (10)

3 MRA-EnKF methods

3.1 EnKF

For a given time t, we denote by Uq(x) the qth ensemble member, 1 ≤ q ≤ Q,
and by Tq the tree associated to Uq. Let U be the mean estimate computed
using the ensemble (Uq)

Q, and T , defined as the union of all meshes, be the
tree associated to U. Then U can be written as

U(x) = v0φ(x) +
∑

α∈I(T )

vαϕα(x),

where the function spaces of Uq, U and U are related by

UT ⊆ ∪
Q
q=1UTq ⊂ UTP .

Based on Equation (10), the general form of the EnKF update with adaptive
mesh refinement is written as

Ua
q (x) = PW1

[
Uf
q (x) + PW2

(
Q∑
r=1

FqrU
f
r (x)

)]
, (11)

where PWi is the projection of a function onto the subspace Wi.
An EnKF update performed on the finest grid containing all ensemble mem-

bers corresponds to using the subspaces W1 =W2 = UTP in Equation (11), and
is equivalent to Equation (10). By utilizing the thresholding operator Πε and
assigning a different function space to Wi, we introduce variants of adaptive
mesh refinement EnKF algorithms in the following subsections.

3.2 MRAEnKF

In the conventional non-adaptive mesh EnKF, the updates are naturally per-
formed on a fixed space because the ensemble members and the estimate reside
on the same mesh; the update is thus straightforward. This is not the case for
adaptive mesh where each ensemble member independently adapts in its own
way, because such configuration prevents the EnKF from computing its first-
and second-order statistical moments required for EnKF’s progression. One
naturally seeks a common space of all members to enable the EnKF updates.

In the MRAEnKF method, the members and the corrections are projected
onto the subspace containing the union of the grids of all ensemble members.
The updates are then performed according to Equation (10). This corresponds
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to assigning W1 = W2 = ∪Qq=1UTq in Equation (11). Accordingly, Ua
q (x) is

written as

Ua
q (x) = P∪Q

q=1UTq

[
Uf
q (x) + P∪Q

q=1UTq

(
Q∑
r=1

FqrU
f
r (x)

)]
.

We will hereafter refer to the proposed combined multiresolution analysis
with EnKF techniques in general as the “MRA-EnKFs,” namely to avoid the
confusion with the specific MRAEnKF method outlined above.

3.3 Forecast Mean Space Projection EnKF (FMSP)

Wwith linear forecast and observation models, the EnKF statistically converges
in probability to the Kalman filter (KF) in the limit of large ensemble size [11,
30]. With Gaussian noise assumptions, the mean estimate of the EnKF also
converges to a maximum a posteriori (MAP) estimate of the KF. Even for the
case of nonlinear models, it is common practice to take the ensemble mean as
the point estimate of the model state. Therefore, it is intuitive that we consider
performing the ensemble projection on the space of the ensemble mean. As
a consequence, we modify the MRAEnKF by carrying out the update of the
members in the mean space, using Haar wavelets function representation.

In FMSP, all the members and correction terms are projected on the sub-

space of the mean forecast before the analysis step. Let U
f

be the mean forecast

and the subspace associated with U
f

is denoted by UT f . FMSP is initialized by
coarsening the mean forecast,

U
f

= Πε

(
1

Q

Q∑
q=1

Uf
q

)
. (12)

Uf
q and the correction term

∑Q
q=1 FqrU

f
r (x) are projected onto UT f before EnKF

update is applied. This corresponds to setting W1 = W2 = UT f in Equa-
tion (11), which leads to

Ua
q (x) = PUT f

[
Uf
q (x) + PUT f

(
Q∑
r=1

FqrU
f
r (x)

)]
.

Note that the update in FMSP is performed in UT f , which is a subset of

∪Qq=1UTq . For certain tolerance, ε, it is expected for FMSP solution to be less
accurate than the MRAEnKF, as the latter performs the update in the union
space of all members. However, smaller computational complexity is anticipated
for FMSP due to smaller number of flux computations.

3.4 Analysis Mean Space Projection EnKF (AMSP)

The order between the projection and the analysis may affect the performance
of the MRA-EnKFs. To explore this issue, we introduce the Analysis Space Pro-
jection (AMSP) EnKF, which consists another version of mean space projection
EnKF obtained by rearranging the ordering of projection and analysis.
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Contrary to the FMSP, in the AMSP, all the members are projected on the
subspace of the mean after the analysis step. Let (Ũa

q (x))Q be the intermediate

analysis ensemble, the filter starts by computing Ũa
q (x) with MRAEnKF:

Ũa
q (x) = P∪Q

q=1UTq

[
Uf
q (x) + P∪Q

q=1UTq

(
Q∑
r=1

FqrU
f
r (x)

)]
.

Then the coarsened mean of (Ũa
q (x))Q is calculated as

Ũa = Πε

(
1

Q

Q∑
q=1

Ũa
q

)
.

The final analysis (Ua
q (x))Q is obtained by projecting (Ũa

q (x))Q onto UT a , namely
according to:

Ua
q (x) = PUT a

[
Ũa
q (x)

]
,

where UT a is the subspace associated with Ũa.

3.5 Correction Projection EnKF (CrP)

FMSP and AMSP updates result in all members to be cast into the space
of the mean and immediately followed by the forecast step. Projecting each
member to its own space before the next model integration may enhance the
filter performance. Therefore, we also consider adding the space correction to
the update step of the MRA-EnKF.

In Correction Projection EnKF (CrP), all the corrections are projected on
the mean before the analysis step. Each member is corrected in the mean space
UfT as computed in FMSP (i.e. Equation (12)), and the members are finally
projected back to each member’s original subspace UTq . Each member is then
propagated forward to the next assimilation step. This corresponds to setting
W1 = UTq and W2 = UT f ; the update equation is consequently written as

Ua
q (x) = PUTq

[
Uf
q (x) + PUf

T

(
Q∑
r=1

FqrU
f
r (x)

)]
. (13)

Because the CrP correction is performed on the coarse mean subspace, consid-
erable reduction in computational cost with respect to EnKF can be achieved.

3.6 Constant Space EnKF (CnP)

In Constant Space EnKF (CnP), all the corrections are projected on the space
of each members before analysis. No coarsening is involved in this method. The
correction term

∑Q
r=1 FqrU

f
r (x) is projected onto subspace UTq , not subspace

UfT or UaT . The update of CnP therefore corresponds to settingW1 =W2 = UTq .

Equation (11) thus becomes

Ua
q (x) = PUTq

[
Uf
q (x) + PUTq

(
Q∑
r=1

FqrU
f
r (x)

)]
. (14)
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Method Algorithm

EnKF W1 =W2 = UTP .

MRAEnKF W1 =W2 = ∪Qq=1UTq .

FMSP 1. U
f

= Πε(
1

Q

∑Q
q=1 Uf

q ).

2. Obtain UT f .
3. W1 = UT f and W2 = UT f .

AMSP 1. Compute (Ũa
i )N with MRAEnKF

2. Ũa = Πε(
1

Q

∑Q
q=1 Ũa

q ).

3. Obtain UT a .

4. W1 = UT a and W2 = ∪Qq=1UTq .

CrP 1. Compute UT f (See FMSP).
2. W1 = UTq and W2 = UT f .

CnP W1 =W2 = UTq .

Table 1: The summary of EnKF and its multiresolution variants.

Because each member is corrected independently on its own space, we expect
the CnP to produce poor estimates compared to other methods.

Table 1 summarizes the update algorithm of EnKF and its multiresolution
variants. The distinctions among these methods arise due to the order in which
the update and the coarsening are applied. They also depend on the spaces
used for ensemble members projection.

4 Computational test problem

4.1 Model

We focus on the one-dimensional Burger’s equation with periodic boundary
conditions, i.e. Equation (1) with the flux is defined as

f(u) = u2/2.

In the numerical experiments, the uncertain initial condition corresponds to the
shifted radial basis function,

u(x, t0) = b+ a · e
−(x− µ)2

ρ2
(15)

10



where b ∼ U (0.5, 1), a ∼ U (1, 3), µ ∼ U (1, 4) and ρ ∼ U (0.1, 0.5). The size
of the domain is equal to 4π.

4.2 Roe flux calculation

According to Equation (4), the solution at the ith cell is advanced as:

us+1
i = usi − λs

(
f+,s
i − f−,si

)
, (16)

where f+,s
i and f−,si are the corresponding right and left numerical fluxes, re-

spectively. In the case of a fine mesh, the domain is discretized into 2n0 elements
of equal size, where n0 represents the maximum depth of the multiresolution
representation. In the experiments, the maximum depth is 10; therefore the fine
mesh has 1024 cells.

As mentioned earlier, the solution is advanced using an adaptive explicit
time integration scheme. Specifically, the time step, λs, is adjusted according
to λs = CFL× h/Λ, where Λ is the maximum absolute value of us and CFL is
a user-defined positive value ≤ 1.

Let us denote û
.
= (ul + ur)/2 the Roe state, and 4u .

= ur − ul the state
jump. The classical Roe flux is

F (ul, ur) =
[f(ul) + f(ur)]

2
− |û|

2
4 u.

To prevent the Roe flux from violating the entropy condition, the entropy fix
is applied which consists in insuring sufficient diffusion in rarefaction problem
with ul < 0 < ur. Let

δ = max{0, û− ul, ur − û},

and define

q̂ =

 û, |û| ≥ δ
û2

2δ
+ δ/2, |û| < δ.

The fixed Roe flux is

F (ul, ur) =
[f(ul) + f(ur)]

2
− |q̂|

2
4 u,

and the right and left fluxes in Equation (16) are defined through f+,s
i =

F (usi , u
s
i+1) and f−,si = F (usi−1, u

s
i ), respectively. Note that, here, ul = usi

and ur = usi+1 for f+,s
i , and ul = usi−1 and ur = usi for f−,si . Furthermore,

because periodicity boundary conditions are used, f+,s
N = f−,s1 = F (usN , u

s
1),

where N is the number of cells in the domain.

4.3 Multiresolution Roe solver

Given a sequence of N values on the fine grid

u = {uj}Ni=1, (17)
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[21] shows that there is a one-to-one transformation between u and its multires-
olution representation, U. The transformation can be expressed as:

U = Mu , (18)

where M depends on the interpolation scheme employed by multiresolution
analysis scheme. In this work, the central interpolation is used, and therefore
M is a linear operator expressed by an N ×N matrix.

We can symbolically recast Equation (4) in the form of cell-wise update on
the finest grid according to

us+1
i = usi − λs

(
f+,s
i − f−,si

)
≡ (E · us)i, 1 ≤ i ≤ N, (19)

where E is a nonlinear operator representing the action of the explicit update.
The multiresolution scheme is obtained by applying M to Equation (19), result-
ing in:

Us+1 = Us − λsM
(
f +,s − f −,s

)
= ME · (M−1Us) ≡ EM ·Us. (20)

Here EM is a multiresolution version of the nonlinear operator E. The threshold-
ing operator can be introduced at the beginning of each time step to incorporate
the compression of the numerical solution, which leads to:

ME · (M−1Πε(U
s)) ≡ EεM ·Us. (21)

It can be shown that [21], given a tolerance ε and a monotone scheme E,
choosing appropriate ε gives

‖ EεM ·Us −EM ·Us ‖1≤ ε, (22)

where ‖ x ‖1 is the L1 norm of the vector x. In other words, the error between
the truncated and the full evolution is expected to be of the same order of
magnitude as ε, provided that ε is appropriately selected.

Given the thresholding parameter ε and the resolution level n0, the algo-
rithm starts with constructing a tree T 0 and the subspace U0, which are used
to represent the cell average initial condition. After the discrete solution is
initialized, it is evolved in time in an iterative fashion. This consists of five
main steps: a refinement of the tree T at the beginning of every time step, the
evaluation of U at the centers of the cells, the computation of the optimal time
step, a time advance of the solution, and finally projection and coarsening. We
summarize the multiresolution-based Roe solver as follows.

Step I. / II. The approximation space is refined in anticipation of additional
steepening that may develop in the solution. For this purpose, the grid is
refined to add one more level of resolution. Specifically, the tree leaves are
refined according to the enrichment strategy presented in [43]. After the fine
grid is obtained, the solution is evaluated at the centers of the cells.

Step III. The optimal time step for solution update is computed based on
the prescribed CFL limit.
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Step IV. In this step, the model integration from time ts to ts+1 is performed.
The solution in an individual cell is updated by integration of the Roe fluxes
through the cell’s boundary as in Equation (16).

Step V. After the time integration, the Haar transform is used to recover the
multiresolution representation of the solution. Then the coarsening operator Πε

presented in Section 2.1 is applied. This step controls the details of the tree and
provides a compressed solution for the next iteration.

5 Numerical experiments

In this Section, we assess the performance of the proposed MRA-EnKF schemes
in term of error and complexity with respect to both the reference solution and
the EnKF solution.

5.1 Twin experiments

A twin experiment is employed to assess the performance of the proposed as-
similation schemes against the EnKF, based on their efficiency to recover the
reference solution. The reference solution is created by solving the Burgers
equation using a sample of the initial conditions presented in Section 4.1. From
the reference solution, we extract the data at x = 4, 5.5, 7, 8.5, 10 and 11.5
respectively. The data are collected at regular time intervals corresponding to
assimilation frequency of the EnKF schemes. These data are perturbed with the
measurement noise ηk ' N (0, R). In our study, R = σ2I, here σ2 = 0.09 and
I is the identity matrix. Each initial ensemble of the EnKF and MRA-EnKFs
is generated by sampling the parameters in Equation (15) from the same set of
priors used to generate the reference solution. To assess the performance of the
proposed MRA-EnKF schemes, we run each scheme with the same initial en-
semble as the EnKF. Each scheme performs the correction toward the reference
according to its own projection strategy in the analysis steps subjected to the
same observations.

5.2 Free run vs. EnKF solution

In this subsection, we discuss the evolution of the solution and also analyze
MRA-EnKF solutions in estimating the reference solution.

In our first experiment, the settings for the multiresolution Roe solver are
ε = 10−3, N0 = 1024, and CFL = 0.9. We run the simulation for 1 second with
40 assimilation steps (one assimilation every 0.025 seconds). Figure 1 illustrates
the result of a fine grid approximation of the Burger’s equation solution. Both
the reference solution and the EnKF estimate are shown. The initial condition
of the reference solution and of the ensemble members are illustrated in the first
subplot of Figure 1. The following subplots depict the evolution of the system at
different times. Each subplot consists of four pieces of information. The black
solid line is the reference solution at a fixed time step and the red solid line is its
EnKF estimate. 48 ensemble members are used for the EnKF. The evolution
of ensemble members is plotted along with the 3 standard deviation bounds to
highlight the ensemble spread. The ensemble members are marked with the blue
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Figure 1: Reference solution vs EnKF solution.

lines and the 3 standard deviation bounds around the mean are painted in the
transparent blue. As time evolves, the solution develops a shock from x = 3

2π
and x = 2π at t = 0.2 seconds (8th assimilation iteration). This discontinuity
in the form of a shock is the result of the convergence of characteristics due to
different wave speed at different points [21] and is well captured with the Roe
scheme. It is also clear from the figures that, as assimilation cycle advances,
the ensembles spread around the mean decreases and all members move closer
to the reference solution.

Initially, the estimate is far from the reference solution because of the large
ensemble variance; the ensemble amplitude is canceled out. As the time evolves,
the members start to converge to the truth. The shock pattern is also well
recovered by the EnKF. However, at the 16th assimilation step, we observe the
phase shift of the shock: the shock pattern estimated by the EnKF has slightly
preceded the reference solution. This is because, at the initial time step, some
ensemble members are shifted to the front with respect to the reference initial
function. EnKF hardly recovers the head and the tail of the shock due to large
ensemble variance at these locations.

The time evolution of MRA-EnKFs estimates are plotted together with the
EnKF and the reference solutions in Figure 2. With a sufficiently large N0 and
ensemble size (48 members), all MRA-EnKFs solutions converge to the reference
as the assimilation advances. Most MRA schemes appear to perform as well as
EnKF in term of estimating the mean and also give approximately the same
estimate, except the CnP which slightly deviates away from the rest, as can
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Figure 2: Reference vs. MRA-EnKFs.

be observed by looking at the dashed yellow plot around the tail of the shock
formation in the 8th assimilation step of Figure 2. This is because whereas
other MRA-EnKFs either rely on the union or the mean space for the updates,
CnP performs the model integration and the update purely on the space of the
members, which may result in significant loss of solution details.

5.3 MRA-EnKFs convergence analysis

Two main criteria are used to evaluate the efficiency of a MRA-EnKFs; estima-
tion accuracy and computational complexity. However, a number of factors such
as ensemble size, the value of thresholding parameter (the tolerance), and choice
of initial ensemble sampling, play a significant role in deciding the overall per-
formance of the MRA-EnKF schemes in comparison to the free run solution. To
avoid complications, the MRA-EnKFs results are evaluated against the EnKF
results taken as the reference. This is convenient because the EnKF is always
performed on the fine mesh, and is considered to be the most accurate filter
among all methods. Any of MRA-EnKF schemes proposed in Section 3.1 is re-
garded as efficient if their measured error between the corresponding prediction
and that of EnKF is small, the computational complexity given a fine-tuned
tolerance is significantly reduced.

Given the settings of the previous subsection, we first consider the conver-
gence of ensemble members toward the EnKF solution by observing the time
series of the L2 error. This is defined as
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L2-error = E
(∫

Ω

(
u(x)− E(uEnKF(x)))2dx

)) 1
2

,

where uEnKF denotes the EnKF solution. The expectaction is computed empir-
ically using the ensemble. The L2 error is then normalized with the L2 norm of
the EnKF solution uEnKF.

Figure 3 shows the time evolution of the normalized L2 error for each of
the MRA-EnKF schemes. The x-axis is the assimilation time step and the
y-axis is average L2 error in log scale. These errors shown are averages over
five assimilation runs with different initial ensembles. The result in this figure
confirms our observation in Figure 2 regarding the largest discrepancy from the
EnKF produced by the CnP. Here, as time advances, L2 error produced by CnP
is clearly larger than in the other schemes. Nevertheless, the overall trends of
decreasing L2 error indicate that the ensemble members in all schemes converge
to the EnKF estimate. Here we note that the L2 error of the EnKF at any
time is not zero because the L2 error is the measure of the mean distance of the
members to the mean estimates.
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Figure 3: normalized L2 error versus assimilation step.

We are also interested in examining the“error” between the MRA-EnKF es-
timates and the EnKF estimate, which can be measured using root mean square
error (RMSE), defined as the root of the square of the difference between each
MRA-EnKF solution and the EnKF solution. Figure 4 shows the time evolu-
tion of the RMSE of each MRA-EnKF method. The x-axis is the assimilation
step and the y-axis is average RMSE in log scale. Clearly, for this particular
tolerance (ε = 10−3), MRAEnKF gives the smallest error at every assimilation
cycle. This is expected because the updates are performed on the members
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union space with high mesh resolution. The RMSE gradually increases with
time for all MRA-EnKF schemes except the CnP. It is also clear from this
figure that these trends level off in the later steps, as the ensemble members
converge to the EnKF estimate (as concluded from Figure 3).
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Figure 4: RMSE versus assimilation step.

To study the effect of tolerance on the MRA-EnKFs solutions, we vary the
tolerance and repeat the twin experiments. Figure 5 shows the time evolution
of RMSEs with varying tolerance. Each subplot shows the time series of RMSE
for all methods with varying tolerances ranging from 10−3 to 3× 10−1. For all
methods, larger tolerance results in a larger error as expected, because coarser
meshes are created. With the exception of CnP, the same RMSE evolution trend
is observed for all methods; the RMSE gradually increases and level off in the
later timesteps for all tolerances.

5.4 Assessment of MRA-EnKFs in term of error and com-
plexity

In this work, the computational complexity for each model run is estimated
based on the number of the Roe flux computations, which depends on the num-
ber of cells used to approximate the solution. Adapting the mesh of each member
independently may significantly reduce the model integration cost. Previously,
we demonstrated that, given a specific tolerance, the first four MRA-EnKF
schemes show no significant advantage over one another in terms of minimizing
the error. In this subsection, we simultaneously explore the error and computa-
tional complexity of the MRA-EnKF schemes to discover the optimal approach,
and also, to comment on the merits of our proposed framework.

Figure 6 summarizes the time-integrated RMSE and computational com-
plexity of each MRA-EnKF scheme for varying tolerance and ensemble size.
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Figure 5: RMSE versus assimilation step. For each scheme, curves are generated
for different tolerance, as indicated
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Each subplot representing individual scheme shows normalized complexity on
the x-axis against time-integrated RMSE in log scale on the y-axis. We de-
fine time-integrated RMSE as the total sum of the RMSE from all assimilation
steps. The normalized complexity is defined as a ratio between the number of
computed fluxes of the MRA-EnKF scheme and the number of computed fluxes
in the EnKF (run on the fine mesh). Each curve of the plots represents a single
ensemble size but varying tolerance.

The first observation we make from Figure 6 is that, with the exception of
CnP, as we increase the computational complexity by decreasing the value of
the tolerance, the error decreases for all schemes and for all ensemble sizes. This
result is to be expected since smaller tolerance yields higher mesh resolution,
hence producing a more accurate estimate. The second observation is that
for all schemes, increasing ensemble size beyond Q = 16 does not significantly
reduce the error. This is because when the ensemble size is sufficiently large, the
error is dominated by mesh resolution (coarsening). The third observation is
that, for the first four schemes, there are large drops of the error value between
the normalized complexity of 0.4 to 0.6. This indicates that there is the range
where the trade-off between error and complexity are optimal, and this range of
tolerance gives us the best performance of MRA-EnKF schemes both in term of
error and the computational cost. Except for the CnP, all MRA-EnKF schemes
successfully reduce the computational complexity up to 40% with an almost
negligible time-integrated RMSE of less than O(10−10) when a small tolerance
(ε = 10−10) is used.

Our analysis of the results presented in Figure 6 suggests that, for a specific
scheme, increasing ensemble size beyond some threshold does not improve the
filter’s performance. However, for a specific ensemble size, each scheme may
perform differently. We compare the error and complexity between each MRA-
EnKF in Figure 7. Here we discern that the first four MRA-EnKF schemes
produce approximately the same error-complexity plots when small ensemble
sizes (Q ≤ 16) is used. This indicates that for small Q, the error in the as-
similation system is dominated by the error caused by small ensemble size, not
by the coarsening. For larger ensemble sizes (Q > 16), the error-complexity
plots become more distinct between each scheme. Firstly, at Q = 24, with the
normalized complexity of 0.57, FMSP produces almost two orders of magni-
tude larger error than other schemes except CnP. This result suggests that for
a specific ensemble size and tolerance, each scheme may produce the errors of
the slight different order of magnitude. Similar observation is made for larger
ensemble size (Q > 24); with the exception of CnP, FMSP yields slightly larger
error than other schemes between 0.4-0.6 normalized complexity interval. We
also observe that the MRAEnKF gives the smallest error for all ensemble size
and tolerance, which is reasonable given that MRAEnKF performs the analysis
on the union space that yields very high mesh resolution compared to other
schemes. As we increase the ensemble size to 96 members, we clearly see the
differences in produced error between these schemes. MRAEnKF and CrP yield
approximately the same smallest error for all tolerances. This result suggests
that by projecting each member back to its original subspace before resuming
the forecast step, CrP greatly improves the filter performance. To this end, we
have demonstrated that a slight modification in projection strategy may result
in substantial improvement in estimation accuracy. Nevertheless, the results in
Figure 7 suggest that, given the same tolerance, the computational complexity
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Figure 6: time-integrated RMSE versus normalized complexity. For each
scheme, curves are generated for different ensemble size, as indicated
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of first four schemes are quite similar in the results regardless of the ensemble
size.

The results in Figure 6 indicate that the error is of the same order of mag-
nitude of the tolerance when the optimal trade-off between error and computa-
tional complexity is achieved. Additionally, we investigate directly the effect of
the change in the error to the change in the tolerance. In Figure 8, the errors
are plotted against the tolerance used for the MRA-EnKF schemes. Each in-
dividual subplot depicts the relation between error against tolerance for a each
MRA-EnKF scheme. Each curve represents the RMSE for a single ensemble
size and varying tolerances.

Similar to our previous observation, these plots suggest that increasing en-
semble size beyond a certain size does not significantly improve these schemes
in term of error for all tolerance. Particularly for the large tolerance, using
large ensemble size has a minimal influence on the filters in term of estimation
accuracy. This is because, for large tolerance values, the estimation error is dom-
inated by mesh resolution rather than the error caused by sparsity the ensemble.
With the exception of CnP, the linear trend of the error versus tolerance plots
is clearly highlighted. For some tolerance interval (10−10 to 10−2), the RMSE is
approximately the same order of magnitude of the tolerance. This is consistent
with the inequality in Equation (22) which indicates that the approximation
error is bounded by the tolerance.

Overall, assessment results of the proposed MRA-EnKF methods, with the
exception of CnP, suggest that these schemes are comparatively efficient in ap-
proximating the EnKF solution on the fine gird. They effectively capture the
details of the reference solution given appropriate tolerances are provided. They
are all also competitive in term of reducing the computational complexity. The
first four methods demonstrate the ability to reduce the computational complex-
ity by half while keeping the very low time integrated RMSE at 10−10 compared
to the EnKF. These results affirm the merits and desirability of combining MRA
to the EnKF for efficient data assimilation of the adaptive mesh model.

6 Conclusions

In this study, we proposed a new framework combining a sequential data assim-
ilation technique, namely the Ensemble Kalman Filter (EnKF), with adaptive
mesh models. Specifically, a new class of adaptive mesh EnKF schemes has been
developed, relying on a Multiresolution Analysis (MRA) approach to decompose
the solution into Haar wavelets. A binary tree structure is used to index wavelet
supports, which facilitates implementation of coarsening and refinement oper-
ators. Based on user defined tolerances, the latter enable effective adaptation
of individual solutions associated with the ensemble members. Projection onto
wavelet spaces are finally incorporated into the EnKF update equation, which
leads to the formulation of different MRA-EnKF strategies. By using different
means of projecting and coarsening ensemble members, and considering dif-
ferent ordering of projection and update operations, five different MRA-EnKF
schemes were constructed. The first scheme, called “MRAEnKF,” projects all
members to the members union space for the EnKF update. The second scheme,
FMSP, updates the members on the coarsened mean forecast space. The AMSP
scheme (the counterpart of FMSP) updates the members on the coarsened mean
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Figure 7: time-integrated RMSE versus normalized complexity. For each en-
semble size, curves are generated for different MRA-EnKF scheme, as indicated.
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Figure 8: time-integrated RMSE versus tolerance. For each scheme, curves are
generated for different ensemble size, as indicated.
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analysis space (instead of the mean forecast space). CrP, the fourth proposed
scheme, updates the members using FMSP first, then, projects each member
back onto the mesh specified at the previous forecast step. In the fifth scheme,
CnP, the analysis of each member is performed on corresponding mesh, solely
relying on the coarsening and refinement algorithms of the MRA.

These variants were evaluated against a fine-grid EnKF solution in twin
experiments involving solutions of the 1D Burger’s equation. The analysis re-
vealed that with an appropriate choice of tolerance, all MRA-EnKF methods
accurately recovered the reference free-run solution. However, CnP performed
poorly compared to other methods. This is expected because in CnP all oper-
ations are performed in the space defined for each member. The analysis also
revealed that the other four methods accurately approximate the EnKF solu-
tion and lead to significant computational savings. Specifically, only marginal
errors in recovering the solution were observed, while computational complexity
reduction of up to 50% were achieved relative to the reference fine grid solution.

The present experiences also provide insight into potential extensions of
the present developments. Particularly, because with the same tolerance all
methods yielded approximately the same computational saving, one may select
the preferred approach based on ease of implementation. In this regard, we
found that for the same value of tolerance, the performance of MRAEnKF
and CrP are similar for small ensemble size. However, CrP requires several
more projection steps to finally conclude the algorithm. One may thus perceive
MRAEnKF as being the more convenient alternative.

In the present work, we have focused on an adaptive mesh formulation based
on MRA, and restricted our applications to a one-dimensional setting. Exten-
sion of the present constructions to multi-dimensional problems is in principe
straightforward, particularly if one exploits generalizations of the presently
used binary tree constructions, and coarsening/refinement operators (e.g. [43]).
Though this would naturally involve more elaborate adaptive mesh algorithms,
the computational savings achieved in multiple dimensions are generally antici-
pated to be much more substantial than in one space dimension. We finally note
that our selection of the present mesh adaptation formalism was in large part
based on the analytical capabilities that MRA affords. However, one should
note that the adaptive mesh EnKF methodologies developed can be readily
used with different discretization approaches and adaptation strategies. Such
generalizations are the subject of ongoing work and will be reported elsewhere.
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