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Abstract

In many linear regression problems, including ill-posed inverse problems in image restora-
tion, the data exhibit some sparse structures that can be used to regularize the inversion.
To this end, a classical path is to use `12 block based regularization. While efficient at
retrieving the inherent sparsity patterns of the data – the support – the estimated solutions
are known to suffer from a systematical bias. We propose a general framework for removing
this artifact by refitting the solution towards the data while preserving key features of its
structure such as the support. This is done through the use of refitting block penalties that
only act on the support of the estimated solution. Based on an analysis of related works
in the literature, we introduce a new penalty that is well suited for refitting purposes. We
also present a new algorithm to obtain the refitted solution along with the original (biased)
solution for any convex refitting block penalty. Experiments illustrate the good behavior of
the proposed block penalty for refitting solutions of Total Variation and Total Generalized
Variation models.

1 Introduction

We consider linear inverse problems of the form y = Φx+w, where y ∈ Rp is an observed degraded
image, x ∈ Rn the unknown clean image, Φ : Rn → Rp a linear operator and w ∈ Rp a noise
component, typically a zero-mean white Gaussian random vector with standard deviation σ > 0.
To reduce the effect of noise and the potential ill-conditioning of Φ, we consider a regularized
least squares problem with a sparse analysis regularization term based on an `12 block pernalty
of the form

x̂ ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + λ‖Γx‖1,2 , (1)
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where λ > 0 is a regularization parameter, Γ : Rn → Rm×b is a linear analysis operator mapping
an image over m blocks of size b, and for z ∈ Rm×b

‖z‖1,2 =

m∑
i=1

‖zi‖2 =

m∑
i=1

( b∑
j=1

z2
i,j

)1/2

, (2)

with zi = (zi,j)
b
j=1 ∈ Rb. Note that the terminology sparse analysis is used here by opposition to

sparse synthesis models as discussed in the seminal work of [21]. The first term in (1) is a data
fidelity term enforcing x to be close to y through Φ, while the second term enforces the so-called
group sparsity on x (sometimes refered to as joint sparsity, block sparsity or structured sparsity)
capturing the organization of the data as encoded by Γ, see for instance [1].

1.1 Related examples

A typical example is the Lasso (Least absolute shrinkage and selection operator) [40]. The Lasso
is a statistical procedure used for variable selection and relying on regularized linear least square
regression as expressed in eq. (1) in which Γ = Id, m = n and b = 1. The Lasso is known
to promote sparse solutions, i.e., such that x̂k = 0 for most indices 1 ≤ k ≤ n. Since blocks
are of size b = 1, the regularization term boils down to the classical `1 sparsity term that is
unstructured as no interactions between the elements of x̂ are considered. In this paper, we will
focus instead on cases of block penalties where b > 1. The group Lasso [48, 25] is one of them, for
which Γ is designed to reorganize the elements x̂k into groups ẑi = (Γx̂)i supposedly meaningful
according to some prior knowledge on the data. The group Lasso is known to promote block
sparse solutions, i.e., such that ẑi = 0b for most of the groups 1 ≤ i ≤ m. Note that elements
within a non-zero group ẑi 6= 0b are not required to be sparse.

Regarding image restoration applications, the authors of [30] use an `12 regularization term
where Γ extracts m = n overlapping blocks of wavelet coefficients of size b or where Γ use a dyadic
decomposition of the wavelet coefficients into blocks of variable size but non-overlapping [31].
Such strategy was also used in audio processing [47] for denoising. Another example that we
will investigate here is the one of the total-variation (TV) [35]. We can distinguish two different
forms of TV models. Anisotropic total-variation (TVaniso) [22], considers Γ the operator which
concatenates the vertical and horizontal components of the discrete gradients into a vector of
size m = 2n, hence b = 1. Isotropic total-variation (TViso) considers instead Γ = ∇ being the
operator which extracts m = n discrete image gradient vectors of size b = 2. Unlike TVaniso,
TViso jointly enforces vertical and horizontal components of the gradient to be simultaneously
zero. Since TVaniso does not take into account interactions between both directions, it over
favors vertical and horizontal structures while TViso behaves similarly in all directions, hence
their name [22]. Both models promote sparsity of the discrete gradient field of the image, and,
as a result, their solutions are piece-wise constant. A major difference is that TVaniso favors
constant regions that are rectangular-like shaped and separated by sharp edges, while TViso
favors constant regions that are rounded-like shaped and separated by fast but gradual transitions
[16].

As TV promotes piece-wise constant solutions, it is known to produce staircasing artifacts
that are all the more harmful as the images contain shaded objects [18, 10]. To reduce this effect,
the authors of [26] suggested using an `12 block sparsity term not only by grouping vertical and
horizontal components of the gradient, but by grouping neighboring gradients in overlapping
patches. An alternative to reduce staircasing, that we will also investigate here, is the second
order Total Generalized Variation (TGV) model [4] that promotes piece-wise affine solutions.
As we will see, TGV is another example of models that falls into this type of least squares
problems regularized with a sparse analysis term based on `12 block penalties. Sparsity in that
case encodes that sought images are composed of few shaded regions with few variations of slopes
and separated by edges.
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1.2 Support of the solution

Solutions of the sparse analysis regularization model in (1) are known to be sparse [21, 28],
i.e., such that (Γx)i = 0b for most blocks 1 ≤ i ≤ m. It results that a key notion, central to all
of these estimators, is the one of support, i.e., the set of non-zero blocks in Γx̂, defined as

Î = supp(Γx̂) = {1 ≤ i ≤ m : (Γx̂)i 6= 0b} . (3)

For the group Lasso, the support is typically used to identify groups of covariates (columns of Φ)
being explanatory variables for the dependent variable y (i.e., significantly correlated with y).
For TViso, the support is the set of pixel indices where transitions occur in the restored image.
In general, the support plays an important role as it captures the intrinsic structural information
underlying the data. While being biased, in practice, the estimate x̂ obtained by sparse analysis
regularization (1) recover quite correctly the support supp(Γx) of the underlying sparse signal
x. Under some additional assumptions, support recovery is even proven to be exact as proved in
[44] for b = 1 (anisotropic case) and [45] for b ≥ 1.

1.3 Bias of the solution

Though the support Î of x̂ can be very close to the one of the sought image x, the estimated
amplitudes x̂i suffers from a systematical bias. When Φ = Id, the Lasso corresponds to the
soft-thresholding (ST) operator

x̂i = ST(yi, λ) = max(yi − λ sign yi, 0) (4)

for which all non-zero elements of the solutions are shrinked towards 0 by a shift ±λ resulting
to under- and over-estimated values. With TViso, this bias is reflected by a loss of contrast in
the image since the amplitudes of some regions are regressed towards the mean of the image
[37, 43, 42]. In TGV, not only a loss of contrast results from this bias, but one can observe that
the slopes in areas of transitions are often over estimated.

1.4 Boosting approaches

Given the artifacts induced by the `12 sparse regularization, many approaches have been devel-
oped to re-enhance the quality of the solutions, e.g., to reduce the loss of contrast and staircasing
of TViso. We refer to these approaches as boosting. Most of them consist in solving (1) itera-
tively based on the residue Φx̂−y, or a related quantity, obtained during the previous iterations.
Among them, the well-known Bregman iterations [29] is often considered to recover part of the
loss of contrast for TViso. Other related procedures are twicing [41], boosting with the `2 loss
[6], unsharp residual iteration [11], SAIF-boosting [27, 39], ideal spectral filtering in the analysis
sense [23] and SOS-boosting [34]. While these approaches reduce the bias in the estimated am-
plitudes, the support Î of the original solution is not guaranteed to be preserved in the boosted
solution, even though this one may correspond to the support of the sought image x.

1.5 Projection on the support

Given the key role of the support of solutions of (1), we believe that it is of main importance that
a re-enhanced solution x̃ preserves it, i.e., such that supp(Γx) ⊆ Î. For this reason, we focus
on re-fitting strategies that, unlike boosting, reduce the bias while preserving the support of the
original solution. In the Lasso (Γ = Id, m = n and b = 1) [40], a well known re-fitting scheme
consists in performing a posteriori a least-square re-estimation of the non-zero coefficients of the
solution. This post re-fitting technique became popular under various names in the statistical
literature: Hybrid Lasso [20], Lasso-Gauss [33], OLS post-Lasso [3], Debiased Lasso (see [24, 3]
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for extensive details on the subject). Such approaches consists in approximating y through Φ by
an image sharing the same support as x̂:

x̃supp ∈ argmin
x; supp(Γx)⊆Î

1
2‖Φx− y‖

2
2 , (5)

where Î = supp(Γx̂). While this strategy works well for blocks of size b = 1, e.g., for the Lasso or
TVaniso, it suffers from an excessive increase of variance whenever b ≥ 2 (see [16] for illustrations
on TViso). This is due to the fact that solutions do not only present sharp edges, but may involve
gradual transitions. To cope with this issue, additional features of x̂ than its support must be
also preserved by a refitting procedure.

1.6 Advanced refitting strategies

For the Lasso, it has been observed that a pointwise preservation of the sign of x̂i onto the support
improves the numerical performances of the refitting [12]. For b = 2 and TViso like models, the
joint projection on the support with conservation of the direction (or orientation) of (Γx̂)i has
been proposed in [5]. Extension to second order regularization such as TGV [4] are investigated
in [8] in the context of partially order spaces and approximate operators Φ. In a parallel line
of research, it has been proposed in [46] to respect the inclusion of the level lines of x̂ in the
refitting by solving an isotonic regression problem. All these models are constrained to respect
exactly the orientation (Γx̂)i of the biased solution on elements of the support, i.e., when i ∈ Î.
In [16, 32], an alternative approach, based on the preservation of covariant information between
x̂ and y, aims only at preserving the orientation (Γx̂)i to some extent. While also respecting the
support of x̂, this gives more flexibility for the refitted solution to correct x̂ and adapt to the
data content y. This model is nevertheless insensitive to the direction and it involves a quadratic
penalty that tends to promote over smoothed refittings.

1.7 Outline and contributions

In Section 2, we present a general framework for refitting solutions promoted by `12 sparse
regularization (1) that extends a preliminary version of this work [17]. Our variational refitting
method relies on the use of block penalty functions that act on the support of the biased solution
x̂. We introduce the Soft-penalized Direction model (SD), while discussing suitable properties a
refitting block penalty should satisfy.

In Section 3, we propose stable algorithms to compute our refitting strategy for any convex
refitting block penalty.

We show in Section 4 how our model relates and inherits the advantages of other methods
such as Bregman iterations [29] or de-biasing approaches [5, 16].

Experiments in Section 5 exhibit the practical benefits for the SD refitting for imaging prob-
lems involving TViso, a variant of TViso for color images and TGV based regularization.

2 Refitting with block penalties

The refitting procedure of a biased solution x̂ of (1) is expressed in the following general frame-
work

x̃φ ∈ argmin
x; supp(Γx)⊆Î

1
2‖Φx− y‖

2
2 +

∑
i∈Î

φ((Γx)i, (Γx̂)i) , (6)

where φ : Rb ×Rb → R is a block penalty (b ≥ 1 is the size of the blocks) promoting Γx to share
information with Γx̂ in some sense to be specified. To compute global optimum of the refitting
model (6), we only consider in this paper refitting block penalties such that z 7→ φ(z, ẑ) is convex.
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To refer to some features of the vector Γx̂, let us first define properly the notions of relative
orientation, direction and projection between two vectors.

Definition 1. Let z and ẑ be vectors in Rb, we define

cos(z, ẑ) =
〈

z
‖z‖2 ,

ẑ
‖ẑ‖2

〉
= 1
‖z‖2‖ẑ‖2

b∑
j=1

zj ẑj , (7)

and Pẑ(z) =
〈
z, ẑ
‖ẑ‖2

〉
ẑ
‖ẑ‖2 = ‖z‖2

‖ẑ‖2 cos(z, ẑ)ẑ , (8)

where Pẑ(z) is the orthogonal projection of z onto Span(ẑ) (i.e., the orientation axis of ẑ). We say
that z and ẑ share the same orientation (resp. direction), if |cos(z, ẑ)| = 1 (resp. cos(z, ẑ) = 1).
We also consider that cos(z, ẑ) = 1 in case of null vectors z = 0b and/or ẑ = 0b.

Thanks to Definition 1, we can now introduce our refitting block penalty designed to preserve
the desired features of ẑ = Γx̂ in a simple way. We call our block penalty the Soft-penalized
Direction (SD) penalty which reads as

φSD(z, ẑ) = λ‖z‖2(1− cos(z, ẑ)) . (9)

We also introduce five other alternatives, the Hard constrained Orientation (HO) penalty

φHO(z, ẑ) = ι{z∈Rb: |cos(z,ẑ)|=1}(z) , (10)

where ιC is the 0/+∞ indicator function of a set C, the Hard-constrained Direction (HD) penalty

φHD(z, ẑ) = ι{z∈Rb: cos(z,ẑ)=1}(z) , (11)

the Quadratic penalized Orientation (QO) penalty

φQO(z, ẑ) =
λ‖z‖22
2‖ẑ‖2 (1− cos2(z, ẑ)) , (12)

the Quadratic penalized Direction (QD) penalty

φQD(z, ẑ) =

{
λ
2
‖z‖22
‖ẑ‖2 (1− cos2(z, ẑ)) if cos(z, ẑ) ≥ 0

λ
2
‖z‖22
‖ẑ‖2 otherwise

(13)

and the Soft-constrained Orientation (SO) penalty

φSO(z, ẑ) = λ‖z‖2
√

1− cos2(z, ẑ) . (14)

We will see in Section 4 that HD, HO and QO lead us to retrieve existing refitting models
known respectively in the litterature as ICB (Infimal Convolution betweem Bregman distances)
debiasing [5], Bregman debiaising [5], and CLEAR (Covariant LEAst square Refitting) [16].

2.1 Desired properties of refitting block penalties

We now introduce properties a block penalty φ should satisfy for refitting purposes, for any ẑ:

(P1) φ is convex, non negative and φ(z, ẑ) = 0, if cos(z, ẑ) = 1 or ‖z‖2 = 0,

(P2) φ(z′, ẑ) ≥ φ(z′′, ẑ) if ‖z′‖2 = ‖z′′‖2 and cos(z′′, ẑ) ≥ cos(z′, ẑ),

(P3) z 7→ φ(z, ẑ) is continuous,
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Table 1: Properties satisfied by the considered block penalties.
Properties HO HD QO QD SO SD

1
√ √ √ √ √ √

2
√ √ √

3
√ √ √ √

4
√ √

a
√ √ √ √ √ √

b
√ √ √ √ √ √

c
√ √ √

d
√ √ √

e
√ √ √ √

(P4) φ(z, ẑ) ≤ C‖z‖2, for C > 0.

Property (P1) stipulates that no configuration can be more favorable than z and ẑ having the
same direction. Hence, the direction of the refitted solution should be encouraged to follow
the one of the biased solution. Property (P2) imposes that for a fixed amplitude, the penalty
should be increasing w.r.t. the angle formed with ẑ. Property (P3) enforces refitting that can
continuously adapt to the data and be robust to small perturbations. Property (P4) claims that
a refitting block penalty should not penalize more some configurations than the original penalty
‖.‖1,2, at least up to some multiplicative factor C > 0.

The next proposition, whose proof is given in Appendix A, provides additional properties.

Proposition 1. Properties of block penalties lead to the following implications.

(a) (P1) ⇒ ‖Φx̃φ − y‖22 ≤ ‖Φx̂− y‖22.

(b) (P1) ⇒ φ is non decreasing with respect to ‖z‖2 for a fixed angle (z, ẑ),

(c) (P2) ⇒ φ is symmetric with respect to the orientation axis induced by ẑ,

(d) (P1) + (P2) ⇒ φ(z′, ẑ) ≥ φ(z, ẑ), if ‖z′‖2 ≥ ‖z‖2 and cos(z, ẑ) = cos(z′, ẑ),

(e) (P1) + (P3) ⇒ φ(z, ẑ)→ 0 when cos(z, ẑ)→ 1,

2.2 Properties of considered block penalties

The properties of the previously introduced refitting block penalties are synthesized in Table 1.
The proposed SD model is the only one satisfying all the desired properties. As illustrated in
Fig. 1, it is a continuous penalization that increases continuously with respect to the absolute
angle between z and ẑ.

Other block penalties are insensitive to directions (HO, QO and SO), completely intolerant
(HD and HO) or too tolerant (QD) to small changes of orientations, hence not satisfying. These
drawbacks will be illustrated in our experiments conducted in Section 5.

When b = 1, the orientation-based penalties (QO, HO and SO) have absolutely no effect
while the direction-based penalties HD and QD preserve the sign of (Γx̂)i. In this paper, when
b ≥ 1, we argue that the direction of the block (Γx̂)i carries important information that is worth
preserving when refitting, at least to some extent.

3 Refitting in practice

We now introduce a general algorithm aiming to jointly solve the original problem (1) and the
refitting one (6) for any refitting block penalty φ. This framework has been extended from the
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Figure 1: Illustration of continuous block penalties QO and SD: (left) 2D level lines of φ for
z = (z1, z2) = A

(
cos θ − sin θ
sin θ cos θ

)
ẑ, (middle) evolution regarding θ and (right) A.

stable projection onto the support developped in [15] and later adapted to refitting with the
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Quadratic Orientation penalty in [16].
Given x̂ solution of (1), a posterior refitting can be obtained by solving (6) for any refitting

block penalty φ. To that end, we write the characteristic function of support preservation as∑
i∈Îc ι{0}(ξi), where ι{0}(ξ) = 0 if z = 0 and +∞ otherwise. By introducing the convex

function
ωφ(ξ,Γx̂, Î) =

∑
i∈Îc

ι{0}(ξi) +
∑
i∈Î

φ(ξi, (Γx̂)i) , (15)

the general refitting problem (6) can be expressed as

x̃φ ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + ωφ(Γx,Γx̂, Î) . (16)

We now describe two iterative algorithms that can be used for the joint computation of x̂ and x̃.

3.1 Primal-dual formulation

We first consider the primal dual formulation of the problems (1) and (16) that reads

min
x∈Rn

max
ξ∈Rb

1
2‖Φx− y‖

2
2 + 〈Γx, ξ〉 − ιBλ2 (ξ) , (17)

min
x∈Rn

max
ξ∈Rb

1
2‖Φx− y‖

2
2 + 〈Γx, ξ〉 − ω∗φ(ξ,Γx̂, Î) , (18)

where ιBλ2 is the indicator function of the `2 ball of radius λ (that is 0 if ‖zi‖2 ≤ λ for all i ∈ [m]

and +∞ otherwise) and

ω∗φ(ξ,Γx̂, Î) = sup
ζ∈Rb

〈ξ, ζ〉 − ωφ(ζ,Γx̂, Î) (19)

is the convex conjugate, with respect to the first argument of ωφ(·,Γx̂, Î).
Two iterative primal-dual algorithms are used to solve these problems. They involve the

biased variables (ẑk, x̂k) and the refitted ones (z̃k, x̃k). Let us now present the whole algorithm,
defined for parameters κ > 0, τ > 0 and θ ∈ [0, 1] as:

ν̂k+1 = ẑk + κΓv̂k

ν̃k+1 = z̃k + κΓṽk

ξ̂k+1 = Π(ν̂k+1, λ)

Îk+1 =
{
i ∈ [m] : ‖ν̂k+1

i ‖2 > λ+ β
}

ξ̃k+1 = proxκω∗φ(ν̃k+1,Ψ(ν̂k+1), Îk+1)

x̂k+1 = Φ−τ

(
x̂k + τ(Φty − Γtξ̂k+1)

)
x̃k+1 = Φ−τ

(
x̃k + τ(Φty − Γtξ̃k+1)

)
v̂k+1 = x̂k+1 + θ(x̂k+1 − x̂k)
ṽk+1 = x̃k+1 + θ(x̃k+1 − x̃k),

(20)

with the operator Φ−τ = (Id + τΦtΦ)−1 and Π, proxκω∗φ and Ψ are functions that will be detailed

bellow. As we will see in Proposition 2, the quantity β > 0 is used to guarantee that we estimate
the support of x̂ correctly. In practice, we choose β as the smallest available non-zero floating
number. The process for the biased variable involves the orthogonal projection on the `2 ball of
radius λ in Rb

Π(ξ̂, λ)i =
λξ̂i

max(λ, ‖ξ̂i‖2)
.
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wheras the refitting algorithm relies on the proximal operator of ω∗φ. We recall that the proximal
operator of a convex function ψ at point ξ0 reads

proxκψ(ξ) = argminξ
1

2κ‖ξ − ξ0‖
2
2 + ψ(ξ) . (21)

From the block structure of the function ωφ defined in (15), the computation of its proximal
operator may be realized pointwise. Since ι{0}(ξ)

∗ = 0, we have

proxκω∗φ(ξ0,Γx̂, Î)i =

{
proxκφ∗(ξ

0
i , (Γx̂)i), if i ∈ Î ,

ξ0
i , otherwise .

(22)

Table 2 gives the expressions of the dual functions φ∗ with respect to their first variable and their
related proximal operators proxκφ∗ for the refitting block penalties considered in this paper. All
details are given in the Appendix B.

Following [9], for any positive scalars τ and κ satisfying τκ‖ΓtΓ‖2 < 1 and θ ∈ [0, 1], the

estimates (ξ̂k, x̂k, v̂k) of the biased solution converge to (ξ̂, x̂, x̂), where (ξ̂, x̂) is a saddle point
of (17). When the last arguments of the function ω∗φ are the converged Γx̂ and its support Î,
the refitted variables converge to a saddle point of (18). However, we did not succeed to show
convergence for the refitting process, since the quantities Γx̂ are Î are only estimated from the
biased variables at the current iteration, as explained in the next paragraphs.

Online support identification. Estimating supp(Γx̂) from an estimation x̂k is not stable
numerically: the support supp(Γx̂k) can be far from supp(Γx̂) even though x̂k is arbitrarily close

to x̂. As in [15], we rather consider the dual variable ξ̂k to estimate the support. From relations

in (35), we indeed expect at convergence ξ̂k to saturate on the support of Γx̂ and to satisfy the

optimality condition ξ̂ki = λ (Γx̂)i
‖(Γx̂)i‖2 . In practice, the norm of the dual variable ξ̂ki saturates to λ

relatively fast onto Î. As a consequence, it is far more stable to detect the support of Γx̂ with
the dual variable ξ̂k than with the vector Γx̂k itself. The next propostion, adapted from [15]
and whose sketch of proof is given in Appendix A, shows that this approach can indeed converge
towards the support Î.

Proposition 2. Let α > 0 be the minimum non zero value of ‖(Γx̂)i‖2, and choose β such

that ακ > β > 0. Then, denoting ν̂k+1 = ξ̂k + κΓv̂k, Îk+1 =
{
i ∈ [m] : ‖ν̂k+1

i ‖2 > λ+ β
}

in

Algorithm (20) converges in finite time to the true support Î = supp(Γx̂) of the biased solution1.

Online direction and norm identification. In algorithm (20), the function Ψ(ν̂k+1) aims
at approximating Γx̂ . As for the estimation of the support, instead of directly considering Γx̂k,
we rather rely on ν̂k+1 = ξ̂k + κΓv̂k to obtain a stable estimation ẑ of the vector Γx̂.

Table 2 shows that for all the considered block penalties, the computation of the proximal
operator of φ∗ involves the normalized vector ẑi/‖ẑi‖2 on the support Î. This direction is
approximated at each iteration by normalizing ν̂k+1

i . The amplitude ‖ẑi‖2 is just required for
the models QO and QD.

In Proposition 7, we will show that the model of [16] is related to the QO block penalty.
This method considers the algorithmic differentiation of the biased process to obtain a refitting
algorithm. Given its good numerical performance, we leverage this approach to define the function
Ψ as shown in the next proposition whose proof can be foun in Appendix A.

Proposition 3. The approach of [16] corresponds to refit with the QO block penalty and the
following convergent estimation Ψ(ν̂k+1

i ) of (Γx̂)i.

Ψ(ν̂k+1
i ) =

‖ν̂k+1
i ‖2−λ
κ‖ν̂k+1

i ‖2
νk+1
i . (23)

1As in [5], the extended support ‖ξ̂i‖2 = λ can be tackled by testing ‖ν̂k+1
i ‖ ≥ λ.

9



Discussion. This joint-estimation considers at every iteration k different refitting functions
ω∗φ(.,Ψ(ν̂k+1), Îk+1) in (16). Then, unless b = 1 (see [15]), we cannot show the convergence of
the refitting scheme. As in [16], we nevertheless observe convergence and a stable behavior for
this algorithm.

In addition to its better numerical stability, the running time of joint-refitting is more in-
teresting than the posterior approach. In Algorithm (20), the refitted variables at iteration k
require the biased variables at the same iteration and the whole process can be realized in par-
allel without significantly affecting the running time of the original biased process. On the other
hand, posterior refitting is necessarily sequential and the running time is doubled in general.

3.2 Douglas-Rachford formulation

An alternative to obtain solutions x̂ of (1) and x̃ of (16) is to consider the splitting TViso
reformulation, as proposed in [13], and given by

min
x∈Rn
ξ∈Rb

1
2‖Φx− y‖

2
2 + ι{x,ξ;Γx=ξ}(x, ξ) + λ‖ξ‖1,2 , (24)

min
x∈Rn
ξ∈Rb

1
2‖Φx− y‖

2
2 + ι{x,ξ;Γx=ξ}(x, ξ) + ωφ(ξ,Γx̂, Î) . (25)

This problem can be solved with the Douglas-Rachford algorithm [19]. Introducing the parame-
ters α ∈ (0, 2) and τ > 0, the iterates read

υ̂k+1 = Γ−(2x̂k−µ̂k+ Γt(2ξ̂k−ζ̂k)),

υ̃k+1 = Γ−(2x̃k−µ̃k+ Γt(2ξ̃k−ζ̃k)),
µ̂k+1 = µ̂k + α(υ̂k+1 − x̂k),
µ̃k+1 = µ̃k + α(υ̃k+1 − x̃k),

ζ̂k+1 = ζ̂k + α(Γυ̂k+1 − ξ̂k),

ζ̃k+1 = ζ̃k + α(Γυ̃k+1 − ξ̃k),
x̂k+1 = Φ−τ (µ̂k+1 + τΦty),
x̃k+1 = Φ−τ (µ̃k+1 + τΦty),

ξ̂k+1 = ST(ζ̂k+1, τλ),

Îk+1 =
{
i ∈ [m] : ‖ζ̂k+1

i ‖2 > τλ+ β
}
,

ξ̃k+1 = proxτωφ(·,Υ(ζ̂k+1),Îk+1)(ζ̃
k+1)

(26)

with Γ− = (Id + ΓtΓ)−1, the block Soft Thresholding (ST) operator

ST(ζ̂, λ)i =

{
0 if ‖ζ̂i‖2 ≤ λ,
ζ̂i − λ ζ̂i

‖ζ̂i‖2
otherwise .

and the proximal operator of ωφ that can be written pointwise as

proxτωφ(ζ0,Γx̂, Î)i

=

{
ζ0 − τproxφ∗/τ (ζ0

i /τ, (Γx̂)i), if i ∈ Î ,

0, otherwise .
(27)

The estimates (x̂k, ξ̂k, ζ̂k) of the biased solution converge to (x̂, ξ̂, ζ̂) = (x̂,Γx̂, (1 + τλ)(Γx̂)),
from the optimality conditions of problem (24). On the other hand, there is again no convergence
guarantee for the refitted variables since the last two arguments of the function ωφ are potentially
modified at each iteration.
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Table 2: Convex conjugates and proximal operators of the studied block penalties φ.
φ φ∗(z, ẑ) proxκφ∗(z0, ẑ)

HO

{
0, if cos(z, ẑ) = 0
+∞, otherwise

z0 − Pẑ(z0)

HD

{
0, if cos(z, ẑ) ≤ 0
+∞, otherwise

{
z0 − Pẑ(z0), if 〈z0, ẑ〉 ≥ 0
z0, otherwise

QO

{ ‖ẑ‖2
2λ ‖z‖

2
2, if cos(z, ẑ) = 0

+∞, otherwise
λ

λ+κ‖ẑ‖2 (z0 − Pẑ(z0))

QD

{ ‖ẑ‖2
2λ ‖z‖

2
2 if cos θ(z, ẑ) ≤ 0

+∞ otherwise
λ

λ+κ‖ẑ‖2

{
z0 − Pẑ(z0) if 〈z0, ẑ〉 ≥ 0
z0 otherwise

SO

{
0, if cos(z, ẑ) = 0 and ‖z‖2 ≤ λ
+∞, otherwise

λ z0−Pẑ(z0)
max(λ,‖z0−Pẑ(z0)‖2)

SD

{
0, if ‖z + λ ẑ

‖ẑ‖2 ‖ ≤ λ
†

+∞, otherwise
λ

(
z0+λ

ẑ
‖ẑ‖2

max(λ,‖z0+λ
ẑ
‖ẑ‖2 ‖2)

− ẑ
‖ẑ‖2

)
†: note that the condition implies that cos(z, ẑ) ≤ 0.

The support of Γx̂ is estimated in line from auxiliary variables as Îk+1 =
{
i ∈ [m] : ‖ζ̂k+1

i ‖2 > τλ+ β
}

,

where, as shown in [14], β has to be taken such that 0 < β < λmini∈Î ‖(Γx̂)i‖2 to have con-

vergence in finite time of Îk+1 to the true support Î = supp(Γx̂). Again the quantity β > 0 is
chosen in practice as being the smallest available non-zero floating number.

Considering the stable algorithmic differentiation strategy of [16] suggested in the previous
subsection, the vector Γx̂ is approximated on the support Îk+1 at each iteration with the function

Υ(ζ̂) = ‖ζ̂‖2−λτ
‖ζ̂‖2

ζ̂.

4 Related re-fitting works

We now review some other related refitting methods. First we will discuss of refitting methods
based on Bregman divergences, next the refitting approch developped in [16], and then we will
see how these techniques are related to the block penalites introduced in Section 2.

4.1 Bregman-based Refitting

4.1.1 Bregman divergence of `12 structured regularizers

In the literature [29, 5], Bregman divergences have proven to be well suited to measure the
discrepancy between the biased solution x̂ and its refitting x̃. We recall that for a convex, proper
and lower semicontinuous function ψ, the associated (generalized) Bregman divergence between
x and x̂ is, for any subgradient p̂ ∈ ∂ψ(x̂):

Dp̂
ψ(x, x̂) = ψ(x)− ψ(x̂)− 〈p̂, x− x̂〉 ≥ 0 . (28)

If ψ is an absolutely 1-homogeneous function, i.e., ψ(αx) = |α|ψ(x), ∀α ∈ R, then

p ∈ ∂ψ(x)⇒ ψ(x) = 〈p, x〉 , (29)

and the Bregman divergence simplifies into

Dp̂
ψ(x, x̂) = ψ(x)− 〈p̂, x〉 . (30)

11



As an example, let us consider ψ(x) = ‖x‖2. Since ψ is 1-homogeneous, it follows that

Dp̂
‖·‖2(x, x̂) = ‖x‖2 − 〈p̂, x〉 (31)

where p̂ ∈ ∂‖ · ‖2(x̂)⇔
{
p̂ = x̂

‖x̂‖2 if x̂ 6= 0 ,

‖p̂‖2 ≤ 1 otherwise .
(32)

For regularizers of the form ψ(x) = ‖Γx‖1,2, we introduce the following notations

Ω(x̂) = ∂‖Γ · ‖1,2(x̂) , (33)

∆(x̂) =
{
η̂ : Γtη̂ ∈ ∂‖Γ · ‖1,2(x̂)

}
. (34)

We have, see for instance [7], for all p̂ ∈ Rn:

p̂ ∈ Ω(x̂)⇔ ∃η̂ ∈ ∆(x̂) s.t. p̂ = Γtη̂ (35)

or in short Ω(x̂) = Γt∆(x̂). Interestingly ∆(x) enjoys a separability property in terms of all
subgradients associated to the `2 norms of the blocks

∆(x̂) = {η̂ ∈ Rm : η̂i ∈ ∂‖ · ‖2((Γx̂)i), ∀i ∈ [m]} . (36)

Additionally, the next proposition shows that there is a similar separability property for the
Bregman divergence (refer to Appendix A for the proof).

Proposition 4. Let η̂ ∈ ∆(x̂) and p̂ = Γtη̂. Then

Dp̂
‖Γ·‖1,2(x, x̂) =

m∑
i=1

Dη̂i
‖·‖2((Γx)i, (Γx̂)i) . (37)

In the following we consider x̂ and its support Î to be fixed, and we denote by Dη̂
i (Γx) the

following

Dη̂
i (Γx) = Dη̂i

‖·‖2((Γx)i, (Γx̂)i) . (38)

The next proposition shows that such a divergence measures the fit of directions between (Γx)i
and (Γx̂)i, but also partially captures the support Î (refer to Appendix A for the proof).

Proposition 5. Let η̂ ∈ ∆(x̂). We have for i ∈ Î

Dη̂
i (Γx) = 0⇔ ∃αi ≥ 0 s.t. (Γx)i = αi(Γx̂)i . (39)

and we have for i ∈ Îc

Dη̂
i (Γx) = 0⇔ (Γx)i = 0b or η̂i =

(Γx)i
‖(Γx)i‖2

. (40)

As noticed in the image fusion model in [2], minimizing Dη̂
i (Γx) enforces the alignment of the

direction (Γx)i with η̂i and it is an efficient way to avoid contrast inversion.
In the following sections, unless stated otherwise, we will always consider η̂ ∈ ∆(x̂) and

p̂ = Γtη̂ ∈ Ω(x̂).
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4.1.2 Iterative Bregman regularization

The Bregman process [29] reduces the bias of solutions of (1) by successively solving problems
of the form

x̃l+1 ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + λDp̃l

‖Γ·‖1,2(x, x̃l) . (41)

with p̃l ∈ Ω(x̃l). We consider a fixed λ, but different strategies can be considered with decreasing
parameters λl as in [36, 38]. For l = 0, setting x̃0 = 0n, and taking p̃0 = 0n ∈ Ω(x̃0) so that

Dp̃0
‖Γ·‖1,2(x, x̃0) = ‖Γx‖1,2, the first step exactly gives the biased solution of (1) with x̃1 = x̂. We

denote by x̃IB(p̂) = x̃2 the solution obtained after 2 steps of the Iterative Bregman (IB) procedure
(41):

x̃IB(p̂) = x̃2 ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + λDp̂

‖Γ·‖1,2(x, x̂) . (42)

As underlined in relation (39), by minimizing Dp̂
‖Γ·‖1,2(x, x̂) =

∑m
i=1D

η̂
i (Γx), one aims at pre-

serving the direction of Γx̂ on the support Î, without ensuring supp(Γx̃IB(p̂)) ⊆ Î.
For the iterative framework, the support of the previous solution may indeed not be preserved

(‖(Γx̃l)i‖2 = 0 ; ‖(Γx̃l+1)i‖2 = 0) and can hence grow. The support of Γx0 for x̃0 = 0n is for
instance totally empty whereas the one of x̂ = x̃1 may not (and should not) be empty. For
l → ∞, the process actually converges to some x such that Φx = y. Because the IB procedure
does not preserve the support of the solution, it cannot be considered as a refitting procedure
and is more related to boosting approaches as discussed in Section 1.

4.1.3 Bregman based refitting

In order to respect the support of the biased solution x̂ and to keep track of the direction Γx̂
during the refitting, the authors of [5] proposed the following model:

x̃B(p̂) ∈ argmin
x;p̂∈Ω(x)

1
2‖Φx− y‖

2
2 . (43)

This model enforces the Bregman divergence to be 0, since, from eq. (29), we have:

p̂ ∈ Ω(x)⇒ Dp̂
‖Γ·‖1,2(x, x̂) = 0 . (44)

We see from (39) that for i ∈ Î, the direction of (Γx̂)i is preserved in the refitted solution.
From (40), we also observe that the absence of support is also preserved for any i ∈ Îc where
‖η̂i‖2 < 1. Note that extra elements in the support Γx̃B(p̂) may be added at coordinates i ∈ Îc
where ‖η̂i‖2 = 1.

4.1.4 Infimal Convolutions of Bregman (ICB) distances based refitting

To get rid of the direction dependency, the ICB (Infimal Convolutions of Bregman distances)
model is also proposed in [5]:

x̃ICB(p̂) ∈ argmin
x;±p̂∈Ω(x)

1
2‖Φx− y‖

2
2 . (45)

The orientation model may nevertheless involve contrast inversions between biased and refitted
solutions. In practice, relaxations are used in [5] by solving, for a large value γ > 0,

x̃B(p̂)
γ ∈ argmin

x∈Rn
1
2‖Φx− y‖

2
2 + γDp̂

‖Γ·‖1,2(x, x̂) . (46)
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The main advantage of this refitting strategy is that no support identification is required since
everything is implicitly encoded in the subgradient p̂. This makes the process stable even if the
estimation of x̂ is not highly accurate. The support of Γx̂ is nevertheless only approximately
preserved, since the constraint Dp̂

‖Γ·‖1,2(x, x̂) = 0 can never be ensured numerically with a finite

value of γ.

4.1.5 The best of both Bregman worlds

From relations (37) and (38), the refitting models given in (42) and (43) can be reexpressed as a
function of η̂

x̃IB(η̂) ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + λ

m∑
i=1

Dη̂
i (Γx) , (47)

x̃B(η̂) ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 s.t. Dη̂

i (Γx) = 0, ∀i ∈ [m] . (48)

Alternatively we can defined a mixed model, that we coin Best of Both Bregman (BBB), as

x̃BBB(η̂) ∈ argmin
x∈Rn

1
2‖Φx− y‖

2
2 + λ

∑
i∈Î

Dη̂
i (Γx) , (49)

s.t. Dη̂
i (Γx) = 0, ∀i ∈ Îc . (50)

With such reformulations, connections between refitting models (47), (48) and (49) can be clar-
ified. The solution x̃IB [29] is too relaxed, as it only penalizes the directions (Γx)i using (Γx̂)i,
without aiming at preserving the support of x̂. The solution x̃B [5] is too constrained: the di-
rection within the support is required to be preserved exactly. The proposed refitting x̃BBB lies
in-between: it preserves the support, while authorizing some directional flexibility, as illustrated
by the sharper square edges in Figure 1(g).

An important difference with BBB is that we consider local inclusions of subgradients of the
function λ‖ · ‖1,2 at point (Γx)i instead of the global inclusion of subgradients of the function
λ‖Γ · ‖1,2 at point x as in (43) and (45). Such a change of paradigm allows to adapt the refitting
locally by preserving the support while including the flexibility of the original Bregman approach
[29].

4.2 Covariant LEAst Square Refitting (CLEAR)

We now describe an alternative way for performing variational refitting. When specialized to `1,2
sparse analysis regularization, CLEAR, a general refitting framework [16], consists in computing

x̃CLEAR ∈ argmin
x; supp(Γx)⊆Î

1
2‖Φx− y‖

2
2

+
∑
i∈Î

λ
2‖(Γx̂)i‖2

∥∥(Γx)i − P(Γx̂)i((Γx)i)
∥∥2

, (51)

where we recall that P(Γx̂)i(.) is the orthogonal projection onto Span(Γx̂)i. This model promotes
refitted solutions preserving to some extent the orientation Γx̂ of the biased solution. It also
shrinks the amplitude of Γx all the more that the amplitude of Γx̂ are small. This penalty does
not promote any kind of direction preservation, and as for the ICB model, contrast inversions
may be observed between biased and refitted solutions. The quadratic term also over-penalizes
large changes of orientation.
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4.3 Equivalence

In the next proposition we show that, for a given vector η̄, the concurrent Bregman based refitting
techniques coincides with two of the refitting block penalties introduced in Section 2, namely HD,
HO, and that SD is nothing else than the proposed Best of Both Bregman based penalty.

Proposition 6. Let η̄ ∈ Rm be defined as

η̄ = arg min
η∈∆(x̂)

‖η‖2 . (52)

Then, for any y, we have the following equalities

1. x̃B(η̄) = x̃HD ,

2. x̃ICB(η̄) = x̃HO ,

3. x̃BBB(η̄) = x̃SD .

where the equalities have to be understood as an equality of the corresponding sets of minimizers.

The proof of Proposition 6 can be found in Appendix A. Additionaly, we can show that
CLEAR corresponds to the QO refitting block penalty also introduced in Section 2.

Proposition 7. For any y, we have x̃CLEAR = x̃QO where the equality has to be understood as
an equality of the sets of minimizers.

We invite the reader to refer to Appendix A for a proof of Proposition 7.

5 Experiments and Results

5.1 Toy experiments with TViso

We first consider TViso regularization of grayscale images on denoising problems of the form
y = x + w where w is an additive white Gaussian noise with standard deviation σ. We start
with a simple toy example of a 128× 128 image2 composed of elementary geometric shapes, and
we chose σ = 50. The corresponding image and its noisy version are given in Figs. 2.(a) and
(b) respectively. To highlight the different behaviors between the six refitting block penalties, we
chose to set the regularisation parameter of TViso to a large value λ = 750 leading to a strong
bias in the solution. Fig. 2.(c) depicts this solution in which not only some structures are lost
(the darkest disk), but a large loss of contrast can be observed (the white large square became
gray). Unlike boosting, the purpose of refitting is not to recover the lost structures, but only to
recover the correct amplitudes of the reconstructed objects without changing their geometrical
aspect. In a second scenario, we consider the standard cameraman image of size 256× 256, and
we set σ = 20 and λ = 36. The corresponding images are given in Figs. 3.(a-c).

We applied the iterative primal-dual algorithm with our joint-refitting (Algorithm (20)) for
4, 000 iterations, with τ = 1/‖∇‖2, κ = 1/‖∇‖2 and θ = 1, and where ‖∇‖2 = 2

√
2. Results of

refitting with HO, HD, QO, QD, SO and SD are given for the two scenarios on Figs. 2.(d-i) and
Figs. 3.(d-i), respectively. As a quantitave measure of refitting between an estimate x̂ and the
underlying image x, we consider the Peak Signal to Noise Ratio (PSNR) defined in this case as

PSNR = −10 log10
1
n‖x− x̂‖

2
2 . (53)

The higher the PSNR, the better the refitting is supposed to be. In Fig. 2, we first observe that
block penalties that are only based on orientation (HO, QO and SO) lead to refitted solution

2In this paper, we always consider images whose values are in the range [0, 255].
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(a) Original (b) Noisy (14.19) (c) TViso (15.68)

(d) HO (20.30) (e) HD (20.36) (f) QO (22.60)

(g) QD (22.47) (h) SO (21.43) (i) SD (23.16)

Figure 2: Comparison of alternative refitting approaches with the proposed SD model on a
synthetic image.

with contrast inversions compared to the original solution of TViso (see the banana dark shapes
at the interface between the two squares). In that scenario, HD, QD and SD provides statisfying
visual quality, the lattest achieving highest PSNR. In the context of Fig. 3, the image being more
complex, the TViso solution presents more level lines than in the previous scenario. The block
penalties HO and HD must preserve exactly these level lines. The refitted problem becomes
too constrained and this lack of flexibility prevents HO and HD to deviate much from TViso.
Their refitted solution remains significantly biased. Comparing now the quadratic penalties (QO
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(a) Original (b) Noisy (22.14) (c) TViso (26.00)

(d) HO (26.35) (e) HD (26.34) (f) QO (28.21)

(g) QD (28.21) (h) SO (28.22) (i) SD (28.40)

Figure 3: Comparison of alternative refitting approaches with the proposed SD model on the
Cameraman image.

and QD) against the soft ones (SO and SD) reveals that quadratic penalties does not allow to
reenhance as much the contrast of some objects (see, e.g., the second tower on the right of the
image). Again SD achieved the highest PSNR in that second scenario.
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(a) Original (b) Noisy (22.10) (c) TViso (23.28)

(d) HO (23.75) (e) HD (23.75) (f) QO (26.12)

(g) QD (26.10) (h) SO (26.15) (i) SD (27.68)

Figure 4: (a) A color image. (b) A corrupted version by Gaussian noise with standard deviation
σ = 20. (b) Solution of TViso. Debiased solution with (d) HO, (e) HD, (f) QO, (g) QD, (h) SO
and (i) SD. The Peak Signal to Noise Ratio (PSNR) is indicated in brackets bellow each image.

5.2 Experiments with color TViso

We now consider TViso regularization of degraded color images with three channels Red, Green,
Blue (RGB). We defined blocks obtained by applying Γ = (∇1

R,∇2
R,∇1

G,∇2
G,∇1

B ,∇2
B), where
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(a) Original (b) Blurry (23.14) (c) TViso (26.95)

(d) HO (27.09) (e) HD (27.09) (f) QO (29.38)

(g) QD (29.31) (h) SO (29.34) (i) SD (30.18)

Figure 5: (a) A color image. (b) A corrupted version by a directional blur and Gaussian noise
with standard deviation σ = 2. (c) Solution of TViso. Debiased solution with (d) HD, (e) QO
and (f) SD. The PSNR is indicated in brackets bellow each image.

m = n, b = 6, and ∇dC denotes the forward discrete gradient in the direction d ∈ {1, 2} for the
color channel C ∈ {R,G,B}.

We first focused on a denoising problem y = x + w where x is a color image and w is an
additive white Gaussian noise with standard deviation σ = 20. We next focused on a deblurring
problem y = Φx + w where x is a color image, Φ is a convolution simulating a directional blur,
and w is an additive white Gaussian noise with standard deviation σ = 2. In both cases, we
chose λ = 4.3σ. We apply the iterative primal-dual algorithm with our joint-refitting (Algorithm
(20)) for 1, 000 iterations, with θ = 1, τ = 1/‖Γ‖2 and κ = 1/‖Γ‖2, where, as for the grayscale
case, ‖Γ‖2 = 2

√
2. Note that in order to use the primal-dual algorithm, we have to implement
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Γt, defined for z = (zR, zG, zB) ∈ Rn×6 where zR, zG, zB are 2d vector fields, as given by

Γtz =
(
− div zR −div zG −div zB

)
. (54)

Results are provided on Fig. 4 and 5. Comparisons of refitting with our proposed SD block
penalty, HO, HD, QO, QD and SO are provided. Using our proposed SD block penalty offers
the best refitting performances in terms of both visual and quantitative measures. The loss of
contrast of TViso is well-corrected, amplitudes are enhanced while smoothness and sharpness
of TViso is preserved. Meanwhile, the approach does not create artifacts, invert contrasts, or
reintroduce information that were not recovered by TViso.

5.3 Experiments with second order TGV

We finaly consider the second order Total Generalized Variation (TGV) regularization [4] of
grayscale images that can be expressed, for an image x ∈ Rn and regularization parameters
λ > 0 and ζ ≥ 0, as

x̂ ∈ argmin
x∈Rn

1

2
‖Φx− y‖22

+ λ min
z∈Rn×2

‖∇x− ζz‖1,2 + ‖E(z)‖1,F (55)

where ∇ = (∇1,∇2) : Rn → Rn×2, ∇d denotes the forward discrete gradient in the direction
d ∈ {1, 2}, and E : Rn×2 → Rn×2×2 is a symmetric tensor field operator defined for a 2d vector
field z = (z1, z2) as

E(z) =

(
∇̄1z1 1

2 (∇̄1z2 + ∇̄2z1)
1
2 (∇̄1z2 + ∇̄2z1) ∇̄2z2

)
(56)

where ∇̄d denotes the backward discrete gradient in the direction d ∈ {1, 2}, and ‖ · ‖1,F is the
pointwise sum of the Frobenius norm of all matrices of a field. One can observe that for ζ = 0
this model is equivalent to TViso. Interestingly the solution of the second order TGV can be
obtained by solving a regularized least square problem with an `12 sparse analysis term as

X̂ ∈ argmin
X∈Rn×3

1

2
‖ΞX − y‖22 + λ‖ΓX‖1,2 (57)

where for an image x ∈ Rn and a vector field z ∈ Rn×2, we consider X =
(
x, z
)
∈ Rn×3 and

Ξ : (x, z)→ Φx and we define Γ : Rn×3 7→ R2n×3 as

Γ(x, z)=

(
∇1x− ζz1 ∇2x− ζz2 0
∇̄1z1 ∇̄2z2 1√

2
(∇̄1z2 + ∇̄2z1)

)
. (58)

After solving (57), the solution of (55) is obtained as x̂ = ΞX̂. We use Chambolle Pock algorithm
for which we also need to implement the adjoint Γt : R2n×3 → Rn×3 of Γ given for fields z ∈ Rn×2

and e ∈ Rn×3 by

Γt
(
z1, z2, ·
e2, e2, e3

)
= −

 (∇̄1z1 + ∇̄2z2)t

(ζz1 +∇1e1 + 1√
2
∇2e3)t

(ζz2 +∇1e2 + 1√
2
∇2e3)t

t

. (59)

We focused on a denoising problem y = x+w where x is a simulated elevation profile, ranging
in [0, 255], and w is an additive white Gaussian noise with standard deviation σ = 2. We chose
λ = 15 and ζ = 0.45. We applied the iterative primal-dual algorithm with our joint-refitting

20



(a) Original (b) Noisy (42.14) (c) TGV (43.16)

(d) HO (43.60) (e) HD (43.55) (f) QO (58.31)

(g) QD (58.00) (h) SO (58.31) (i) SD (60.33)

Figure 6: (a) An elevation profile (range 0 to 255). (b) A corrupted version by Gaussian noise
with standard deviation σ = 0.5. (c) Solution of TGV. Debiased solution with (d) HO, (e) HD,
(f) QO, (g) QD, (h) SO and (i) SD. The PSNR is indicated in brackets bellow each profile.

(Algorithm (20)) for 4, 000 iterations, with τ = 1/‖Γ‖2, κ = 1/‖Γ‖2 and θ = 1, and where we
estimated ‖Γ‖2 ≈ 3.05 by power iteration (note that the quantity ‖Γ‖2 depends on the value of
ζ).

Refitting comparisons between our proposed SD block penalty, and the five other alternatives
are provided on Fig. 6. Using the SD model offers the best refitting performances in terms of
both visual and quantitative measures. The bias of TGV is well-corrected, elevations (see the
chimneys) and slopes (see the sidewalks) are enhanced while smoothness and sharpness of TGV
is preserved. Meanwhile, the approach does not create artifacts, invert contrasts, or reintroduce
information that was not recovered by TGV.

6 Conclusion

We have presented a block penalty formulation for the refitting of solutions obtained with `12

sparse regularization. Through this framework, desirable properties of refitted solutions can
easily be promoted. Different block penalty functions have been proposed and their properties
discussed. We have namely introduced the SD block penalty that interpolates between Bregman
iterations [29] and direction preservation [5].
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Based on standard optimization schemes, we have also defined stable numerical strategies to
jointly estimate a biased solution and its refitting. In order to take advantage of our efficient joint-
refitting algorithm, we underline that it is important to consider simple block penalty functions,
which proximal operator can be computed explicitly. This is the case for all the presented block
penalties, more complex ones having been discarded from this paper for this reason.

Initially designed for TViso regularization, the approach has finally been extended to a gen-
eralized TGV model. Experiments show how the block penalties are able to preserve different
structures of the biased solutions, while recovering the correct signal amplitude.

For the future, a challenging problem would be to define similar simple numerical schemes
able to consider global properties on the refitting, such as the preservation of the tree of shapes
[46] of the biased solution.

Acknowledgements This work was supported by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant agreement No 777826.

A Proof of Propositions

Proposition 1. • (a) As x̃φ is solution of (6), the relation is obtained by observing that φ(ẑ, ẑ) = 0
with (P1).

• (b) Looking at a ray [0, z) for any vector z, this is a consequence of the convexity of φ and the
fact that φ(z, ẑ) = 0 for ‖z‖2 = 0.

• (c) Since cos(z, ẑ) = cos(−z, ẑ), one can combine (z′, z′′) = (z,−z) and (z′, z′′) = (−z, z) in
(P2) to obtain (c).

• (d) Direct consequence of points (b) and (c).

• (e) This is due to the continuity of the function φ(., ẑ) that is 0 on the ray [0, ẑ) from (P1).

Proposition 2. We just give a sketch of the proof. More details can be found in [15]. On the

support, one has (ξ̂ki , x̂
k
i , v̂

k
i ) → (λΓx̂ki /‖(Γx̂k)i‖2, x̂ki , x̂ki ). Then for k sufficiently large, ‖ξ̂ki +

κ(Γv̂k)i‖ ≤ λ+ β if and only if i ∈ Ic.

Proposition 3. The method in [16] realizes the refitting through an algorithmic differentiation of
the projection of the biased process. This leads to the Algorithm 20 except for the update of the
dual variable ξ̃i on the support i ∈ Îk+1 that reads in [16]:

ξ̃k+1
i = λ

‖ν̂k+1
i ‖2

(
ν̃k+1
i − Pν̂k+1

i
(ν̃k+1
i )

)
,

instead of
ξ̃k+1
i = proxκφ∗QO(·,Ψ(ν̂k+1

i ),Îk+1)(ν̃
k+1
i )

in Algorithm (20). Using the proximal operator given by the QO block penalty in Table 2 gives
: ‖ν̂k+1

i ‖2 = λ+ κ‖Ψ(νk+1
i )‖2 which leads to the function (23) for estimating ẑki .

We deduce that Ψ(ν̂k+1
i ) = Ψ(ξ̂k+κΓv̂k)→ (Γx̂)i from the convergence of the biased variables

(ξ̂ki , x̂
k
i , v̂

k
i )→ (λΓx̂ki /‖(Γx̂k)i‖2, x̂ki , x̂ki ).

Proposition 4. The proof is straigthforward and reads as follow

Dp̂
‖Γ·‖1,2(x, x̂) = ‖Γx‖1,2 − 〈Γtη̂, x〉 (60)

= ‖Γx‖1,2 − 〈η̂,Γx〉 (61)

=

m∑
i=1

‖(Γx)i‖2 − 〈η̂i, (Γx)i〉︸ ︷︷ ︸
D
η̂i
‖·‖2

((Γx)i,(Γx̂)i)

. (62)
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Proposition 5. • For i ∈ Î, i.e. ‖(Γx)i‖2 > 0, we get η̂i = (Γx̂)i
‖(Γx̂)i‖2 from (36). We conlude from

the definition Dη̂
i (Γx) = ‖(Γx)i‖2 − 〈η̂i, (Γx)i〉 = 0.

• For i ∈ Îc and using (36) we distinguish two cases from (31). If ‖η̂i‖2 < 1, then Dη̂
i (Γx) = 0

iff (Γx)i = 0b. Otherwise one necessarily gets η̂i = (Γx)i
‖(Γx)i‖2 .

Proposition 6. First notice that from (31), η̄ can be written explicitly as

η̄i =

{
(Γx̂)i
‖(Γx̂)i‖2 if i ∈ Î ,
0b otherwise,

for all i ∈ [m] . (63)

• [1.] This is a direct consequence of relation (44) and Proposition 5. Using (39), we have for
i ∈ Î that Dη̄

i ((Γx)i) = 0 ⇔ cos((Γx)i, (Γx̂)i) = 1 ⇔ cos((Γx)i, η̄i) = 1. This is also valid for
potential vanishing components (Γx)i with the considered convention cos(0b, ẑ) = 0. We thus
recover the penalty function HD in(11). Next, for all i ∈ Îc, we have η̄i = 0 by assumption,
hence according to eq. (40):

Dη̂
i (Γx) = 0⇔ (Γx)i = 0b ⇔ supp(Γx) ⊆ Î. (64)

It follows that x̃B(η̄) = x̃HD. This case Îc is the same for all next points.

• [2.] With the ICB model, we have ±p̂ ∈ Ω(x). For i ∈ Î, it gives with (39) that D±η̄i (Γx) =
0 ⇔ ‖(Γx)i)‖2 = ±〈(Γx)i), η̂i〉. This is equivalent to |cos((Γx)i, (Γx̂)i)| = 1 that corresponds to
the penalty function HO in (10).

• [3.] For all i ∈ Î, we have

D
ˆ̄η
i ((Γx)i) = ‖(Γx)i‖2 −

〈
(Γx̂)i
‖(Γx̂)i‖2

, (Γx)i

〉
(65)

= ‖(Γx)i‖2(1− cos((Γx)i, (Γx̂)i)) , (66)

that gives the penalty function SD in (9). We then get that x̃BBB(η̄) = x̃SD.

Proposition 7. The case Îc is treated in Proposition 6. For i ∈ Î with the CLEAR model,

we just have to observe that
∥∥(Γx)i − P(Γx̂)i((Γx)i)

∥∥2
= ‖(Γx)i‖22(1− cos2((Γx)i, (Γx̂)i)), which

corresponds to the penalty function QO in (12).

B Proximity operators of block penalties

B.1 Convex conjugates φ∗

We here compute the convex conjugate φ∗ of the different block penalties φ(z, ẑ) that only
depends on z ∈ Rb and where ẑ ∈ Rb is a given fixed non null vector. We consider the following

representation of the vectors z with respect to the ẑ axis: z = α ẑ
‖ẑ‖2 + β ẑ⊥

‖ẑ‖2 . This expression is

valid for the case b = 2. If b = 1 then z is only parameterized by α. When b > 2, ẑ⊥ must be
understood as a subspace S of dimension b−1 and β as a vector of b−1 components corresponding
to each dimension of S. With this change of variables, we have ‖z‖22 = α2 + ‖β‖22 (since β is of
dimension b − 1), cos(z, ẑ) = α/

√
α2 + ‖β‖22, Pẑ(z) = αẑ/‖ẑ‖2 and z − Pẑ(z) = βẑ⊥/‖ẑ‖2. We
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also observe for instance that |cos(z, ẑ)| = 1⇔ β = 0b−1. All the block penalties φ(z, ẑ) can thus
be expressed as φ(α, β). The convex conjugate reads

φ∗(α0, β0) = sup
α,β

α0α+ 〈β0, β〉 − φ(α, β) . (67)

• [HO] It results that the convex conjugate φ∗HO(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 − ι{0b−1}(β) = ι{0}(α0) . (68)

• [HD] The convex conjugate φ∗HD(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 − ιR∗+×{0b−1}(α, β) = ιR−(α0) . (69)

• [QO] The convex conjugate φ∗QO(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 −
λ

2

α2 + ‖β‖22
‖ẑ‖2

(
1− α2

α2 + ‖β‖22

)
(70)

= sup
α,β

α0α+ 〈β0, β〉 −
λ

2

‖β‖22
‖ẑ‖2

(71)

=

{
‖ẑ‖2‖β0‖22

2λ if α0 = 0 ,
+∞ otherwise ,

(72)

since the optimality condition on β gives us β? = β0‖ẑ‖2
λ .

• [QD] The convex conjugate φ∗QD(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 −
λ

2

‖β‖22
‖ẑ‖2

−

{
λ
2
α2

‖ẑ‖2 if α ≤ 0

0 otherwise.
(73)

=

{
‖ẑ‖2(α2

0+‖β0‖22)
2λ if α0 ≤ 0 ,

+∞ otherwise ,
(74)

where we used that if α0 > 0, taking β = 0 and letting α → ∞ leads to φ∗QD(α0, β0) = +∞,

otherwise, we used the optimality conditions on β and α giving us β? = β0‖ẑ‖2
λ and α? = α0‖ẑ‖2

λ .

• [SO] The convex conjugate φ∗SO(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 − λ‖β‖2 = ι{0}×Bλ2 (α0, β0) , (75)

since the optimality condition on β gives us ‖β0‖2 ≤ λ if β? = 0, and β0 = λ β?

‖β?‖2 otherwise. •

[SD] The convex conjugate φ∗SD(α0, β0) is

sup
α,β

α0α+ 〈β0, β〉 −
λ

2

(√
α2 + ‖β‖22 − α

)
(76)

= sup
α,β

(α0 + λ/2)α+ 〈β0, β〉 −
λ

2

√
α2 + ‖β‖22 (77)

=

{
0 if

√
‖β0‖22 + (α0 + λ/2)2 ≤ λ/2 ,

+∞ otherwise ,
(78)

since if
√
‖β0‖22 + (α0 + λ/2)2 > λ/2, then letting α→ sign (α0 + λ/2)×∞ and β → signβ0×∞

leads to φ∗SD(α0, β0) = +∞.

24



B.2 Computing proxκφ∗

We here give the computation of the proximal operator proxκφ∗(α0, β0) of the different φ∗ that
is given at point (α0, β0) by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+ φ∗(α, β). (79)

• [HO] The proximal operator proxκφ∗HO (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+ ι{0}(α) = (0, β0). (80)

• [HD] The proximal operator proxκφ∗HD (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+ ιR−(α) = (min(0, α0), β0). (81)

• [QO] The proximal operator proxκφ∗QO (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+

{
‖ẑ‖2‖β‖22

2λ if α = 0 ,
+∞ otherwise .

(82)

=
λ

λ+ κ‖ẑ‖2
(0, β0) , (83)

since the optimality condition gives λ(β? − β0) + κ‖ẑ‖2β? = 0.

• [QD] The proximal operator proxκφ∗QD (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+

{
‖ẑ‖2(α2+‖β‖22)

2λ if α ≤ 0 ,
+∞ otherwise .

=
λ

λ+ κ‖ẑ‖2
(min(0, α0), β0) . (84)

• [SO] The proximal operator proxκφ∗QD (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+ ι{0}×Bλ2 (α0, β0)

=
λ

max(λ, ‖β0‖2)
(0, β0) . (85)

• [SD] The proximal operator proxκφ∗QD (α0, β0) is given by

argmin
α,β

1

2κ

∣∣∣∣∣∣ (α
β

)
−
(
α0

β0

) ∣∣∣∣∣∣2
2

+

{
0 if

√
‖β‖22 + (α+ λ/2)2 ≤ λ/2 ,

+∞ otherwise .
(86)

=
λ

2

(α0 + λ/2, β0)

max(λ/2,
√
‖β0‖22 + (α0 + λ/2)2)

− (λ/2, 0) , (87)

which just corresponds to the projection of the `2 ball of Rb of radius λ/2 and center (−λ/2, 0).
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