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Abstract. Passivating the contacts of crystalline silicon (c-Si) solar cells with a polycrystalline silicon layer (poly-Si) on a 
thin oxide (SiOx) film allows to decrease the recombination current at the metal/c-Si interface. In this study, an ex-situ 
doping method of poly-Si is proposed, involving a SiOxNy:B layer as a dopant source. In this study, we compare the 
properties (crystallinity of the deposited layer, doping profile and surface passivation properties) of the resulting ex-situ 
doped poly-Si(B) layer with our in-situ doped reference. 

INTRODUCTION 

Passivating the contacts of c-Si solar cells with a polycrystalline silicon (poly-Si) layer on top of a thin silicon 
oxide (SiOx) is known to reduce carrier recombination at the interface between the metal electrodes and the c-Si 
substrate1–3. In this study we focused on boron-doped poly-Si (poly-Si(B)) structures which are of prime interest to 
passivate the rear side of next-generation PERC solar cells. Poly-Si(B) layers are prepared by Plasma-Enhanced 
Chemical Vapor Deposition (PECVD) of an amorphous silicon (a-Si:H) layer followed by a crystallization annealing 
step. Poly-Si(B) layers were previously developed in our lab by in-situ doping the a-Si:H layer with the addition of 
B2H6 to the precursor gas mix4. However, the use of H-rich precursor gases during the PECVD step is leading to a 
blistering phenomenon of the layer5,6. Moreover, the addition of B to the deposited layer is impeding the crystallization 
of the in-situ doped poly-Si(B) layer7.  

For these reasons we developed an ex-situ doping method which consists in depositing a B-rich dielectric layer 
(SiOxNy:B) on top of an intrinsic Si layer deposited by PECVD. In this contribution we compared the ex-situ doped 
poly-Si(B) layer with our reference in-situ doped poly-Si(B): we first studied the effect of removing the B2H6 during 
the PECVD step on the crystalline nature of the deposited layer. Then, we confront the active doping profiles of 
poly-Si(B) layers obtained with in-situ and ex-situ doping methods. Finally, we compare the passivation properties of 
in-situ and ex-situ doped poly-Si(B)/SiOx structures as function of the annealing temperature. 

EXPERIMENTAL 

Symmetrical samples were prepared from 180 μm-thick KOH-polished 156 mm n-type Cz wafers (3-6 Ω.cm). 
First, a thin SiOx layer (~1.3 nm) was grown on the surface of the wafers by ozonized DI-H2O rinsing. Reference 
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in-situ doped poly-Si(B) layers were prepared by PECVD of 25 nm-thick B-doped a-Si:H layers on both sides of the 
wafer using H2-diluted diborane (B2H6) as doping precursor gas and followed by an annealing step under argon 
(Ta = 700-900°C) to crystallize the layer and activate dopants. Ex-situ doped poly-Si(B) layers were prepared by 
PECVD of a SiOxNy:B layer on top of a 25 nm-thick intrinsic Si layer deposited by PECVD, followed by the same 
annealing step to ensure dopant diffusion and activation. A hydrogenation step was carried out on both in-situ and 
ex-situ poly-Si(B) layers by PECVD of a H-rich silicon nitride (SiN:H) layer, followed by a firing step in a belt furnace 
(Tfiring = 800-900°C).  

Thicknesses of initial a-Si and final poly-Si layers were measured by spectroscopic ellipsometry (SE) respectively 
after PECVD and crystallization annealing. The imaginary part of the dielectric function (εi) obtained as a function of 
the photon energy (Ep) through SE measurement was used to assess the crystalline nature of the layers. 
Electrochemical Capacitance-Voltage (ECV) and Hall effect measurements were performed to respectively assess the 
active doping profile and electrical properties (carrier density, conductivity and mobility) of the final poly-Si(B) layers. 
Eventually, the photo-conductance decay (PCD) technique was used to evaluate the surface passivation properties (in 
terms of implied open circuit voltage (iVoc) and recombination current density (J0)) of in-situ and ex-situ doped 
poly-Si(B)/SiOx structures. 

RESULTS AND DISCUSSION 

Effect of B2H6 Removal on the Deposited Layer 

In this paragraph, we compare the crystalline nature of the B-doped and intrinsic Si layer after deposition.  
In-situ B-doped a-Si:H layer were previously developed in our lab by PECVD. The use of a high deposition 

temperature (Tdep = 300°C) and a high gas ratio (R = H2/SiH4 = 50) afforded blister-free passivating poly-Si(B)/SiOx 
structures after annealing4. The use of a high gas ratio R during PECVD could promote a deposition of microcrystalline 
Si layers (μc-Si)8. However, the addition of B during the process is known to impede its crystallization7. Indeed, our 
B-doped layer was verified to be amorphous after deposition as the curve representing εi versus Ep featured a broad 
peak centered around 3.3 eV (for a layer thickness of 25 nm, see Fig. 1)9. Therefore we denote the in-situ B-doped 
layer after deposition as: a-Si:H(B). 

In order to use an ex-situ doping method we needed to develop an intrinsic layer by PECVD. For this purpose we 
used the same PECVD parameters than the ones used for a-Si:H(B) deposition except that we removed B2H6 from the 
precursor gases. This resulted in the crystallization of the deposited layer into a μc-Si intrinsic layer (μc-Si(i)). The μc 
nature of the layer was evidenced by SE as the εi versus Ep curve featured a plateau shape due to the apparition of a 
second peak around 4.1 eV typical of a μc-Si phase9 (see Fig. 1). 

 

FIGURE 1. Imaginary part of the dielectric function (εi) vs. photon energy (Ep), from SE measurement performed after 
deposition of in-situ doped a-Si:H(B) layer and intrinsic μc-Si(i) (both 25 nm-thick). The removal of the doping precursor gas 

B2H6 had the effect of changing the nature of the deposited layer from amorphous to microcrystalline (a-Si to μc-Si). 
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In-situ and Ex-situ Poly-Si(B) Doping Profiles 

In this paragraph we compare the active-doping profiles obtained on reference in-situ doped poly-Si(B) layers and 
on ex-situ doped poly-Si(B) layers. The active-doping profiles were measured by ECV after annealing in the range 
Ta = 700-800°C (Fig. 2). For Ta = 700-750°C, a gradually fading doping density was observed for the ex-situ doped 
layer (from 2×1019 cm-3 to 2×1018 cm-3). In this Ta range, the in-situ doping profile showed more of a plateau around 
1.5×1020 cm-3. For Ta = 800°C, although the shape of the in-situ and ex-situ doping profiles were similar, the doping 
density in the ex-situ layer was found to be ten times lower than the doping density in the in-situ layer. Interestingly, 
for Ta = 800°C, the B-diffusion length in the c-Si was found to be similar for both in-situ and ex-situ doped layers. 
For Ta = 850°C (not shown here), the doping plateau remained similar as for Ta = 800°C for both in-situ and ex-situ 
poly-Si layers but the B-diffusion tail into c-Si was deeper (respectively 150 nm and 100 nm-deep for in-situ and 
ex-situ layers). 

Hall effect measurements were performed on in-situ and ex-situ doped layers for Ta
 = 700°C to avoid any 

B-diffusion in the c-Si that could induce current flowing in the c-Si and therefore would not enable an accurate 
estimation of the poly-Si electrical properties. The ex-situ carrier density measured was lower than the in-situ one 
(1.2×1019

 cm-3 and 1×1020
 cm-3 respectively), which is consistent with the ECV doping profiles showing a lower 

doping density for the ex-situ doped layer. 

 

FIGURE 2. ECV active doping profiles of in-situ and ex-situ doped poly-Si(B) layers (25 nm-thick) after annealing at Ta. The 
SiOx layer is depicted for reference. 

Surface Passivation Properties 

The passivation level provided by the ex-situ doped poly-Si(B) structure was then evaluated (in terms of iVoc and 
J0) as a function of the annealing temperature (Ta), after annealing and after SiN:H deposition (i.e. before firing). It 
was compared to the passivation level obtained with in-situ doped poly-Si layer (see Fig. 3). It is to note that the 
stability of the bulk effective carrier lifetime was verified on the range of Ta investigated. 
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FIGURE 3. iVoc as function of Ta with in-situ and ex-situ doped poly-Si/SiOx after annealing and right after SiN:H deposition 
(before firing). 

 
After annealing, the iVoc evaluated on in-situ and ex-situ structures showed a similar trend featuring an increase 

of the iVoc value from 700°C to 800°C and a decrease of iVoc for Ta > 800°C. For Ta in the range 750°C – 850°C, the 
iVoc values measured with both structures were equivalent. For Ta = 700°C, the ex-situ doped structure showed lower 
passivation properties than the in-situ doped structure (iVoc of 628.5 mV and 661 mV respectively). This could be the 
result of a lower field-effect passivation provided by the ex-situ poly-Si layer that was only partially doped for 
Ta = 700°C (see Fig. 2). The subsequent SiN:H deposition involved only slight changes in the iVoc measured on in-situ 
doped structures whereas it enabled an iVoc gain for ex-situ doped structures on all the Ta range investigated (up to 
30 mV for Ta = 700°C). This resulted in slightly higher passivation level provided by the ex-situ doped poly-Si/SiOx 
structure after SiN:H deposition, with a maximum iVoc of 702 mV. For both in-situ and ex-situ layers, the drop of iVoc 
for Ta > 800°C was attributed to the degradation of the SiOx layer10 and/or excessive B-diffusion in the c-Si11.  

After subsequent firing at Tf ~ 860°C, an important gain in surface passivation was observed for both in-situ and 
ex-situ doped poly-Si/SiOx structures on all the Ta range investigated. Best iVoc values of 736 mV for in-situ structures 
and 733 mV for ex-situ structures were obtained after annealing at Ta = 750°C (both corresponding to J0 = 6 fA.cm-2). 
In conclusion, despite the lower doping density of the ex-situ poly-Si layer, the final passivation properties offered by 
in-situ and ex-situ poly-Si/SiOx structures were found to be equivalent.  

CONCLUSION 

We proposed an ex-situ doping method for poly-Si passivating structures using a boron-rich dielectric layer as a 
dopant source and we compared the properties of the resulting ex-situ doped poly-Si layer to our reference in-situ 
doped layer. First, we observed that the removal of the B-rich doping gas during PECVD resulted in crystallization of 
the deposited layer. Then, the active doping profiles of in-situ and ex-situ poly-Si layers were compared. The doping 
density of the ex-situ poly-Si layer was observed to be ten times lower than the in-situ layer. Finally, we evaluated the 
surface passivation provided by in-situ and ex-situ doped poly-Si/SiOx structures after different step of the process. 
After annealing both structures showed equivalent surface passivation properties. After SiN:H deposition and 
subsequent firing, both in-situ and ex-situ structures showed excellent surface passivation. Best {iVoc; J0} couple were 
of {736 mV; 6 fA.cm-2} and {733 mV; 6 fA.cm-2} for in-situ and ex-situ structures respectively. 
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