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Abstract

The 1-2-3 Conjecture asserts that, for every connected graph different from Ko, its edges
can be labeled with 1,2, 3 so that, when coloring each vertex with the sum of its incident
labels, no two adjacent vertices get the same color. This conjecture takes place in the more
general context of distinguishing labelings, where the goal is to label graphs so that some
pairs of their elements are distinguishable relatively to some parameter computed from the
labeling.

In this work, we investigate the consequences of labeling graphs as in the 1-2-3 Conjec-
ture when it is further required to make the maximum resulting color as small as possible.
In some sense, we aim at producing a number of colors that is as close as possible to
the chromatic number of the graph. We first investigate the hardness of determining the
minimum maximum color by a labeling for a given graph, which we show is NP-complete
in the class of bipartite graphs but polynomial-time solvable in the class of graphs with
bounded treewidth. We then provide bounds on the minimum maximum color that can
be generated both in the general context, and for particular classes of graphs. Finally, we
study how using larger labels permits to reduce the maximum color.

Keywords: edge labelings; proper vertex-colorings; 1-2-3 Conjecture; small vertex colors.

1. Introduction

1.1. Distinguishing labelings and the 1-2-3 Conjecture

This work takes place in the context of distinguishing labelings. The general goal is,
given a graph G, to label some elements (vertices, edges, etc.) of G so that certain pairs
of elements (vertices, edges, etc.) can be distinguished through parameters computed from
the labeling. As can be noted, this problem is quite general, and considering its several
parameters leads to many possible labeling variants that could be considered. This topic
has actually been intensively studied in the last decades. This is well illustrated by the
dynamic survey [5] that has been regularly updated by Gallian over the years, where over
2000 references on the topic, covering more than 200 labeling techniques, are reported.

In this work, we focus on the labeling variant where, given a graph G, we aim at
assigning positive integers to the edges so that every two adjacent vertices of G can
be distinguished through their “incident sums of labels”. Namely, given a k-labeling
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0:E(G) = {1,...,k} of G, let us define, for every vertex v, the sum c(v) = > {(vw)

weN (v)
of the labels of its incident edges. The value ¢;(v) is called the color of the vertex v (induced
by the labeling ¢). A k-labeling is proper if c;(u) # ¢¢(v) for every edge uv of G. That
is, £ is a proper labeling of G if ¢y is a proper vertex-coloring of GG. Note that proper la-
belings are sometimes called neighbor-sum-distinguishing edge-weightings in the literature.
Throughout this work, we will most of the time consider proper labelings and then we will
omit the term “proper” unless there is some ambiguity.

Proper labelings have been receiving ingrowing attention since the introduction of the
so-called 1-2-3 Conjecture in 2004 by Karoniski, fL.uczak and Thomason [7]. Before giving
the exact statement of that conjecture, let us first introduce a few additional details. It is
easy to see that a connected graph G admits proper labelings if and only if G is different
from Ko (the connected graph with a single edge) [7]. Thus, when dealing with proper
labelings, one should focus on graphs with no connected component isomorphic Ks; in the
current context, these graphs are called nice. Now, for every nice graph G, it makes sense
to find the minimum & such that G admits proper k-labelings; this parameter k for G is
sometimes denoted by xu(G).

The 1-2-3 Conjecture states that for every nice graph G, we should have y5(G) < 3. In
other words, for almost every graph, we should be able to represent one of its proper vertex-
colorings by the incident sums inherited from a labeling assigning positive integers with
bounded and very small magnitude. A number of results have been exhibited throughout
the years as support to the 1-2-3 Conjecture. In what follows, we give a special focus to
the such results that connect to our investigations in this paper; for more details, we refer
the interested reader to the survey [9] by Seamone, which, although already outdated now,
provides pointers towards most of the most important and interesting results on this topic.

The most important result towards the 1-2-3 Conjecture is due to Kalkowski, Karoriski
and Pfender [6], who proved that xx(G) < 5 holds for every nice graph G. It is worth
mentioning that graphs G with y5(G) = 3 exist, so the value 3 in the statement of the
conjecture cannot be improved down to 2 in general. Note that the 1-2-3 Conjecture is
satisfied for nice complete graphs [3|, and nice 3-colorable graphs [7], i.e., in particular,
for any bipartite graph G, we have xx(G) < 3. While the graphs G with xx(G) = 1
can easily be described (these graphs are the locally irreqular ones, i.e., those without any
edge uv with d(u) = d(v), where d(z) denotes the degree of the vertex x), those G with
Xx(G) = 2 do not admit a “good” characterization, unless P=NP (as first proved by Dudek
and Wajc [4]). For some time, an important question was about the existence of such
a good characterization for bipartite graphs. It was not until quite recently that a good
characterization of the bipartite graphs G with x5 (G) = 3 was provided [10]. That result
builds upon several sufficient conditions for a bipartite graph G to satisfy xx(G) < 2. In
particular, this inequality was shown to hold when G has one of its two partite sets of even
size [3]. An alternative proof that xx(7") < 2 holds for every nice tree T' can be found
in [3].

1.2. Proper labelings and maximum color

As described above, the 1-2-3 Conjecture states that for almost every graph G we should
be able to represent one of its proper vertex-colorings ¢, via the sums of labels incident
to the vertices inherited from a labeling ¢ assigning positive integers 1, 2 and 3 as labels.
One of the downsides of using labels with low magnitude like this, is that we might lose
control over the number of vertex colors (i.e., [{c(v) | v € V(G)}|) that are generated by
a (proper) labeling ¢. A consequence is that the number of distinct colors defined by ¢y
might be much larger than x(G), the chromatic number (i.e., the smallest number of colors



in a proper vertex-coloring) of G. This is well illustrated by the case of locally irregular
graphs G: as pointed out above, we have x»(G) = 1, but the number of distinct colors
obtained by the unique proper 1-labeling of G is the number of distinct degrees over the
vertices (which might be arbitrarily larger than y(G): consider e.g. the case where G is
bipartite).

In a recent work [I], Baudon, Bensmail, Hocquard, Senhaji and Sopena have investi-
gated the trade-off between using more labels and generating a smaller number of colors
(i.e., as close as the chromatic number as possible) by a proper labeling. More precisely, for
a set of labels L and a graph G, they considered the parameter v (G), which is the mini-
mum number of distinct colors defined by ¢, that can be generated by any proper L-labeling
¢ of G. In particular, they proved that, for every nice graph G, we have vz(G) = x(G),
unless in the case of a peculiar class of graphs in which case only v7(G) = x(G) 4 1 holds.
They also proved that vy 21 (7)) is of order logy A(T') for any tree 7' with maximum degree
A(T). Finally, they established the NP-hardness of computing 7y 23(G) for a given graph
G, even when G is bipartite.

Our investigations in this topic are in the line of those in [I], which are mainly motivated
by the fact that, in general, for any graph G the parameter v (G) is bounded above by the
minimum maximum color that can be achieved over all proper L-labelings of G. In this
paper, we consider sets L = {1,..., k} of consecutive positive labels only. Thus, for a given
nice graph G and some k > yx(G), we are interested in the parameter mSi(G) (where
“mS” stands for “maximum sum”), which is the smallest maximum color over the vertices
by a proper k-labeling of G. Precisely, given a (proper) labeling ¢ of G, let mS(G,¥) =

Ir‘l/_aé) ¢¢(v). Then, mSi(G) = mzin mS(G, ¢) where the minimum is taken over all (proper)
ve

k-labelings ¢ of G.

Several aspects behind the general parameter mSy(G) seem of interest to us, and are
precisely related to some of the questions we investigate in the current work. Many of these
questions are related to the simple observation that, for every graph G and k > xx»(G), we
have mSk(G) € {A(G),A(G) + 1,...,kA(G)} where A(G) denotes the maximum degree
of G (see upcoming Claim . So our general aim, when labeling G, is to be as close as
possible to the lower bound A(G). This leads in particular to the following questions:

1. What is the precise value of mSg(G)?

2. Can we always reach the lower bound? That is, is there always a k such that

mSp(G) = A(G)?

3. Assuming Question 2 is wrong, how close to the lower bound can we get? That is,
how large can the difference between A(G) and min  mSg(G) be?
k>xs(G)
4. Assuming Question 2 is right, can we always reach the lower bound using weights
L,...,x=(G)? That is, do we always have mS, ()(G) = A(G)?

5. Assuming the lower bound cannot be reached when using labels 1,...,k, can we
always get closer to it by using larger labels 1,...,k,...,k’? That is, if we have
mSk(G) > A(G) for some k, is there always a k' > k such that mSy (G) < mSk(G)?

6. Can we always achieve the minimum maximum color using a fixed sets of labels
{1,...,a}, regardless of G? That is, is there an absolute a such that if we have
mSk(G) > mSy/(G) for some k' > k, then k' < a?



7. Can using larger weights reduce the minimum maximum color a lot? That is, as-
suming mSk(G) > mSy/(G) for some k < k', how large can the difference between
mSk(G) and mSy (G) be?

1.8. Results in this paper
In this work, we investigate some of the aspects and questions above, providing partial
or full answers to some of them. More precisely, this work is organized as follows:

e As a warm up, we start off, in Section [2| by raising general observations on the
parameter mS, and by providing optimal results for complete graphs and complete
bipartite graphs, two classes of graphs for which the parameter yy is well understood.

e We then consider algorithmic aspects in Section[3] We first establish a negative result
in Section , showing that determining mSy(G) for any fixed & > 2 and bipartite
graph G as input is NP-complete. We then establish a positive result in Section
in which we provide a polynomial-time algorithm for determining mSy(G) for any
graph G with bounded treewidth.

e We then investigate bounds on mSy in Section [d We focus mainly on general bipar-
tite graphs in Section[£.1] We then focus further on trees in Section[£.2] In particular,
we prove that for every nice tree 7" with maximum degree A, the parameter mSy(7T)
is one of three possible values: A;A + 1 or A + 2. In Section we investigate,
still in trees, how using larger labels can help decreasing the maximum color by a
labeling. Finally, in Section [£.4] we prove that, in general, using larger labels can
lead to a drastic decrease of the maximum color by a labeling.

e Concluding remarks and perspectives for further work on the topic are gathered in
concluding Section [5}

2. Early observations and warm-up results

In this section, we first introduce some easy claims that will be used throughout this
work. We then provide first insights into the parameter mSy by considering classes of
graphs for which the value of yx is fully understood. Namely, we consider complete graphs
and complete bipartite graphs.

2.1. Early observations
We start off by exhibiting general bounds on mJSj.
Claim 2.1. For every nice graph G and k > 2, we have mSk(G) < mSk_1(G).
Proof of the claim. This holds since a (k — 1)-labeling is also a k-labeling. o

Claim 2.2. For every nice graph G and k > 1, we have A(G) < mSi(G) < kA(G).
Proof of the claim. Consider any k-labeling £ of G. The color of any vertex v is
cv)= Y low) < D k=kd) <kAG).
weN (v) weN (v)
Moreover, for any vertex v with degree A(G), we have
cv)= Y low)> Y 1=A(G),
weN (v) weN (v)

which concludes the proof. o



Claim 2.3. For every locally irreqular graph G and k > 1, we have mSk(G) = A(G).

Proof of the claim. This holds since, by definition of a locally irregular graph, assigning
label 1 to all edges yields a labeling ¢ with mSk(G,¥¢) = A(G), which is best possible by
Claim 2.2 o

Claim 2.4. Let G be a nice graph and ¢ be a labeling of G. If G contains a path (x,u,v,y)
with d(u) = d(v) = 2, then £(xu) # l(vy). Moreover, if £ is a 2-labeling and G contains
a path P = (v1,...,v4q) where d(v;) = 2 for all 1 < i < 4q and q > 1, then {(v1v2) #
0(v4g—104q).

Proof of the claim. The first statement holds because otherwise ¢y(u) = ¢¢(v). The second
statement follows from the same argument. In particular, every two edges of P being at
distance 2 cannot be assigned the same label by a proper labeling. o

The following situation depicts a context where locally irregular graphs arise.

Claim 2.5. Let G be a nice graph, and ¢ be a 2-labeling of G. For every edge uv where
d(u) = d(v), the number of edges labeled 1 (and similarly 2) incident to w must be different
from the number of edges labeled 1 incident to v. In particular, when G is regular, then all
edges labeled 1 form a locally irregular graph, and similarly for all edges labeled 2.

Proof of the claim. The first part of the statement is because otherwise v and v would have
the same color. Indeed, for some z + 2y to be equal to some z’ + 2/ for x +y = 2’ + o/,
we must have x = 2/ and y = /. The second part of the statement is because every edge
uv of G falls into the conditions of the first part of the statement when G is regular. ¢

2.2. First classes of graphs

Let us first consider complete graphs K, with n > 3, which all verify yx(K,) = 3.
First of all, let us recall that we cannot have xx(K,) < 2, because a 2-labeling of K,
would make the vertex colors to be exactly the distinct values in {n —1,...,2(n — 1)},
which is impossible since color n — 1 can only be attained by a vertex incident to 1’s only,
while color 2(n — 1) can only be attained by a vertex incident to 2’s only [3].

Now, an easy inductive proof of the fact that ys(K,) = 3 is as follows. Start with a
K3 where all edges receive distinct labels (in {1,2,3}), then add a vertex v4 adjacent to
all other ones via edges labeled 3. Then, for 5 < ¢ < n, add a vertex v, adjacent to all
other ones via edges labeled 1 if ¢ is odd, or via edges labeled 3 otherwise. It can easily be
checked that a 3-labeling of K, results whatever is n [3].

In every resulting labeling ¢ above, we note that mS(K,,¢) = 3(n — 1) if n is even and
n > 4, while mS(K,,¢) = 3(n —2) + 1 for n > 5 otherwise. In the next result, we prove
that these values are actually far from mSs(K,,); in particular, we establish the precise
value of this parameter.

Theorem 2.6. For any n > 3 and any k > xx(K,) = 3, we have mSk(K,) =2(n—1) =
2A(K,) ifn=0 mod 4 orn =1 mod 4, and mSk(K,) = 2n—1 = 2A(K,)+1 otherwise.

Proof. Let us first prove the lower bounds. In any labeling of K,, any vertex has color
at least A(K,) = n — 1 (recall Claim [2.2). Moreover, all vertices must have different
colors. Hence, the maximum color must be at least 2(n — 1) = 2A(K,). Let us assume

that there exists a labeling achieving this lower bound; then the colors of the vertices are
n—1
{n—1,n-2,...,2(n—1)}. Therefore, the sum of their colors must be S(n) = > (n—1+1i) =

=0



(a) n=2 mod 4

v1 Up = Vs 'U; = vp = Vg

(b) n=1 mod 4

Figure 1: Examples of optimal labelings of K,,. Full edges are labeled with 2, dotted edges with 3, and
all edges that are not represented are labeled with 1.

3n(n—1 . . .
"(g ), Moreover, in any graph, the sum of the colors must be even, since every assigned

label contributes to the color of exactly two vertices. Since S(n) is even if and only if n =0
mod 4 or n =1 mod 4, we get mSg(K,) >2(n—1)ifn=0 mod 4orn=1 mod 4 and
mSk(K,) > 2n — 1 otherwise. Below, we design optimal labelings in order to establish the
equality (see Figure [1] for examples).

In the following, we label all edges in three steps to achieve the lower bounds above. Let
V(Ky,) = {v1,...,v,}. First, we assign label 1 to every edge. Then all vertices are colored
n — 1. Secondly, we change the labels of the edges in {vjv; | 1 <i,j < n,i+j > n+ 2}
to 2. Then vy is incident to no edge labeled 2, vertex vy is incident to one edge labeled 2,
vertex v; for 3 < i < [(n—1)/2] + 1 is incident to i — 1 edges labeled with 2, and v; for
|(n—1)/2|+2 < i < nisincident to i—2 edges labeled with 2. Let j = |(n—1)/2]+1. Note
that for every i € {2,3,...,4,7 +2,...,n}, v; is adjacent to one more edge labeled with 2
than v;_1; and that v; and v, are both adjacent to j — 1 edges labeled with 2 (and n — j
edges labeled with 1). So ¢;(v1) < ¢j(v2) < -+ < (v5) = c1(vj41) < c(vjga) < -+ < c1(vp)
and ¢;(vit1) < ¢(vi) +1 for 1 <4 < n, ie., all vertices have different colors except v;
and vj;1. Finally, to avoid the conflict between v; and v;y1, let us increase the label
of vj411vj42 from 2 to 3. This change induces a new conflict between vj;o and vj43.
Then we need to increase the label of v;;3v;14 from 2 to 3 to get rid of this conflict,
which creates a new conflict, and so on. Formally, we change the labels of the edges in

{vj41Vj42,Vj430Vj44, ..., Un—1V} to 3if n—jiseven,ie.,ifn =0 mod4orn=1 mod 4.
Otherwise, if n — j is odd and n = 2 mod 4 or n =3 mod 4, then we change the labels of
the edges in {vj11Vj42,Vj430Vj44, . .., Un—aUn—3, Un—2Un, Un—1Up} to 3. One can check that

the resulting labeling is proper, that mSg(K,,¥¢) = c¢(v,) for any k& > 3, and that cy(vy,)



matches the lower bound in all cases. O

In particular, Theorem [2.6] implies that, in complete graphs, it is never necessary to
assign a label with value more than yx(K,) = 3 in order to minimize the maximum color
of a vertex. We will see later that it is not always the case.

We now prove a similar result for complete bipartite graphs K, ,,. We recall that
Xx(Kpnm) is also well understood, since this parameter is 1 if n # m, and 2 otherwise.
In the first situation, this is because K, ,, is locally irregular. In the second situation, a
2-labeling of K, can be obtained by considering any vertex v, assigning label 2 to all
edges incident to v, and assigning label 1 to all other edges [3].

By the previous labeling scheme, we get a 2-labeling ¢ of K, , where we have mS(K,, p, ¢)
2n = 2A(K,,,). In the next result, we provide 2-labelings with smaller maximum color.
Our result is actually optimal.

Theorem 2.7. For any 1 < n <m and k > 1, we have mSy(Kym) = m. If n,k > 2,
then we have mSg(Ky,n) =n+2 = A(Ky ) + 2 if n is even, and mSy(Ky ) =n+3 =
A(Kyn) + 3 otherwise.

Proof. If m > n, then the result follows from the fact that K, ,, is locally irregular and so
it admits a 1-labeling (so achieving the lower bound of Claim [2.2)).

Now let us assume that n,k > 1. Note that K, , is regular, so it does not admit a 1-
labeling. In what follows, we prove that the claimed bounds can be achieved by 2-labelings.
Recall that in every 2-labeling of a regular graph, the subgraph induced by the edges
labeled 1 (and similarly 2) must be locally irregular (Claim. In particular, the subgraph
induced by the edges labeled with 2 cannot contain an isolated edge uv, which implies that
this subgraph must have vertices with degree 2 and, therefore, mSs (K, ) > n + 1.

Let A = {a1,...,a,} and B = {by,...,b,} be the two maximal independent sets of
K p. If nis even, then let us consider the following 2-labeling ¢. For any 1 <i < |n/2], set
l(aibai—1) = L(a;by;) = 2, and set £(e) = 1 for every other edge e. Then, mS(Ky, p,¢) = n+2
which is optimal by the previous paragraph. If n is odd, then consider the same labeling
as in the previous case, in addition setting £(a|,/2/bn) = 2. Then, mS(Knn,l) = n + 3.
To show that it is optimal, consider any 2-labeling ¢’ with m.S(K,, n,¢') = n+2. Let G’ be
the subgraph induced by the edges with label 2 in ¢'. Because mS(K, ,,¢') = n + 2, the
maximum degree of G’ must be 2. Then, G’ must be the union of vertex-disjoint paths of
length 2 with their vertices of degree 2 being, in G’, in a same partite set of K, ,, say A.
This is because, otherwise, there would be two adjacent vertices, one in A and the other
in B, incident to exactly two edges labeled 2 and so G’ would not be locally irregular, a
contradiction. Hence, A has at least [n/2] vertices with color n (not adjacent to any edge
labeled 2) and B has at least one vertex with color n, contradicting that ¢ is proper. [

3. Algorithmic complexity

In this section, we investigate the hardness of determining mSy(G) for a fixed k& > 2
and a graph G given as input. On the negative side, we first prove, in Section [3.1] that this
problem is NP-complete for any fixed k > 2, even when G is a bipartite graph. On the pos-
itive side, we then provide, in Section 3.2, a dynamic-programming algorithm establishing
that mSy(G) can be computed in polynomial time when G has bounded treewidth.



3.1. Negative result

Before proceeding with the proof of our main result in this section, Theorem we
first introduce a few gadgets that will be used for describing the hardness reduction. In
that reduction, a key point is that the graph G we will produce has bounded maximum
degree A(G) = 9. This is why we make some seemingly arbitrary assumptions on some
degrees in what follows.

We now introduce k-gadgets, for k € {6,...,9}. The 9-gadget is nothing but a star
with nine leaves, thus with a center of degree 9, and rooted in one arbitrary leaf r, while
the unique edge incident to 7 is called the root edge. Now, for every k € {6,...,8} such
that the (k+1)-gadget has been defined, the k-gadget is obtained by starting from an edge
ur, and identifying v and the root of each of k — 1 copies of the (k+ 1)-gadget. The vertex
r of the resulting graph is again the root of the gadget, while the unique edge incident to
the root is the root edge. Furthermore, the resulting vertex of degree k is called the center.

For a given k-gadget H and a graph G with a vertex v, by attaching H at v, we mean
adding H to G and identifying v and the root of H.

These gadgets have the following properties:

Observation 3.1. Let k € {6,...,9}. Let G be a graph with mazximum degree A(G) = 9
obtained from a previous graph by attaching a k-gadget H at one vertex v. Then, in every
2-labeling ¢ of G with mS(G,¢) = A(G) =9, all edges of H, thus including those incident
to v, must be assigned label 1. Furthermore, co(v) # k.

Proof. By construction, every 6-gadget is made of five 7-gadgets, every 7-gadget is made of
six 8-gadgets and every 8-gadget is made of seven 9-gadgets. Let us consider a 2-labeling
¢ of G with mS(G,¢) =9. Let k € {6,...,9} and let H be any k-gadget pending at some
vertex v in GG. Assume first K = 9. Since the center ¢ of any 9-gadget in H has degree 9,
all its incident edges must be labeled with 1 so that ¢/(c) < 9. Actually, ¢¢(c) = 9. Now,
let us assume that £ < 9. By construction, the center ¢ of any 8-gadget in H has degree 8,
and seven of its incident edges go to the center of a 9-gadget, and are thus labeled 1 (by
the previous paragraph). Furthermore, ¢ is incident to the center of a 9-gadget, so, by the
previous paragraph, we must have ¢y(c) < 9. Note that if the remaining edge incident to ¢
is labeled 2, then ¢ would have color 9, a conflict. So it must be labeled 1, in which case
c¢(c) = 8. These arguments generalize as follows. Assume we have shown that all edges of
all (k + 1)-gadgets in H must be labeled 1, and that this forces the color of their center
to be k + 1. Now consider the center c of a k-gadget in H. By construction, k — 1 of its
incident edges go to the center of a (k + 1)-gadget, and are thus labeled 1. Furthermore,
¢ is adjacent to a vertex with color £ 4+ 1. Now, if the remaining edge incident to ¢ was
labeled 2, then the color of ¢ would be k + 1, a conflict. So it must be labeled 1, and
ce(c) = k.

Now, v is adjacent, in G, to the center of a k-gadget, and the root edge of that gadget
must be labeled 1. Furthermore, the center of that gadget has color k. Therefore, c,(v) #
k. O

We are now ready for the proof of the main theorem of this section.

Theorem 3.2. Let k > 2. The problem that takes a bipartite graph G with mazximum
degree 9 as input and asks whether mS(G) = 9 is NP-complete.

Proof. Since the NPness of the problem is obvious, we focus on proving its NP-hardness.
The proof is done by reduction from CUBIC MONOTONE 1-IN-3 SAT, which is NP-hard,
see [8]. In this problem, we are given a 3CNF formula F' with positive variables only, each



of which appears in exactly three clauses, and each clause contains exactly three distinct
variables. The question is whether F' can be I-in-3 satisfied, meaning whether there is
a I1-in-3 truth assignment of F, i.e., a truth assignment to the variables such that every
clause has exactly one true variable.

Let us first consider the case k = 2. We construct a bipartite graph G with maximum
degree A(G) =9, such that F' can be 1-in-3 satisfied if and only if mSy(G) = A(G). The
construction is as follows. Start from G being the bipartite graph with bipartition V U C
modelling the structure of F'. That is, for every variable x; of F' there is a variable vertex
v; in V, for every clause C; of F' there is a clause vertez ¢; in C, and for every variable z;
belonging to clause C; of F' we have the formula edge vic; in G. Since in every clause of
F all variables are distinct, and every variable appears in exactly three clauses, the graph
G is actually cubic.

We achieve the construction of G by attaching a 6-gadget and a 7-gadget at every
variable vertex v;, and attaching a 6-gadget, 8-gadget and 9-gadget at every clause vertex
¢;j. Clearly, the construction of G is achieved in polynomial time. Note that all variable
vertices of G have degree 5, while all clause vertices have degree 6. Then, the maximum
degree of G is 9, due to the 9-gadgets, and Observation applies to G and its k-gadgets.

Therefore, in every 2-labeling ¢ of G with mS(G,¢) = 9, all edges of the k-gadgets are
labeled 1, which implies that the variable vertices have color at least 5 and at most 8 (since
they have degree 5 and at least two of their incident edges must be labeled 1) different
from 6 and 7, and the clause vertices have sum at least 6 (and at most 9) different from 6,
8 and 9. This in turn implies that the three formula edges incident to a variable vertex v;
cannot be labeled so that the sum of their labels is 4 (the color of v; would be 6) or 5 (the
color of v; would be 7). So the sum of these three edge labels must be either 3 (all formula
edges incident to v; are labeled with 1), in which case v; has color 5, or 6 (all formula edges
incident to v; are labeled with 2), in which case v; has color 8. Regarding a clause vertex
¢;j, its three incident formula edges cannot have labels summing up to 3 (the color of ¢;
would be 6), 5 (the color of ¢; would be 8) or 6 (the color of ¢; would be 9). Thus, the
sum of these three edge labels must be 4, in which case ¢; has color 7. This implies that a
variable vertex and a clause vertex cannot be involved in a conflict. Also, for every clause
vertex, exactly one of its incident formula edges must be labeled 2, while the other two
must be labeled 1.

The equivalence between finding a 1-in-3 truth assignment ¢ to the variables of F' and a
2-labeling ¢ of G with mS(G, ¢) = 9 now follows from the following arguments. We regard
the fact that a formula edge v;c; of G is assigned label 2 (resp. 1) by £ as having variable
x; of F bringing truth value true (resp. false) to clause C;j by ¢. The fact that, in G, all
three formula edges incident to a variable vertex v; must all be labeled 1 or all be labeled 2
by ¢ depicts the fact that, by ¢, every variable x; brings the same truth value to the three
clauses containing it. The fact that, in G, for every clause vertex c;, one of its incident
formula edges must be labeled 2 by ¢ while the other two must be labeled 1 depicts the
fact that, here, a clause C; is regarded satisfied by ¢ only when it has exactly one true
variable.

Now, we extend the above result to any k > 2. We remark that with slight modifications
of our k-gadgets with k € {6, 7}, the proof of Theorem would go the same way when
considering k-labelings with any k > 2. That is, in the construction of the 7-gadget, replace
one of the 8-gadgets attached to the center by a 9-gadget. In the construction of the 6-
gadget, replace one of the 7-gadgets attached to the center by an 8-gadget, and another of
the 7-gadgets by a 9-gadget. This way, it can be noted that Observation [3.1| remains true



for 6-gadgets, 7-gadgets, 8-gadgets and 9-gadgets even when considering k-labelings with
k> 2.

Now, consider the reduction above with some k£ > 2 and these modified gadgets. Again,
the color of a clause vertex c¢; is at least 6 by a k-labeling, due to its degree. Furthermore,
¢; cannot have color 6, 8 or 9 due to the centers of some gadgets attached to it. We note
then that if a formula edge incident to ¢; was labeled at least 3, then c¢; would have color
at least 8, which would thus either raise a conflict or make ¢; have color more than 9.
Thus, no edge of G should be assigned a label more than 2 if we want to get a k-labeling
¢ of G with mS(G,¢) < 9. In other words, mS2(G) = A(G) =9 if and only if F' is 1-in-3
satisfiable, in which case we have mS;(G) = mS2(G) for every k > 2. O

It is worth emphasizing that the hardness of the problem established in Theorem [3.2]
is not a consequence of the low maximum degree assumption. Indeed, it can be noted
that the reduction in the proof can easily be modified to produce bipartite graphs with
arbitrarily large maximum degree A. In particular, for any fixed A, we can quite similarly
come up with slightly modified k-gadgets for any k € {A, A —1,...,2}, which can then be
used in the reduction the exact same way, to get reduced graphs with maximum degree A.

3.2. Positive result

In this section, we show that, for any fixed k, the parameter mSy(G) (and xx(G)) can
be computed in polynomial time in the class of graphs with bounded treewidth.

Let G = (V, E) be any undirected connected simple graph (not reduced to one vertex).
A tree-decomposition (T, X) of G consists of a tree T = (V(T),E(T)) and a set X =
(Xt)tev(r) of subsets of V' (i.e., X; C V for every t € V(T')) satistying the following two
properties:

e for every edge uv € E(G), there exists t € V(T') such that {u,v} C X, and
o foreveryv e V, {t € V(T) | v € X;} induces a subtree of T

The width of (T, X) equals max,cy () [X¢| — 1 and the treewidth tw(G) of G is the
minimum width among all tree-decompositions of GG. Abusing notations, we will often
identify a vertex ¢t € V(T') with the corresponding set X; € X. The sets in X’ are also
called bags.

A tree-decomposition (7', X) is nice [2] if T is rooted and every node t € V(T') is of one
of the following four types:

Leaf node: tis a leaf of T and | X;| = 1;

Introduce node: t has a unique child ¢’ and there exists v € V such that X; = Xy U{v};
Forget node: t has a unique child ¢ and there exists v € V such that Xy = X; U {v};
Join node: t has exactly two children ¢/, t” and X; = Xy = Xy.

It is well known that any graph G admits a nice tree-decomposition (7', X) rooted
insome r € V(T) with width tw(G) and |V (T')| = O(|V]), and the root bag X, verifies
Given a rooted tree-decomposition (T, X) and ¢t € V(T'), let T} denote the subtree of T'
induced by ¢ and its descendants, and let G; be the subgraph of G induced by | J,, eV (Ty) Xy
A partial k-labeling for Gy consists of two functions (¢ : E(Gy) — {1,...,k},c: V(Gy) - N)

such that ¢ is a proper coloring of G¢, we have c(v) = Y>> {(e) for every vertex
e€E(Gt),vee
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v e V(Gy)\ Xz, and ¢(v) > Y>> {(e) for every vertex v € X;. Since by the properties
e€E(Gy),vee

of tree-decomposition, X; separates Gy — Xy from G —V (Gy), i.e., any path from Gy — X to
G —V(G,) intersects X; (in particular there are no edges between a vertex in G; — X; and a
vertex in G —V(Gy)), every k-labeling £ of G induces a partial k-labeling (¢gq,), ¢/ |v(a,))
for Gy (where f|x means the function f:Y — Z restricted to the set X CY').

Remark that if the root r of T is such that X, = (), then any partial k-labeling of
G, = G is a k-labeling of G.

Theorem 3.3. Let k > 2 and tw > 1 be two fixed integers. Given an n-node graph G
and an integer s as inputs, the problem of deciding whether mSy(G) < s can be solved in
polynomial time in the class of graphs G with treewidth at most tw (and in linear time if
the mazimum degree is bounded).

Proof. Let (T, X') be a nice tree-decomposition of an n-node graph G with width tw(G) and
|[V(T')| = O(n), and the root r of T' is such that X, = ). Let A be the maximum degree of
G. Lett e V(T), Xy ={v1,..., 00} (w < tw(G)+1) and {eq, ..., eq} be the set of the edges
induced by X; in G (¢ = O(tw?)). Let L = {ly,...,l,} C{1,...,k}, FC = {f1,..., fu} C
{1,...,kA}* (FC stands for “final colors”) and CB = {b1,...,by} C {0,1,...,kA}" (CB

stands for “colors from below”). Let us set ay(L, FC,CB) = min max c¢(v) where the
(L,c) vEV(Gy)

minimum is taken over all partial k-labeling (¢,c¢) of Gy such that, for any 1 < i < g,
we have l(e;) = I; (¢ agrees with L on the edges in X;), for any 1 < ¢ < w, we have
c(vi) = fi (c agrees with F'C on the vertices in X), and, for any 1 < i < w, we have

b, = > l(viz) (b; represents the contribution to the color of v; from the
TN (v)N(V(G)\X+t)

edges “below” Xy, i.e., between v; and vertices in Gy — X;). Note that if such a partial

labeling exists, then we must have, for every 1 < i < w,

Yoo Ue)y=bi+ D> Li<c(wm)=fi

e€E(Gy),vi€e 1<j<q,v;€e;

Moreover, let us set oy (L, FC,CB) = oo if no such partial k-labeling exists. Finally, let us
set

Table(t) = ((L, FC,CB, (L, FC,CB)))Lc{1,..k}1,FOC{L,... kA}®,CBC{O,1,... kA}w -

Note that 2
I Table(t)]| = Ok (@D (KA 4 1)2w(G@)+2)

since ¢ < (") = O((tw(G) +1)?) and w < tw(G) + 1.

We now present a dynamic-programming algorithm that computes Table(t) for all
t € V(T), bottom-up, from the leaves to the root r of T. By the remark preceding
the theorem, we get that if the root r of T is such that X, = ), then we get the result
since T'able(r) contains the unique value ((0,0,0), mSk(G)) (which may be oo if and only
if x2(G) < k). There are four cases depending on the type of ¢.

e For every leaf node t € V(T') of T, Table(t) is defined by setting ay(L, FC,CB) =i
if (L, FC,CB) = (0,{i},{0}), and ay(L, FC,CB) = oo otherwise.

e Let t € V(T') be an introduce node, ¢’ be its (unique) child, and let X; \ Xy = {v}.
Moreover, let | Xy| = w, Xy = {v1,..., v}, {€1,...,€4} be the set of edges induced
by Xy, and let {€g41,...,€eq4+n} be the set of edges between v and the vertices in X;
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(w.l.o.g., we may assume that ej, = vv; forall 1 < j < h). Note that N(v)NV (Gy) C
X, by the properties of tree-decompositions.

Forevery L = {l1,...,lgsn} C{1,... .k} FC = {f1,..., fut1} C{1,... kA}+L
CB = {by,...,bys1} C{0,1,... KA} *L let

o = ap({l,..., g5, {f1, - fwl {b1,.. ., bw}) (by induction, this value has been
computed and can be found in Table(t')).

Now, set ay(L, FC,CB) = max{ fy+1, '} if and only if all the following conditions
(which will ensure that a partial labeling exists) are satisfied and set (L, FC,CB) =
oo otherwise.

— {f1,.-., fus1} induces a proper coloring of X; (in particular, f; # fy41 for all
1<j<h).

— by+1 = 0 (since there are no edges between v and Gy — X;, v cannot have some
contribution to its color coming from “below”).

- > lj < fugr (the current color of v, obtained from the labels of the

q+1<j<g+h
edges €gy1,...,€q+n (in Xy), cannot exceed its final color fy41).
— for every 1 < j < h, b; + > li < f; (adding an edge vv; = eqy; with
1<i<g+h,vjce;
label l44; does not make the vertex v; to have a color larger than its final color

fi)-

Let t € V(T) be a forget node, ¢’ be its (unique) child, and let Xy \ X; = {v}.
Moreover, let | X¢| = w, Xy = {vi,..., 0w}, {€1,...,€e4} be the set of edges induced
by X, and let {eg41,...,€eq+n} be the set of edges between v and the vertices in X
(w.l.o.g., we may assume that e;,, = vv; forall 1 < j < h). Note that N[v] C V(Gy)
by the properties of a tree-decomposition.

For every L = {l1,...,l;} C{L,... .k}, FC ={f1,..., fu} C{1,...,EA}",CB =
{b1,...,bw} C {0,1,...,kA}*, a tuple (L', FC',CB’) is called a wvalid extension of
(L, FC,CB) if and only if

extension: L' = {l,...,lgn} C{1,... .k} FC' = {fi,..., fur1} C{1,..., KA},
CB' = {by,...,byr1} € {0,1,...,kA}*T! (ie., L' coincides with L on its first
q values, F'C’ coincides with F'C on its first w values, and CB’ coincides with
CB on its first w values)
valid: fy41 = bwt1 + D lg+j (since v is "forgotten”, it will never receive more
1<j<h
contribution to its color, so we must ensure that its current color, received from
the edges “below” and from the edges in the bag, equals its final color).
Set ay(L,FC,CB) = min ap (L', FC',CB') and
(L',FC',CB’") valid extension of (L,FC,CB)
set ax(L, FC,CB) = oo if no such valid extension exists.

Let t € V(T) be a join node, t' and ¢’ be its two children, X; = Xy = Xy =
{vi,..., 0w}, and let {eq,...,eq} be the set of edges induced by X;.

Let L = {l1,...,lg} C {1l,... .k}, FC = {f1,...,fu} C {L,...,EA}*.CB =
(b, be} C {0,1,... KA}

If (and only if), for all 1 < i < w, we have f; > b; + >l (we consider first
1<j<q,v;€e;

all tuples (L, FC,CB) that ensure that the current color of every vertex is not larger
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than its final color), then let IC be the set of tuples (ki, ..., ky) such that 0 < k; < b;

forall 1 <i <w. Forany P € K, let CB— P = (by — k1,...,by — ky). Then, let

us set (L, FC,CB) = gli’%max{atr(L,FC, P);au (L, FC,CB — P)}. Intuitively,
€

for every 1 < i < w and given P = (ky,...,ky) € K, the value k; (resp., b; — k;)
represents the contribution of the edges below X (resp., below Xy») to the color of
V;.

For every other tuple (L, FC,CB), set ay(L, FC,CB) = .

The correctness of the algorithm (i.e., showing that, for every ¢t € V(T') and every tuple
(L, FC, BW), the tuple ((L, FC,CB), ay(L, FC,CB)) computed by the algorithm satisfies
the definition given at the beginning of the proof) can be seen true by inductive arguments.

The biggest time complexity occurs in the case of a join node, where O(k(t“’(G)H)2 (kA+
1)2w(@)+42) tuples (L, FC, C'B) must be considered and, for each of them, O((kA+1)tw(G)+1)
tuples (ki,...,ky) must be checked. Since |V(T)| = O(n), the overall complexity is
O(nk(tw(G)+1)2 (kA N 1)3tw(G’)+3)'

Note that an optimal labeling (i.e., achieving m.Sk(G)) can also be obtained in polyno-
mial time by a second bottom-up traversal of the tree-decomposition. ]

A nice consequence of Theorem [3.3]is that it also provides a polynomial-time algorithm
for deciding whether y5(G) < k holds for a given graph G with bounded treewidth. This
is, in particular, a consequence of the fact that x5 (G) < 5 holds for every nice graph G [6].
We are not aware of any such result in the literature.

Corollary 3.4. The problem of deciding xx(G) can be solved in polynomial time in the
class of graphs G with bounded treewidth.

4. Bounds on mS} for some graph classes

In this section, we establish bounds on m.Si(G) for particular classes of graphs. More
precisely, we first focus on general bipartite graphs, in Section [4.1] before narrowing down
our concern to trees, in Section In the rest of the section, we then investigate the
effects on our bounds of using larger edge labels. More precisely, we focus on the following
questions:

1. Assuming mSy(G) = z for some k and graph G, what is the smallest k' > k (if any)
such that mSy/(G) < 27 In particular, are there situations where we need much
larger labels in order to decrease the maximum color?

2. Assuming mSi(G) < mSy/(G) for some k < k', how large can the difference be-
tween mSi(G) and mSy (G) be? In particular, can using larger labels decrease the
maximum color a lot?

Regarding the first question, we exhibit, in Section trees T for which the smallest &’
such that mSy/ (T') < mSk(T) is arbitrarily larger than k. Regarding the second question,
we exhibit, in Section graphs G for which mS2(G) = 2A(G) and mS3(G) = A(G).
Hence, using larger labels can make the maximum color drop from the largest possible
color to the smallest possible color (recall the bounds in Claim .

13



4.1. Bipartite graphs

Since all nice bipartite graphs verify the 1-2-3 Conjecture [7], they can be classified into
three classes By, Ba, Bs, where, for ¢ = 1,2, 3, class B; contains the bipartite graphs G with
X=(G) = i. Recall that the graphs of B are exactly the bipartite graphs G that are locally
irregular, which verify x»(G) = 1, and we thus have mSy(G) = A(G) for every k > 1 (due
to Claim, which is best possible by Claim . Throughout this section, we investigate
bounds on the parameter mSy, for the graphs of By and Bs. Recall that [I0] provides a full
characterization of the graphs of Bs (see Section .

4.1.1. Graphs of Bo

The graphs of By are those nice bipartite graphs that are neither locally irregular (Bj)
nor odd multi-cacti (B3, see Section for more details). Since the graphs of B; and
Bs are easy to recognize, so are those of Bs. But the structure of the graphs in By is
rather general, which makes it difficult to come up with general properties of mSs for these
graphs. For instance, recall that Bs includes all non-locally irregular bipartite graphs with
one partite set of even size (see [3]).

Recall that, for a graph G of By with maximum degree A, we have A < mS(G) < 2A
by Claim However, Theorem shows that determining mSs(G) for a bipartite graph
G € By is NP-complete (to see that the graphs we construct in the reduction indeed are in
Ba, note that they have minimum degree 1, which is a sufficient condition for being neither
in B nor in B3, see upcoming Section . Still, in the next two results, we exhibit
families of arbitrarily large graphs of By with “large” value of mSs. For small values of A,

we even provide families of arbitrarily large graphs for which m.S, attains the upper bound
2A.

Proposition 4.1. For any ng > 6 and A € {2,3}, there exist n > ng and a A-regular
bipartite n-node graph G € By such that mSa(G) = 2A.

Proof. First, let A = 2. For any n > 4, the n-node cycle C,, must have, by any 2-labeling,
some vertex incident to two edges labeled with 2. Indeed, all edges can clearly not be
labeled all with 1. So, let uv be an edge labeled with 2; since the colors of u and v must
differ, exactly one of them must have its two incident edges labeled with 2. Hence, for any
n > 4, we have mS>(C,) > 4 = 2A = A 4 2 (the equality comes from Claim 2.2)). Since
some bipartite cycles are indeed in By (see the definition of B3 in Section , this proves
the claim for A = 2.

Now, let A = 3 and n = 4k+2 for some k € N*. Let G be obtained from the cycle C,, of
size n by adding edges between opposite vertices. That is, start from the cycle (v1,...,v,)
and, for all 1 < i < 2k + 1, add the edge v;v;195+1. Since G & Bs (in particular because
G has minimum degree 3, see next Section and is not locally irregular, xx(G) = 2
(as proved in [I0]). Since G is 3-regular, mS>(G) < 6 = 2A = A + 3 (by Claim[2.2). Let
us prove it is an equality. For purpose of contradiction, let us assume that there exists a
2-labeling ¢ of G such that mS(G,¥) < 6.

We first claim that there are no edges uv such that c¢g(u) = 3 and ¢y(v) = 5. Indeed,
let v be a vertex with ¢/(v) = 5 (if any). Let a,b,c be its neighbors. Since ¢/(v) = 5,
we must have ¢(va) = 1,¢(vb) = 2 and ¢(vc) = 2. Hence, ¢;(b) = c¢(c) = 4 (these colors
are at least 4 because they have an incident edge labeled 2 and must be different from
ce(v), and at most 5 by the hypothesis on £). For purpose of contradiction, let us assume
that ¢¢(a) = 3. Let x be the common neighbor of ¢ and a. Then, ¢/(x) # ¢/(a) = 3 and
ce(x) # ¢¢(c) = 4. Hence, ¢p(x) = 5 and z must be incident to exactly two edges labeled
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with 2. But f(ax) = 1 since ¢¢(a) = 3. Hence, ¢(cz) = 2, contradicting the fact that
co(c) = 4.

Let (A, B) be the bipartition of G. Let v be any vertex such that ¢;(v) € {3,5} (there
clearly must exist such a vertex) and, w.l.o.g., say v € A. By doing a BFS from v and using
the fact that there are no edges uv with ¢y(u) = 3 and ¢y(v) = 5 (and that two adjacent
vertices cannot have the same color), we deduce that, for all w € V(G), ¢y(w) = 4 if and
only if w € B.

Therefore, ), -5 ci(w) = 4|B| = 4(2k + 1) is even. Moreover, let 2 be the number of
vertices colored 5. Then ) 4 co(w) = 52+ 3(]A| —x). Since |A] is odd, then ) 4 c;(w)
is odd. However, >, ,cpco(w) = 32 ,ca ce(w) =D cp(e L(€), which contradicts the exis-
tence of £. O

Proposition 4.2. For every A > 2 and k > 2, there exists a bipartite graph G € By with
mazimum degree A such that mSg(G) > [327.

Proof. To obtain the graph G, let us start with the cycle (ug,u,v1,v2) and, for 3 <i < A,
add the edges w;v;, uju; and viv; (where u; and v; are new vertices). It is easy to see
that G belongs to B;. By Claim for every 2 < i < A, we have {(uju;) # {(viv;) for
any k-labeling £. Therefore, in any labeling, u; or v; must be incident to at least LA; 1
edges not labeled with 1 (otherwise, we would have ¢(uju;) = £(v1v;) for some 2 < i < A).
This implies that the following 2-labeling is optimal. Each edge w;v; for every 1 <i < A
is labeled with 1 by ¢. Then, for 2 < i < [(A —1)/2] + 1, l(uiu;) = 1 and £(v1v;) = 2,
and for every [(A —1)/2] +2 < i < A, we have {(ujv;) =2 and {(v1v;) = 1. If A —11is
odd, then mS(G,¢) = ¢i(v1) =2[(A—-1)/2] + [(A—-1)/2] +1=3[(A —-1)/2] = [3A/2]
(while ¢g(u1) = ¢g(v1) —1). If A —1 is even, then, to avoid ¢;(u1) = ¢¢(v1), let us relabel
ujug and vivg so that f(ujug) = 2 and £(vive) = 1. In this case, mS(G, ) = co(uy) =
2A=-1)2+ 1)+ (A-1)/2=3|(A-1)/2] +2=[3A/2]. O

4.1.2. Graphs of Bs

In [I0], the authors proved that the graphs of Bs, i.e., the bipartite graphs G with
xx(G) = 3, are precisely the so-called odd multi-cacti.

In what follows, let us give a constructive definition of odd multi-cacti together with
the notations that will be used further in this section. The odd multi-cacti are exactly the
graphs that can be obtained by the following recursive construction (see Figure 2| for an
illustration), which actually produces graphs whose edges are colored either red or green.
This (not necessarily proper) edge-coloring is then used by the process itself.

e Any cycle of length n =2 mod 4, n > 6, together with a proper red-green coloring of
its edges (this is actually the only point of the construction where the edge-coloring
is proper) is an odd multi-cactus. Let Cj be the root cycle of the odd multi-cactus.
Let also uv be one green edge of Cy that is called the starting edge.

e Given an odd multi-cactus G’, with its root cycle Cy, its starting edge uv and its
red-green (not necessarily proper) edge-coloring, it can be extended to a larger odd
multi-cactus G as follows. Let xy be any green edge of G’ with the extra constraint
that if xy € E(Cp), then xy = wv. Then, G is obtained by attaching a new path
P with length at least 5 congruent to 1 modulo 4 to xzy. By “attaching”, we mean
identifying = and an end-vertex of P, and identifying y and the second end-vertex
of P. Moreover, the edges of the path P are alternatively colored red and green, in
such a way that the two end edges (i.e., those incident to x or y) are colored red. Let
C(P) be the cycle of G induced by the edges of P together with zy and let zy be
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Figure 2: Constructing an odd multi-cactus through several steps, from the red-green Cs (a). Red-green
paths with length at least 5 congruent to 1 modulo 4 are being repeatedly attached onto green edges through
steps (b) to (d). Figure (a) gives an example of the labeling of Cy following the pattern 23113(2211)%*2
(note that this is the labeling before labeling the next paths, i.e., before switching the label of edge uv
to 1). Figure (c) gives an example of the labeling of Cy in the particular case when Cp has length 6 and
|P1] = 2. Wiggly edges are green edges.

called the parent edge of P (and of C'(P)). Moreover, if xy = uv, then let Cy be the
parent cycle of C(P). Otherwise (if xy ¢ E(Cp)), let P’ be the first attached path
containing zy during the construction of G’; then let C'(P’) be the parent cycle of
C(P). Finally, the cycle Cp remains the root cycle of G and wv remains its starting
edge.

First, let us point out a trivial but important property of odd multi-cacti.

Claim 4.3. Let G be any odd multi-cactus with its red-green edge-coloring. For any green
edge xy € E(G), we have d(z) = d(y).

The recursive definition of odd multi-cacti provides the following natural tree-like struc-
ture of their induced cycles. Let G be any odd multi-cactus with root cycle Cy. The
“parent cycle” relation allows to define the tree T(G) whose nodes are the induced cycles
of G, rooted in Cp, and such that CC’" € E(T(G)) if C is the parent cycle of C’ or wice
versa (abusing the notations, let us identify the induced cycles of G' (and corresponding
attached paths) and the nodes of T'(G)). We make use of the tree T'(G) only to formally
define a suitable ordered partition of the paths recursively attached to obtained G from
Cy. Precisely, for any non-leaf node C' of T'(G), let P be the set of paths P such that the
induced cycle C' is the parent cycle of C'(P) in G (note that, if G # Cp, then Pe # ) if and
only if C is not a leaf-node of T'(G) or C' = Cp). A wvalid path-partition of G is then defined
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as P(G) = (Pcy, Pcys - - -, Pcy), where (Co,...,Cy) is any BFS ordering of the non-leaf
nodes of T'(G) rooted in C.

Our main result in this section is that, for an odd multi-cactus G, the parameter
mS3(G) is always one of two possible values.

Theorem 4.4. For every odd multi-cactus G with mazximum degree A > 3, we have A+1 <
mS:;(G) < A + 2.

Proof. The lower bound follows from the fact that, by construction, for every green edge
uv we have d(u) = d(v). Moreover, the maximum degree is attained at some green edge,
say xy, i.e., d(x) = d(y) = A. Thus, in any labeling ¢ of G, assuming c;(x) < c¢(y), we
must have A < ¢y(x), which implies that A 4+ 1 < ¢(y).

We now focus on proving the upper bound, i.e., on proving that G admits a 3-labeling
¢ where the maximum color ¢;(v) over all vertices v is at most A + 2.

Let G be any odd multi-cactus with maximum degree A > 3 (in particular, T(G) is
not reduced to a single vertex) with its red-green edge-coloring. Let Cy be its root cycle,
let uv be its starting edge, and let (P1,...,P;) be some valid path-partition of G.

We deduce a 3-labeling ¢ with maximum color A 4+ 2 of G by starting from one of Cj,
then extending it to the edges of the paths in Pp, then to the edges of the paths in Po,
and so on. So we must show that, at every step, an extension does exist, and that, in
particular, there is one for which the maximum color does not exceed A + 2.

Let y be the size of Cy. Let us first label the edges of Cj as follows. Let (e; = vu,eq =
uvy, e3 = V102, ..., ey = vy_sv) be the edges of Cj in order with the starting edge as first
edge (i.e., ey is incident to u, e, is incident to v, and y = 2 mod 4 and y > 6). We
label them by applying the pattern 23113(2211)%2 (where x® denotes the concatenation
of s copies of the string z, and z = (y — 6)/4; see Figure [2| (d) for an example). That
is, l(e1) = 2,{(e2) = 3,l(e3) = 1,€(eq) = 1,4(e5) = 3,...,4(ey) = 2. Note that, so far,
co(u) = 5,¢(v) =4, ¢c0(v1) = 4, co(vy—2) = 3 (or ¢/(vy—2) =5 if y = 6) and ¢;(z) < 5 for
all z € V(Cp) (which is at most A + 2 since A > 3). We now sequentially extend this
labeling to all edges of G in such a way that the labels of the edges in E(Cp) \ {e1} are
never modified (except in one particular case if |E(Cp)| = 6 and |P;| = 2). Also, the only
other edges that will be labeled 3 are green edges whose two ends have both degree 2. This
way, the only possible red edge with label 3 will be one of the root cycle.

The second phase of the labeling consists in extending our current labeling £ to all paths
in P; (i.e., all paths that have been attached to the starting edge uv). First, switch the
label of uv from 2 to 1. Then, for every path P € P; (recall that P has length Ip at least
5 and congruent to 1 modulo 4 and has been attached to the starting edge uv), let us label
its edges in order from u to v by applying the pattern (1122)*71 (where zp = (Ip — 1)/4).
Note that the resulting labeling ¢ ensures that, for any P € P; and any internal vertex z
of P, the color of z is at most 4 and distinct from the color of its neighbors. Similarly, u
and v have distinct colors (cg(u) = 4+ |P1| and ¢g(v) = 3+ |P1]) that are distinct from the
colors of their respective neighbors but in one particular case: when |P;| = 2 and y = 6, in
which case ¢(v) = 5 = ¢;(vy—2). Except in the latter case, the resulting labeling ¢ is proper
and the maximum color is co(u) = 4 + |P1| < A + 2. In the pathological case, i.e., when
|P1| = 2 and y = 6, we relabel the edges (ey,...,eg) of Cy by applying the pattern 213322
in order (see Figure [2c|for an example). As a result we get co(u) = 5, co(v) = 6, co(v1) =4
and ¢;(vy—2) = 4, and ¢ is thus proper. Furthermore, the maximum color is 6 < A + 2
since A > 4 (because |P;| = 2).
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Recall that we are given a path-partition (Pi,...,Py) of G. For every 1 < i < g, let
G; be the subgraph of G induced by the vertices of Cp and of all paths in P; for every
1 < j <i. A pending path of G; is any path P of Ulgjgz‘ P; such that C(P) has exactly
two vertices of degree more than 2 in G;. Note that, for any pending path P of G;, either
C(P) is a leaf of T(G) or there exists i < j < ¢ such that P; is exactly the set of paths
attached to some green edges (different from its parent edge) of C'(P).

If ¢ = 1, then the labeling obtained so far satisfies the statement for G = G and we
are done. Otherwise, let 1 <14 < ¢ and assume by induction on ¢ that we have a labeling ¢
of G; such that:

e /is a 3-labeling where the only red edges assigned label 3 belong to the root cycle;
any green edge labeled with 3 has both its ends of degree 2; £ is proper and there is
thus no conflict; ¢;(v) < A+ 2 for every v € V(G;); and

e for every pending path P of G; with parent edge xy, the edges of P are labeled (from
y to x or from z to y) following the pattern (1122)*P1 or (2211)*F2 (where P has
length 4zp + 1 > 5), and |ce(x) — ¢¢(y)| = 1. In particular, every two “consecutive”
red edges of P are assigned distinct labels in {1, 2}.

These properties are clearly satisfied by the labeling ¢ defined for G;. Let us assume
that these properties hold for a labeling ¢ obtained for G;_1 (for some 1 < i < ¢) and let
us show how to extend it to a labeling (with these properties) of G; (such a labeling for
G, = G will clearly satisfy the statement of the theorem).

By definition, the paths of P; are the ones that correspond to the induced cycles with
a common parent cycle C' # Cp, i.e., let C be the induced cycle of G;_1 such that
P; = Pc. Hence, the paths of P; have been attached to some green edges (different
from the parent edge) of some pending path P of G;_; (such that C'(P) = C). Let P =
(Y, 21,91, %2, Y2, - - -, Tk, Yi, ) (where P has length 2k+1 > 5). That is, {z;y; | 1 < j < k}
is the set of green edges of P different from xgyg = zy, where both yx; and yix are joined
by a red edge, and each y;x;41 is also a red edge (for j € {1,...,k —1}). For each green
edge z;y; (j € {1,...,k}) of P, let us denote by n; > 0 the number of paths of P; that are
attached to z;y;. Note that dg(z;) = da(y;) = 2+ n; for every 1 < j < k (where dg(b)
denotes the degree of b in G).

Let us consider the green edges x1y1, xays, . .., Tx_1Yyk—_1 in order for j = 1 to k—1. For
each x;y; of them, we label the edges of the attached paths following one of the following
two extension schemes:

e Scheme A: We set the label of z;y; to 1. Then, we label the edges of all paths
attached to x;y; following the pattern (1122)*F1 from x; to y; or vice versa, so that
no inner vertex is involved in a conflict.

e Scheme B: We apply Scheme A, but change the label of z;y; to 2.

Note that Schemes A and B can be applied whatever the degree of z; and y; is (i.e.,
whatever n; is). It is easy to see that for each of the two extension schemes, labeling the
edges of the paths either as going from z; to y; or vice versa indeed raises no conflict,
unless z; and y; have the same color, a contradiction. Whenever applying one of the two
schemes in what follows, it is thus understood that this is done so that no conflict involving
an inner vertex of a path occurs. Also, it is important to note that every extension scheme
alters the colors of z; and y; the same way.
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The extension of ¢ to the successive z;y; (j = 1,...,k — 1) goes as follows. Assume
we are currently dealing with x;y;. Let us first apply extension Scheme A. At most two
conflicts may occur: along the edge y;_12; and/or along the edge y;jx 1. We first deal
only with the conflict between y;_1 and x;. If ¢/(yj—1) = c¢(z;), then let us apply extension
Scheme B instead. It is easy to check that the resulting partial labeling satisfies all desired
properties (in particular, the maximum color is at most A + 2) but, possibly, there is a
conflict between y; and x;,1; this conflict will be dealt with later, when dealing with the
next green edge ;1Y 1.

We are thus left with extending the labeling to the nj paths attached to xpyg. Here,
we might need to use a third extension scheme for a green edge x;y;:

e Scheme C: We set the label of z;y; to 2. Then, we label the edges of all paths
attached to z;y; following the pattern (1122)*P1 but an arbitrary one P* of them
that is labeled following the pattern (2211)#F2 (all paths being labeled either from
xj to y; or vice versa, so that no inner vertex is involved in a conflict).

Note that Scheme C requires n; > 0 to be different from Scheme B. When n; = 0, i.e.,
xj, y; have degree 2, we consider the following scheme instead:

o Scheme C7: We set the label of x;y; to 3.

An important point to raise is that, when applying Scheme C’ under all conditions
maintained so far (in particular, without loss of generality the edge incident to x; different
from x;y; is labeled 1 while the edge incident to y; different from x;y; is labeled 2), the
colors of z; and y; do not exceed 5, which is at most A + 2 since A > 3.

Now consider zxyg. If dg(zr) = da(yr) < A, then we are done, because by applying
one of Schemes A, B, C (or C’) above, we can extend the labeling to all paths without
creating conflicts, and with having at most three edges labeled 2 incident to one of xj and
Yk, implying that their colors are at most A+ 2 and differ by 1 (unless the degree of z; and
Yx 1s 2, in which case Scheme C’ might have introduced a 3, a situation we have discussed
above).

So let us assume that dg(zk) = dg(yr) = A. We can actually assume that there is
no j € {1,...,k} such that dg(z;) = de(y;) < A, as otherwise we could first extend
the labeling to the paths attached to w1yi,x2y2,...,2j-1y;-1 following this order, then
to those attached to zryr, Tx—1Yk—1,---,2j+1Yj+1 following this order, and then to those
attached x;y; via one of Schemes A, B, C (or C’), resulting in x; and y; verifying the same
conditions as above.

So let us assume that dg(z;) = dg(y;) = A for every j € {1,...,k}, and assume that
only the labeling of the n; paths attached to xpy, remain to be corrected. Note that, so
far, every red edge of P has kept the same label as in G;_;. This implies that, for every j,
the red edge incident to x; on P must be labeled differently than the red edge incident to
y; on P. Moreover, the way we have modified the labeling of G;_1 so far also ensures that
the colors of z; and y; differ by 1.

Let us assume that the red edge incident to y; on P (that is the edge yrxo) is labeled 2,
while the red edge incident to xp on P (that is the edge yi_1xx) is labeled 1. Propagating
this assumption along P from x = zy to y = yo, the labels of the red edges of P must
alternate, and, due to its length, yox1 is labeled 2 as well. As a first extension attempt, let
us apply Scheme A to zpyxr. The color of xj then becomes A while the color of y; becomes
A + 1. If no conflict arises, then we are done. Otherwise, there are two possible sources
for conflict:
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e The color of xg is also A + 1. Then we apply Scheme B at xy; instead. Now xp
has color A + 1 while y; has color A + 2. If no further conflict arises, then we are
done. Otherwise, then it must be because yr_1 has color A 4+ 1. Because yr_12k
is labeled 1, it means that zp_1yr_o is labeled 2, and due to how we have been
extending the labeling, we deduce that x;_1 has color A + 2.

Now come back to the moment where we have extended the labeling to the ng_q
paths attached to xp_1yx_1. By the color assumptions we have, we deduce that we
have here applied Scheme B. If applying Scheme A instead does not raise a conflict,
then we are done because the color of y;_1 would become A (while that of xj_;
would become A + 1), a favorable case for extending the labeling to the nj paths
attached to xpy,. Otherwise, then it must be because y,_o has color A + 1. Again,
since xx_1Yr_o is labeled 2, then x;_syir_3 must be labeled 1, and z;_o must have
color A, since the colors of xp_o and yi_o differ by 1.

Going on considering green edges like this as going along P from xiy; to x1y1, we
either find a green edge for which a different pair (cg(zg), ce(yx)) of colors at most
A + 2 can be reached (by employing a different extension scheme), which would lead
to a favorable case for extending the labeling to all attached paths, or we successively
deduce that (co(zr—1),ce(yr-1)) = (A+2,A+1), (ci(xp—2), ce(yp—2)) = (A, A+ 1),
(co(zr—3), ce(yr-3)) = (A +2,A + 1), (co(Th-1), ce(y-a)) = (A, A+ 1), and so on.
Due to the length of P, we eventually deduce that (¢s(z1),ce(y1)) = (A +2,A + 1),
and that yo has color A + 1. Then both xg and yg have color A + 1, which is a
contradiction.

e The color of yi_1 is also A. Then we apply Scheme B to xpy, instead. Now x
has color A + 1 while y; has color A + 2. Now, if another conflict arises, then it
is because xg has color A + 2. By arguments as in the previous case, we can get
a favorable case by altering the colors of a previous green edge (employing exten-
sion Scheme A instead of Scheme B, and vice versa), unless (co(xr_1),ce(yp—1)) =
(A + 1, A), (Cg(xk_g), Cg(yk_g)) = (A + 2, A+ 1), (Cg(xk_g), Cg(yk_g)) = (A + 1, A),
(co(wr—a),co(yk—a)) = (A +2,A+ 1), and so on. Due to the length of P, we even-
tually deduce that (ce(z1),ce(y1)) = (A +1,A), and that yg has color A 4 2. Then
both zy and yy have color A + 2, a contradiction.

The same type of arguments also apply when the first edge and the last edge of P are
labeled 1. In all cases, we can extend the labeling to all paths attached to P, in such a
way that no color exceeds A + 2. This concludes the proof. O

In the line of Theorem [4.4] the next natural step would be to investigate, given an odd
multi-cactus G, whether determining m.S3(@) is hard or not. A consequence of Theorem 3.3]
is that this value can be determined in polynomial time.

Corollary 4.5. The problem of deciding mSi(G) can be solved in polynomial time in the
class of odd multi-cacti G (i.e., when G € Bs).

Proof. This comes from the fact that tw(G) = 2 for any odd multi-cactus G' € Bs. Indeed,
G is nothing but a collection of induced cycles every two of which share at most one edge.
The fact that such a graph has treewidth 2 can easily be proved by induction on the number
of induced cycles. Theorem then applies to G, proving the claim. ]
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4.2. Trees

In this section, we focus on trees T' (recall that yx(7") < 2 for any nice tree T' [3]). The
main result of this section is that mSy(T) is always one of three possible values, each of
which can be reached.

Theorem 4.6. For any k > 2 and any nice tree T with mazimum degree A, then mSy(T) €
{A, A+ 1,A+2}. Moreover, all these values are reached.

Proof. The lower bound A holds by Claim [2:2] To prove the upper bound, let us design a
labeling process that will achieve a 2-labeling ¢ with mS(T,¢) < A + 2. Let us root T in
any arbitrary node r. The process will consider all vertices one by one in a BFS ordering
(i.e., a vertex at distance d from the root is considered once all vertices at distance less than
d from the root have been considered). Moreover, once a vertex v has been considered, all
its incident edges are labeled (and their labels will never be modified anymore), it is not
in conflict with its parent (if v # r), and its color ¢;(v) is at most A + 2.

Start by labeling all edges incident to r with 1 (so ¢¢(r) = d(r) < A). Now, let v # r
be any vertex such that its parent u has already be considered. Hence, all edges incident
to u have received a label (in {1,2}), and so, cy(u) is well defined. Let d be the number of
children of v.

e If d > 0, then there are two cases to be considered. If d + ¢(uv) = cg(u) then label
all edges between u and its children with 1 but one such edge that is labeled 2 (i.e.,
ce(v) = d+ f(uv) + 1). Otherwise, label all edges between u and its children with 1
(i.e., co(v) = d + £(uv)). In both cases, ¢¢(v) # c¢(u). Moreover, v is incident to at
most two edges labeled 2 (possibly its parent edge and one other incident edge) and
so ¢g(v) <d(w)+2<A+2.

e If d =0 (i.e., v is a leaf with color ¢(uv)), then note that u has degree at least 2 since
T is nice and so ¢y(v) # co(u).

We conclude with the last part of the statement. Let A > 1. It is easy to see that any
star SA with maximum degree A is locally irregular, and thus mSg(Sa) = A for every
k > 1. The fact that there are trees 7" with maximum degree A such that mSy(T) = A+1
or mSk(T) = A + 2 follows from Corollary and Proposition below. O

Following Theorem [4.6] we say that a tree with maximum degree A is of type x for
r € {AA+1,A+2} if mS2(T) = x. The next natural step in the line of Theorem
would be to provide a full characterization of the trees of type A, A+1or A4+2. A
consequence of the polynomial-time algorithm given in Section [3.2] is that an algorithmic
characterization exists. But we wonder whether a more natural characterization exists, such
as a characterization in terms of particular subtrees. Towards such a characterization, we
provide, in the rest of this section, sufficient conditions for a tree to be of type A, A+ 1
or A+ 2.

We start off by providing an easy condition in which a tree cannot be of type A.

Observation 4.7. Let A > 2 and T be any tree with maximum degree A having two
adjacent vertices of degree A. Then, mSi(T) > A+ 1 for any k > 2.

Proof. The two adjacent vertices with degree A must have different colors whatever be the
labeling. Hence, at least one of them must have an incident edge labeled with at least 2.
Hence, its color is at least A + 1. O
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Corollary 4.8. For every A > 2, there are trees with mazimum degree A of type A + 1.

Proof. Consider a bistar with two adjacent vertices of degree A, i.e., a tree obtained from
two adjacent vertices by making each of them adjacent to A — 1 leaves. O

In what follows, we introduce a family of trees of type A 4+ 2. Let us introduce some
notations. Let A > 3. Let Fa be the rooted tree such that its root has degree A — 1 and
each neighbor of the root has A neighbors each of which (except the root) is a leaf. Let
Ha be the tree obtained from two copies of Fo by making their roots adjacent.

Proposition 4.9. For every A > 3, every tree T, with mazimum degree A, containing
HAa as a subtree is of type A + 2.

Proof. Let u and v be the roots of the two copies of Fa. Note that they have degree A
in T. In any k-labeling, since they must have different colors, at least one of them, say u,
must have at least one incident edge (not uv) labeled 2 (if one edge is labeled with more
than 2, then the maximum color is already at least A + 2). Let us assume that u has
exactly one incident edge labeled with 2 and all others are labeled with 1 (since otherwise,
the color of u would already be at least A + 2) so that the color of u is A + 1. Let ux be
the edge labeled with 2. Now, x has degree A, it has at least one incident edge labeled
2 (so its color is at least A + 1) and cannot have color A + 1. Hence its color is at least
A+ 2 and mS(T) > A + 2. The equality comes from Theorem O

4.8. Using larger labels in trees

In the previous section, we have studied 2-labelings of nice trees T, showing in Theo-
rem that mS2(T") is essentially one of three possible values (function of the maximum
degree). A natural question to ask is whether the use of larger labels can lead to a decrease
of the maximum color. This question makes more particularly sense for the trees of type
A + 2, since their value of m.Ss is the worst one for a tree with maximum degree A.

The next result shows several things. First, that, for trees, using larger labels can
indeed allow to decrease the maximum color. Second, and more importantly, that there
are graphs (and even trees) for which, in order to make the maximum color decrease, we
have to employ arbitrarily large labels.

Theorem 4.10. For every k > 2, there exists a tree Ty, such that mSky1(Ty) = mSk(Tk) —
1.

Proof. For k = 2, the tree Ty depicted in Figure satisfies mSs(T3) = 6 and mSs3(T3) = 5.
Indeed, in any 2-labeling ¢, by Claim one of wixy or wers must be labeled with 2,
w.l.o.g., say {(wiz1) = 2. Then, one of vjw; or viwy, say viw;, must be labeled with 1 (as
otherwise w; would have color 6). If ¢y(w;) = 4, then v, cannot have color 4 and one edge
incident to vy (but wjvy), say ujvi, must be labeled 2. Now vy has color 5, and w; has color
at least 5, so mS(Tp, £) > 6. If cp(w1) = 5, then w.lo.g., £(v],w1) = 2, and v| has color
at least 5. Again mS(Ts,¢) > 6. It is easy to see that mSs(T2) < 6. Moreover, labeling
the edges wix1, T1x9, Tows with 3,1, 1 in order can easily been extended to a 3-labeling ¢/
(using label 3 only once) with m.S(T5,¢') = 5, hence mS3(T5) < 5 (the equality holds since
there are two adjacent vertices with degree 4).

For any k > 3, let us build a tree T; with maximum degree A > 2k such that
mSk+1(Tr) = A and mSk(T) = A + 1. We use some gadgets similar with (but more
general than) the ones used in Theorem
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Figure 3: The tree T» with mSz(T) = 6 and mS3(7>) = 5.

Let us first define the gadget H(d) (that depends on k and A > 2k that are fixed)
forde {A,A—1,...,A —k}. H(A) is a star with A leaves, rooted at one of the leaves,
denoted as r and with center of degree A. For every A > d > A —k, let us define H(d) as
follows. Start with one copy of H(d') for every d’' € {A;A—1,...,d+ 1}; then identify all
their roots, denoting the obtained vertex c as the center of H(d) (which is then adjacent to
all centers of the H(d')’s). Finally, let us add another d — (A —d) = 2d — A > 0 (because
A > 2k and d > A — k) leaves adjacent to ¢ to make sure that ¢ has degree d. The root r
of H(d) is any leaf adjacent to c.

Claim 4.11. Letd € {A,A—1,...,A —k}. Then, for any k-labeling £ of H(d), we have
mS(H(d),f) = A if and only if £(e) = 1 for any e € E(H(d)). Particularly, the label of
the edge between the root r and the center ¢ of H(d) satisfies £(rc) = 1 and the color of the
center c is d.

Proof of the claim. It is obviously true for d = A. By induction on d, let us assume that
the statement holds for every d’ with d < d’ < A.

If each edge of H(d) is labeled with 1, then, for every d' € {A;A —1,...,d + 1}, the
maximum color of the vertices in the H(d')’s contained in H(d) is at most A. Moreover,
their centers are colored d' for d' € {A,A—1,...,d+ 1} and, by the induction hypothesis,
there are no conflicts in the H(d')’s. Note that the center ¢ of H(d) has degree d. So it is
colored d and no conflict occurs with its neighbors.

If mS(H(d),¢) = A for some k-labeling ¢, then the maximum color of every H(d’) for
each d' € {A,A —1,...,d+ 1} contained in H(d) is also A. By the induction hypothesis,
for each ' € {A,A —1,...,d+ 1}, every edge in the copy of H(d') is labeled with 1.
Moreover, for every d € {A;A —1,...,d+ 1}, the center of H(d') is colored with d’.
So the center ¢ of H(d) (which has degree d) has to be colored d, as otherwise it would
get a color more than A to avoid conflicts with its neighbors. Hence, the only way that
mS(H(d),¢) = A is that all the edges incident to ¢ are also labeled 1. o

Now, let Dy, be the tree built as follows (note that it also depends implicitely on A).
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Dy, is obtained from one copy of H(d) for every d € {A —k,A—k+1,...,A —2} and
from A — 2k extra copies of H(A — 2) by identifying all their roots into one single vertex
¢, called the center of Dy. Finally, add one leaf adjacent to ¢ (so that ¢ has now degree
A — k), this leaf being the root of Dy.

Claim 4.12. Let Dy, be rooted at r and centered at c. Then mSk(Dy) = mSky1(Dy) = A.
Moreover, the unique k-labeling ¢ with mS(Dy, ) = A is such that ¢(rc) =k and {(e) =1
for every edge e in E(Dy) \ {rc}, and any (k + 1)-labeling ¢ with mS(Dy,£) = A is such
that £(rc) € {k,k+ 1} and £(e) = 1 for every edge e in E(Dy) \ {rc}

Proof of the claim. Since any labeling ¢ of Dy such that mS(Dyg,¢) = A induces a labeling
with maximum color A for each of the copies of H(d) (d € {A —k,A—k+1,...,A —
3,A — 2}), by the previous claim all edges e € E(Dy) \ {rc} must be labeled with 1.
Moreover, the center of a copy of H(d) ford € {A —k+1,A—k+2,...,A -3, A -2}
must have color d. Since the center ¢ of Dy, is adjacent to the centers of the copies of the
H(d)’s and ¢ has degree A — k and is adjacent to A — (k + 1) edges labeled with 1 (the
edges incident to the centers of the copies of the H(d)’s), the last edge rc¢ can only be
labeled with k or k + 1 to ensure that ¢;(c¢) < A and c¢(c) is different from any value in
{A—Ek,A—k+1,...,A =3 A—2}. o

Now we are ready to define the tree T} and prove that mSii1(Tx) = A < mSk(Ty) =
A + 1. Let T} be obtained from two copies of D by adding one edge incident to both
roots of the copies of Dy. Let ¢;,r;, i € {1,2} be respectively the center and the root of
the two copies of Dy (so T} is obtained by adding the edge r17r2). By the previous claim,
any labeling ¢ of T}, such that mS(T,¢) = A must be such that ¢(r;¢;) € {k,k + 1} for
each ¢ € {1,2}. If £ is a k-labeling, then no edge can be labeled with k + 1 and we must
have £(r1c1) = €(rac2) = k but this would imply that cy(r1) = ¢¢(r2). Hence, mSk(Ty) > A
(and it is easy to see that mSk (7)) < A+1). On the other hand, if ¢ is a (k + 1)-labeling,
then setting ¢(r1c1) = k+ 1 and ¢(raca) = k leads to a labeling of T}, with maximum color
A. O

4.4. Using larger labels in general graphs

In this section, we construct graphs G verifying mSs(G) = 2A(G) and mS3(G) = A(G),
see final Theorem We obtain these graphs by connecting several smaller graphs in
some fashion. These smaller graphs are depicted in figures all along this section. Whenever
dealing with their vertices and edges later, we implicitly do so using the terminology used
in the corresponding figure. Most of our graphs will contain inputs and outputs, which are
pending edges which will serve for the connections.

Let T be the graph with 11 vertices and 15 edges depicted in Figure [4, obtained from
five edge-disjoint triangles (uq,ug,us), (ug,a1,as), (ug,b1,bs), (us,c1,c2) and (ug, d,d2).
Let uy be the root vertex of Th. It has the following labeling properties.

Lemma 4.13. In every 2-labeling £ of Ty, we have:
1. {l(uruz), L(urug)} = {1,2},
2.9 € {eo(uz), ce(us)},
3. the one of cg(uz) and c¢(us) different from 9 can be any of 8 and 10.

Proof. Let ¢ be a 2-labeling of 1. So that ¢y(a1) # c¢(az), we must have, say, ¢(ajuz) =1
and f(aguz) = 2. Note that whatever the label of ajas is, no conflict involving a;, as and
ug can arise, due to the larger degree of us. These arguments also apply around the b;’s,
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Figure 4: The two main 2-labelings ¢ and 2 of T>. An integer in a circle representing a vertex is the color
of this vertex for the depicted 2-labeling.
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Figure 5: 2-labelings of the spreading gadget G*. A triangle with “T%” marked in indicates that a copy of
the gadget T» is attached via its root vertex. That is, us (resp., ug) is identified to the roots of two copies
of Ty, while w7 is identified to the root of one copy of T5. An integer in a circle representing a vertex is the
color of this vertex for the depicted 2-labeling.

¢;’s and d;’s. In particular, the labels of the four edges joining ue and the a;’s and b;’s
bring 6 to the color of us, and similarly the labels of the four edges joining u3 and the ¢;’s
and d;’s bring 6 to the color of us.

Now, so that cy(u2) # c¢(us), we must have, say, (ujus) = 1 and ¢(ujusg) = 2. Then
no conflict involving ue and uz can arise, no matter whether usug is labeled 1 or 2. In
the first case, we get (cg(u2), ce(us)) = (8,9), while we get (cp(us2), ce(usg)) = (9,10) in the
second case. O

We now introduce the spreading gadget G*, depicted in Figure |5, The edge i(G*) =
uiug of G* is its input, while its edges 01(G*) = uguip and 03(G*) = wujguis are its
outputs. Some properties of G* are the following.
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Lemma 4.14. In every 2-labeling { of G*, the input and the two outputs are assigned the
same label, i.e., {(ujug) = L(uguig) = €(urouisz). This label can be either of 1 and 2.

Proof. Assume £ is a 2-labeling of G*. Note that we must have ¢(ugus) = £(u4ug). Indeed,
suppose w.l.o.g. that ¢(usus) = 1 and f(ugqug) = 2. Since there are two copies of Tp
attached to us, by Lemma the color of us is 7+ ¢(usur) and it is adjacent to a vertex
with color 9 (in T%). Similarly, because of the two copies of Ty attached to ug, the color of
ug is 8 + L(upuy) and it is adjacent to a vertex with color 9 (in 7). Then we must have
l(usur) = 1 and L(ugur) = 2, so that ¢s(us) = 8 and cp(ug) = 10. We also know that a
neighbor of w7 from the graph 75 attached to it has color 9, and that this graph 75 provides
3 to the color of w7 by Lemma Then, u7 has color 6 + ¢(uzug) + ¢(u7ui1), and the
two edges uyug and uyu; must be labeled (with 1 or 2) in such a way that the color of uz
does not meet any value in {8,9, 10}, which is impossible.

On the contrary, there exists a 2-labeling ¢ such that ¢(usus) = ¢(uqug) = 1. Because
of the arguments above, we have ¢(usuy) = l(uguy) = 1 and c¢o(us) = c¢(ug) = 8. Recall
that we may assume that the labeling of the graph Tb attached to wy is such that the
two vertices that are adjacent with u; have color 9 and 8 (Lemma . Besides, the
labeling of this graph 75 provides 3 to the color of u7. Thus, the color of w7 is at least 5,
and the edges urug and uyui; are labeled in such a way that the color of w7 is not 9 or
8. The only possibility is to have ¢(u7ug) = ¢(urui1) = 1 since, in this situation, we get
ce(uy) = 7. It can be checked that, by similar arguments, there exists a 2-labeling ¢ such
that (ugus) = (uqug) = 2.

Now suppose f(ujuz) = 1, and consider the edges usus and uguy (see Figure [5| (a)
for an illustration). First, if {(uqug) = ¢(uguy), then note that ¢ is not a proper labeling
according to the arguments above since we would necessarily have f(ugus) # ¢(uqug) so
that co(us) # cg(ug). Thus, l(ugug) = 1 and l(uguy) = 2 without loss of generality,
and cg(uz) = 4. Note that, if ¢(usus) = 1, then we necessarily get that cg(us) or cg(uq)
is equal to ¢y(ug) since we need l(ugus) = f(ugug). Thus £(ugug) = 2. We then have
l(ugus) = 2 so that ¢g(us) # co(uz), and also (uqug) = 2 so that cg(ug) # co(us) (and
because (ugqug) = ¢(ugus) by arguments above).

According to the arguments above, we have f(usus) = ¢(uqug) = 2 and l(ujug) =
l(uzuyy) = 2 under the assumption ¢(ujus) = 1. Then £(uguig) = £(uiguiz) = 1 to avoid
conflicts. Thus, assuming the input of G* is labeled 1, also its two outputs are labeled 1.

A similar case analysis yields an analogous conclusion when ¢(ujug) = 2, see Figure
(b). Let us point out that, in both cases, the label of the edges ugug and wujjuis could be
any of 1 and 2 at this point. O

In what follows, we will combine copies of G* via their inputs and outputs. Let us first
prove that this preserves the labeling properties of Lemma [£.14]

Lemma 4.15. Let Gy and Gg be two copies of G*, and let G be the graph obtained by
identifying 01(G1) and i(Ga). Then, in every 2-labeling of G, all of i(G1), 01(G1) = i(G2),
02(G1), 01(G2) and 02(G2) are assigned the same label. This label can be either of 1 and 2.

Proof. Let ¢ be a 2-labeling of G. Because i(G*) and o1 (G*) are pendant edges of G*, in
G the combination of G and Go does not grant new labeling possibilities (Indeed, note
that in proofs of Lemmas and we never considered the color of vertex uj nor
the ones of vertices u1g and u13, so changing their degree will not impact the properties of
any labeling G*). In other words, ¢, when restricted to G and G, is a 2-labeling, which
thus verifies the properties in Lemma From this, and because the input of G2 and
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Figure 6: The two main 2-labelings of the 2-forcing graph F. An integer in a circle representing a vertex
is the color of this vertex for the depicted 2-labeling.

an output of Gy coincide, we directly get that all of i(G1), 01(G1) = i(G2), 02(G1), 01(G2)
and 02(G2) must receive the same label by ¢. It just remains to show that ¢ can indeed be
adjusted so that no conflict arises around the “connection points”. That is, we must make
sure that the colors of vertices ug and wjg in G; (which correspond to u; and uy in Ga)
are not equal.

Assume first the label assigned by ¢ to the input and outputs of G is 1. If we just
consider as £ the edge-labeling described in the proof of Lemma (depicted in Figure
(a)), then, in Gy, we have ugujg = 1 and ugug can be freely chosen to be labeled 2, as
pointed out in the proof. This leads vertex ug of G to have color 3. Now, by how ¢
propagates in Go (assuming its input edge is labeled 1), its vertex ug, which is uig of Gy,
gets color 4. So there is no conflict involving vertices ug and w19 of G1, around the edge
where the identification was performed.

Through similar arguments, it can be checked that when the input and outputs of G
are assigned label 2 by ¢, then ¢ can flow through G; and Gs so that, in G, we have
l(uyug) = L(uyuir) = 1 and l(ugug) = l(ujjuiz) = l(uguig) = £(uiauiz) = 2 (see Figure
(b)). That way, the color of ug in G7 is 4 while the color of u1y (which is ug in Gs) is 5,
and there is no conflict. O

According to Lemma[4.15] starting from copies of G* and concatenating them through
their input and outputs, we can now obtain a generator graph Gy, having one input
i(G1/2) and arbitrarily many outputs 01(G1/2),02(G1/2), - .. such that any 2-labeling of
G2 is such that the input can be labeled any of 1 and 2, but all outputs have the same
label as the input. In what follows, we introduce some more structure to the generator
graph to force its input to be labeled 2 by any 2-labeling.

The 2-forcing graph F is the graph depicted in Figure [6] It has twenty-three inputs
ev, ajuy, ..., azul, bius, ..., bsus, crus,...,ceus and dyug,...,dgus (and no output). Its
main labeling properties are the following:

Lemma 4.16. Assume ¢ is a 2-labeling of the 2-forcing gadget F where all inputs are
assigned the same label. Then all inputs must be labeled 2.

Proof. Assume the twenty-three inputs of F' are labeled 1 (see Figure[] (a)). This brings 5
to both the color of u; and ug. So that ¢s(u1) # co(usz), we must thus have, say, ¢(u1v) =1
and ¢(ugv) = 2, which implies that, regardless of £(ujus), we must have 8 € {cg(uq), co(uz)}.
The same arguments for us, ug and the twelve inputs connected to them imply that we

27



must have, say, £(uzv) = 1, f(uqv) = 2, and 9 € {cs(ug), co(ug)}. Now, since l(ev) = 1
by assumption, we note that we must have ¢;(v) = 8 or ¢y(v) = 9, depending on whether
l(vf)=1or l(vf)=2. Vertex v is then involved in a conflict, a contradiction.

On the other hand, there exist 2-labelings of F' where all inputs are labeled 2. An
example is given in Figure [6] (b). O

Now take the generator graph G s, choose twenty-three of its outputs (as mentioned
earlier, we can assume Gy has arbitrarily many outputs), and identify these with the
twenty-three inputs of a copy of the 2-forcing gadget F'. We call the resulting graph the
2-generator graph G5. The input of G2 is the input of Gy /5, and the outputs of G are the
outputs of G/ that are different from the twenty-three outputs used for the connection
to the copy of F. Since G/, can have arbitrarily many outputs, so does Gs.

Lemma 4.17. Assume £ is a 2-labeling of the 2-generator graph Go. Then the input and
all outputs of Go must be labeled 2.

Proof. As described earlier, the input and all outputs of the generator graph G/, used to
construct G must be assigned the same label by a 2-labeling ¢ of G5 (in particular, this
is not impacted by the connection to the 2-forcing gadget F'). This label cannot be 1, as
otherwise £ could not be propagated through the 2-forcing gadget F' in G2, by Lemma
Thus, this label must be 2.

Furthermore, there do exist 2-labelings of G2 where the input and all outputs are
labeled 2. First of all, recall that both the generator gadget G/, in Ga (by Lemma
and the 2-forcing gadget F' in G (by Lemma admit such. Now we just need to show
that 2-labelings of GGy and F' where the inputs and outputs are labeled 2 can indeed be
combined to one of GG in such a way that no conflict arises. For that, we just need to make
sure that a vertex ug (or uj2) being part of a copy of G* in G, /2 is not in conflict with a
resulting neighbor in the used copy of F. Since ug in G* has degree 2 and the outputs are
assigned label 2, the color of that ug is either 3 or 4. In a copy of F, such a vertex ug of
G* is adjacent to either of vertices w1, us, v, us or uys in the copy of F. We note that each
of these vertices has degree at least 6, and thus its color is at least 6. So no conflict can
arise when combining 2-labelings of Gy /5 and F' in Ga. O

We are now ready for our conclusion.

Theorem 4.18. For every A > 16, there exists a graph G with mazimum degree A wveri-
fying mS2(G) = 2A and mS3(G) = A.

Proof. Let A > 16 be fixed, and consider the 2-generator G, with A outputs. Then let G
be the graph obtained from G9 by identifying the vertices with degree 1 of these A outputs
to a single vertex v*. Note that A(G2) = 8 (the largest degree being attained for vertices
ug and ug of the forcing gadget F'), so we have A(G) = d(v*) = A.

Now consider a 2-labeling of G. Graph G contains G, and, by Lemma [4.17] all input
and outputs must be labeled 2. In particular, all edges incident to v* must be labeled 2,
which means that ¢,(v*) = 2A. We note that there actually exist such 2-labelings of G,
since Gy admits some (as pointed out in the proof of Lemma , and the only conflicts
that can arise are between v* and its neighbors. These neighbors are actually vertices ug
or u12 of copies of G* in G5, and are thus of degree 2 while v* has degree at least 16. So
these vertices cannot be in conflict.

We now claim that we can produce a 3-labeling of G where the maximum color is A.
To see this holds, start with just using 1,2 as above, getting an initial labeling ¢. Since
v* results from the identification of outputs of Go, thus of outputs of G*, the neighbors of
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v* are all some vertices either ug or u1o from some copies of G*, each such vertex being
adjacent to some vertex ug or uj; from the same copy of G*, each such vertex being also
adjacent to some vertex w7 in that copy. We modify ¢ by considering every output incident
to v*, and modifying the label of the associated edges uyug and u7uqq (in the corresponding
copy of G*) to 3, and the label of the associated edges ugug, ujiuie, ugv* and u12v* to 1.
This raises no conflict, as, in every incident copy of G*, the corresponding u7 gets color 11,
vertices ug and w11 get color 4, and vertices ug and u1s get color 2. Once this modification
has been applied to every output incident to v*, all its incident edges are assigned label 1,
so ¢g(v*) = A (which is so large that it cannot be the color of a neighbor of v*, since all
neighbors of v* have degree 2). Furthermore, this is the largest color, since:

e only vertices uy, ug and uy; from some copy of G* are incident to edges labeled 3,
and, in their case, their color is less than A (as pointed out above); and

e all other vertices of GG different from v* have degree at most 8 and are not incident
to edges labeled 3; so the color of these vertices is at most A > 16.

So mS3(G) = A, while mSy(G) = 2A. O

5. Conclusions and perspectives

In this work, we have investigated the minimum maximum color mSy(G) that one can
generate by a k-labeling of a given graph G. This parameter is related to the well-known
1-2-3 Conjecture, and we have thus mainly focused on classes of graphs for which the
parameter yy is relatively well understood (complete graphs, complete bipartite graphs,
trees, bipartite graphs). We have provided bounds on m.Sy, for such graphs, some of which
are tight. An interesting aspect to us was the algorithmic complexity of determining the
value of mSk(G) for a given graph G. We have shown that the complexity of this problem
is highly dependent of the input graph. As a consequence, that problem is sometimes hard
(NP-complete) or easy (polynomial-time solvable). The proof we have provided that this
problem is easy for some graph classes is a consequence of a more general polynomial-time
algorithm we have designed for graphs with bounded treewidth, which has more general
side consequences on algorithmic aspects related to the 1-2-3 Conjecture. Finally, we have
also investigated the trade-off between using larger labels and aiming at generating smaller
colors.

We leave open a number of questions, however, and we think that they could lead to
further work on the topic. In particular:

e Claim states that for every nice graph G with maximum degree A, the value of
mS2(G) lies in between A and 2A. In Section we have shown that there exist
bipartite graphs G with maximum degree A € {2,3} for which mSs(G) reaches the
upper bound 2A. We do not know whether this upper bound is also correct for larger
value of A. So we ask: For every A > 4, are there bipartite graphs G with maximum
degree A such that mSy(G) = 2A7

e In Section [4.2) we have essentially shown that, for a nice tree T" with maximum
degree A, the value of mSs(T) is one of A, A+ 1, A+ 2. Furthermore, our algorithm
from Section attests that mSa(7) can be determined in polynomial time. We are
not sure, however, about a nice characterization, for instance in terms of particular
subtrees, of the trees T with mSa(T') being A, A+ 1 or A + 2.
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e A similar concern applies to odd multi-cacti. We have essentially shown, in Sec-
tion that for an odd multi-cactus G with maximum degree A > 3 the value
of mS3(G) is either A + 1 or A + 2. Is there a nice characterization of the odd
multi-cacti for which mSj3 is either of these two values?
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