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Abstract. Two approaches have been classically used in disease ecology to estimate 12 

epidemiological parameters from field studies: cross-sectional sampling from unmarked 13 

individuals and longitudinal capture-recapture setups, which generally involve more limited 14 

numbers of marked individuals due to cost and logistical constrains. Although the benefits of 15 

longitudinal setups are increasingly acknowledged in the disease ecology community, cross-16 

sectional data remain largely over-represented in the literature, probably because of the 17 

inherent costs of longitudinal surveys. In this context, we used simulated data to compare the 18 

performances of cross-sectional and longitudinal designs to estimate the force of infection 19 

(i.e., the rate at which susceptible individuals become infected). Then, inspired from recent 20 

method developments in quantitative ecology, we explore the benefits of integrating both 21 

cross-sectional (seroprevalences) and longitudinal (individuals histories) datasets. In doing so, 22 

we investigate the effects of host species life history, antibody persistence and degree of a 23 

priori knowledge and uncertainty on demographic and epidemiological parameters, as those 24 

are expected to affect in different ways the level of inference possible from the data. Our 25 

results highlight how those elements are important to consider to determine optimal sampling 26 

designs. In the case of long-lived species exposed to infectious agents resulting in persistent 27 

antibody responses, integrated designs are especially valuable as they benefit from the 28 

performances of longitudinal designs even with relatively small longitudinal sample sizes. As 29 

an illustration, we apply this approach to a combination of empirical and simulated data 30 

inspired from a case of bats exposed to a rabies virus. Overall, this work highlights that 31 

serology field studies could greatly benefit from the opportunity of integrating cross-sectional 32 

and longitudinal designs.  33 

Key-words:  eco-epidemiology, detectability, immunity persistence, sampling strategy, study 34 

design, wildlife 35 
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INTRODUCTION 36 

Understanding the ecology and evolution of infectious diseases in wildlife has been 37 

highlighted as critical for public health (Jones et al. 2008) and biodiversity conservation 38 

(Smith et al. 2006). Natural host-parasite systems also offer useful models to obtain valuable 39 

insights on evolutionary ecology processes such as coevolution and local adaptation (Gandon 40 

2002) or host and vector movements (Boulinier et al. 2016). However, investigations in the 41 

wild have been hampered by the difficulty of collecting data allowing efficient inference of 42 

eco-epidemiological dynamics (Plowright et al. 2019). For instance, the force of infection 43 

(i.e., the rate at which susceptible individuals acquire an infectious disease), a key eco-44 

epidemiological parameter (Hens et al. 2012), is difficult to estimate from field data as it 45 

requires assessing how many individuals went from susceptible (e.g., non-infected and non-46 

immunized) to infected in a given time period, which is rarely observable. Estimating these 47 

parameters is however a critical step in the characterization of epidemiological dynamics and 48 

factors impacting them. Methods allowing their estimation from field data are thus needed.  49 

The benefits of longitudinal setups, defined here as the repeated sampling of the same 50 

individuals across time, notably using capture-recapture designs, are increasingly 51 

acknowledged in the disease ecology community (e.g., Jenelle et al. 2007, Lachish et al. 2007, 52 

Chambert et al. 2012, Buzdugan et al. 2017, Marescot et al. 2018). However, cross-sectional 53 

data, defined here as the sampling of unmarked individuals at one or more points in time, 54 

remain largely over-represented in the literature, probably because of the inherent costs of 55 

longitudinal surveys. It requires much more time and skills to spot marked individuals and to 56 

recapture them than to capture a random sample of individuals in a target population (e.g., if a 57 

marked fur seal is spotted in the middle of a harem, field workers may have to postpone the 58 
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capture to limit disturbance and biting risks, while in a cross-sectional sampling design, the 59 

capture of another, more peripheral, individual would be much easier).  60 

Recent advances in population ecology, such as the advent of integrated modeling, may 61 

open new perspectives for the estimation of eco-epidemiological parameters. Indeed, 62 

Integrated Population Modelling (IPM) has proven effective to improve demographic 63 

parameter estimations by integrating datasets of different natures (e.g., capture-recapture and 64 

counts) on the condition that they depend partly on the same set of (demographic) parameters 65 

(Besbeas et al. 2002, Schaub et al. 2007, Abadi et al. 2010, Fletcher et al. 2019). In disease 66 

ecology, a similar approach could thus be used to integrate low cost cross-sectional data with 67 

longitudinal data that provide key elements about processes underlying the dynamics of the 68 

considered variables (e.g., the kinetics of the immune response). IPM has been recently 69 

applied in an epidemiological context (McDonald et al. 2016), but to our knowledge 70 

approaches integrating cross-sectional and capture-recapture epidemiological data have never 71 

been explicitly used to estimate epidemiological parameters.  72 

In some species, individuals can be marked and repeatedly (re)captured across time, 73 

allowing longitudinal sampling. This is particularly true for long-lived vertebrates showing 74 

seasonal and colonial breeding (such as seabirds, pinnipeds, and chiropterans) and which are 75 

often faithful to their breeding or roosting site (e.g., Chambert et al. 2012b, Robardet et al. 76 

2017, Gamble et al. 2019a). In these systems, capture-recapture approaches have started to be 77 

used to estimate epidemiological state transition probabilities (e.g., from healthy to 78 

symptomatic) while accounting for recapture probabilities below unity, which are unavoidable 79 

in wild settings (Jennelle et al. 2007, Conn and Cooch 2009). However, longitudinal studies 80 

are usually based on relatively small sample sizes because field efforts needed to resight and 81 

recapture marked individuals tend to be intensive. In contrast, cross-sectional studies are 82 
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usually less costly and may also allow the estimation of epidemiological state transition 83 

probabilities. This type of data can generally be used to monitor variations of prevalences 84 

(i.e., the proportion of infected individuals) or seroprevalences (i.e., proportions of 85 

seropositive individuals). However, linking variations of prevalences or seroprevalences to 86 

epidemiological dynamics often requires additional data seldom available in wild populations, 87 

such as knowledge on the infectious period (e.g., Hénaux et al. 2010) and/or refined antibody 88 

kinetic curves (e.g., Borremans et al. 2016, Pepin et al. 2017), or strong assumptions on the 89 

host demography (e.g., Samuel et al. 2015). Both approaches (longitudinal and cross-90 

sectional) thus present relative pros and cons. Because cross-sectional and longitudinal data 91 

are outcomes of the same eco-epidemiological processes based on the same demographic and 92 

epidemiological parameters (notably survival, force of infection, and antibody level 93 

persistence), their combination into an integrated model should improve the estimation of 94 

these parameters.  95 

Serology has proven effective to detect patterns of exposure to many infectious agents and 96 

infer eco-epidemiological processes (Gilbert et al. 2013, Metcalf et al. 2016). Moreover, a 97 

wide range of approaches are now available to apply serology to wild settings (e.g., Garnier et 98 

al. 2017). However, the interpretation of serological data is not straightforward as they do not 99 

directly inform on the timing of infection. The reliability of the inference that can be made 100 

from serological data is thus dependent on the ecological and epidemiological characteristics 101 

of the considered system. Sampling schemes may need to be adjusted to reflect both these 102 

characteristics and what is possible in terms of field efforts. For instance, in some host-103 

parasite systems, detectable antibody levels persist for many years after exposure (e.g., 104 

antibody level against the Newcastle disease virus vaccine in Ramos et al. 2014), while in 105 

other cases, they wane within a few weeks (e.g., antibody level against the avian cholera agent 106 
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in Samuel et al. 2003), complicating interpretation of serological data. Methods allowing the 107 

estimation of the force of infection from serological data when the kinetics of the immune 108 

response is not known are needed to better characterize the factors driving epidemiological 109 

dynamics. 110 

In the present study, we use a simulation approach to compare the performances of 111 

different sampling designs to estimate the seroconversion probability, a proxy of the force of 112 

infection, when the kinetics of the immune response after exposure is not known. This 113 

parameter can be estimated either from the temporal variations of the seroprevalence based on 114 

cross-sectional data (e.g., Samuel et al. 2015) or as the transition probability from 115 

seronegative to seropositive states in a capture-recapture model based on longitudinal data 116 

(e.g., Conn and Cooch 2009). We moreover consider the possibility of integrating both 117 

sources of data in an integrated framework inspired from IPM. Based on data simulated under 118 

different scenarios, we notably account for several key parameters expected to have a strong 119 

impact on the observation process and the inference that can be made from serological data: 120 

host lifespan, temporal persistence of antibody levels, and detection and recapture 121 

probabilities. For instance, low annual survival will increase the turnover of individuals in the 122 

host population, which is expected to lower the benefit of longitudinal sampling designs, 123 

which rely on the repeated sampling of individuals. Finally, we illustrate how this method 124 

could be used on empirical data by considering the case of a serotine bat (Eptesicus serotinus) 125 

colony exposed to a rabies virus. 126 

The results of the present study could have important implications regarding current 127 

practices in eco-epidemiology by (1) highlighting the benefits of longitudinal sampling 128 

designs compared to cross-sectional sampling designs, and (2) opening to possibility of 129 
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integrating the two types of approaches to design cost-efficient sampling protocols in study 130 

systems not yet subject to longitudinal monitoring programs.  131 

MATERIALS AND METHODS 132 

Eco-epidemiological model 133 

Individual data resulting from an eco-epidemiological inter-annual process were simulated 134 

with a set of parameters fixed to different values in order to represent different demographic 135 

and epidemiological situations (Fig. 1 a): survival (ϕ), seroconversion (λ; i.e., the probability 136 

for a seronegative individual to become seropositive, which usually corresponds to the 137 

mounting of an antibody response after exposure to an infectious agent) and seroreversion (ω; 138 

i.e., the probability for a seropositive individual to become seronegative, which corresponds to 139 

the waning of the antibody response) probabilities. To illustrate how eco-epidemiological 140 

parameters could be quantified from serological data, we have chosen the simple situation of 141 

populations at the demographic and endemic equilibria with all individuals recruiting as 142 

seronegative and exposure having no impact on survival or detectability. Additional details and 143 

illustrations are given in Appendix S1-A. 144 

Cross-sectional sampling 145 

Each year, nCS individuals are randomly captured and sampled for serological analyses. 146 

Seroprevalence at time t (πt) is calculated as the proportion of seropositive individuals among 147 

the tested individuals. πt thus corresponds to the probability for a sample randomly collected in 148 

a population to be seropositive at time t. Seroprevalences at times t and t+1 are linked by a 149 

function of survival, seroreversion, and seroconversion probabilities. Such approaches have 150 

previously been used to estimate seroconversion probabilities in wild populations (e.g., Hénaux 151 

et al. 2013, Samuel et al. 2015). Under the eco-epidemiological model assumptions (see above), 152 

this relation is given by equation 1:  153 
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πt+1 = πt ϕ (1 − ω) +  πt ϕ ω λ + (1 − πt) ϕ λ + r λ        (1) 154 

In equation 1, the first additive term [πt ϕ (1 − ω)] corresponds to seropositive individuals at 155 

time t that survive and maintain detectable antibody levels between time t and t+1; the second 156 

[πt ϕ ω λ] to seropositive individuals at time t that survive, lose their antibodies and seroconvert 157 

between t and t+1; the third [(1 − πt) ϕ λ] to seronegative individuals at time t that survive and 158 

seroconvert between t and t+1; and the last [r λ] to individuals that recruit (here with a 159 

probability r) and seroconvert between t and t+1.  160 

Under the assumption of demographic equilibrium, recruitment exactly compensates for 161 

mortality and r can be written as (1 – ϕ); and under the assumption of endemic equilibrium, 162 

seroprevalence (π*) is stable over time (equation 2; intermediary steps are clarified in Appendix 163 

S1, equations S1-3). Serological states of the samples thus follow the binomial distribution 164 

given in equation 3. 165 

π* = −
λ

ϕ (1−ω + ω λ−λ)−1
  (2)   y ~ B (𝑛𝐶𝑆 , −

λ

ϕ (1−ω + ω λ−λ)−1
)  (3) 166 

The estimation of unknown parameters will be facilitated if some of these parameters are 167 

known a priori. In this study, we thus notably considered the case when the model was 168 

informed with some values for the survival and the seroreversion probabilities (true or 169 

erroneous, e.g., based on the literature). Additional details are given in Appendix S1-A.  170 

Longitudinal sampling 171 

On the first year of the observation process, nLG random individuals are captured and 172 

marked with a tag allowing individuals to be identified without recapture (e.g., rings or PIT 173 

tags). Each of the following years, each alive marked individual is resighted with a probability 174 

p and its serological state is ascertained with a probability δ corresponding to the recapture 175 

probability after resighting (the serological state being ascertained at the same time from a 176 
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blood sample). A fixed number of individuals is captured each year, with a priority on marked 177 

individuals and some newly marked individuals if necessary to complete the sample size to 178 

nLG. An observation event is then attributed each year to each marked individual of the study 179 

and recorded in the matrix m: 0 if not seen (for an individual either dead, alive but not present 180 

in the study site, or present but not detected), 1 if captured and ascertained as seronegative, 2 181 

if captured and ascertained as seropositive or 3 if seen but not captured (uncertain serological 182 

state; Appendix S1-A). Note that we considered no state misclassification (i.e., test sensitivity 183 

and specificity are equal to one). These assumptions are discussed in Appendix S1-A. 184 

Multievent models allowing for state uncertainty (corresponding to event 3) were then fitted 185 

on the individual histories (Pradel 2005), similarly to classical applications to demographic 186 

studies (Gimenez et al. 2012). Such models are increasingly used in population ecology and in 187 

eco-epidemiology (e.g., Conn and Cooch 2009, Robardet et al. 2017, Buzdugan et al. 2017, 188 

Marescot et al. 2018).  189 

Integrated modelling 190 

For a given simulated population, the cross-sectional and the longitudinal datasets (y and m 191 

respectively) can be integrated together (Fig. 1 b; Schaub et al. 2007). Under the assumption 192 

of independence of the two datasets (only data from unmarked individuals are included in the 193 

cross-sectional dataset), the combined likelihood function (LIPM) can thus be expressed as the 194 

product of the likelihood function of the cross-sectional (LCS) and longitudinal (LLG) models: 195 

LIPM (y, m | ϕ, λ, ω, p, δ) = LCS (y | ϕ, λ, ω) × LLG (m | ϕ, λ, ω, p, δ)    (4) 196 

These parameters can thus conjointly be estimated based on the cross-sectional and 197 

longitudinal datasets (y and m). As both datasets result from processes sharing some similar 198 

eco-epidemiological parameters, the integrated estimator of these parameters is expected to be 199 

less biased and more precise (Schaub et al. 2007, Abadi et al. 2010). As we considered 200 
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situations in which a small proportion of the population is sampled (≤ 10 % unmarked 201 

individuals and ≤ 10 % marked individuals) and cross-sectional and longitudinal samples 202 

were chosen randomly, leading to only a potentially small overlap of the two datasets, we 203 

made the assumption that our cross-sectional and longitudinal datasets were independent. In 204 

addition to the assumption of independence of the two datasets typical to integrated models, 205 

the main assumptions are the ones made by the multievent capture-recapture model (see for 206 

instance Riecke et al. 2019) and when formalizing the temporal variations of the 207 

seroprevalence. These assumptions are discussed in more details in Appendix S1-A. 208 

Simulations and model fitting 209 

For each set of parameters, 1000 populations with a size of 600 individuals were simulated 210 

using a specifically developed individual based model (see Appendix S2 for codes). To 211 

compare the performances of both designs under various scenarios, one cross-sectional 212 

sample and one longitudinal sample of 50 individuals (nCS = nLG) per year were then taken per 213 

simulated population following the designs described above. In the case of integrated 214 

modelling, several combinations of cross-sectional (nCS = 20, 40 or 60) and longitudinal (nLG 215 

= 20 or 40 or 60) sample sizes were tested. Unless otherwise stated, the resighting (p) and 216 

recapture (δ) probabilities were set to 0.80 and sampling was conducted over five years after 217 

having reached the endemic equilibrium (Fig. S1). Within a time step, samples were collected 218 

after exposure. The performances of the estimators were then compared based first on their 219 

bias, and second on their Mean Square Error (MSE = bias2 + variance) in order to account for 220 

the bias and the precision of the estimators; the lower the bias or MSE, the more accurate the 221 

estimator. In the three cases (cross-sectional, longitudinal and integrated), eco-222 

epidemiological parameters were estimated from the data by maximization of likelihood using 223 

a frequentist approach. This method was preferred due to reduced computation time compared 224 
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to Bayesian inference. Sensitivity analyses were conducted to explore the validity of the 225 

results for ranges of biological and observation parameters. All simulations and analyses were 226 

run within R 3.3.3. Simulation codes are provided in Appendix S2, including examples of 227 

frequentist and Bayesian estimations of the parameters.  228 

Illustrative example  229 

The integrated estimator was then applied to a real case study of serotine bats (Eptesicus 230 

serotinus) exposed to a bat rabies virus (European Bat Lyssavirus type 1; EBLV-1) in Pagny-231 

sur-Moselle, France (Robardet et al. 2017). Because we were unable to find a dataset 232 

combining cross-sectional and capture-recapture setups in the literature, we chose to use this 233 

capture-recapture dataset and to simulate additional cross-sectional data using the simulation 234 

model presented above and parameterized based on the demographic and epidemiological 235 

parameters estimated using a multievent model. Juvenile serotine bats from the study site are 236 

known to be exposed to EBLV-1 (Robardet et al. 2017). Thus, instead of making the 237 

assumption that individuals recruit as seronegative (as in equation 1), we made the assumption 238 

that females recruit in the breeder pool with the same probability of being seropositive as 239 

former breeders (i.e., seroprevalence is similar in the new recruit and former breeder pools), 240 

leading to equation 5 in which new recruits and former breeders are not distinguished:  241 

πt+1 bats, EBLV-1 = πt bats, EBLV-1 ϕ (1 − ω) +  πt bats, EBLV-1 ϕ ω λ + (1 − πt bats, EBLV-1) ϕ λ  (5) 242 

And seroprevalence at the equilibrium can be written:  243 

π*bats, EBLV-1 =
λ

(ω − ω λ + λ)
         (6) 244 

The simulation of the cross-sectional data was also modified to reflect this assumption.  245 

We considered 102 marked individuals captured between one and five times over eight 246 

capture occasions (corresponding to the empirical longitudinal data). In parallel, during each 247 

of the eight capture occasions, ncs (20, 40 or 60) unmarked individuals were randomly 248 
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captured and used to calculate the seroprevalence at each occasion (corresponding to the 249 

simulated cross-sectional data). We then estimated the survival, seroconversion and 250 

seroreversion probabilities using the integrated estimator based on the best model retained in 251 

Robardet et al. (2017), in which the resighting probability varies over time: ϕ(.), λ(.), ω(.), 252 

p(t), δ(.). Additional details are given in Appendix S1-B and codes in Appendix S3. 253 

RESULTS 254 

Cross-sectional estimator. The seroconversion probability (λ) was estimated without bias 255 

(i.e. absolute difference between the true and estimated value close to zero) when using the 256 

cross-sectional estimator informed with the true values of the survival (ϕ) and seroreversion 257 

(ω) probabilities (Fig. 2 a and b). In contrast, informing the cross-sectional estimator with 258 

slightly erroneous values for these parameters led to biases when lifespan and antibody 259 

persistence were long (when ϕ tends to one and ω tends to zero). The bias was smaller when 260 

lifespan or antibody persistence were short, which can easily be explained by the fact that 261 

when ϕ tends to zero and/or ω tends to one, π* tends to λ (equation 2) and the seroconversion 262 

probability can thus be directly deducted from the observed seroprevalence. Hence, the cross-263 

sectional estimator overall performed better (lower MSE independently of the a priori 264 

knowledge) when ϕ was low (i.e., short-lived host species) and/or ω was high (i.e., short-lived 265 

immune response; Fig. 2 a and b and sensitivity analyses presented in Fig. S4). 266 

Longitudinal estimator. When using the longitudinal estimator, the seroconversion 267 

probability (λ) was estimated without bias without any a priori knowledge of the true survival 268 

(ϕ) and seroreversion (ω) probabilities, except when the survival probability was close to zero 269 

(Fig. 2 a). In addition to the higher bias, precision was also lower at low survival probabilities. 270 

The lower performances observed for low survival probabilities are expected when using 271 

capture-recapture models as fewer individuals can be recaptured over the years, reducing the 272 
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effective sample size. Precision was also slightly decreased when antibody level persistence 273 

was longer (low ω). This could be explained by the model not being able to distinguish 274 

individuals that maintained their antibody levels (at a probability 1 − ω) from individuals that 275 

were observed seropositive once and then seroreverted and got exposed again (at a probability 276 

ω × λ) as both situations fit with the observation of the individuals as seropositive during two 277 

consecutive occasions. This is supported by the fact that the precision was lower for higher 278 

seroconversion probabilities when the seroreversion was low but not when it was high (Fig. 2 279 

c and d). Hence, the longitudinal estimator overall performed better when ϕ was high (i.e., 280 

long-lived host species) and/or ω was high (i.e., short-lived immune response; sensitivity 281 

analyses presented in Fig. S4).  282 

Integrated estimator. Similarly to the longitudinal estimator, the integrated estimator of the 283 

seroconversion probability (λ) was unbiased without having to rely on any a priori knowledge 284 

on the survival (ϕ) and/or seroreversion (ω) probabilities (Fig. 3). In addition, integrating 285 

cross-sectional data to longitudinal data increased the precision of the estimator for any fixed 286 

longitudinal sample size. For instance, when antibody level persistence was long, adding 20 287 

unmarked individuals to 20 marked individuals at each sampled occasion allowed the standard 288 

error of the estimated values to be divided by 1.7. The results are not trivial though: for 289 

instance, for intermediate antibody level persistence, sampling longitudinally 20 marked 290 

individuals and a novel batch of 20 unmarked individuals at each yearly sampling occasion 291 

gives a more accurate estimation than sampling longitudinally 40 marked individuals (Fig. 3 292 

b), while this is not the case for persisting antibody levels (Fig. 3 a). In such comparisons, one 293 

need to keep in mind the relative field costs (in time spent and skills required) associated with 294 

(re)capturing marked versus unmarked individuals (see Fig. S9 for illustrative examples). 295 

Additional results are presented in the Appendix S1-C, notably considering the effects of 296 
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various biological (host survival, antibody persistence; Fig. S5) and observations parameters 297 

(resighting and recapture probabilities, study duration, sample sizes; Fig. S6-8). 298 

Illustrative example. The estimation of seroconversion probability was improved (smaller 299 

confidence interval) when longitudinal and cross-sectional data were integrated together 300 

(compared to using only longitudinal data; Table 1). For instance, the seroconversion 301 

probability [95% confidence interval] was estimated at 0.085 [0.033; 0.201] using the 302 

longitudinal design and 0.079 [0.043; 0.139] using the integrated design including data from 303 

60 unmarked individuals each year. The estimates of survival, resighting and recapture 304 

probabilities were unchanged, as expected considering that these parameters were not 305 

expected to impact seroprevalence (equation 5). 306 

 307 

DISCUSSION 308 

Based on an eco-epidemiological model and simulations under different sampling 309 

scenarios, our results suggest that longitudinal data analyzed in capture-recapture frameworks 310 

are preferable to cross-sectional data when poor a priori knowledge (for instance on the 311 

survival and seroreversion probabilities) is available on the system, which is the case with 312 

most wildlife-parasites systems. The cross-sectional estimator can nonetheless be accurate for 313 

hosts with short lifespan and/or short antibody level persistence or when informed with 314 

reliable a priori knowledge on these parameters. In contrast, the longitudinal approach 315 

provided accurate estimates and also allowed survival and seroreversion probabilities to be 316 

estimated along with observation parameters (resighting and recapture probabilities; e.g., the 317 

serotine bat example). Finally, the integrated estimator benefited from the performances of 318 

longitudinal designs, notably it did not rely on any a priori known parameters, even with 319 

relatively small longitudinal sample sizes. Based on these results, we hope to encourage 320 
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researchers to think about the benefits of implementing longitudinal setups, potentially of 321 

relatively small scope, in parallel to already existing cross-sectional studies. We also propose 322 

a method to integrate these two types of data, which we believe could be useful in the future 323 

to motivate researchers to switch from cross-sectional to integrated designs. The method we 324 

present here also offers the possibility to integrate datasets that were previously analyzed 325 

independently, and thus to improve the inference of eco-epidemiological processes made from 326 

these data. For instance, multi-site cross-sectional data could be integrated with single-site 327 

longitudinal data (e.g., Picard-Meyer et al. 2011 and Robardet et al. 2017) to overcome the 328 

need of a priori knowledge on the host kinetics of the immune response, which is likely 329 

conserved within a species sampled across sites. 330 

Although the benefits of longitudinal setups are increasingly acknowledged in the disease 331 

ecology community, our study is the first to our knowledge to explore the conditions in which 332 

these benefits are actually found. Overall, the results highlight that the key elements to 333 

determine an optimal sampling design are: (1) host species life history, (2) the degree of 334 

antibody persistence and (3) the degree of a priori knowledge and uncertainty on 335 

demographic and epidemiologic parameters. This work also stresses the potential benefits of 336 

incorporating data from capture-recapture sampling designs in eco-epidemiological analyses, 337 

often largely based on cross-sectional field surveys. In practice, this integrated approach 338 

would be particularly beneficial in systems in which (1) individuals can be recaptured over 339 

several years (relatively long lifespan and high site faithfulness) and (2) large numbers of 340 

unmarked individuals can be sampled without increasing too much the cost of the study. This 341 

is for instance the case when samples can be collected when accidental capture is frequent 342 

(e.g., when using non-targeted capture methods such as mist nets, harp or Sherman traps: e.g., 343 

Robardet et al. 2017, Mariën et al. 2018), or as part of harvesting practices (e.g., Rossi et al. 344 
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2005), or from the offspring of colonial breeders (e.g., Chambert et al. 2012b). In such cases, 345 

seroprevalence data from unmarked individuals may be collected with minimal additional 346 

effort in parallel to capture-recapture setups. For instance, particularly efficient cross-sectional 347 

sampling designs may not even require the capture of adults if the sampling of offspring, or 348 

eggs, can be used as a reliable alternative to adult blood sampling (Alekseeev et al. 2014, 349 

Hammouda et al. 2014, Gamble et al. 2019b; discussed in Appendix S1-D). Further 350 

simulation work could aim at optimazing designs (e.g., sample sizes, sampling frequencies, 351 

study duration…) for various scenarios, similar to work performed for occupancy models 352 

(Mackenzie and Royle 2005, Guillera-Arroita and Lahoz-Monfort 2012). 353 

The present study illustrates that setting up a capture-recapture program, potentially in 354 

parallel to extensive cross-sectional sampling, to estimate epidemiological parameters may be 355 

particularly rewarding in long-lived host species and when specific antibody level persistence 356 

is unknown, which is often the case for non-model species (e.g., seabirds, Chambert et al. 357 

2012b; or marine mammals, Chambert et al. 2012a). Conversely, in a species expected to be 358 

subjected to high yearly mortality probabilities (e.g., small passerines, Grosbois et al. 2006; or 359 

rodents, Mariën et al. 2018), cross-sectional surveys may be the most efficient way to explore 360 

inter-annual processes. Nevertheless, implementing longitudinal, or integrated, setups can still 361 

be valuable in short-lived species to study processes occurring at smaller time scales (e.g., 362 

monthly; Mariën et al. 2018). In case of doubt about annual survival and/or the temporal 363 

persistence of antibody levels, it is always advisable to implement a capture-recapture 364 

program at a time scale adapted to the host species phenology. The inter-annual time scale we 365 

considered here may be particularly suited to the long-term monitoring of seasonally breeding 366 

species or to investigate the potential impact of diseases on long-lived populations (e.g., 367 

Lachish et al. 2007, Robardet et al. 2017). In disease systems with strong expected within- 368 
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and between-year dynamics, the approach would need to incorporate some temporal hierarchy 369 

in considered eco-epidemiological parameters and in the corresponding timing of sampling.  370 

Overall, given the relatively realistic situations we considered and the possibility to tailor 371 

the approach to more specific cases, the present study could have important implications 372 

regarding current practices in eco-epidemiology. For instance, the presented approach could 373 

be adapted to consider the time variations of the force of infection to account for epidemic 374 

cases or to incorporating parameters to account for a potential disease-induced mortality 375 

(discussed in Appendix S1-A). Our study continues to expand the currently proposed 376 

framework to improve inference of the circulation of infectious agents in wild populations 377 

using serological data (see Appendix S1-E). The sampling design will of course have to be 378 

adapted to the main objective of the survey (Yoccoz et al. 2001). For instance, if the main 379 

objective of the study is to estimate the seroconversion probability in a long-lived host 380 

species, putting important efforts on recapture (to insure a high δ) as part of a longitudinal 381 

setting, and integrating additional cross-sectional data could greatly improve the precision of 382 

the seroconversion estimators (Figure S6 b, top panel). In contrast, if the main interest is on 383 

the survival probability, putting more effort on resighting (independently of recapture) could 384 

improve the precision of the estimates (Lahoz-Monfort et al. 2014, Lieury et al. 2017), but 385 

integrating cross-sectional data will provide no added benefit (Figure S6 a, middle panel). In 386 

any case, as already advocated in other papers (Albert et al. 2010, Garnett et al. 2011, Restif 387 

et al. 2012), but still seldom done (Herzog et al. 2017), we recommend a priori modelling 388 

based on available knowledge when designing eco-epidemiological studies, notably to 389 

account for host demography, immune response characteristics and sampling costs (Fig. S9). 390 

In addition to the assumption of independence of the datasets, the approach we used relies on 391 

the same assumptions as the ones classically made by the chosen capture-recapture and 392 
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compartmented epidemiological models, and thus the same limitations apply. Notably, it is 393 

important to note that, because we used a simulated dataset, the performances of the three 394 

presented approaches could have been overestimated. For instance, we did not consider the 395 

effect of potential heterogeneities between individuals included in the cross-sectional and 396 

longitudinal datasets (e.g., mean age differences or differences in age variances between the 397 

marked and unmarked individuals). If they cannot be avoided, these sources of 398 

heterogeneities could be accounted for in the modelling process. Finally, considering the 399 

recent advances made in quantitative ecology, this approach could be applied to more 400 

complex scenarios than the one we considered here, by being combined with methods 401 

accounting for state misclassification by repeating sampling (McClintock et al. 2010, Lahoz-402 

Monfort et al. 2016), using the information contained in quantitative measurements (Choquet 403 

et al. 2013), combining assays such as serology and direct detection (Viana et al. 2016, 404 

Buzdugan et al. 2017) or by integrating individual traits more explicitly (Plard et al. 2019).  405 
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TABLES 581 

TABLE 1. Eco-epidemiological parameters estimated from a bat colony exposed to a rabies 582 

virus using the longitudinal or integrated design. The estimates are presented with their 95% 583 

confidence interval between brackets. Note that the confidence interval of seroconversion 584 

probability (in bold) is smaller when using the integrated design. 585 

Parameter 

Design 

Longitudinal 
Integrated 

nCS = 20 

Integrated 

nCS = 40 

Integrated 

nCS = 60 

Survival ϕ 
0.750  

[0.684; 0.807] 

0.750  

[0.684; 0.807] 

0.750  

[0.684; 0.807] 

0.750 

[0.684; 0.807] 

Seroconversion λ 
0.085  

[0.033; 0.201] 

0.072  

[0.038; 0.130] 

0.085  

[0.046; 0.151] 

0.079  

[0.043; 0.139] 

Seroreversion ω 
0.145  

[0.072; 0.271] 

0.152  

[0.080; 0.269] 

0.145  

[0.075; 0.261] 

0.148  

[0.078; 0.265] 

Resighting t = 1 p1 
0.793  

[0.733; 0.843] 

0.793  

[0.733; 0.843] 

0.793  

[0.733; 0.843] 

0.793  

[0.733; 0.843] 

Resighting t = 2 p2 
0.152  

[0.049; 0.383] 

0.152  

[0.049; 0.383] 

0.152  

[0.049; 0.383] 

0.152  

[0.049; 0.383] 

Resighting t = 3 p3 
0.865  

[0.630; 0.960] 

0.865  

[0.630; 0.960] 

0.865  

[0.630; 0.960] 

0.865  

[0.630; 0.960] 

Resighting t = 4 p4 
0.138  

[0.062; 0.277] 

0.138  

[0.062; 0.277] 

0.138  

[0.062; 0.277] 

0.138  

[0.062; 0.277] 

Resighting t = 5 p5 
0.365  

[0.218; 0.542] 

0.365  

[0.218; 0.542] 

0.365  

[0.218; 0.542] 

0.365  

[0.218; 0.542] 

Resighting t = 6 p6 
0.702  

[0.477; 0.859] 

0.702  

[0.477; 0.859] 

0.702  

[0.477; 0.859] 

0.702  

[0.477; 0.859] 

Resighting t = 7 p7 
0.646  

[0.421; 0.821] 

0.646  

[0.421; 0.821] 

0.646  

[0.421; 0.821] 

0.646  

[0.421; 0.821] 

Recapture δ 
0.659  

[0.385; 0.856] 

0.659  

[0.385; 0.856] 

0.659  

[0.385; 0.856] 

0.659  

[0.385; 0.856] 

  586 
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FIGURES 587 

FIGURE 1. Methodological framework: eco-epidemiological process used for data simulation 588 

(a) and modelling framework for the estimation of the eco-epidemiological parameters (b).  589 

FIGURE 2. The longitudinal design overall leads to no bias but low precision in the estimation 590 

of the seroconversion probability (λ) while small errors in a priori fixed seroreversion (ω̃) or 591 

survival (ϕ̃) probabilities can lead to strong biases in cross sectional designs, especially for 592 

long-lived host species and persisting antibody levels. Estimated values of the seroconversion 593 

probability and corresponding bias (a, b) or MSE (c, d) in relation to survival (a), 594 

seroreversion (b) and seroconversion (c, d) probabilities using cross-sectional or longitudinal 595 

estimators. For the cross-sectional design, results are shown for a realistic gradient of error on 596 

the a priori fixed value of seroreversion (ω̃) or survival (ϕ̃), while the longitudinal design does 597 

not require those parameters to be set a priori (not informed). The true seroconversion 598 

probability is represented by a black dashed line (a, b) or black diamonds (c, d). Notes: (a): a 599 

null seroreversion value corresponds to a lifelong persistence of antibody levels. (b): a 600 

survival value of ϕ × p corresponds to an underestimated survival probability comparable to 601 

the raw return rate probability which is sometime used in the literature (the < 1 resighting 602 

probability being ignored).  603 

FIGURE 3. The integrated estimator leads to higher precision in the estimation of the 604 

seroconversion probability (λ) compared to the integrated estimator. Estimated values of the 605 

seroconversion probability and corresponding MSE for different combinations on datasets 606 

analyzed with the longitudinal (nCS = 0) or the integrated (nCS > 0) model. Two situations were 607 

explored: intermediate (a) or long (b) persistence of the antibody levels. The true 608 

seroconversion probability is represented by a black dashed line. The cross-sectional model is 609 

not represented on this figure as it requires a priori reliable knowledge on ϕ and ω.  610 
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