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Abstract

This paper addresses model reduction with data assimilation by
elaborating on the Parametrized Background Data-Weak (PBDW) ap-
proach [6] recently introduced to combine numerical models with ex-
perimental measurements. This approach is here extended to a time-
dependent framework by means of a POD-greedy reduced basis con-
struction.

1 Introduction

The Parameterized-Background Data-Weak (PBDW) formulation for varia-
tional data assimilation is a data-driven reduced order modeling approach that
was initially devised in [6] so as to merge prediction by model with prediction
by data. The PBDW approach has been developed in order to estimate the
true state utrue of a physical system for several configurations. Supposing that
the true state utrue depends on some unknown parameter ω in an unknown
parameter set Θ that represents the unanticipated uncertainty, the goal is to
account for the dependency of the true state utruepωq on uncertain parameters
by means of the sole knowledge of data. In this paper, whenever the context
is unambiguous, the parameter ω is dropped.

The formulation combines a so-called ‘best-knowledge’ (bk) model repre-
sented by a parametrized partial differential equation (PDE) and experimen-
tally observable measurements. The use of data in the PBDW approach is
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fundamental not only to reconstruct the quantities of interest, but also to
correct the possible bias in the mathematical bk model.

The PBDW approach was devised in [6] for steady problems. It has been
subject to active research in recent years and it has been used for several
applications. Among others, we mention [2], [3], [5], [7], [8], and [9]. To the
author’s knowledge, the related research in the literature remains in the steady
framework. In this paper, we propose, as initiated in [1], an extension of the
PBDW approach to time-dependent state estimation. We build appropriate
background spaces for the time-dependent setting using the POD-greedy algo-
rithm [4].

This paper is organized as follows. Section 2 introduces the notation. Sec-
tion 3 extends the PBDW approach to the time-dependent framework and
discusses the offline stage. Section 4 assesses the method via numerical exper-
iments.

2 Basic notation and best-knowledge (bk) mod-

els

We consider a spatial domain (open, bounded, connected subset) Ω � Rd,
d ¥ 1, with a Lipschitz boundary. We introduce a Hilbert space U composed
of functions defined over Ω. The space U is endowed with an inner product
p�, �q and we denote by } � } the induced norm; U consists of functions tw : Ω Ñ
R | }w}   8u. To fix the ideas, we assume that H1

0 pΩq � U � H1pΩq, and we
denote the dual space of U by U 1. The Riesz operator RU : U 1 Ñ U satisfies,
for each ` P U 1, and for all v P U , the equality pRUp`q, vq � `pvq. Finally, we
introduce a parameter set P � Rp, p ¥ 1, whose elements are generically
denoted by µ P P .

The first source of information we shall afford ourselves in the PBDW
approach is a so-called ‘best-knowledge’ (bk) mathematical model in the form
of a parameterized PDE posed over the domain Ω. Given a parameter value
µ in the parameter set P , we denote the solution to the bk parameterized
PDE as ubkpµq P U . Then, the manifold associated with the solutions of the
bk model is Mbk :� tubkpµq | µ P Pu � U . In ideal situations, the true
solution utrue is well approximated by the bk manifold, i.e., the model error
εbk

modpu
trueq :� inf

zPMbk
}utrue � z} is very small.

We introduce nested background subspaces Z1 � . . . � ZN � . . . � U
that are generated to approximate the bk manifoldMbk to a certain accuracy.
These subspaces can be built using various model-order reduction techniques,
for instance, the Reduced Basis (RB) method. The indices of the subspaces
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conventionally indicate their dimensions. To measure how well the true so-
lution is approximated by the background space ZN , we define the quantity
εbk
N pu

trueq :� infzPZN
}utrue � z}. Although N is large enough, εbk

N pu
trueq does

not tend to zero since utrue rarely lies in Mbk in realistic engineering study
cases.

3 Time-dependent PBDW

Consider a finite time interval I � r0, T s, with T ¡ 0. To discretize in time,
we consider an integer K ¥ 1, we define 0 � t0   � � �   tK � T as pK � 1q

distinct time nodes over I, and we set Ktr � t1, . . . , Ku, Ktr
� t0u Y Ktr and

Itr � ttku
kPKtr . We aim at deriving a state estimate for a time-dependent

solution in the framework illustrated in Figure 1.

Figure 1: Characterization of the bk model in a time-dependent
context.

3.1 Limited-observations statement

Assuming that utrue P L1pI;Uq, we introduce the time-integration intervals
Ik � rtk � δtk, t

k � δtks, for all k P Ktr, where δtk ¡ 0 is a parameter related
to the precision of the sensor (ideally, δtk   minptk�1 � tk, tk � tk�1q with
obvious adaptation if k=K). Then, for any function v P L1pI;Uq, we define the
time-averaged snapshots

vkpxq :�
1

|Ik|

»
Ik

vpt, xq dt P U , @k P Ktr. (1)

We consider observation functionals that render the behavior of given sensors.
These functionals act on time-averaged snapshots of the true solution, i.e., we
consider

`k,obs
m putrueq :� `obs

m puk,trueq, @m P t1, . . . ,Mu, @k P Ktr. (2)
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We then introduce the time-independent observable space UM � Spantq1, . . . , qMu �
U . The observation functionals in U 1 are then defined as

`k,obs
m putrueq � puk,true, qmq, @m P t1, . . . ,Mu, @k P Ktr. (3)

For fixed sensor locations, the computational effort to compute the Riesz
representations of the observation functionals is time-independent and is in-
curred only once, so that the experimental observations satisfy `k,obs

m putrueq �
1
|Ik|

³
Ik `

obs
m putruept, �qqdt, for all m P t1, . . . ,Mu and k P Ktr.

We are now ready to write the limited-observations PBDW statement: for
each k P Ktr, find puk,�N,M , z

k,�
N,M , η

k,�
N,Mq P U � ZN � U such that

puk,�N,M , z
k,�
N,M , η

k,�
N,Mq � arginf

uN,MPU
zN,MPZN

ηN,MPU

}ηN,M}, (4)

subject to

puN,M , vq � pηN,M , vq � pzN,M , vq, @v P U , (5a)

puN,M , φq � puk,true, φq, @φ P UM . (5b)

The limited-observations saddle-point problem associated with (4) reads: for
each k P Ktr, find pzk,�N,M , η

k,�
N,Mq P ZN � UM such that

pηk,�N,M , qq � pzk,�N,M , qq � puk,true, qq, @q P UM , (6a)

pηk,�N,M , pq � 0, @p P ZN , (6b)

and the limited-observations state estimate is

uk,�N,M � zk,�N,M � ηk,�N,M , @k P Ktr. (7)

We use the following terminology. The PBDW statement (4)-(5) estimates the
true state uk,true. Thus, the solution uk,�N,M is called the ‘state estimate’. The

first contribution zk,�N,M in (7) lies in the background space ZN . Hence, zk,�N,M is

called the ‘deduced background estimate’. The second contribution ηk,�N,M
in (7) is brought by the inclusion of the observations in the PBDW statement.
The observations supplement the bk model. Thus, ηk,�N is called the ‘update
estimate’. We highlight that the saddle-point problem 6 is well posed if and
only if the stability constant βN,M satisfies

βN,M :� inf
wPZN

sup
vPUM

pw, vq

}w} }v}
P p0, 1s. (8)
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The deduced background estimate zk,�N can only represent anticipated un-
certainty. Since the bk model is often deficient, one cannot realistically assume
that the state estimate uk,�N of uk,true lies completely in the bk manifold. There-
fore, the update estimate ηk,�N is meant to cure the deficiency of the bk model
by capturing unanticipated uncertainty. The key idea of the PBDW statement
(4)-(5) is to search for the smallest correction to the bk manifold.

The saddle-point problem (6) is purely geometric and does not include any
explicit reference to the bk model since the unique link to the bk model is
through the background space ZN . This non-intrusiveness of (6) simplifies its
implementation and makes the PBDW approach applicable to a wide class of
engineering problems.

Remark 1 (Pointwise measurements). For simplicity of implementation, as-
suming that utrue P C0pI;Uq, one may consider pointwise measurements in
time, i.e.,

�
uk,true, qm

�
� `obs

m putrueptk, �qq, for all m P t1, . . . ,Mu and k P Ktr.
This assumption is typically reasonable for a sensor of small precision δtk.

In algebraic form, the limited-observations PBDW statement reads: for
each k P Ktr, find pzk,�,ηk,�q P RN � RM such that

�
A B
BT 0


�
ηk,�

zk,�



�

�
`k,obs

0



, (9)

with the matrices A � ppqm1 , qmqqm,m1 P RM�M and B � ppζn, qmqqm,n P RM�N ,
and the vector of observations `k,obs �

�
`obs
m puk,trueq

�
m
P RM . We solve (9)

through an offline/online decomposed computational procedure whenever sev-
eral realizations utruepωq of the true state are to be considered.

Remark 2 (PBDW matrices). Notice that the PBDW matrices A and B are
time-independent; only the right-hand side in (9) depends on k.

3.2 Offline stage

The main goal is to address the construction of the background space ZN .
Suppose that we have computed a set of High Fidelity (HF) trajectories S �
pSkqkPKtr �

�
pukpµqqµPPtr

�
kPKtr , where ukpµq :� upµqptk, �q, for all k P Ktr. If

we were to consider the PBDW statement (4)-(5) for each k P Ktr as an in-
dependent steady PBDW statement, we would be using the time-dependent
background spaces Zk

Nk � PODpSk, εpodq, for all k P Ktr, where the procedure
POD refers to the Proper Orthogonal Decomposition of the set Sk with a trun-
cation threshold εpod. Yet, this strategy is not convenient since the sizes Nk

of the background spaces Zk
Nk would depend on k. Since the observable space
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UM is fixed, the same non-homogeneity between time nodes would also arise
in the stability constant βNk,M . Thus, we propose to apply a POD-greedy

algorithm [4] to build a time-independent background space ZN that will be
used for all k P Ktr. The advantage is that the PBDW matrices A and B
and the stability constant βN,M remain unchanged regardless of the discrete
time node. The offline stage using the POD-greedy algorithm is summarized
in Algorithm 1.

Algorithm 1 Offline stage via POD-greedy

Input : S and εpod.
Qinit: a set of Riesz representations for the observations.

1: Compute ZN :� POD-greedypS, εpodq.
2: Set UM :� spantQinitu.
3: Compute the matrices A and B using ZN and UM .

Output : ZN , UM , A and B.

4 Numerical results

In this section, we illustrate the above developments on a test case related to
the heat equation. We consider a two-dimensional setting based on the plate

Figure 2: Computational domain and mesh with N � 6561.
The little black squares are observation subsets tRmu

121
m�1.

Left: Mono-material plate corresponding to the mathematical
model. Right: Bi-material plate corresponding to the physical
reality.

illustrated in the left panel of Figure 2 with Ω � p�2, 2q2 � R2. We use a
finite element subspace UN � U � H1pΩq consisting of continuous, piecewise
affine functions in order to generate HF trajectories. The FEM subspace UN
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is based on a mesh that contains N � 6561 nodes. The experimental data is
generated synthetically and the observation subsets tRmu1¤m¤M are uniformly
selected over the plate as illustrated in the right panel of Figure 2. Regarding
implementation, the HF computations use the software FreeFem++, whereas
the reduced-order modeling and the PBDW-related algorithms have been de-
veloped in Python. We address the following parabolic PDE with nonlinear
Stefan–Boltzmann boundary conditions: For many values of the parameter
µ P P , find upµq : I � Ω Ñ R such that$''''&

''''%

Bupµq

Bt
�∇ � pDpµq∇upµqq � 0, in I � Ω,

upµqpt � 0, �q � u0, in Ω,

�Dpµq
Bu

Bn
� σεpu4 � u4

rq, on I � BΩ,

(10)

where u0 � 293.15K (20oC). The Stefan–Boltzmann boundary condition on BΩ
is defined using an enclosure temperature ur � 303.15K (30oC), the Stefan–
Boltzmann constant σ � 5.67�10�8W.m�2.K�4, and an emissivity ε � 3.10�3.
Regarding time discretization, we consider the time interval I � r0, 10ss, the set
of discrete times nodes Ktr � t1, . . . , 200u, and a constant time step ∆tk � 0.1s
for all k P Ktr. We also define the parameter interval P � r0.1, 2s and the set
Ptr � t0.1i, 1 ¤ i ¤ 20u.

Figure 3: Left: HF solution for the bk model (values from
17.80oC to 18.25oC). Right: Synthetic true solution using a
bi-material plate (values from 17.90oC to 18.23oC).

The background spaces ZN will be generated by solving the nonlinear
PDE (10) with a uniform diffusivity function Dpµq such that for all x P Ω,
Dpµqpxq � Dunipµqpxq :� µ1Ωpxq. The HF bk solutions and the true solu-
tions are respectively displayed in the left and right panels of Figure 3. The
temperature profile for the true solution over the bi-material plate at the end
of the simulation, i.e., at tK � 10s, clearly shows a different behavior at the
boundaries of the inner material.
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Using the weighted H1-norm, we define the state estimation relative H1-
error ekpµq as

ekpµq :�
}uk,truepµq � uk,�N,Mpµq}H1pΩq

}uk,truepµq}H1pΩq

, @µ P P . (11)

Figure 4 shows the relative H1-error ekpµq defined in (11) using M � 121 ob-
servations to build the observable space UM . For εpod � 10�4, ZN is spanned
by N � 7 vectors. Notice that the error vanishes for µ � 0.25 since this con-
figuration is equivalent to a perfect bk model, meaning that the mathematical
model coincides with the physical reality. We notice that the relative H1-error
ekpµq increases on the right panel of Figure 4 because the stability constant
decreases. Figure 5 visualizes the relative H1-error ekpµq for a higher number

Figure 4: Relative H1-error ekpµq for some time nodes k P Ktr

and M � 121. Left: εpod � 10�2 (N � 3). Middle: εpod � 10�4

(N � 7). Right: εpod � 10�6 (N � 11).

of observations M � 676. We observe that augmenting the dimension of the
observable space UM cures the stability issue. Also, the errors are lower owing
to the higher number of observations. Finally, Figure 6 shows the stability

Figure 5: Relative H1-error ekpµq for some time nodes k P Ktr

and M � 676. Left: εpod � 10�2 (N � 3). Middle: εpod � 10�4

(N � 7). Right: εpod � 5.10�6 (N � 11).

constant βN,M as a function of the number of observations M . The nonlinear
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character of the problem does not influence the overall features of the PBDW
statement since previous linear tests in the literature have shown a similar
behavior. This observation corroborates the independence of the saddle-point
problem (6) with regard to the bk model.

Figure 6: Stability constant βN,M . On the right panel, the
values of N are respectively 2, 3, 5, 7, 11 for the values of
εpod in decreasing order.
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mechanics. Thesis, Université Paris-Est Marne la Vallée, 2018.

[2] F. Galarce, J.-F. Gerbeau, D. Lombardi, and O. Mula. State estima-
tion with nonlinear reduced models. Application to the reconstruction
of blood flows with Doppler ultrasound images. arXiv e-prints, page
arXiv:1904.13367, Apr 2019.

[3] H. Gong, Y. Maday, O. Mula, and T. Taddei. PBDW method for state
estimation: error analysis for noisy data and nonlinear formulation. arXiv
e-prints, page arXiv:1906.00810, Jun 2019.

[4] B. Haasdonk. Convergence rates of the POD-greedy method. ESAIM
Math. Model. Numer. Anal., 47(3):859–873, 2013.

[5] J. K. Hammond, R. Chakir, F. Bourquin, and Y. Maday. PBDW: A non-
intrusive Reduced Basis Data Assimilation method and its application to
an urban dispersion modeling framework. Appl. Math. Model., 76:1–25,
2019.

[6] Y. Maday, A. T. Patera, J. D. Penn, and M. Yano. A parameterized-
background data-weak approach to variational data assimilation: formu-
lation, analysis, and application to acoustics. Internat. J. Numer. Methods
Engrg., 102(5):933–965, 2015.

9



[7] Y. Maday and T. Taddei. Adaptive PBDW Approach to State Estimation:
Noisy Observations; User-Defined Update Spaces. SIAM J. Sci. Comput.,
41(4):B669–B693, 2019.

[8] T. Taddei and A. T. Patera. A localization strategy for data assimilation;
application to state estimation and parameter estimation. SIAM J. Sci.
Comput., 40(2):B611–B636, 2018.

[9] T. Taddei, J. D. Penn, and A. T. Patera. Validation by Monte Carlo
sampling of experimental observation functionals. Internat. J. Numer.
Methods Engrg., 112(13):2135–2150, 2017.

10


	Introduction
	Basic notation and best-knowledge (bk) models
	Time-dependent PBDW
	Limited-observations statement
	Offline stage

	Numerical results

