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Abstract. This study focuses on the Iberian Peninsula and
investigates the propagation of precipitation uncertainty, and
its interaction with hydrologic modeling, in global water re-
source reanalysis. Analysis is based on ensemble hydrologic
simulations for a period spanning 11 years (2000–2010). To
simulate the hydrological variables of surface runoff, sub-
surface runoff, and evapotranspiration, we used four land
surface models (LSMs) – JULES (Joint UK Land Environ-
ment Simulator), ORCHIDEE (Organising Carbon and Hy-
drology In Dynamic Ecosystems), SURFEX (Surface Exter-
nalisée), and HTESSEL (Hydrology – Tiled European Centre
for Medium-Range Weather Forecasts – ECMWF – Scheme
for Surface Exchanges over Land) – and one global hydro-
logical model, WaterGAP3 (Water – a Global Assessment
and Prognosis). Simulations were carried out for five precip-
itation products – CMORPH (the Climate Prediction Cen-
ter Morphing technique of the National Oceanic and Atmo-
spheric Administration, or NOAA), PERSIANN (Precipita-
tion Estimation from Remotely Sensed Information using
Artificial Neural Networks), 3B42V(7), ECMWF reanalysis,
and a machine-learning-based blended product. As a refer-
ence, we used a ground-based observation-driven precipita-
tion dataset, named SAFRAN, available at 5 km, 1 h reso-
lution. We present relative performances of hydrologic vari-
ables for the different multi-model and multi-forcing scenar-
ios. Overall, results reveal the complexity of the interaction
between precipitation characteristics and different modeling

schemes and show that uncertainties in the model simula-
tions are attributed to both uncertainty in precipitation forc-
ing and the model structure. Surface runoff is strongly sen-
sitive to precipitation uncertainty, and the degree of sensitiv-
ity depends significantly on the runoff generation scheme of
each model examined. Evapotranspiration fluxes are compar-
atively less sensitive for this study region. Finally, our results
suggest that there is no single model–forcing combination
that can outperform all others consistently for all variables
examined and thus reinforce the fact that there are signifi-
cant benefits to exploring different model structures as part
of the overall modeling approaches used for water resource
applications.

1 Introduction

Improved estimation of global precipitation is important to
the analysis of continental water resources and dynamics.
Over the past few decades, several studies have described the
use of different precipitation algorithms to develop precip-
itation products (http://ipwg.isac.cnr.it/algorithms.html, last
access: 31 March 2019 and http://reanalyses.org, last access:
31 March 2019) at high spatial and temporal resolution on
a quasi-global scale and for different hydrological applica-
tions, such as flood early warning and control and drought
monitoring (Hong et al., 2010; Wu et al., 2012; Vernimmen
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et al., 2012, amongst others). Precipitation estimates suffer,
however, from various sources of error that consequently
impact hydrologic investigations (Mei et al., 2015, 2016;
Seyyedi et al., 2014, 2015; Bhuiyan et al., 2017; Nikolopou-
los et al., 2013).

Over the last decade, an increasing number of studies have
contributed to the development of global precipitation esti-
mation (Pan et al., 2010; Beck et al., 2017a; Kirstetter et al.,
2014; Carr et al., 2015; Dee et al., 2011) aiming at the over-
all improvement of the hydrological applications and global
water resource reanalysis. Numerous models of varying com-
plexity can be used to generate an array of hydrological prod-
ucts from precipitation forcing datasets (Vivoni et al., 2007;
Ogden and Julien, 1994; Carpenter et al., 2001; Borga, 2002;
Schellekens et al., 2017). Different hydrological models have
different applications depending on the spatial and temporal
scales of interest as well as the simulated variables of interest,
such as subsurface runoff, surface runoff, and evapotranspi-
ration. Past studies (Fekete et al., 2004; Biemans et al., 2009)
have revealed that the uncertainty in simulated hydrological
variables mainly depends on the uncertainty in precipitation
and model parametrization and suggested subsequent explo-
ration of different model structures as part of the overall mod-
eling approach.

So far there are several studies that have analyzed un-
certainty in precipitation forcing and its impact on hydro-
logic simulations by usually evaluating hydrologic simula-
tions based on multiple forcing applied to a single model
(Falck et al., 2015; Bitew et al., 2012; Behrangi et al., 2011;
Mei et al., 2016; Bhuiyan et al., 2018; Gelati et al., 2018
among others). On the other hand, there are also past studies
that have evaluated the model structural uncertainty and its
impact on hydrologic simulations, usually by analyzing the
simulation outputs from multiple models and a single forc-
ing dataset (Breuer et al., 2009; Haddeland et al., 2011; Gud-
mundsson et al., 2012; Smith et al., 2013; Huang et al., 2017;
Beck et al., 2017b). However, fewer studies have been dedi-
cated to the analysis of the integrated impact of both forcing
and model uncertainty on hydrologic simulations, and from
the existing ones, most of them were focused on a single hy-
drologic variable such as streamflow (see, for example, Qi
et al. 2016), evapotranspiration (Vinukollu et al., 2011), or
a given hydrologic index such as the drought index (Prud-
homme et al., 2014; Samaniego et al., 2017). Findings from
these past investigations have demonstrated that both forc-
ing and model structure uncertainty have a great impact on
hydrologic predictions and therefore highlight that using a
multi-model and multi-forcing ensemble is a more appropri-
ate path forward for advancing the use of hydrologic model
outputs. This conclusion raises at the same time the need for
better understanding, characterizing and quantifying the un-
certainty associated with multi-model and multi-forcing hy-
drologic ensembles. Thus, a better understanding of the en-
semble spread of precipitation and simulated hydrological
variables is necessary to improve water resource manage-

ment and planning. This additionally means that there is also
a need to assess hydrologic uncertainty in more than a single
variable to be able to have a better and more integrative view
on the interaction between forcing uncertainty, model uncer-
tainty, and the hydrologic variable of interest. It will allow
us to make hydrologic predictions more effective for water
resource applications at a large scale.

This study builds upon a unique numerical experiment that
was carried out, as part of the activities of the Earth2Observe
project (Schellekens et al., 2017), to investigate the impact of
precipitation uncertainty propagation and its dependence on
model structure and hydrologic variables. In this investiga-
tion, we used different precipitation forcing datasets based
on (i) reanalysis, (ii) satellite estimates, and (iii) a “com-
bined” stochastic precipitation dataset (Bhuiyan et al., 2018).
To consider model structure and parameters, we examined
simulations from five state-of-the-art global-scale hydrolog-
ical and land surface models (LSMs). With regard to water
cycle variables, we evaluated precipitation uncertainty prop-
agation to surface runoff, subsurface runoff, and evapotran-
spiration fluxes. The study area for this investigation is the
Iberian Peninsula, which has precipitation and climate vari-
ability due to complex orography influenced by both Atlantic
and Mediterranean climates (Rodríguez-Puebla et al., 2001;
de Luis et al., 2010; Herrera et al., 2012). The analysis com-
prised two main parts: (1) performance and sensitivity eval-
uation of the different model–forcing scenarios and (2) pre-
cipitation uncertainty propagation to the hydrological vari-
ables. We analyzed hydrological simulation with a compara-
tive assessment of the hydrological products and provided a
detailed analysis of uncertainty in hydrological simulations
for the different global hydrological and land surface mod-
els used in the multi-model global water resource reanalysis.
Finally, we examined the performance of precipitation prod-
ucts in hydrological applications and potential uncertainty at-
tributed to precipitation error propagations.

The paper is structured as follows. Section 2 presents the
different types of forcing datasets used for the study, and
Sect. 3 details the methodology we used for our model de-
velopment and hydrological model analysis. Section 4 sum-
marizes the hydrological results, Sect. 5 discusses the results,
and Sect. 6 draws conclusions from the research conducted.

2 Study area and forcing data

This study is focused on the Iberian Peninsula (Fig. 1). The
climate of the peninsula is primarily Mediterranean, being
mostly oceanic at northern and semi-arid at southern parts.
The topography varies from almost zero elevation to altitudes
of 3500 m in the Pyrenees. Table 1 summarizes information
and references of meteorological forcing datasets, and a short
description is provided below.

Hydrol. Earth Syst. Sci., 23, 1973–1994, 2019 www.hydrol-earth-syst-sci.net/23/1973/2019/



M. A. Ehsan Bhuiyan et al.: Multi-parameter water resource reanalysis uncertainty characterization 1975

2.1 Reference precipitation (SAFRAN)

The reference precipitation dataset, hereafter referred to as
SAFRAN (Système d’analyse fournissant des renseigne-
ments atmosphériques à la neige), was recently created by
Quintana-Seguí et al. (2016, 2017) using the SAFRAN me-
teorological analysis system (Durand et al., 1993). Spa-
tially, SAFRAN precipitation data are presented at an hourly
timescale on a regular grid with 5 km resolution, spanning
35 years and covering mainland Spain, Portugal, and the
Balearic Islands (Quintana-Seguí et al., 2016). SAFRAN
used an optimal interpolation algorithm (Gandin, 1966) to
produce a quality-controlled gridded dataset of precipitation
which combines ground observations and outputs of a me-
teorological model (Quintana-Seguí et al., 2017). Quintana-
Seguí et al. (2017) also compared the different precipita-
tion analyses with rain gauge data and successfully evalu-
ated their temporal and spatial similarities to the observations
by obtaining higher correlation (> 0.75) than other precip-
itation products. The validation of SAFRAN with indepen-
dent ground observations proved that SAFRAN is a robust
product. On the other hand, several factors – including rain-
fall intermittency, discrete temporal sampling, and censoring
of reference values for required quality – reduce the number
of comparison samples for reference and satellite estimates.
Therefore, the quality-controlled SAFRAN dataset which is
designed to force the land surface model is chosen as a refer-
ence dataset for the study area (Quintana-Seguí et al., 2017).

2.2 Satellite-based precipitation

Satellite-based simulations were based on three quasi-global
satellite precipitation products. Among them, CMORPH (the
Climate Prediction Center Morphing technique of the Na-
tional Oceanic and Atmospheric Administration, or NOAA)
is developed from passive microwave (PMW) satellite pre-
cipitation fields which are generated from motion vectors de-
rived from infrared (IR) data (Joyce et al., 2004). A neural
network technique is used in PERSIANN (Precipitation Es-
timation from Remotely Sensed Information using Artificial
Neural Networks), where IR observations are connected to
PMW rainfall estimates (Sorooshian et al., 2000). Merged
IR and PMW precipitation products from NASA are gauge-
adjusted for TMPA (Tropical Rainfall Measuring Mission
Multi-Satellite Precipitation Analysis), or 3B42V(7), which
is available in near-real time and post-real time (Huffman et
al., 2010). The satellite precipitation products have a spatial
resolution that is 0.25◦× 0.25◦ and a time resolution of 3 h.

2.3 Atmospheric reanalysis

The reanalysis product (EI_GPCC) is based on original
ERA-Interim 3-hourly data, after rescaling based on GPCC
(Global Precipitation Climatology Center) data. Note that
total precipitation has been rescaled at the monthly scale

with a multiplicative factor to match GPCC version 7 for
the period 1979–2013 and GPCC monitoring for 2013–2015.
Data are further downscaled to 0.25◦× 0.25◦ grid resolu-
tion by distributing the coarse grid precipitation according
to CHPclim (Climate Hazards Group Precipitation Climatol-
ogy) high-resolution information for each calendar month. A
similar approach was performed in the generation of ERA-
Interim/Land (Balsamo et al., 2015), but using GPCP (Global
Precipitation Climatology Project) data. In this study we used
GPCC data due to its higher spatial resolution when com-
pared with GPCP.

2.4 Combined product

The combined product is based on the application of
a nonparametric statistical technique for blending multi-
ple satellite–reanalysis precipitation datasets. Specifically,
a machine-learning technique, quantile regression forests
(QRF; Meinshausen, 2006), was used to generate stochasti-
cally an improved precipitation ensemble at the spatiotempo-
ral resolution of 0.25◦, 3 h. The technique optimally merged
global precipitation datasets and characterized the uncer-
tainty of the combined product. Details on the methodology
and data used to develop the combined product are presented
in Bhuiyan et al. (2018).

2.5 Other atmospheric variables

Apart from precipitation forcing, the rest of atmospheric
forcing variables required for the hydrologic simulations
were derived from the original ERA-Interim 3-hourly data as
used in ERA-Interim/Land (Balsamo et al., 2015), bilinearly
interpolated to 0.25◦. It includes a topographic adjustment to
temperature, humidity, and pressure using a spatially tempo-
rally varying environmental lapse rate (ELR) computed sim-
ilarly to Gao et al. (2012). The correction is the following:
(i) relative humidity is computed from the uncorrected forc-
ing, (ii) air temperature is corrected using the ELR and al-
titude differences (ERA-Interim topography versus 0.25 to-
pography), (iii) surface pressure is corrected assuming the
altitude difference and updated temperature, and (iv) specific
humidity is computed using the new surface pressure and
temperature assuming no changes in relative humidity.

3 Methodology

3.1 Hydrological simulations

The hydrological simulations for this study were carried
out by different collaborators within the framework of
Earth2Observe, a project funded by the European Union
(EU) using a number of global-scale land surface and hy-
drological models. In this study, simulations from four land
surface models – JULES (Joint UK Land Environment Sim-
ulator), ORCHIDEE (Organising Carbon and Hydrology
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1976 M. A. Ehsan Bhuiyan et al.: Multi-parameter water resource reanalysis uncertainty characterization

Figure 1. Map of Iberian Peninsula case study area.

In Dynamic Ecosystems), SURFEX (Surface Externalisée),
and HTESSEL (Hydrology – Tiled European Centre for
Medium-Range Weather Forecasts – ECMWF – Scheme for
Surface Exchanges over Land) – and one global hydrologi-
cal model, the distributed global hydrological model of the
WaterGAP3 (Water – a Global Assessment and Prognosis)
modeling framework were considered. The models were al-
ready evaluated at all timescales, from daily to multi-annual.
The timescale of the evaluation was mostly driven by the data
availability. All the land surface models in the study were
global models, built originally to work in coupled mode with
atmospheric models. The “regionalization”, or calibration of
hydrological parameters at particular catchments or regions
of these models, is an exercise that the different modeling
groups or communities are certainly performing but was out
of the scope of this study. All models were forced with the
various precipitation datasets described in the previous sec-
tion for an 11-year period (March 2000–December 2010). A
summary of some basic characteristics of the models struc-
ture is presented in Table 1 and a short description is pro-
vided below. For more details on the modeling systems, the
interested reader is referred to Schellekens et al. (2017) and
references therein.

3.1.1 JULES

JULES (Best et al., 2011; Clark et al., 2011) is a physically
based land surface model. JULES uses an exponential rain-
fall intensity distribution to calculate throughfall through the
canopy first (altered by interception), then the water reaching

the surface is divided into infiltration into the soil and sur-
face runoff. Surface runoff is generated either through infil-
tration excess or saturation excess. Infiltration excess runoff
is generated by JULES if the water flux reaching the surface
exceeds the maximum infiltration rate of the soil (based on
the saturated hydraulic conductivity). If the water flux reach-
ing the surface over a time step (either rainfall, throughfall,
or snowmelt) reaches a maximal infiltration rate, then infil-
tration excess runoff will be generated. This maximal infil-
tration rate in JULES is the saturated hydraulic conductiv-
ity multiplied by a vegetation-dependent parameter (four for
trees and two for grasses). Saturation excess runoff is based
on sub-grid soil moisture variability, as a fraction of the grid
is saturated and water flux over this fraction is converted to
surface runoff (probability distribution model; Blyth, 2002).
Once infiltrated into the soil, water flows through the column,
resolved using Darcy’s law and Richards’ equation. Subsur-
face runoff is calculated using the free drainage approach,
with water flowing at the bottom of the resolved soil column
at a rate determined by the soil hydraulic conductivity. There
was no groundwater table in this version of JULES. The con-
dition at the bottom of the resolved soil layers (3 m) was
assumed to be free drainage. The soil hydraulic character-
istics were calculated applying pedotransfer functions to the
soil texture data from the Harmonized World Soil Database
(HWSD; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).The veg-
etation cover data used by the JULES runs were derived
from the International Geosphere-Biosphere Programme at
http://www.igbp.net/ (last access: 31 March 2019). Further
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details on hydrology processes in JULES can be found in
Best et al. (2011) and Blyth et al. (2018).

3.1.2 ORCHIDEE

ORCHIDEE (Krinner et al., 2005) is a complex land sur-
face scheme that consists of a hydrological module, a rout-
ing module (Ngo-Duc et al., 2007), and a floodplain module
(d’Orgeval et al., 2008). It also describes the vegetation dy-
namics and biological cycles, but these features were not ac-
tivated for the present study. The most relevant parametriza-
tion of ORCHIDEE for the sensitivity of the model to rain-
fall is the one for partitioning between infiltration and sur-
face runoff. In order to represent correctly the fast progres-
sion of the moisture front during a rainfall event when the
time step is above 15 min, a time-splitting procedure is used
(d’Orgeval, 2006). The parametrization also takes into ac-
count reinfiltration in the case of slopes below 0.5 % or dense
vegetation. We have chosen to spread the entire 3-hourly
rainfall over 1.5 h in these simulations. In terms of ancillary
data, a vegetation map (IGBP; Olson classification) and the
soil types (FAO, 2003) were used for these simulations. Fur-
thermore, as ORCHIDEE represents sub-grid soil moisture
by simulating separately the soil moisture column below bare
soil, low and high vegetation, the infiltration process will dis-
play different sensitivities in each column.

3.1.3 SURFEX

The SURFEX modeling system of Météo-France (SURFace
Externalisée; Masson et al., 2013) includes the ISBA (in-
teractions between soil–biosphere–atmosphere; Noilhan and
Mahfouf, 1996) LSM that can be fully coupled to the CNRM
(Centre National de Recherches Météorologiques) version
of the Total Runoff Integrating Pathways (TRIPs; Oki and
Sud, 1998) continental hydrological system (Decharme et
al., 2010). This study uses a ISBA multi-layer soil dif-
fusion scheme (ISBA-Dif) as well as its 12-layer explicit
snow scheme (Boone and Etchevers, 2001; Decharme et al.,
2016). ISBA total runoff is contributed by both the surface
runoff and free drainage as a bottom boundary condition
soil layer. The soil evaporation is proportional to its rela-
tive humidity. Parameters of the ISBA LSM were defined for
12 generic land surface patches: nine plant functional types
(namely needleleaf trees, evergreen broadleaf trees, decidu-
ous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops,
herbaceous plants, tropical herbaceous plants, and wetlands)
as well as bare soil, rocks, and permanent snow and ice sur-
faces. They were derived from ECOCLIMAP-II, the land
cover map used in SURFEX (Faroux et al., 2013). Further-
more, the Dunne runoff (i.e., when no further soil moisture
storage is available) and lateral subsurface flow were com-
puted using a topographic sub-grid distribution.

3.1.4 WATERGAP3

The modeling framework WaterGAP3 is a tool for assessing
the global freshwater resources on 30 min spatial resolution.
It combines a spatially distributed rainfall–runoff model with
a large-scale water quality model as well as models for five
sectorial water uses (Flörke et al., 2013; Döll et al., 2009).
Effective precipitation – calculated as superposed effects of
snow accumulation, snowmelt, and interception – is split into
(i) a fraction that fills up a single-layer soil moisture storage
and (ii) a fraction that comprises surface runoff and ground-
water recharge. Groundwater recharge is the input of a sin-
gle linear groundwater reservoir that is drained by base flow.
Water for evapotranspiration, estimated with the Priestley–
Taylor approach, is abstracted from the soil storage. The Wa-
terGAP3 setting used in this study was calibrated and val-
idated against measured river discharge from 2446 stations
of the Global Runoff Data Centre data repository (Weedon
et al., 2014). Therefore, calibration only concerns the sepa-
ration of effective precipitation into runoff and soil moisture
filling. See Eisner (2015) for a detailed model description
with additional data required for the model, such as soil types
and the groundwater table.

3.1.5 HTESSEL

The LSM HTESSEL is part of the ECMWF numerical
weather prediction model. The model represents the tempo-
ral evolution of the snowpack, soil moisture and tempera-
ture, and vegetation water content as well as the turbulent
exchanges of water and energy with the atmosphere. HTES-
SEL considered soil texture, vegetation type and cover, and
mean annual climatology of the leaf area index and albedo
(12 maps for each calendar year) for the simulations (FAO,
2003). The soil column is discretized in four layers (7, 21, 72,
and 189 cm thickness), and the unsaturated vertical move-
ment of water follows Richards’ equation and Darcy’s law.
The van Genuchten formulation is used to derive the diffu-
sivity and hydraulic conductivity using six predefined soil
textures. In the case of partially or fully frozen soil, the water
movement in the soil column is limited by reducing the dif-
fusivity and hydraulic conductivity. The model assumes free
drainage as a bottom boundary condition (subsurface runoff),
while the top boundary condition considers precipitation mi-
nus surface runoff and bare ground evaporation. Evapotran-
spiration is removed from the different soil layers following
a prescribed root distribution (dependent on the vegetation
type). Surface runoff generation is estimated as a function of
the local orography variability, soil moisture state, and rain-
fall intensity. Soil saturation state and rainfall intensity de-
fine the maximum infiltration rate which is modulated by a
variable infiltration rate related to orography variability (Bal-
samo et al., 2009).

www.hydrol-earth-syst-sci.net/23/1973/2019/ Hydrol. Earth Syst. Sci., 23, 1973–1994, 2019
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3.2 Evaluation metrics

To examine the magnitude and variability of differences
among hydrological variables, we used the relative difference
(RD), defined as

RD=
(
ŷi − yi

yi

)
, (1)

where yi denotes reference variables (SAFRAN-driven sim-
ulations) and ŷi denotes simulated variables (based on the
other forcing data considered) for each time step i. RD in-
dicates the magnitude and direction of error with positive
(negative) value indicating overestimation (underestimation).
The RD of annual average estimates of the precipitation forc-
ing and different hydrological variables was calculated using
daily datasets at the spatial resolution of 0.25◦. Moreover, cu-
mulative probability of estimated annual average relative dif-
ferences among precipitation forcings and the simulated hy-
drological variables were calculated using same spatial reso-
lutions of 0.25◦.

To collectively assess the performance of various precipi-
tation forcing datasets, models, and simulated hydrological
variables, we used a normalized version of the Taylor di-
agram (Taylor, 2001). Specifically, we normalized the val-
ues of the centered root-mean-square error (CRMSE) and
the standard deviation with the standard deviation of the ref-
erence. Therefore, the reference (that is, the target point to
which the model outputs should be closest) corresponds to
the point on the graph with the normalized CRMSE equal to
zero, while both the correlation coefficient and normalized
standard deviation equal 1. The normalized Taylor diagrams
summarized model results for two different temporal scales
(3-hourly and daily) at the spatial resolution of 0.25◦.

To evaluate the degree of variation of various precipita-
tion datasets and simulated hydrological variables, we used
the coefficient of variation (CV) and coefficient of variation
ratio (CVr). The CV and CVr are determined using all pre-
cipitation forcing and variables examined at the 0.25◦ daily
resolution. The CV is a measure of variability defined as the
ratio of the standard deviation to the mean. To compare the
degree of variation from one data series to another, we used
the CV where we considered distributions with CV< 1 to
be low variance, while we considered those with CV> 1 to
be high variance. We defined CVr as the ratio of the CV of
model to the CV of reference. The defined parameters are
expressed as follows:

CVm =
σm

m
, (2)

CVo =
σo

o
, (3)

CVr =
CVm

CVo
. (4)

The CVm and CVo indicate the coefficient of variation of
the model and the coefficient of variation of reference, with

the means m and o and standard deviations σm and σo, re-
spectively. The CVr includes two components: the ratio of
the means and ratio of the standard deviation. Details on the
statistical metrics, including name conventions and mathe-
matical formulas, are provided in the Appendix.

3.3 Metrics of uncertainty propagation

The random error component was based on the normalized
centered root-mean-square error (NCRMSE). To demon-
strate how error in precipitation forcing translates to error in
the simulated hydrological variables – surface runoff (Qs),
subsurface runoff (Qsb), and evapotranspiration (ET) – we
used the NCRMSE error metric ratio as follows:

NCRMSE=

√
1
n

∑n
i=1

[
ŷi − yi −

1
n

∑n
i=1

(
ŷi − yi

)]2

√
1
n

n∑
i=1
(yi − y)2

, (5)

αNCRMSE =
NCRMSE(simulated variables)

NCRMSE(precipitation)
, (6)

where NCRMSE is the normalized centered root-mean-
square error and αNCRMSE is NCRMSE error metric ratio
at multiple temporal (3-hourly and daily) and spatial (0.25◦)
resolutions. The αNCRMSE metric quantifies the changes in
the random error from precipitation to simulated hydrologi-
cal variables (Qs,Qsb, and ET) and can thus be used to assess
magnification (αNCRMSE > 1) or damping (αNCRMSE < 1).

3.4 Analysis of ensemble spread

To assess how variability in the precipitation ensemble trans-
lates to variability of the various hydrological simulations
(Qs, Qsb, and ET) for the different modeling systems, we
performed an analysis of ensemble spread (1), formulated
as

1=

∑n
i=1(Xmax−Xmin)∑n

i=1Y
, (7)

in which Xmax and Xmin represent, respectively, the maxi-
mum and minimum of ensemble values at each time step,
while Y is the corresponding value of the reference. Here,
the members of ensemble constitute a sequence for each time
step (X1,X2. . ..X20). The ensemble spread (1) is calculated
at the monthly scale for the combined product and simu-
lated hydrologic variables. Note that the combined product
is an ensemble-based precipitation product; for the evalua-
tions presented in this study, we use the ensemble mean as
forcing. For the analysis and propagation of the precipitation
ensemble spread to hydrologic simulations, we used 20 en-
semble members, which are generated stochastically by the
QRF tree-based regression model (Meinshausen, 2006). 1
provides a measurement of the expected prediction intervals
relative to the reference value. The 1 value of 1 indicates
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the maximum possible uncertainty of the prediction interval.
To achieve accurate and successful prediction, comparatively
small prediction intervals are expected.

4 Results

4.1 Variability of multiple hydrological model
simulations

To examine the magnitude and variability of the differences
among both models and forcing datasets, we analyzed the
multi-model simulation results for three hydrological vari-
ables, including surface runoff (Qs), subsurface runoff (Qsb),
and evapotranspiration (ET). Throughout this analysis, we
used the SAFRAN-based simulation as the reference for
comparison. Figures 2 to 5 present spatial maps of annual
average values for each model, along with the relative dif-
ferences of annual average estimates of precipitation forcing
and the different hydrological variables for all the precipita-
tion forcing datasets and models. The relative differences in
precipitation forcing (Fig. 2) exhibited considerable spatial
variability for satellite precipitation forcing (relative differ-
ence > 20 %) and relatively lower variability for EI_GPCC
and the combined product. Examination of SAFRAN-based
annual average values of surface runoff shows that Water-
GAP3 estimates considerably higher surface runoff than the
rest of the models, particularly in the northern and northwest-
ern part of the study area (Fig. 3). Consequently, subsurface
runoff (Fig. 4) and evapotranspiration (Fig. 5) from Water-
GAP3 were lower in that part of the study area. All these
results display substantial differences in the spatial pattern
of relative differences, which suggests that simulations are
sensitive to both precipitation forcing and model uncertainty.
Certain models seem to be more sensitive for given variables.
For example, HTESSEL and ORCHIDEE are the models
with the largest relative difference ofQs, and both models ex-
hibited different behaviour relative to the other models when
forced by the satellite precipitation. This suggests a distinct
structural difference in the way precipitation is partitioned
into surface–subsurface runoff between the two groups.

Looking at the variability of results for combined and
reanalysis (EI_GPCC) forcing datasets, no substantial dif-
ferences occurred between reference and simulated sur-
face runoff (Qs). However, for the satellite-based simu-
lations, there were significant deviations. Specifically, the
CMORPH-based simulation showed significant overestima-
tion for ORCHIDEE and HTESSEL, but this pattern was re-
versed for JULES, SURFEX, and WaterGAP3, an outcome
that highlights the impact of model structure on precipitation
error propagation.

For subsurface runoff, similar spatial patterns (with re-
spect to Qs) were exhibited for the reference and the rest of
simulations (Fig. 4), which were also affected substantially
by precipitation uncertainty. For example, looking at the dif-

Figure 2. Map of the annual average relative difference (with re-
spect to SAFRAN) for the different precipitation forcing datasets.

ferent model simulations, we can see that WaterGAP3 results
reveal the lowest relative differences in Qs for almost all the
precipitation forcings. In addition, CMORPH-based simula-
tion underestimated substantially for all the models. Figure 5
presents the spatial pattern of the results for evapotranspira-
tion. For the combined product and EI_GPCC, results were
consistent with low relative difference (< 25 %). On the other
hand, CMORPH-based simulation showed an overall under-
estimation and deviated considerably from the results of the
other precipitation products. By examining the spatial pat-
tern of relative differences (Figs. 2–5), one can recognize
that there is no consistent spatial pattern among the differ-
ent model–forcing combinations. There are cases where the
pattern of the differences is dominated by the pattern of pre-
cipitation differences, as, for example, in the case of PER-
SIANN, where the maximum number of differences are con-
centrated in the central and eastern part of the peninsula.
While there are other cases where the pattern is dominated
by the sensitivity of the model (see, for example, results for
ORCHIDEE and 3B42 for surface runoff).

We also present a comparison of cumulative probability of
the relative differences among precipitation forcings (Fig. 6)
and the simulated hydrological variables (Fig. 7). The dis-
tribution of relative differences, both in terms of type (de-
noted by the shape of the cumulative density function – CDF)
and magnitude and differed as a function of precipitation
forcing, the model, and the variable considered. The CDF
of precipitation relative differences shows that CMORPH
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Figure 3. Map of SAFRAN-based simulations (Reference) of surface runoff (top row), and relative difference for the various models
(columns) and precipitation forcing (rows 2–5) analyzed.

deviated significantly from the other precipitation products
(Fig. 6). The surface runoff based on ORCHIDEE and HT-
ESSEL displayed a clear separation of the CDF for the com-
bined product and EI_GPCC and satellite-based precipita-
tion forcing (Fig. 7). Specifically, it is interesting to note
that 3B42V(7) responds very differently to other precipi-
tation forcing datasets for ORCHIDEE, highlighting again
the sensitivity of runoff response to precipitation structure
(space–time variability) and its dependence on the rainfall–
runoff generation mechanism.

Box plots of the relative difference of different hydrolog-
ical variables for the various forcing datasets and models at
the daily scale are shown in Fig. 8. Note the inclusion of
the relative difference of precipitation forcing to allow the
comparison between relative differences in precipitation with
those in the other hydrological variables. For each model, the
box plot shows a lower interquartile range (IQR), marking
lower variability forQsb and ET compared toQs. Results for
simulations based on the combined product and EI_GPCC
showed less variability than the satellite-based simulations.

SURFEX and WaterGAP3 exhibited the lowest variability
compared to the other models. Overall, with the exception
of few cases (e.g., 3B42V(7) for ORCHIDEE and HTES-
SEL and CMORPH for ORCHIDEE), uncertainty reduces
progressively from precipitation to surface runoff, subsurface
runoff, and finally ET.

4.2 Performance of multi-model simulations

The normalized Taylor diagrams summarize the results for
two different temporal scales. Figure 9 shows the results
for the 3-hourly scale only for the two models with output
available at that resolution (JULES and SURFEX), while
Fig. 10 presents results at the daily scale for all five models.
We aggregated the 3-hourly results from JULES and SUR-
FEX to daily to compare them with the nominal daily out-
put of ORCHIDEE, WaterGAP3, and HTESSEL. Results im-
proved with the temporal aggregation in reducing random er-
ror for JULES and SURFEX. As shown in Fig. 10, the points
for the 3B42V(7) were always the furthest from the refer-
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Figure 4. Map of SAFRAN-based simulations (Reference) of subsurface runoff (top row), and relative difference for the various models
(columns) and precipitation forcing (rows 2–5) analyzed.

ence (NCRMSE> 0.75) with the low correlation coefficient
(0.4–0.55), except SURFEX, which means that 3B42V(7)
was always associated with the worst performance for all
other models. Simulations based on the combined product
and EI_GPCC were always consistent, with significantly re-
duced NCRMSE values in the range of 0.25–0.8 for all the
hydrological models. Results for simulated ET are more con-
sistent among the various precipitation forcing datasets, ex-
hibiting normalized standard deviations in the range of 0.8–
1.2. NCRMSE reduced significantly (< 0.35) for each forc-
ing dataset; accordingly, the correlation coefficient (CC) also
raised considerably (> 0.9), showing a very high degree of
agreement with reference-based simulations. For surface–
subsurface runoff, the SURFEX and WaterGAP3 models per-
formed comparatively better than other models by reduc-
ing NCRMSE values, especially for the combined product
and EI_GPCC.

To illustrate the relative variability between precipitation
and individual hydrological variables, we calculated the co-

efficient of variation (CV) and the coefficient of variation
ratio (CVr) for all the hydrological models. To provide an
understanding of the impact of precipitation uncertainty in
hydrological simulations, we produced box plots of the CV
and CVr for precipitation forcing datasets and individual hy-
drological variables for all the models, as shown in Fig. 11.
A precipitation-forcing-wise comparison indicates that the
combined product and reanalysis underestimated precipita-
tion variability more than other precipitation forcings, which
affected the corresponding variability in Qs for all the mod-
els except ORCHIDEE. Although there were no significant
differences in terms of variability for combined product and
reanalysis-based simulations for the four models (JULES,
SURFEX, WaterGAP3, and HTESSEL), substantial differ-
ences in variability between precipitation and Qs were ob-
served for ORCHIDEE model. Satellite products overesti-
mated precipitation variability, leading to overestimation of
the variability of surface and subsurface runoff. The vari-
ability of ET was much lower than that of the other vari-
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Figure 5. Map of SAFRAN-based simulations (Reference) of evapotranspiration (top row), and relative difference for the various models
(columns) and precipitation forcing (rows 2–5) analyzed.

Figure 6. Cumulative probability for the precipitation forcing
datasets.

ables examined and well captured in all the simulation sce-
narios. From the box plots of CV from reference-based simu-
lations, the distributions of ET showed low variability (CV<

1), while the variability for all the other hydrological vari-
ables was high (CV> 1). In terms of CVr, the SURFEX
model performed very well by producing medians close to
1 (CVr = 1 means ideal consistency) for all the precipitation
forcing datasets but CMORPH.

4.3 Assessment of precipitation error propagation

To investigate the possible amplification, or dampening, of
the precipitation error to the hydrologic variables examined,
we quantified the NCRMSE error metric ratio (αNCRMSE),
and results are illustrated in Figs. 12 and 13. For all the sce-
narios (at 3-hourly and daily scales) and almost all mod-
els, αNCRMSE values were less than 1, which highlighted
the damping effect on the random error of precipitation in
simulated variables. In general, the damping effect increases
(i.e., αNCRMSE reduces), moving from surface to subsurface
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Figure 7. Cumulative probability for the multi-model, multi-forcing simulations for simulated hydrological variables.

runoff and ET and highlighting once again the interaction
between the different runoff-generating mechanisms as well
as coupled water–energy balance processes and precipita-
tion uncertainty. Interestingly, the relationship between error
propagation among the different hydrologic variables var-
ied greatly between models and precipitation forcing. Val-
ues of αNCRMSE for surface and subsurface runoff are gener-
ally close for the SURFEX model but distinctly different for
satellite-based results of ORCHIDEE and WaterGAP3.

4.4 Stochastic precipitation ensemble and
corresponding simulated hydrological variable
analysis results

The following summarizes the results of our analysis of en-
semble precipitation (20 members), generated stochastically
according to the algorithm used for the combined product,
and their corresponding hydrological simulations. To show

the relationship between the precipitation ensemble and sim-
ulated hydrological variables (generated ensemble), we pre-
sented an analysis of ensemble spread. Figure 14 depicts
density plots between ensemble spread of precipitation and
the simulated hydrological variables (Qs, Qsb, and ET) at
the monthly scale. A strong correlation between ensemble
spread of Qs and precipitation is found for almost all mod-
els. For the other variables (ET and Qsb), ensemble spread
was significantly narrower and rather independent of the en-
semble spread of precipitation, manifested as the horizontal
structure of contours in Fig. 14. The ensemble spread of Qs
was higher (ORCHIDEE and HTESSEL) or lower (SURFEX
and WaterGAP3) depending on the model, elucidating again
the impact of the modeling structure on the propagation of
precipitation uncertainty.
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Figure 8. Relative difference presented for the various products and models at daily scale. In each box, the central mark is the median, and
the edges are the first and third quartiles.

5 Discussion

Precipitation from different satellite–reanalysis datasets ex-
hibits considerable differences in pattern and magnitude,
which results in significant differences in hydrologic simu-
lations. Results presented in this paper demonstrated clearly
that magnitude and dynamics of uncertainty in hydrologic
simulations depend not only on the uncertainty of the forc-
ing variable but also on the model and examined hydrologic
variable.

For example, surface runoff (Qs) appears to be highly sen-
sitive to precipitation differences, while ET was not for this
semi-arid study region (Figs. 3 to 5). Particularly, ET exhib-
ited reduced sensitivity to precipitation forcing, which poten-
tially suggests that the water volume available for conversion

to ET did not deviate significantly among the precipitation
scenarios. This is expected for ET because it is primarily con-
trolled by atmospheric demand, plant and soil hydraulic con-
straints, and solar radiation (Wallace and McJannet, 2010).
When sufficient energy is available for rainfall to evaporate
directly without contributing to surface–subsurface runoff,
simulation of ET is not only affected by precipitation uncer-
tainty but also by other atmospheric constrains.

Consequently, results (Figs. 6 to 7) for ET were more con-
sistent among the various model and precipitation forcing
scenarios, indicating a smaller degree of uncertainty in ET
(relative toQs andQsb). These results suggest that precipita-
tion has a stronger influence on surface runoff, in particular
precipitation intensity, i.e., the same amount of precipitation
distributed over 3 h or over 1 d will impact mostly surface
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Figure 9. Normalized Taylor diagrams for 3-hourly precipitation
and simulated hydrological variables based on SAFRAN and the
satellite–reanalysis precipitation products used.

runoff, and this is associated with the model representation
of this fast process. Similarly, if we look at the distribution
of precipitation relative difference, CMORPH tends to de-
crease in magnitude compared to other precipitation prod-
ucts. Therefore, for subsurface runoff, CMORPH-based sim-
ulations displayed a gross underestimation compared to other
precipitation forcing.

Precipitation-to-surface-runoff sensitivity is strongly con-
trolled by the corresponding runoff generation scheme in
each model. For example, in the case of HTESSEL and OR-
CHIDEE, precipitation intensity has a great effect on the gen-
eration of surface runoff. The satellite precipitation datasets
have higher precipitation intensities (Fig. 6) when compared
to the remaining datasets, which explains the different be-
haviour of these two models. However, in the case of JULES,
the infiltration excess mechanism is rarely invoked when the
drivers are provided at a 3-hourly time step, as the maximum
infiltration rate is not reached. Therefore, the significance
of differences that HTESSEL and ORCHIDEE show with
more intense rainfall are not shown by JULES due to distinct

Figure 10. Normalized Taylor diagrams for daily simulated hydro-
logical variables with SAFRAN and the satellite–reanalysis precip-
itation products used.

differences of their corresponding surface runoff generation
modules.

Evaluation of the performance of the various simulations,
relative to SAFRAN, emphasized the issues due to low cor-
relation and increased random error from satellite products.
On the other hand, the reanalysis (EI_GPCC) and combined
product resulted in reduction of random error, suggesting that
relying on gauge-adjusted reanalysis or blended (satellite–
reanalysis) products offers improvement relative to satellite
products alone.

Certain dynamics resolved from this analysis were gener-
ally consistent among different models, such as the fact that
uncertainty reduced systematically from precipitation to sur-
face runoff to subsurface runoff and eventually to ET sim-
ulations. This is also in accordance with our expectations,
given that soil moisture (storage) integrates the precipitation
variability in time. Surface runoff exhibits high correlation to
precipitation, while uncertainty in subsurface runoff is mod-
ulated by storage capacity of the soils. In addition ET is af-
fected only if water availability deviates significantly from
the water demand in terms of potential evapotranspiration.
Our findings related to the surface runoff uncertainty (due
to model structure and precipitation) suggest that the use of
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Figure 11. Relationship between coefficient of variation and coefficient of variation ratio of simulated hydrological variables and precipita-
tion.

surface runoff (e.g., flash floods diagnostics) should be care-
fully considered in each application in view of each model
formulation.

6 Conclusions

This study investigated the propagation of precipitation un-
certainty in hydrological simulations and its interaction
with hydrologic modeling, which was based on satellite–
reanalysis precipitation forcing of a number of global hydro-
logical and land surface models for the Iberian Peninsula.
The following are the major conclusions from this study.

Simulation of surface runoff was shown to be highly sen-
sitive to precipitation forcing, but the direction (that is, over-
estimation or underestimation) and the magnitude of rela-
tive differences indicated strong dependence on the modeling

system. Hydrological simulations based on reanalysis and
combined product forcing datasets performed better over-
all than satellite precipitation-driven simulations. Moreover,
simulation results using CMORPH as forcing exhibit over-
all overestimation for ORCHIDEE and HTESSEL, which
is totally the opposite to the results from the other models
(JULES, SURFEX, and WaterGAP3). These types of dif-
ferences highlight the complexity of the interaction between
precipitation characteristics and different modeling schemes
and should be used as a “reference for caution” when gener-
alizing findings produced from single model simulations.

Modeling uncertainty appeared to be much less important
for evapotranspiration than for surface and subsurface runoff.
The sensitivity of hydrological simulations to different pre-
cipitation forcing datasets was shown to depend on the hy-
drological variable use and model parameterization scheme.
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Figure 12. NCRMSE error metric ratios presented for the various
products and models at 3-hourly scale.

Figure 13. NCRMSE error metric ratios presented for the various
products and models at daily scale.

Finally, based on our evaluation of the performance of the
different hydrological models and five precipitation prod-
ucts – CMORPH, PERSIANN, 3B42V(7), reanalysis, and
the combined product – we could not identify a single model
that consistently outperformed others, i.e., certain models ap-
peared to be more successful in the simulation of certain vari-
ables.

This study suggests that important benefits may accrue
from exploring different model structures as part of the

Figure 14. Density contour plot of the relationship between ensem-
ble spread of simulated hydrological variables and precipitation at
monthly scale. Color scale shows the frequency of occurrence. The
black line is the 1 : 1 line.

modeling approach. This study assessed the multi-model
performances regarding three different hydrologic variables
(surface–subsurface runoff and evapotranspiration). Apart
from precipitation forcing, other atmospheric forcing vari-
ables required for the hydrologic simulations are also essen-
tial in investigating the significance of hydrological model
uncertainty. In addition, the only calibrated model in this
study, WaterGAP3, performs better in specific locations (e.g.,
hilly) for all the hydrologic variables than other models.
Therefore, investigation should be performed in calibrating
and regionalizing models for different parameters. Neverthe-
less, a clear outcome of the current work is that uncertainty in
hydrologic predictions is significant and should be assessed
and quantified in order to foster the effective use of the out-
puts of global land surface models and hydrologic models.
Considering ensemble representation (e.g., multi-model and
multi-forcing) of hydrologic variables provides an appropri-
ate path to address this issue.

Advancing our understanding of precipitation uncertainty,
model uncertainty, and their interaction will potentially also
aid in the investigation of the impacts of climate change (and
associated uncertainty) on hydrological cycle components
and water resource systems. Finally, this research provides
a fine platform for discussing advances in the applications of
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different precipitation algorithms, hydrology, and water re-
source reanalysis.

Data availability. The datasets are available online for
SAFRAN (http://mistrals.sedoo.fr/Data-Download-IPSL/
?datsId=1388&search=0&project_name=HyMeX, last access:
31 March 2019), CMORPH (ftp://ftp.cpc.ncep.noaa.gov/precip/
CMORPH_V1.0/RAW/0.25deg-3HLY/, last access: 31 March
2019), PERSIANN (http://fire.eng.uci.edu/PERSIANN/data/
3hrly_adj_cact_tars/, last access: 31 March 2019), 3B42V(7)
(https://mirador.gsfc.nasa.gov, last access: 31 March 2019), the at-
mospheric reanalysis dataset (https://wci.earth2observe.eu/portal/,
last access: 31 March 2019), and the combined product
(https://sites.google.com/uconn.edu/ehsanbhuiyan/research,
last access: 31 March 2019).
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Appendix A

The statistical metric, the coefficient of variation ratio (CVr)
used in the model evaluation analysis, was computed using
the following parameters:

o=
1
N

N∑
i=1

oi, (A1)

m=
1
N

N∑
i=1

mi, (A2)

σo =

√√√√ 1
N

N∑
i=1
(oi − o)

2, (A3)

σm =

√√√√ 1
N

N∑
i=1

(mi −m)
2. (A4)

Here, oi and mi (i = 1, . . .,N ) are the observed and mod-
eled time series, respectively, of the product for times i, with
the means o and m and standard deviations σo and σm, re-
spectively; N is the total number of data points used in the
calculations.
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Table A1. Information on precipitation products used.

Original spatiotemporal
Model resolution References

SAFRAN 5 km, 1 h Quintana-Segui et al. (2016)
Combined 0.25◦, 3 h Bhuiyan et al. (2018)
EI_GPCC 0.25◦, 3 h https://wci.earth2observe.eu/portal/

(last access: 31 March 2019)
3B42V (7) 0.25◦, 3 h Huffman et al. (2010)
CMORPH 0.25◦, 3 h Joyce et al. (2004)
PERSIANN 0.25◦, 3 h Sorooshian et al. (2000)

Table A2. Details of the modeling systems.

Evapotrans- Soil Ground Reservoirs/ Routing Model
Model Interception piration layers water Runoff Lakes scheme time step

JULES Single reservoir,
potential
evapotranspiration

Penman–
Monteith

4 No Saturation and
infiltration
excess

No No 1 h

ORCHIDEE Single reservoir
structural
resistance to
evapotranspiration

Bulk ETP
(Barella-
Ortiz et
al., 2013)

11 Yes Green–Ampt
infiltration

No Linear cascade
of reservoirs
(sub-grid)

900 s energy
balance, 3 h
routing

SURFEX Single reservoir,
potential
evapotranspiration

Penman–
Monteith

14 Yes Saturation and
infiltration
excess

No TRIP with
stream and
deep-water
reservoir at 0.5◦

900 s for
ISBA,
3600 s for
TRIP

WATERGAP3 Single reservoir Priestley–
Taylor

1 Yes Beta function Yes Manning–
Strickler

1 d

HTESSEL Single reservoir,
potential
evapotranspiration

Penman–
Monteith

4 No Saturation
excess

No CaMa-Flood 1 h
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