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Abstract

The preferential conditional logic PCL, introduced by Burgess, and its
extensions are studied. First, a natural semantics based on neighbour-
hood models, which generalise Lewis’ sphere models for counterfactual
logics, is proposed. Soundness and completeness of PCL and its exten-
sions with respect to this class of models are proved directly. Labelled
sequent calculi for all logics of the family are then introduced. The cal-
culi are modular and have standard proof-theoretical properties, the most
important of which is admissibility of cut, that entails a syntactic proof
of completeness of the calculi. By adopting a general strategy, root-first
proof search terminates, thereby providing a decision procedure for PCL
and its extensions. Finally, the semantic completeness of the calculi is
established: from a finite branch in a failed proof attempt it is possible to
extract a finite countermodel of the root sequent. The latter result gives a
constructive proof of the finite model property of all the logics considered.

1 Introduction

Conditional logics have been studied from a philosophical viewpoint since the
60’s, with seminal works by, among other, Lewis, Nute, Stalnaker, Chellas,
Pollock and Burgess.1 In all cases, the aim is to represent a kind of hypothetical
implication A > B different from classical material implication, but also from
other non-classical implications, such as the intuitionistic one.

There are mainly two kinds of interpretations of a conditional A > B. The
first is hypothetical/counterfactual: “If A were the case then B would be the

∗This work was partially supported by the Project TICAMORE ANR-16-CE91-0002- 01
and by WWTF project MA 16-28.

1Cf. [12], [22], [23], [2], [20], [1], [24].
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case”, while the second is prototypical: “Typically (normally) if A then B”,
or “B holds in most normal/typical cases in which A holds”. Applications of
conditional logics to computer science, more specifically to artificial intelligence
and knowledge representation, have followed these two interpretations. The
hypothetical/counterfactual interpretation has lead to the study of the relation
of conditional logics with the notion of belief change, which has lead to the
crucial issue of the Ramsey Test. The prototypical interpretation has found an
interest in the formalisation of default and non-monotonic reasoning (the well-
known KLM systems) and has some relation with probabilistic reasoning. The
range of conditional logics is actually more extensive, comprising also deontic
and causal interpretations.

All interpretations of the conditional operator agree on the rejection of some
properties of material implication, along with properties of other non-classical
implications, such as the intuitionistic one. These undesirable properties are
strengthening, A > B implies (A ∧ C) > B; transitivity, A > B and B > C
imply A > C, and contraposition, A > B implies ¬B > ¬A.

The semantics of conditional logics is defined in terms of various kinds of
possible-world models, most of them comprising a notion of preference, com-
parative similarity or choice among worlds. Intuitively, a conditional A > B is
true at a world x if B is true in all the worlds most normal/similar/close to x in
which A is true. In contrast with the situation in standard modal logic, there
is no unique semantics for conditional logics.

In this paper we consider the conditional logic PCL (Preferential Conditional
Logic), one of the fundamental systems of conditional logics. An axiomatization
of PCL (and the respective completeness proof) has been originally presented
in the seminal work by Burgess in [1], where the system is called S, and then
by Veltman [24]. Logic PCL generalises Lewis’ basic logic of counterfactuals,
and its flat fragment corresponds to the preferential logic P of non-monotonic
reasoning proposed by Kraus, Lehmann and Magidor [11].

The logic takes its name, PCL, from its original semantics, defined in terms
of preferential models. In these models, every world x is associated with a set
of accessible worlds Wx and a preference relation ≤x on this set; the intuition
is that this relation assesses the relative normality/similarity of pairs of worlds
with respect to x. Roughly speaking, a conditional A > B is forced by x if B
is true in all accessible worlds (that is, worlds in Wx) where A holds and that
are most “normal” with respect to x, where their normality is assessed by the
relation ≤x2.

In this paper we present an alternative semantics for PCL based on neigh-
bourhood models. Neighbourhood semantics has been successfully employed to
analyse non-normal modal logics [2], as their semantics cannot be defined in
terms of ordinary relational Kripke models. In neighbourhood models, every
world x is equipped with a set of neighbourhoods N(x) and each α ∈ N(x) is
a non-empty set of worlds. The general intuition is that each neighbourhood

2According to some interpretations, normality means minimality with respect to ≤x.

2



α ∈ N(x) represents a state of information/knowledge/affair to be taken into
account in evaluating the truth of modal formulas at world x. In the conditional
context, neighbourhood inclusion can be understood as follows: if α, β ∈ N(x)
and β ⊆ α, then worlds in β are at least as plausible/normal as worlds in α.

It turns out that neighbourhood models provide a very natural semantics for
PCL. This semantics abstracts away from the details of the preference relations
and, moreover, the definition of the conditional can be seen as a simple modi-
fication of the strict implication operator, avoiding the unwanted properties of
strengthening, transitivity and contraposition. The strict implication demands
that each α ∈ N(x) “validates” the implication A → B. The truth condition
for the conditional only requires that, for all α ∈ N(x) containing an A -world,
there is a smaller neighbourhood β ⊆ α non-vacuously validating the implica-
tion A → B, where non-vacuously means that β must contain an A-world. No
further properties or structure of neighbourhood models are needed.

The use of neighbourhood models for analysing conditional logics is not a
novelty: Lewis’ sphere models for counterfactual logics belong to this approach.
However, the crucial property of sphere models is that neighbourhoods (e.g.
spheres) are nested : given α, β ∈ N(x), either α ⊆ β or β ⊆ α. This property
entails that worlds belonging to

⋃
N(x) can be always be compared according

to their level of normality3. This assumption is controversial in some contexts
such as belief revision [5] and non-monotonic reasoning. The logic PCL is more
general: its neighbourhood models do not assume nesting of neighbourhoods,
whence worlds in

⋃
N(x) are not necessarily comparable with respect to their

level of normality.
Although PCL is the basic system we consider in this paper, stronger systems

can be obtained by assuming properties of neighbourhood models: normality,
total reflexivity, weak centering, centering, uniformity and absoluteness. These
conditions are analogous to the ones considered by Lewis for sphere models, and
give rise to a total of 15 preferential systems.

The Hilbert axiomatization of PCL is given by adding to the smallest con-
ditional logic CK three axioms, namely, (ID), (CM) and (OR). The family of
preferential logics is obtained by adding axioms in correspondence with the
semantic properties mentioned above.

In sharp contrast with the simplicity of its Hilbert axiomatization, the proof
theory of PCL and its extensions is largely unexplored. To the best of our
knowledge, the only existing proof systems for PCL can be found in [4, 21] and,
more recently, in [14, 9]. All of them are based on preferential semantics, and
the last two cover only logic PCL and none of the extensions4.

Building on the neighbourhood semantics, we define labelled sequent calculi
for PCL and its extensions5. The calculi make use of both world and neighbour-

3In models where minimal spheres always exist, the nesting property is equivalent to the
existence of a ranking function rx defined for every world x. The function rx(y) evaluates the
level of normality of each world y ∈Wx with respect to x.

4For a more detailed discussion on the literature, refer to section 8.
5Some results of this work have been preliminarily presented in [17].
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hood labels to encode the relevant features of the semantics into the syntax. All
calculi are standard, meaning that each connective is handled exactly by dual
left and right rules, justified through a clear meaning explanation. As a special
feature, a new operator, |, is introduced for translating the meaning explana-
tion of the conditional operator into sequent rules. Moreover, the calculi are
modular, to the extent that logical rules are the same for all systems, while re-
lational rules for neighbourhood and world labels are added to define calculi for
extensions. We do not consider explicitly the family of Lewis’ logics, for which
several internal and labelled calculi exist. Nonetheless the present framework
can be adapted to cover these systems as well.

In addition to simplicity and modularity, the calculi have strong proof the-
oretical properties, such as height-preserving invertibility and admissibility of
contraction and cut.

We show that the calculi are terminating under the adoption of a uniform
proof search strategy, obtaining thereby a decision procedure for (almost) all
logics of the PCL family. However, since the logics in this family belong to
different complexity classes [3], the uniform strategy will be unavoidably far
from optimal.

We also prove semantic completeness of the calculus: from a failed proof of
a formula it is possible to extract a finite neighbourhood countermodel, built
from a branch of the attempted proof. This result provides a constructive proof
of the finite model property for each logic of the PCL family with respect to the
neighbourhood semantics.

The paper is organised as follows: In Section 2, the family of PCL logics
and the neighbourhood semantics is introduced. Section 3 shows completeness
of PCL and its extensions with respect to the neighbourhood semantics. In
Section 4, we introduce labelled sequent calculi for family of preferential logics.
In Section 5 we prove the main syntactic properties of the calculi, including
admissibility of cut, thereby obtaining a syntactic proof of the their complete-
ness. In Section 6, a decision procedure for the logics is presented. In Section
7, we present a proof of semantic completeness for the calculi, by extracting a
countermodel form failed proof search. Finally, Section 8 discusses some related
work.

2 Preferential logics and neighbourhood seman-
tics

In this section we introduce the family of preferential conditional logics.

Definition 2.1. The set of well formed formulas of PCL and its extensions is
defined by means of the following grammar, for p ∈ Atm propositional variable
and A,B ∈ L:

L ::= p | ⊥ | A ∧B | A ∨B | A→ B | A > B.
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Preferential conditional logic PCL is the basic system of the family; exten-
sions of PCL are obtained by adding to the basic system the axioms for nor-
mality, total reflexivity, weak centering, centering, uniformity and absoluteness.
The resulting 15 logics are represented in the lattice of Figure 1.

PCL

PU

PA

PN

PNU

PNA

PT

PTU

PTA

PW

PWU

PWA

PC

PCU

PCA

Figure 1: The preferential family of conditional logics

The axiomatic presentation of PCL and its extensions is given in Figure 2.
Propositional axioms and rules are standard. Given a logic K of the preferential
family, we denote its axiom system as HK, and derivability of a formula F in
the axiom system as `K F .

(RCEA)
A↔B

(A>C)↔(B>C) (RCK)
A→B

(C>A)→(C>B)

(ID) A > A (R-And) (A > B) ∧ (A > C)→ (A > (B ∧ C))

(CM) (A > B) ∧ (A > C)→ ((A ∧B) > C) (OR) (A > C) ∧ (B > C)→ ((A ∨B) > C)

(N) ¬(> > ⊥) (T) A→ ¬(A > ⊥)

(W) (A > B)→ (A→ B) (C) (A ∧B)→ (A > B)

(U1) (¬A > ⊥)→ ¬(¬A > ⊥) > ⊥ (U2) ¬(A > ⊥)→ ((A > ⊥) > ⊥)

(A1) (A > B)→ (C > (A > B)) (A2) ¬(A > B)→ (C > ¬(A > B))

HPCL = {(RCEA), (RCK), (ID), (R-And), (CM), (OR)};
HPN = HPCL + (N); HPT = HPN + (T); HPW = HPT + (W); HPC = HPW + (C);

HPU = HPCL + (U1)+(U2); HPNU = HPU + (N); HPTU = HPNU + (T);

HPWU = HPTU + (W); HPCU = HPWU + (C);

HPA = HPCL + (A1)+(A2); HPNA = HPA + (N); HPTA = HPNA + (T);

HPWA = HPTA + (W); HPCA = HPWA + (C).

Figure 2: Axiomatization of PCL

The following proposition contains some theorems of PCL that will be (tac-
itly) used in the following. The first four are well-known axioms, respectively
called (RT), (MOD), (DT), and (CSO) in the literature. Axiom (DT) is equiv-
alent to (OR), and from (DT) axiom (RT) is derivable. Axiom (CSO) is equiv-
alent to (CM)+(RT). The proof of the last three axioms is given in [11].
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Proposition 2.1. The following formulas are derivable in PCL:

1. (RT) (A > B) ∧ ((A ∧B) > C)→ (A > C);

2. (MOD) (A > ⊥)→ (B > ¬A);

3. (DT) ((A ∧B) > C)→ (A > (B → C));

4. (CSO) (A > B) ∧ (B > A))→ ((A > C)→ (B > C));

5. ((A ∨B) > A) ∧ ((B ∨ C) > B)→ ((A ∨ C) > A);

6. ((A ∨B) > A) ∧ ((B ∨ C) > B)→ A > (C → B));

7. ((A ∨B) > A) ∧ (B > C)→ (A > (B → C)).

The semantics of PCL is usually defined in terms of preferential models, as
explained in the Introduction. Here we define an alternative semantics in terms
of neighbourhood models.

Definition 2.2. A neighbourhood model is a structureMN = 〈W,N, J K〉 where:

• W is a non empty set of elements, the possible worlds;

• N : W → P(P(W )) is the neighbourhood function, which associates to
each x ∈W a set N(x) ⊆ P(W ), called a system of neighbourhood ;

• J K : Atm→ P(W ) is the propositional evaluation.

The elements of N(x) are called neighbourhoods, and are denoted by lowercase
Greek letters. For all x ∈W , we assume the neighbourhood function to satisfy
the property of non-emptiness: For each α ∈ N(x), α is non-empty.

Notation 2.1. The symbol  is used to denote the forcing (or truth) of a
formula at a world of a model: x  B means that B is true at x. Given a
neighbourhood α, we use α ∃ B as a shorthand for there exists y ∈ α such that
y  B, and α ∀ B as a shorthand for for all y ∈ α it holds that y  B.

Before giving its formal definition, we give an intuitive motivation of the truth
condition for the conditional operator in neighbourhood semantics. Suppose
we want to define a conditional operator more fine-grained than the material
implication, and suitable for an hypothetical, non-monotonic, or plausible in-
terpretation. As a first attempt, we can define a kind of strict implication, in
analogy to the corresponding notion in normal modal logic:

(1) x  A > B iff for all α ∈ N(x) it holds α ∀ A→ B.

However, this definition is not suitable for the conditional operator, as it would
satisfy the unwanted properties of strengthening (or monotonicity), transitiv-
ity, and contraposition. An equivalent, slightly redundant, formulation of (1)
consists in a restriction to neighbourhoods that contain A-worlds:
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(2) x  A > B iff for all α ∈ N(x), if α ∃ A then α ∀ A→ B.

Thus, for every α ∈ N(x), if α contains an A-world, we require that α ∀

A → B. The latter condition is too strong: in the intended interpretation,
and in particular in the non-monotonic reading, the conditional should tolerate
exceptions. Thus, instead of requiring A→ B to be verified by the whole α, we
only demand the formula to be verified by a sub-neighbourhood β of α.

(3) x  A > B iff for all α ∈ N(x), if α ∃ A then there exists a
β ∈ N(x), with β ⊆ α such that β ∀ A→ B.

Here, however, there is still a problem: the condition on β could be vacuously
satisfied by choosing a β that does not contain any A-world (at least whenever
A 6= >). To rule out this case, we modify (3) as follows:

(4) x  A > B iff for all α ∈ N(x), if α ∃ A then there exists
β ∈ N(x), with β ⊆ α such that β ∃ A and β ∀ A→ B.

Definition (4) is the truth definition of conditional adequate to formalize the
logics of the preferential family.

Definition 2.3. For any formula F ∈ L and x ∈ W , truth of a formula in a
model, in symbols x  F , is defined as follows. For atoms p, x  p if x ∈ JpK;
truth conditions for Boolean combinations are the standard ones; the truth
condition for the conditional operator is (4).

We say that a formula F is valid in MN if for all x ∈ W , x  F . We say
that a formula if valid in the class of all neighbourhood models (resp. in a class
of models K) if for all neighbourhood models MN (resp. in K) it holds that F
is valid in MN ; this will be denoted by �N F (resp. �K F ).

Definition 2.4. Extensions of the class of neighbourhood models are defined
as follows:

• Normality : For all x ∈W it holds that N(x) 6= ∅;
• Total reflexivity : For all x ∈W there exists α ∈ N(x) such that x ∈ α;
• Weak centering : For all x ∈W and α ∈ N(x), x ∈ α;
• Centering : For all x ∈W and α ∈ N(x), x ∈ α and {x} ∈ N(x);
• Uniformity6: For all x ∈ W it holds that if y ∈ α and α ∈ N(x), then⋃

N(x) =
⋃
N(y).

• Absoluteness: For all x ∈ W it holds that if y ∈ α and α ∈ N(x), then
N(x) = N(y).

The extensions are respectively denoted by MN , MT , MW , MC , MU and
MA. As happens with axioms, semantic conditions can be combined, yield-
ing 15 classes of models: so MNT is a neighbourhood model with normality
and total reflexivity, MWA is a neighbourhood model with weak centering and
absoluteness, and so on.

6The property of uniformity as we have defined it is sometimes called local uniformity,
to distinguish it from the following property, called uniformity: for all x, y ∈ W ,

⋃
N(x) =⋃

N(y). However, the set of valid formulas in the class of models satisfying uniformity and
local uniformity is the same. A similar remark applies to the property of absoluteness.
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Not all the extensions of the above table are proper conditional logics. We
observe that

1. PCA collapses to classical logic;

2. PWA collapses to S5.

We provide a proof of the above through the semantics, obtaining a collapse
of models. This implies the collapse of logical systems, once completeness has
been proved.

For 1, we prove that N(x) = {{x}}. Let y ∈ α and α ∈ N(x). By abso-
luteness, N(x) = N(y). By centering, {x} ∈ N(x) and {y} ∈ N(y), so that
{y} ∈ N(x) and x ∈ {y}, whence x = y. It follows that there is only one
possible world, and the forcing condition of the conditional collapses to the one
of material implication.

For 2, we prove that N(x) = {S}, where S is any set of worlds to which
x belongs. Let α, β ∈ N(x). We show that α = β. Let y ∈ α; then, by
absoluteness N(x) = N(y), so β ∈ N(y), and by centering y ∈ β. We conclude
α ⊆ β. The other inclusion is proved in the same way. Moreover, from the
fact that for any y ∈ S, N(y) = {S} it follows that all the possible words are
equivalent: thus, the forcing condition of a conditional A > B reduces to the
truth condition of the strict implication �(A→ B).

By adding to HPCL the axiom

(CV) ((A > C) ∧ ¬(A > ¬B))→ ((A ∧B) > C)

we obtain logic V, which is the basic system of Lewis’ counterfactual logic. By
adding the axiom to the other preferential logics, we get the family of counter-
factual logics, V and extensions, introduced in [12]. Lewis defined the semantics
of counterfactual logics in terms of sphere models; and sphere models for V can
be obtained by adding to neighbourhood models the following condition:

Nesting : For all α, β ∈ N(x), either α ⊆ β or β ⊆ α.

Thus, the family of Lewis’ logics is by all means an extension of the preferential
systems, and the proof theoretic and model theoretic methods exposed in the
following sections can be (more or less modularly) extended to cover Lewis’
logics.

3 Soundness and completeness of neighbourhood
models

We now prove soundness and completeness of the classes of models with respect
to the axioms of PCL and its extensions.
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3.1 Soundness

Theorem 3.1 (Soundness). For F ∈ L, HP axiom system for a preferential
logic P and P the corresponding class of neighbourhood models, it holds that if
`P F , then �P F .

Proof. The proof consists in showing that the axioms are valid, and that the
inference rules preserve validity. By means of example, we prove soundness of
axioms (CM), (OR) and (U1).
(CM) ((A > B) ∧ (A > C)) → ((A ∧ B) > C). Consider an arbitrary neigh-
bourhood model MN and an arbitrary world x, and suppose that x forces the
antecedent of the implication. We show that x forces the succedent. The as-
sumption means that:

1. MN , x  A > B, i.e., if there exists α ∈ N(x) such that α ∃ A, then
there exists β ⊆ α such that β ∃ A and β ∀ A→ B;

2. MN , x  A > C, i.e., if there exists α ∈ N(x) such that α ∃ A, then
there exists γ ⊆ α such that γ ∃ A and γ ∀ A→ C.

Suppose that there is α ∈ N(x) such that α ∃ A∧B; in particular, α ∃ A so
by 1 we have that there is β ⊆ α such that β ∃ A and β ∀ A→ B. By 2 from
β ∃ A, we have that there is γ ⊆ β such that γ ∃ A and γ ∀ A→ C. Since
γ ⊆ β and γ ∃ A, by β ∀ A → B we get γ ∃ A ∧ B. From γ ∀ A → C, a
fortiori we have γ ∀ A ∧B → C, so we have proved that x  A ∧B > C.
(OR) ((A > C)∧(B > C))→ ((A∨B) > C). Suppose there is a neighbourhood
model which satisfies the antecedent, i.e.

1. MN , x  A > B , i.e., if there exists α ∈ N(x) such that α ∃ A, then
there exists β ⊆ α such that β ∃ A and β ∀ A→ B;

2. MN , x  B > C, , i.e., if there exists α′ ∈ N(x) such that α′ ∃ B, then
there exists γ ⊆ α′ such that γ ∃ B and γ ∀ B → C.

Our claim is x  (A∨B) > C. Assume there is α′′ ∈ N(x) such that α ∃ A∨B.
Then either α ∃ A or α ∃ B. In the first case we use 1 and obtain that there
is β ⊆ α′′ such that β ∃ A and β ∀ A→ C. Then from 2 (with β in place of
α′) we obtain that there is γ ⊆ β such that γ  B (and a fortiori γ  A ∨ B)
and γ ∀ B → C. Since γ ⊆ β ⊆ α, by 1 we have γ ∀ A → C, and a fortiori
γ ∀ (A ∨ B) → C. The second case is dealt with in a similar way, so we
conclude x  (A ∨B) > C.
(U1) (¬A > ⊥) → (¬(¬A > ⊥) > ⊥). Suppose there is a neighbourhood
model with local uniformity that verifies the antecedent, i.e.

1. MU , x  ¬A > ⊥, , i.e., if there exists α ∈ N(x) such that α ∃ ¬A, then
there exists β ⊆ α such that β ∃ ¬A and β ∀ ¬A→ ⊥.

We claim that if there exists α′ ∈ N(x) such that α′ ∃ ¬(¬A > ⊥), then there
is γ ⊆ α′ such that γ ∃ ¬(¬A > ⊥) and γ ∀ ¬¬(¬A > ⊥). The latter two
give a contradiction, so we need to prove that the existence of the above α′ leads
to a contradiction.
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Assume α′ ∃ ¬(¬A > ⊥), i.e. there is y ∈ α′ such that y 1 ¬A > ⊥.
Then there is δ ∈ N((y) such that δ ∃ ¬A. Since

⋃
N(x) =

⋃
N(y) by the

condition of uniformity, there is α′′ ∈ N(x) such that z ∈ α′′ and α′′ ∃ ¬A.
By 1, there is β ⊆ α′′ such that β ∃ ¬A and β ∀ ¬A → ⊥, so we have the
desired contradiction.

3.2 Completeness of PCL
We here prove the completeness of of PCL with respect to the neighbourhood
semantics (extensions are treated in Subsection 3.3).

Generally speaking, proving completeness for the axiom systems of PCL and
its extensions seems to be quite an arduous task. Burgess [1] was the first to
provide a completeness proof for PCL, using preferential models. His proof in
the mentioned paper, condensed in a few pages, is quite intricate and not so
easy to grasp. In his thesis, Veltman [24] gave a proof of strong completeness of
PCL with respect to preferential semantics. This result is far from elementary.
In [3] Halpern and Friedman sketched a completeness proof for PCL, claiming
the proof to be similar to Burgess’ proof. Moreover, they state that the proof
can cover extensions of PCL, but the proof for extensions is postponed to a full
paper which never appeared.

More recently, in [4], the completeness of the axiomatization of PCL and its
extensions is proved with respect to classes of preferential models, assuming the
Limit assumption.

For Lewis’ sphere models, a direct completeness result was given by Lewis in
[12]: he proved that the axioms of V and extensions are sound and complete with
respect to sphere models. However, the proof heavily relies on the connective
of comparative plausibility, which is definable in V but not in PCL.

To the best of our knowledge, no completeness result is known for the axioms
of PCL and its extensions with respect to neighbourhood models. The proofs
in the rest of this section cover PCL and all its extensions, except those ones
congaing weak centering (and not containing centering). The proofs make use
of some notions and lemmas from [4].

We follow the standard strategy: in order to prove the completeness of an
axiom system HK with respect to a class of modelsMK , we define a model MP

and we prove that:

1. MK is canonical, meaning that for any formula F ∈ L, `K F if and only
if F is valid in MK ;

2. MK ∈MK .

From these two facts the completeness of HK with respect the classMK imme-
diately follows. For PCL the class MK will be the class of all neighbourhood
models; for extensions,MK will be the class of models extended with the prop-
erties detailed in Definition 2.4.

10



As usual, the model is be built by considering maximal consistent sets of for-
mulas. We start by recalling standard definitions and properties. The notion of
(in-)consistency and subsequent definitions and lemmas on maximal consistent
sets are relative to some axiom system HK.

Definition 3.1. Given a set of formulas S ∈ L, we say that S is inconsistent
if it has a finite subset {B1, . . . , Bn} ⊆ S such that `K (B1 ∧ · · · ∧ Bn) → ⊥.
We say that S is consistent if it is not inconsistent. We say that S is maximal
consistent if S is consistent and for any formula A /∈ S, S ∪{A} is inconsistent.
We denote by X,Y, Z, . . . the maximal consistent sets and by MAX the set of
all maximal consistent sets over a fixed language.

We assume all standard properties of MAX sets, in particular the following:

Lemma 3.2.

a) For S set of formulas, S is consistent if and only if there exists Z ∈ MAX
such that S ⊆ Z.

b) For A formula, �K A if and only if for all Z ∈ MAX, A ∈ Z.

Proof. The direction only if of a) is the standard Lindembaum lemma, proved
by means of an inductive construction. Property b) is a sub-case of a), obtained
by taking S = {¬A}, by controposition and completeness of all Z ∈ MAX (either
A ∈ Z or ¬A ∈ Z).

We will (shortly) define the worlds of the canonical model MK as the set
{(X,A) | X ∈ MAX and A ∈ L and A ∈ X}. Thanks to Lemma 3.2, in order to
prove that the MK is indeed canonical, we will only have to show that for any
formula F ∈ L and for any world (X,A), it holds that:

(Truth Lemma) F ∈ X if and only if (X,A)  F .

It easy to see that canonicity of MK follows: A is valid in MK if and only if for
all Z ∈ MAX, A ∈ Z (by the Truth Lemma and definition of the worlds), if and
only if `K A (by Lemma 3.2).

Before providing the canonical model construction, we introduce some addi-
tional definitions and lemmas.

Definition 3.2. Let X ∈ MAX. The set of conditional consequences of a
formula B ∈ L is defined as: XB = {C ∈ L | B > C ∈ X}.

Lemma 3.3. The following hold:

1. B ∈ XB ;

2. If XB ⊆ Y and B > C ∈ X, then C ∈ Y ;

3. B > C ∈ X iff for all Y , XB ⊆ Y implies C ∈ Y .
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Proof. We prove only direction ⇐ of statement 3. By hypothesis, there is no
Z ∈ MAX such that XB∪{¬C} ⊆ Z. By lemma 3.2, XB∪{¬C} is inconsistent,
and there must be some D1, . . . , Dn ∈ XB such that `K (D1 ∧ · · · ∧Dn) → C.
Thus, by (RCK) and (R-And), `K ((B > D1) ∧ · · · ∧ (B > Dn)) → (B > C).
Since (B > D1), . . . , (B > Dn) ∈ X, also B > C ∈ X.

Definition 3.3. Let X ∈ MAX, A,B ∈ L. Define A 6X B if (A∨B) > A ∈ X.

Proposition 3.4. The relation 6X is reflexive and transitive.

Proof. Reflexivity follows from axiom (ID) and (OR). Transitivity immediately
follows from 1 of Lemma 2.1.

Proposition 3.5 (From [4]). If A 6X B, XA ⊆ Y and B ∈ Y , then XB ⊆ Y .

Proof. Let B > C ∈ X (thus, C ∈ XB). Our goal is to show that C ∈ Y . By
hypothesis, we know that (A ∨ B) > A ∈ X. From Axiom 6 of Proposition 2.1
it follows that A > (B → C) ∈ X. Thus, B → C ∈ XA and, by hypothesis
B → C ∈ Y and B ∈ Y . Thus, C ∈ Y .

Proposition 3.6. If A 6X B 6X C, XA ⊆ Y and C ∈ Y , then XB ⊆ Y .

Proof. By hypothesis, (A ∨ B) > A ∈ X and (B ∨ C) > B ∈ X. By Axiom 5
of Proposition 2.1, A > (C → B) ∈ X. Thus, C → B ∈ XA, and C → B ∈ Y .
Since C ∈ Y , we have B ∈ Y . Thus, we have that A 6X B, XA ⊆ Y and
B ∈ Y . Applying Proposition 3.5 we obtain XB ⊆ Y .

We can now proceed with the construction of the canonical model.

Definition 3.4. For p propositional atom, let

• W = {(X,A) | X ∈ MAX and A ∈ L and A ∈ X};

• V(p) = {(X,A) ∈ W | p ∈ X}.

For (X,A), (Y,B) ∈ W, we define a neighbourhood as:

ν
(X,A)
(Y,B) = {(Z,C) ∈ W | XC ⊆ Z and C 6X B and B /∈ Z} ∪ {(Y,B)}

Now for any (X,A) ∈ W, let the neighbourhood function be defined as :

N ((X,A)) = {ν(X,A)
(Y,B) | X

B ⊆ Y and B ∈ L}

Finally, let the canonical model be defined as MN = 〈W,N ,V〉.

Notation 3.4.1. Slightly abusing the notation, we write N (X,A) instead of

N ((X,A)). Moreover, since in ν
(X,A)
(Y,B) the A is not needed, we simplify the

notation to νX(Y,B).

Proposition 3.7. The canonical model MN is a neighbourhood model.

12



Proof. It suffices to verify that that non-emptiness holds; since for all (Y,B) ∈
W it holds that (Y,B) ∈ νX(Y,B), the property immediately follows.

Lemma 3.8. If νX(Y,B) ∈ N (X,A) and (U,D) ∈ νX(Y,B), then νX(U,D) ⊆ ν
X
(Y,B).

Proof. We prove the non-trivial case in which (U,D) 6= (Y,B). Let (V,E) ∈
νX(U,D); we have to show that (V,E) ∈ νX(Y,B). Thus, we have to show that

a) XE ⊆ V , b) E 6X B and c) B /∈ V . Again, we consider the non-trivial
case in which (V,E) 6= (U,D). Since (V,E) ∈ νX(U,D) we have that XE ⊆ V

(requirement a is met), E 6X D and D /∈ V . Since (U,D) ∈ νX(Y,B) we have,

among the others, that D 6X B. By transitivity of 6X (Proposition 3.4) it
follows that E 6X B. Thus, b) is satisfied. It remains to prove that B /∈ V . For
the sake of contradiction, suppose that B ∈ V . From this latter, E 6X D 6X B
and XE ⊆ V it follows by Proposition 3.6 that XD ⊆ V ; thus, by Lemma 3.3,
D ∈ V , against previous assumption. Thus, requirement c) is satisfied.

We are now ready to prove the Truth Lemma.

Lemma 3.9 (Truth Lemma). Let F ∈ L and X ∈ MAX. The following state-
ments are equivalent:

• F ∈ X;

• MN , (X,A)  F .

Proof. As usual, the proof proceeds by mutual induction on the complexity of
the formula F . We show only the case of F ≡ G > H, tacitly assuming that the
inductive hypothesis holds on subformulas of F , that is for G (and similarly for
H): and any world (U,B): G ∈ U iff MN , (U,B)  G. Thus, we have to prove
the equivalence of the following statements:

1. G > H ∈ X;

2. For all α ∈ N (X,A), if α ∃ G then there exists β ∈ N (X,A) with β ⊆ α,
β ∃ G and β ∀ G→ H.

[1⇒ 2] Assume 1, and suppose that α ∈ N (X,A) and α ∃ G, for α = νX(Y,B).

We must show that there exists a β ∈ N (X,A) such that β ⊆ α, β ∃ G and
β ∀ G→ H.

We distinguish two cases, depending on whether B 6X G holds or not.
Suppose it holds; then, we show that we can take β = α = νX(Y,B). Given

the hypothesis we only have to prove that α ∀ G → H. To this aim let
(U,D) ∈ νX(Y,B) and G ∈ U . From (U,D) ∈ νX(Y,B) it follows that XD ⊆ U and
D 6X B. Since B 6X G, by transitivity of ≤X we obtain D 6X G. Therefore
we have: G ∈ U , XD ⊆ U and B 6X G,so that by Proposition 3.5 we obtain
XG ⊆ U . Since G > H ∈ X we have H ∈ XG, and finally H ∈ U .

Now suppose that B 6X G does not hold. Therefore ¬((B ∨G) > B) ∈ X.
Thus, XB∨G ∪ {¬B} is consistent, so that (by lemma 3.2) there exists some
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Z ∈ MAX such that XB∨G ∪ {¬B} ⊆ Z (whence G ∈ Z). Let us consider
the world (Z,B ∨ G). Note that by construction XB∨G ⊆ Z, and obviously
(B ∨G) 6X B and B /∈ Z, By Definition 3.4 (Z,B ∨G) ∈ νX(Y,B). We show that

we can take the required β = νX(Z,B∨G): since XB∨G ⊆ Z, we have νX(Z,B∨G) ∈
N (X,A); since (Z,B ∨ G) ∈ νXY,B , by lemma 3.8 we have νX(Z,B∨G) ⊆ νX(Y,B);

since G ∈ Z, we immediately have νX(Z,B∨G) 
∃ G. We still have to prove that

νX(Z,B∨G) 
∀ G → H. To this purpose suppose (U,D) ∈ νX(Z,B∨G) and G ∈ U :

since we have D ≤X B ∨ G ≤X G, as before, by Proposition 3.5, we obtain
XG ⊆ Z and we can conclude H ∈ Z.

[2⇒ 1] Assume 2. We show that for all Z ∈ MAX, if XG ⊆ Z, then H ∈ Z.
By Lemma 3.3, this is equivalent to G > H ∈ X.

To this aim, suppose that XG ⊆ Z, for some Z. Then, (Z,G) ∈ W. Let
us consider the neighbourhood νX(Z,G) = α: by construction this world belongs

to N (X,A) and thus, by hypothesis, νX(Z,G) 
∃ G. By hypothesis 2., there

exists some neighbourhood β ∈ N (X,A) such that β ⊆ α, β ∃ G and β ∀

G → H. It easy to see that it must be β = α = νX(Z,G), since by Definition

3.4 the only world that satisfies G in the neighbourhood νX(Z,G) is (Z,G) itself

(∀(U,D) ∈ νX(Z,G) if (U,D) 6= (Z,G) thenG /∈ U). Thus, from νX(Z,G) 
∀ G→ H,

(Z,G) ∈ νX(Z,G) and G ∈ Z it immediately follows that H ∈ Z.

By the previous lemma we immediately obtain:

Theorem 3.10 (Completeness). For F ∈ L, if �N then `PCL F .

3.3 Completeness for extensions of PCL
Our aim is to extend the completeness proof to the whole family of all prefer-
ential logics. We are able to extend the proof to all extensions of PCL, except
for the systems containing weak centering (and not containing centering). To
obtain a proof for a logic featuring more than one semantic condition, it suffices
to combine the proof strategies for each case.

Unless otherwise specified, all notions refer to the canonical model for PCL
defined in the previous section. In some cases, the canonical model needs to be
modified to account for specific conditions. The following proposition (whose
proof is obvious) will used for the cases of absoluteness and uniformity.

Proposition 3.11. For every (X,A) ∈ W, it holds:⋃
N (X,A) = {(Z,C) ∈ W | ZC ⊆ X}.

Normality

We show that in presence of Axiom (N), the canonical model MN satisfies the
condition of normality:

14



For all (X,A) ∈ W, it holds that N (X,A) 6= ∅.

By Axiom (N), we have that for all (X,A) ∈ W, it holds that ¬(> > ⊥) ∈ X.
Thus, X> is consistent and by Lemma 3.2 there is Z ∈ MAX such that X> ⊆ Z.
As a consequence, (Z,>) ∈ W, and νX(Z,>) ∈ N (X,A), whence N (X,A) 6= ∅.

Absoluteness

We show that in presence of Axioms (A1), (A2), the canonical model MN satis-
fies the condition of local absoluteness:

If (Z,C) ∈
⋃
N (X,A), then N (X,A) = N (Z,C).

We first prove that a) for any formula B ∈ L, XB = ZB . To this aim, let
G ∈ XB ; then B > G ∈ X. By Axiom (A1), C > (B > G) ∈ X, and
B > G ∈ XC . Since (Z,C) ∈

⋃
N (X,A), it holds that XC ⊆ Z; from this

follows that B > G ∈ Z, and thus G ∈ ZB . Conversely, suppose G /∈ XB .
Then ¬(B > G) ∈ X; by (A2) C > ¬(B > G) ∈ X, and ¬(B > G) ∈ XC .
Again, since XC ⊆ Z we have ¬(B > G) ∈ Z, and thus G /∈ ZB .

Observe that b) for any formulas D,E ∈ L, it holds D 6X E if and only
if D 6Z E. In fact, from D 6Z E follows that (D ∨ E) > D ∈ Z, and by
proceeding similarly as in a) we obtain that (D ∨ E) > D ∈ X if and only if
(D ∨ E) > D ∈ Z.

From a) it immediately follows that for any (Y,B), XB ⊆ Y if and only
if ZB ⊆ Y . Then, by b) we have νX(Y,B) = νZ(Y,B), whence by a) we obtain

N (X,A) = N (Z,C).

Total Reflexivity

In this case we need to modify the construction of the canonical model.

Definition 3.5. The universe of (X,A) is the set:

Univ(X,A) = {(Y,B) ∈ W | for all G ∈ L, G > ⊥ ∈ X implies ¬G ∈ Y }.

The canonical model MU = 〈Wu,N u,Vu〉 is defined by stipulating Wu = W,
Vu = V, and

N u(X,A) = N (X,A) ∪ {Univ(X,A)}.

where N (X,A) is the same as in Definition 3.4.

Lemma 3.12. For any (X,A), (Y,B) ∈ W, it holds that νX(Y,B) ⊆ Univ(X,A).

Proof. Assume that some (Z,C) ∈ νX(Y,B). We have to prove that for all G ∈ L,

if G > ⊥ ∈ X then ¬G ∈ Z, and this immediately follows from (MOD) and
XC ⊆ Z.

We show that in presence of axiom (T ), the canonical model MU satisfies
the condition of total reflexivity, that is:
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If (X,A) ∈ Wu, there exists α ∈ N u(X,A) such that (X,A) ∈ α.

It is immediate to verify that the condition holds: because of Axiom (T), we
have that (X,A) ∈ Univ(X,A).

Since we have modified the definition of the canonical model, we have to
verify that the Truth Lemma still holds. To this aim, we need to add one case in
the direction [1⇒ 2] of the proof, that is, ifG > H ∈ X, then MU , (X,A)  G >
H. Assume that G > H ∈ X and that for some α ∈ N u(X,A) it holds α ∃ A. If
α ∈ N (X,A) the proof proceeds as in Lemma 3.9. Let now α = Univ(X,A) and
suppose for some (Z,C) ∈ Univ(X,A) it holds that (Z,C)  G, whence G ∈ Z.
We show that there must exist an (U,D) ∈

⋃
N (X,A) such that (U,D)  G.

If this were not the case, we would get that for all (U,D) ∈
⋃
N (X,A), G /∈

U . But this entails that XG is inconsistent; and thus G > ⊥ ∈ X, against
the hypothesis that (Z,C)  G and (Z,C) ∈ Univ(X,A). Thus there is a
(U,D) ∈

⋃
N (X,A) such that G ∈ U . We take α′ = νX(U,D). Observe that

α′ ⊆ α = Univ(X,A). We can proceed as in proof of Lemma 3.9 by finding for
a β ∈ N (X,A) with β ⊆ α′ fulfilling the required conditions.

Uniformity

We take the same model construction as for total reflexivity, that is the model
MU . Thus, we only need that in presence of axioms (U1) and (U2) MU satisfies
the condition of local uniformity, that is, for any (X,A), (Y,B) ∈ Wu:

If (Y,B) ∈
⋃
N u(X,A), then

⋃
N u(X,A) =

⋃
N u(Y,B).

To this aim, first observe that⋃
N u(X,A) = Univ(X,A)

Suppose now (Y,B) ∈
⋃
N u(X,A) = Univ(X,A). We show that G > ⊥ ∈ X if

and only if G > ⊥ ∈ Y . Let G > ⊥ ∈ X. Then by axiom (U1) it follows that
¬(G > ⊥) > ⊥ ∈ X. Since (Y,B) ∈ Univ(X,A) we have ¬¬(G > ⊥) ∈ Y , that
is G > ⊥ ∈ Y . Conversely, suppose that G > ⊥ /∈ X, i.e., ¬(G > ⊥) ∈ X. By
axiom (U2) we have that (G > ⊥) > ⊥ ∈ X, and since (Y,B) ∈ Univ(X,A), we
get ¬(G > ⊥) ∈ Y , whence G > ⊥ /∈ Y .
From the fact that G > ⊥ ∈ X if and only if G > ⊥ ∈ Y we obtain that for
all (Z,C) ∈ Wu, (Z,C) ∈ Univ(X,A) if and only if (Z,C) ∈ Univ(Y,B), which
means

⋃
N u(X,A) =

⋃
N u(Y,B).

Centering

We modify the canonical model construction as follows.

Definition 3.6. For (X,A), (Y,B) ∈ Wcw, let:

µ
(X,A)
(Y,B) = νX(Y,B) ∪ {(X,A)}.
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Observe that here the formula A in (X,A) is relevant. Then, for any (X,A) ∈
W, N cw(X,A) = {µ(X,A)

(Y,B) | X
B ⊆ Y }. The set of worlds W and the evaluation

function V do not change, and the canonical model is MC = 〈W,N cw,V〉.

We now show that in presence of axioms (W ) and (C), the canonical model
MU satisfies the condition of centering:

a) For every world (X,A) and every α ∈ N cw(X,A), (X,A) ∈ α;

b) {(X,A)} ∈ N cw(X,A).

Condition a) holds by definition. As for b), first observe that for any (X,A) it

holds by (W) that XA ⊆ X, so that µ
(X,A)
(X,A) ∈ N

cw(X,A). We now show that

µ
(X,A)
(X,A) = {(X,A)}. To this aim, we prove that there is no world (Y,B) ∈ µ(X,A)

(X,A)

such that (Y,B) 6= (X,A). For the sake of contradiction, suppose such a world
exists. It follows that A 6∈ Y and B 6X A, which means that (A∨B) > A ∈ X.
Thus, by axiom (W), (A ∨ B) → B ∈ X. Since by definition A ∈ X, we have
B ∈ X. By axiom (C) it follows that also B > A ∈ X. Thus, A ∈ XB ; and
since XB ⊆ Y we have A ∈ Y , which contradicts with the assumption A /∈ Y .

Since we have modified the canonical model, we have to verify that the Truth
Lemma continues to hold. For the direction [1⇒ 2], suppose that G > H ∈ X
and that for α ∈ N cw(X,A) it holds that α ∃ G. We can proceed as in the proof
of Lemma 3.9, finding a suitable β ∈ N cw(X,A). The fact that (X,A) belongs
to every neighbourhood in N cw(X,A), and also to β, does not compromise the
assertion that β ∀ G → H, since from the hypothesis G > H ∈ X follows by
(W) that G→ H ∈ X.

For the direction [2⇒ 1], assume 2. We distinguish two cases:

i. G 6∈ X;
ii. G ∈ X.

In case i, we proceed as in the proof of Lemma 3.9, by proving that for all

Z ∈ MAX, if XG ⊆ Z, then H ∈ Z. To this aim, let us consider α = µ
(X,A)
(Z,G) =

νX(Z,G) ∪ {(X,A)} ∈ N cw(X,A). By hypothesis, there exists a neighbourhood

β ∈ N cw(X,A) such that β ⊆ α, β ∃ G and β ∀ G → H. Since G 6∈ X, it

must be that β = µ
(X,A)
(Z,G) , whence (Z,G) ∈ β follows.

In case ii, let us consider α = µ
(X,A)
(X,A) ∈ N

cw(X,A). By hypothesis, there

exists a neighbourhood β ∈ N cw(X,A) such that β ⊆ µ
(X,A)
(X,A), β 

∃ G and

β ∀ G → H. However, since µ
(X,A)
(X,A) = {(X,A)}, it must be β = {(X,A)}.

Thus, since G → H ∈ X and G ∈ X, we obtain H ∈ X. By axiom (C), we
finally obtain G > H ∈ X.

Theorem 3.13 (Completeness for extensions). Let ext denote one of the logics:
PN, PT, PC, PU , PNU, PTU, PCU, PNA, PTA, PCA. For F ∈ L, if F is valid
in a class of models for ext, then `ext F .
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4 A family of labelled sequent calculi

In this section we introduce labelled calculi for PCL and its extensions. We
call G3CL the calculus for PCL. Calculi for extensions are denoted by G3CL
to which we add the name of the frame conditions of the corresponding logics:
thus, G3CLN is a proof system for PCLN, G3CLTU is a proof system for
PCLTU. Let G3CL∗ denote the whole family of calculi.

The definition of the sequent calculi G3CL∗ follows the well-established
methodology of enriching the language of the calculus by means of labels, thus
importing the semantic information of neighbourhood models into the syntactic
proof system7. For this reason, it is useful to recall the the truth condition for
the conditional operator in neighbourhood models:

(∗) x  A > B iff for all α ∈ N(x), if α ∃ A then there exists β ∈ N(x)
such that β ⊆ α, β ∃ A, and β ∀ A→ B.

We enrich the language L as follows.

Definition 4.1. Let x, y, z, . . . be variables for worlds in a neighbourhood
model, and a, b, c, . . . variables for neighbourhoods. Relational atoms are the
following expressions:

• a ∈ N(x), “neighbourhood a belongs to the family of neighbourhoods
associated to x”;

• x ∈ a, “world x belongs to neighbourhood a”;
• a ⊆ b, “neighbourhood a is included into neighbourhood b”.

Labelled formulas are defined as follows. Relational atoms are labelled formulas
and, for A ∈ L, the following are labelled formulas:

• x : A, “formula A is true at world x”;
• a ∃ A, “A is true at some world of neighbourhood a”;
• a ∀ A, “A is true at all worlds of neighbourhood a”;
• x a A|B, “there exists β ∈ N(x) such that β ⊆ α, β ∃ A, and β ∀

A→ B”.

We use {x} to denote a neighbourhood consisting of exactly one element.

Relational atoms and labelled formulas are defined in correspondence with se-
mantic notions. Relational atoms describe the structure of the neighbourhood
model, whereas labelled formulas are defined in correspondence with the forcing
relations at a world (x  A) and at a neighbourhood (a ∃ A, a ∀ A). Formula
x a A|B introduces a semantic condition corresponding to the consequent of
the right-hand side of (∗). The reason for the introduction of this formula is
that (∗) is too rich to be expressed by a single rule. Thus we need to break (∗)
into two smaller conditions, one (the antecedent) covered by rules for formulas
x : A > B and the other (the consequent) covered by x a A|B.

7Refer to [15] for the general methodology in Kripke models and to [16] for the general
methodology in neighbourhood semantics.
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Definition 4.2. Sequents of G3CL∗ are expressions Γ⇒ ∆ where Γ and ∆ are
multisets of relational atoms and labelled formulas, and relational atoms may
occur only in Γ.

Initial sequents

x : p,Γ⇒ ∆, x : p
init

x : ⊥,Γ⇒ ∆
⊥L

Rules for local forcing

x : A, x ∈ a, a ∀ A,Γ⇒ ∆

x ∈ a, a ∀ A,Γ⇒ ∆
L ∀

x ∈ a,Γ⇒ ∆, x : A

Γ⇒ ∆, a ∀ A
R ∀ (x!)

x ∈ a, x : A,Γ⇒ ∆

a ∃ A,Γ⇒ ∆
L ∃ (x!)

x ∈ a,Γ⇒ ∆, x : A, a ∃ A

x ∈ a,Γ⇒ ∆, a ∃ A
R ∃

Propositional rules

x : A, x : B,Γ⇒ ∆

x : A ∧B,Γ⇒ ∆
L∧

Γ⇒ ∆, x : A Γ⇒ ∆, x : B

Γ⇒ ∆, x : A ∧B R∧

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

x : A ∨B,Γ⇒ ∆
L∨

Γ⇒ ∆, x : A, x : B

Γ⇒ ∆, x : A ∨B R∨

Γ⇒ ∆, x : A x : B,Γ⇒ ∆

x : A→ B,Γ⇒ ∆
L→

x : A,Γ⇒ ∆, x : B

Γ⇒ ∆, x : A→ B
R→

Rules for the conditional

a ∈ N(x), a ∃ A,Γ⇒ ∆, x a A|B
Γ⇒ ∆, x : A > B

R > (a!)

a ∈ N(x), x : A > B,Γ⇒ ∆, a ∃ A x a A|B, a ∈ N(x), x : A > B,Γ⇒ ∆

a ∈ N(x), x : A > B,Γ⇒ ∆
L >

c ∈ N(x), c ⊆ a,Γ⇒ ∆, x a A|B, c ∃ A c ∈ N(x), c ⊆ a,Γ⇒ ∆, x a A|B, c ∀ A→ B

c ∈ N(x), c ⊆ a,Γ⇒ ∆, x a A|B
R|

c ∈ N(x), c ⊆ a, c ∃ A, c ∀ A→ B,Γ⇒ ∆

x a A|B,Γ⇒ ∆
L| (c!)

Rules for inclusion

a ⊆ a,Γ⇒ ∆

Γ⇒ ∆
Ref

c ⊆ a, c ⊆ b, b ⊆ a,Γ⇒ ∆

c ⊆ b, b ⊆ a,Γ⇒ ∆
Tr

x ∈ a, a ⊆ b, x ∈ b,Γ⇒ ∆

x ∈ a, a ⊆ b,Γ⇒ ∆
L ⊆

Figure 3: Sequent calculus G3CL

Figure 3 contains the rules for PCL, whereas Figure 4 shows the rules for ex-
tensions of PCL. We write (a!) as a side condition expressing the requirement
that label a should not occur in the conclusion of a rule. Propositional rules
are standard. Rules for local forcing make explicit the meaning of the forcing
relations ∀ and ∃. Rules for the conditional are defined on the basis of the
truth condition for > in neighbourhood models.

Each rule of Figure 4 is defined in correspondence with the frame condi-
tions on extensions of PCL. For total reflexivity and weak centering, the frame
condition can be formalized by means of a single rule. Rule 0 stands for the
requirement of non-emptiness in the model, and it is added to capture the con-
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Rules for extensions

a ∈ N(x),Γ⇒ ∆

Γ⇒ ∆
N (a!)

y ∈ a, a ∈ N(x),Γ⇒ ∆

a ∈ N(x),Γ⇒ ∆
0 (y!)(?)

x ∈ a, a ∈ N(x),Γ⇒ ∆

Γ⇒ ∆
T (a!)

x ∈ a, a ∈ N(x),Γ⇒ ∆

a ∈ N(x),Γ⇒ ∆
W

x ∈ {x}, {x} ∈ N(x),Γ⇒ ∆

{x} ∈ N(x),Γ⇒ ∆
Single

{x} ∈ N(x), {x} ⊆ a, a ∈ N(x),Γ⇒ ∆

a ∈ N(x),Γ⇒ ∆
C

y ∈ {x}, At(x), At(y),Γ⇒ ∆

y ∈ {x}, At(x),Γ⇒ ∆
Repl1 (∗)

y ∈ {x}, At(x), At(y),Γ⇒ ∆

y ∈ {x}, At(y),Γ⇒ ∆
Repl2 (∗)

z ∈ c, c ∈ N(x), a ∈ N(x), y ∈ a, b ∈ N(y), z ∈ b,Γ⇒ ∆

a ∈ N(x), y ∈ a, b ∈ N(y), z ∈ b,Γ⇒ ∆
U1 (c!)

z ∈ c, c ∈ N(y), a ∈ N(x), y ∈ a, b ∈ N(y), z ∈ b,Γ⇒ ∆

a ∈ N(x), y ∈ a, b ∈ N(x), z ∈ b,Γ⇒ ∆
U2 (c!)

b ∈ N(y), a ∈ N(x), y ∈ a, b ∈ N(x),Γ⇒ ∆

a ∈ N(x), y ∈ a, b ∈ N(x),Γ⇒ ∆
A1

b ∈ N(x), a ∈ N(x), y ∈ a, b ∈ N(y),Γ⇒ ∆

a ∈ N(x), y ∈ a, b ∈ N(y),Γ⇒ ∆
A2

Rules obtained by closure conditions

z ∈ c, c ∈ N(x), a ∈ N(x), x ∈ a, z ∈ a,Γ⇒ ∆

a ∈ N(x), x ∈ a, z ∈ a,Γ⇒ ∆
U1
∗ (c!)

a ∈ N(y), a ∈ N(x), y ∈ a,Γ⇒ ∆

a ∈ N(x), y ∈ a,Γ⇒ ∆
A1
∗

y ∈ c, c ∈ N(x), a ∈ N(x), y ∈ a, a ∈ N(y),Γ⇒ ∆

a ∈ N(x), y ∈ a, a ∈ N(y),Γ⇒ ∆
U1
∗∗ (c!)

y ∈ c, c ∈ N(y), a ∈ N(x), y ∈ a, a ∈ N(y),Γ⇒ ∆

a ∈ N(x), y ∈ a,Γ⇒ ∆
U2
∗∗

(∗) At(x) := x : P, x ∈ a, a ∈ N(x), x ∈ {z}, for P atomic formula.

G3CLN = G3CL + N + 0; G3CLT = G3CLN + T; G3CLW = G3CLT + W;

G3CLC = G3CLW + C + Single + Repl1 + Repl2;

G3CLU = G3CL + U1 + U2; G3CLNU/TU/WU/CU = G3CLN/T/W/C;

G3CLA = G3CL + A1 + A2; G3CLNA/TA/WA/CA = G3CLN/T/W/C + A1 + A2.

Figure 4: Sequent calculi for extensions of G3CL

dition of normality, along with rule N8.
Centering requires four rules: Rule C ensure the Centering condition by

introducing formulas with neighbourhood label {x} (the singleton). Rule Single
ensures that the singleton contains at least one element, and rules Repl1 and
Repl2 that it contains at most one element: if there is another element y ∈ {x},
then the properties holding for x hold also for y (i.e. x and y are the same
element).

Similarly, extensions with uniformity and absoluteness are defined by adding
multiple rules. Rules U1 and U2 encode the semantic condition of uniformity.
In order to avoid the symbol

⋃
in the sequent language, the rules translate the

following two conditions which, taken together, are equivalent to uniformity.

8The rule needs not to be added to the calculus G3CL: the rules of this calculus always
introduce non-empty neighbourhoods, and the system can be shown to be complete with
respect to the axioms of PCL (Theorem 5.6). However, the rule is needed to express the
condition of normality: the new neighbourhood introduced by rule N could be empty.
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U1: If there exist α ∈ N(x) such that y ∈ α and β ∈ N(y) such that
z ∈ β, then there exists γ ∈ N(x) such that z ∈ γ;

U2: If there exist α ∈ N(x) such that y ∈ α and β ∈ N(x) such that
z ∈ β, then there exists γ ∈ N(y) such that z ∈ γ.

As for absoluteness, rules A1 and A2 encode the information that for any x ∈W ,
given a ∈ N(x) and y ∈ a, if β ∈ N(x) then β ∈ N(y) (rule A1), and if β ∈ N(y),
then β ∈ N(x) (rule A2). Thus, N(x) = N(y).

The sequent calculi G3CL∗ can be modularly extended to cover Lewis’ logics
(refer to the end of Section 2). To obtain a calculus for V, it suffices to add to
G3CL a structural rule corresponding to the semantic condition of nesting:

a ⊆ b, a ∈ N(x), b ∈ N(x),Γ⇒ ∆ b ⊆ a, a ∈ N(x), b ∈ N(x),Γ⇒ ∆

a ∈ N(x), b ∈ N(x),Γ⇒ ∆
Nes

The rule can be added to calculi for extensions of PCL to obtain calculi for the
corresponding logics extending V9.

It might happen that some instances of rules of G3CL∗ present a duplication
of the atomic formula in the conclusion: for example, an instance of U1 with a =
b displays two formulas a ∈ N(x) in the conclusion. Since we want contraction
to be height-preserving admissible, we deal with these cases by adding to the
sequent calculus a new rule, in which the duplicated formulas are contracted
into one. Such an operation is called applying a closure condition to the rules
(cf. [15]). Thus, rule U1

∗ is the rule obtained applying the closure condition
to U1 in case a = b and x = y; rules U1

∗∗ and U2
∗∗ are obtained from U1 and

U2, in case a = b and y = z; and finally, A1
∗ is obtained from A1 in the case

a = b. There is no need to define additional rules which can be generated by the
closure condition, since such rules either collapse or are subsumed by other rules
of the calculus. For instance, the rule obtained applying the closure condition
to U2, case a = b and x = y, is the following:

z ∈ c, c ∈ N(x), a ∈ N(x), x ∈ a,Γ⇒ ∆

a ∈ N(x), x ∈ a,Γ⇒ ∆
U2
∗

and this is the same instance we obtain applying the closure condition to U1
∗.

However, the rules added by closure condition are not needed to prove complete-
ness of the calculi; for this reason, we have not included them in the following
sections (e.g. in the termination proof).

To prove soundness of the rules with respect to the corresponding system of
logics, we need to interpret relational atoms and labelled formulas in neighbour-
hood models. The notion of realization interprets the labels in neighbourhood

9Refer to [10] for a simpler labelled calculus for V, which makes use of the connective of
comparative plausibility instead of the conditional operator.
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frames, thus connecting the syntactic elements of the calculus with the semantic
elements of the model.

Definition 4.3. Let M = 〈W,N, J K〉 be a neighbourhood model for PCL or
its extensions, S a set of world labels and N a set of neighbourhood labels. An
SN -realization over M consists of a pair of functions (ρ, σ) such that:

• ρ : S →W is the function assigning to each x ∈ S an element ρ(x) ∈W ;
• σ : N → P(W ) is the function assigning to each a ∈ N a neighbourhood
σ(a) ∈ N(w), for w ∈W .

We introduce the notion of satisfiability of a formula F under an SN -realization
by cases on the form of F :

• M �ρ,σ a ∈ N(x) if σ(a) ∈ N(ρ(x));
• M �ρ,σ a ⊆ b if σ(a) ⊆ σ(b);
• M �ρ,σ y ∈ {x} if ρ(y) ∈ σ({x});
• M �ρ,σ x : P if ρ(x)  P 10;
• M �ρ,σ a ∀ A if σ(a) ∀ A;
• M �ρ,σ a ∃ A if σ(a) ∃ A;
• M �ρ,σ x a A|B if σ(a) ∈ N(ρ(x)) and for some β ⊆ σ(a) it holds that
β ∃ A and β ∀ A→ B;

• M �ρ,σ x : A > B if for all σ(a) ∈ N(ρ(x)), if M �ρ,σ a ∃ A then
M �ρ,σ x a A|B.

Given a sequent Γ⇒ ∆, let S, N be the sets of world and neighbourhood labels
occurring in Γ∪∆, and let (ρ, σ) be an SN -realization. DefineM �ρ,σ Γ⇒ ∆ if
either M 2ρ,σ F for some F ∈ Γ or M �ρ,σ G for some G ∈ ∆. Define validity
under all realizations by M � Γ ⇒ ∆ if M �ρ,σ Γ ⇒ ∆ for all (ρ, σ) and say
that a sequent is valid in all neighbourhood models if M �ρ,σ Γ ⇒ ∆ for all
models M.

Theorem 4.1 (Soundness). If a sequent Γ ⇒ ∆ is derivable in G3CL∗, then
it is valid in the corresponding class of neighbourhood models.

Proof. The proof is by straightforward induction on the height of the derivation,
employing the notion of realization defined above. By means of example, we
show soundness of the left and right rule for the conditional operator.

[L >] From a neighbourhood model and a realization which validates the
premisses we construct a neighbourhood model which validates the conclusion.
Let M �ρ,σ a ∈ N(x), x : A > B,Γ ⇒ ∆, a ∃ A and M �ρ,σ x a A|B, a ∈
N(x), x : A > B,Γ ⇒ ∆. The only relevant case is the one in which M �ρ,σ
a ∃ A and M 2ρ,σ x a A|B. From the former we have that σ(a) ∃ A;
from the latter that for σ(a) ∈ ρ(x) and for all β ∈ σ(α) it holds that either
β 1∃ A or β 1∀ A → B. By definition, this means that M 2ρ,σ x : A > B, for
σ(a) ∈ ρ(x); and thus, M �ρ,σ a ∈ N(x), x : A > B,Γ⇒ ∆.

10This definition is extended in the standard way to formulas obtained by the classical
propositional connectives.

22



[R >] Suppose M �ρ,σ a ∈ N(x), a ∃ A,Γ ⇒ ∆, x a A|B. We show that
the conclusion is valid in the same model, under the same realization. There are
two relevant cases: either the one in which M 2ρ,σ a ∃ A or the one in which
M �ρ,σ x a A|B. In the former case we have that σ(a) 1∃ A, for σ(a) ∈ ρ(x).
In the latter case, we have that for σ(a) ∈ ρ(x), there exists β ∈ σ(α) such
that β ∃ A and β ∀ A → B. In both cases it holds by definition that
M �ρ,σ x : A > B; thus, M �ρ,σ Γ⇒ ∆, x : A > B.

5 Structural properties and syntactic complete-
ness

In this section we prove the main structural properties of calculi G3CL∗. We
start with some preliminary definitions and lemmas. By height of a derivation
we mean the number of nodes occurring in the longest derivation branch, minus
one. We write `n Γ ⇒ ∆ meaning that there is a derivation of Γ ⇒ ∆ in
G3CL∗ with height bounded by n.

Definition 5.1. The weight of relational atoms is 0. As for the other labelled
formulas, the label of formulas of the form x : A and x a A|B is x; the label of
formulas a ∀ A and a ∃ A is a. We denote by l(F) the label of a formula F ,
and by p(F) the pure part of the formula, i.e., the part of the formula without
the label and without the forcing relation. The weight of a labelled formula is
defined as a lexicographically ordered pair

〈w(p(F)), w(l(F))〉

where

• for all world labels x, w(x) = 0;
• for all neighbourhood labels a, w(a) = 1;
• w(p) = w(⊥) = 1;
• w(A◦B) = w(A)+w(B)+1 for ◦ conjunction, disjunction or implication;
• w(A|B) = w(A) + w(B) + 2;
• w(A > B) = w(A) + w(B) + 3.

The definition of substitution of labels given in [15] can be extended in an
obvious way to the relational atoms and labelled formulas of G3CL∗. According
to this definition we have, for example, (a ∃ A)[b/a] ≡ b ∃ A, and (x a
B|A)[y/x] ≡ y a B|A. The calculus is routinely shown to enjoy the property
of height preserving substitution both of world and neighbourhood labels. The
proof is a straightforward extension of the same proof in [15].

Proposition 5.1.

(i) If `n Γ⇒ ∆, then `n Γ[y/x]⇒ ∆[y/x];
(ii) If `n Γ⇒ ∆, then `n Γ[b/a]⇒ ∆[b/a].
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The following Lemma, adapted from [15], ensures derivability of generalized
initial sequent. The proof proceeds by mutual induction on the weight of labelled
formulas.

Lemma 5.2. The following sequents are derivable in G3CL∗.

1. a ∃ A,Γ⇒ ∆, a ∃ A
2. a ∀ A,Γ⇒ ∆, a ∀ A
3. x a A|B,Γ⇒ ∆, x a A|B
4. x : A,Γ⇒ ∆, x : A

To prove admissibility of the cut rule, we need admissibility of the structural
rules and invertibility of all the rules. The reader can find a detailed proof of
these properties in [6]. Both lemmas are proved by induction on the height of
the derivation.

Lemma 5.3. Let F be a relational atom or a labelled formula. The rules of
weakening and contraction are height-preserving admissible in G3CL∗:

Γ⇒ ∆
F ,Γ⇒ ∆

WkL
Γ⇒ ∆

Γ⇒ ∆,F WkR
F ,F ,Γ⇒ ∆

F ,Γ⇒ ∆
CtrL

Γ⇒ ∆,F ,F
Γ⇒ ∆,F CtrR

Lemma 5.4. All the rules of G3CL∗ are height-preserving invertible: if the
conclusion of a rule is derivable with derivation height n, its premiss(es) are
derivable with at most the same derivation height.

Theorem 5.5 (Cut-admissibility). The rule of cut is admissible in G3CL∗.

Γ⇒ ∆,F F ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′
cut

Proof. The proof is by primary induction on the weight of the cut formula
and on secondary induction on the sum of the heights of the derivations of the
premisses of cut11. We distinguish cases according to the rules applied to derive
the premisses:

a) At least one of the premisses of cut is an initial sequent;
b) The cut formula is not the principal formula in the derivation of at least

one premiss;
c) The cut formula is the principal formula of both derivations of the pre-

misses.

We only show the case of c) in which the cut formula has the form A > B. For
the proof of propositional cases, refer to [18, Theorem 3.2.3]; for the proof of
the other conditional cases refer to [6].

(1)

b ∈ N(x), b ∃ A,Γ⇒ ∆, x a A|B
Γ⇒ ∆, x : A > B

R >

(2)

..⇒ ∆′, a ∃ A
(3)

x a A|B, a ∈ N(x), x : A > B,Γ′ ⇒ ∆′

a ∈ N(x), x : A > B,Γ′ ⇒ ∆′
L >

a ∈ N(x),Γ,Γ′ ⇒ ∆,∆′
cut

11Refer to [18] for the general methodology of proving cut-admissibility in labelled systems.
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We first apply cut on the premisses of L >. Both applications have a smaller
sum of height of the premisses with respect to the original application of cut:

D1 =

Γ⇒ ∆, x : A > B

(2)

a ∈ N(x), x : A > B,Γ′ ⇒ ∆′, a ∃ A

a ∈ N(x),Γ,Γ′ ⇒ ∆,∆′
cut

D2 =

Γ⇒ ∆, x : A > B
(3)

x a A|B, a ∈ N(x), x : A > B,Γ′ ⇒ ∆′

a ∈ N(x),Γ,Γ′ ⇒ ∆,∆′
cut

We combine the above with two occurrences of cut, on formulas of lesser weight
than the original cut formula.

D1

(1)[b/a]

b ∈ N(x), b ∃ A,Γ⇒ ∆, x a A|B
a ∈ N(x)2,Γ2,Γ′ ⇒ ∆2,∆′, x a A|B

cut
D2

a ∈ N(x)3,Γ3,Γ′2 ⇒ ∆3,∆′2
cut

a ∈ N(x),Γ,Γ′ ⇒ ∆,∆′
Ctr

The axioms of each system of logic can be derived in the respective calculus. By
admissibility of cut, the inference rules can be shown to be admissible, therefore
obtaining a syntactic proof of completeness of the calculi. Details are given in
the Appendix.

Theorem 5.6 (Completeness via cut admissibility). If a formula A is derivable
in HPCL or in one of its extensions, then there is a derivation of ⇒ x : A in the
calculus G3CL∗ for the corresponding logic.

We conclude the section by proving admissibility of rules Repl1 and Repl2 in their
generalized form. This lemma will be used in Section 7, to prove completeness
of the calculi featuring centering with respect to neighbourhood models.

Lemma 5.7. Rules Repl1 and Repl2 generalized to all formulas of the language
are admissible in G3CL∗.

Proof. Admissibility of the two rules is proven simultaneously, by induction on
the weight of formulas. We only show the proof admissibility for Repl1 (the
other rule is symmetric). Since contraction and cut are admissible in G3CL∗,
it is sufficient to show that sequent y ∈ {x}, A(x) ⇒ A(y) is derivable. From
this sequent and the premiss of Repl1, the conclusion of Repl1 can be derived
applying cut and contraction. We proceed by induction on the weight of formula
A(x); there are several cases to consider.
1. A(x) ≡ x : F , A(y) ≡ y : F , where F is a propositional formula. We consider
the case A(x) ≡ x : B → C, A(y) ≡ y : B → C.
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y ∈ {x}, x : B, y : B ⇒ y : C, x : B

y ∈ {x}, y : B ⇒ y : C, x : B
Repl2

y ∈ {x}, y : B, x : C, y : C ⇒ y : C, x : B

y ∈ {x}, y : B, x : C ⇒ y : C
Repl1

y ∈ {x}, x : B → C, y : B ⇒ y : C
L→

y ∈ {x}, x : B → C ⇒ y : B → C
R→

In this case we need Repl2, applied to formulas of smaller weight, and the two
premisses are derivable by Lemma 5.2.
2. A(x) ≡ x a B|C, A(y) ≡ y a B|C.

(1) (2)

c ∈ N(y), c ∈ N(x), c ⊆ a, c ∃ B, c ∀ B → C, y ∈ {x} ⇒ y a B|C
R|

c ∈ N(x), c ⊆ a, c ∃ B, c ∀ B → C, y ∈ {x} ⇒ y a B|C
Repl1

y ∈ {x}, x a B|C ⇒ y a B|C
L|

Where (1) is sequent c ∈ N(y), c ∈ N(x), c ⊆ a, c ∃ B, c ∀ B → C, y ∈
{x} ⇒ y a B|C, c ∃ A, and (2) is sequent c ∈ N(y), c ∈ N(x), c ⊆ a, c ∃

B, c ∀ B → C, y ∈ {x} ⇒ y a B|C, c ∀ B → C. Rule Repl1 is applied to
the atomic formula c ∈ N(x), which has smaller weight than A(x). The lower
premiss is derivable by Lemma 5.2, the upper one by steps of L ∃, L ∀, L ⊆,
and Lemma 5.2.
3. A(x) ≡ x : B > C, A(y) ≡ y : B > C.

x a B|C, a ∈ N(x), a ∈ N(y), a ∃ B, y ∈ {x}, x : B > C ⇒ y a B|C
a ∈ N(x), a ∈ N(y), a ∃ B, y ∈ {x}, x : B > C ⇒ y a B|C

L >

a ∈ N(y), a ∃ B, y ∈ {x}, x : B > C ⇒ y a B|C
Repl2

y ∈ {x}, x : B > C ⇒ y : B > C
R >

Rule Repl2 is applied to formula a ∈ N(y), of smaller weight. The leftmost
premiss is the sequent a ∈ N(x), a ∈ N(y), a ∃ B, y ∈ {x}, x : B > C ⇒ y a
B|C, a ∃ A, derivable by Case 1.

6 Decision procedure

As they are, the calculi G3CL∗ are not terminating. Simple cases of loops
are due to the repetition of the principal formula in the premiss of a rule; more
complex cases of loop are generated by the interplay of world and neighbourhood
labels. Our aim in this section is to provide a termination strategy for the calculi,
thus defining a decision procedure for the logic.

Here follows some examples of loops which might occur in root-first proof
search.
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Example 6.1. Loop generated by repeated applications of rule L ∀ to a ∀ C.

...
x ∈ a, x : A, x : C, x : C, a ∀ C,Γ⇒ ∆

x ∈ a, x : A, x : C, a ∀ C,Γ⇒ ∆
L ∀

x ∈ a, x : A, a ∀ C,Γ⇒ ∆
L ∀

a ∃ A, a ∀ C,Γ⇒ ∆
L ∃

Example 6.2. Loop generated by repeated applications of L > and L|, with one
conditional formula in the antecedent (only the left premiss of L > is shown).

...
c ∈ N(x), c ⊆ b, b ∈ N(x), b ⊆ a, a ∈ N(x), c ∃ A, c ∀ A→ B, . . . , x : A > B ⇒ ∆

x b A|B, b ∈ N(x), b ⊆ a, a ∈ N(x), b ∃ A, b ∀ A→ B, x : A > B ⇒ ∆
L|

b ∈ N(x), b ⊆ a, a ∈ N(x), b ∃ A, b ∀ A→ B, x : A > B ⇒ ∆
L >

x a A|B, a ∈ N(x), x : A > B ⇒ ∆
L|

a ∈ N(x), x : A > B ⇒ ∆
L >

Example 6.3. Loop generated by repeated applications of rules L > and L|,
with two conditional formulas in the antecedent. Let Ω = x : A > B, x : C > D.
We write only the leftmost premiss of L >; next to L > is written the number
of applications of the rule.

...
x d A|B, x d C|D,x e A|B, x e C|D,x f A|B, x f C|D,x g A|B, x g C|D, · · · ,Ω⇒ ∆

g ∈ N(x), g ⊆ c, g ∃ C, g ∀ C → D, . . . ,Ω⇒ ∆
L > (4)

f ∈ N(x), f ⊆ c, f ∃ A, f ∀ A→ B, x c C|D, . . . ,Ω⇒ ∆
L|

e ∈ N(x), e ⊆ b, e ∃ C, e ∀ C → D,x c A|B, x c C|D, . . . ,Ω⇒ ∆
L|

d ∈ N(x), d ⊆ b, d ∃ A, d ∀ A→ B, x b C|D,x c A|B, x c C|D, . . . ,Ω⇒ ∆
L|

x b A|B, x b C|D,x c A|B, x c C|D, . . . ,Ω⇒ ∆
L|

c ∈ N(x), c ⊆ a, c ∃ C, c ∀ C → D, . . . ,Ω⇒ ∆
L > (4)

b ⊆ a, b ∈ N(x), b ∃ A, b ∀ A→ B, x a C|D,Ω⇒ ∆
L|

x a A|B, x a C|D,Ω⇒ ∆
L|

a ∈ N(x),Ω⇒ ∆
L > (2)

We start by proving termination for G3CL, and then extend the proof
strategy to sequent calculi for the extensions of PCL. We recall that all logics
of the PCL family are decidable and their complexity is known.

Remark 6.1. The complexity of the family of preferential conditional logics
is studied in [3], where it is shown that: for systems without uniformity and
absoluteness, the decision procedure is PSPACE-complete. For logics with uni-
formity, the decision problem is EXPTIME-complete. Finally, for systems with
absoluteness, the decision problem is NP-complete.

6.1 Decidability for G3CL

In this section we define a proof search strategy which blocks rules applications
leading to non-terminating branches. We first want to prevent applications of
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L∧ If x : A ∧B is in ↓ Γ, then x : A and x : B are in ↓ Γ
R∧ If x : A ∧B is in ↓ ∆, then x : A or x : B is in ↓ ∆
L∨ If x : A ∨B is in ↓ Γ, then x : A or x : B is in ↓ Γ
R∨ If x : A ∨B is in ↓ ∆, then x : A and x : B are in ↓ ∆
L→ If x : A→ B is in ↓ Γ, then x : B is in ↓ Γ or x : A is in ↓ ∆
R→ If x : A→ B is in ∆, then x : A is in ↓ Γ and x : B is in ↓ ∆

Ref If a is in Γ ∪∆, ∆ then a ⊆ a is in Γ
Tr If a ⊆ b and b ⊆ c are in Γ, then a ⊆ c is in Γ
L ⊆ If x ∈ a and a ⊆ b are in Γ, then x ∈ b is in Γ

L ∀ If x ∈ a and a ∀ A are in Γ, then x : A is in ↓ Γ
R ∀ If a ∀ A is in ↓ ∆ then, for some x, x ∈ a is in Γ and x : A in ↓ ∆
L ∃ If a ∃ A is in ↓ Γ then, for some x, x ∈ a is in Γ and x : A is in ↓ Γ
R ∃ If x ∈ a is in Γ and a ∃ A is in ∆, then x : A is in ↓ ∆

R > If x : A > B is in ↓ ∆ then, for some a, a ∈ N(x) is in Γ, a ∃ A is in ↓ Γ
and x a A|B is in ∆

L > If a ∈ N(x) and x : A > B are in Γ, then a ∃ A is in ↓ ∆ or x a B|A is
in ↓ Γ

R| If c ∈ N(x) and c ⊆ a are in Γ and x a B|A is in ∆, then c ∃ A is in ∆
or c ∀ A→ B is in ↓ ∆

L| If x a B|A is in ↓ Γ then, for some c, c ∈ N(x) and c ⊆ a are in Γ, c ∃ A
is in ↓ Γ and c ∀ A→ B is in Γ

L >? If a ∈ N(x) and x : A > B occur in Γ, then a ∃ A is in ↓ ∆ or a ∃ A and
x a B|A are in ↓ Γ

Mon∀ If b ⊆ a and a ∀ A are in Γ, then b ∀ A is in Γ

Figure 5: Saturation conditions associated to G3CL rules

a rule R to a sequent that already contains the formulas introduced by R. This
is done by defining saturation conditions for each rule.

Definition 6.1. Let D be a derivation in G3CL, and B = S0, S1, . . . a deriva-
tion branch, with Si sequent Γi ⇒ ∆i, for i = 1, 2, . . . and S0 sequent ⇒ x : A0.
Let ↓ Γk/ ↓ ∆k denote the union of the antecedents/succedents occurring in the
branch from S0 up to Sk.

We say that a sequent Γ⇒ ∆ satisfies the saturation condition w.r.t. a rule
R if, whenever Γ ⇒ ∆ contains the principal formulas in the conclusion of R,
then it also contains the formulas introduced by one of the premisses of R. The
saturation conditions are listed in Figure 5.

We say that Γ ⇒ ∆ is saturated if there is no formula x : p occurring in
Γ ∩∆, there is no formula x : ⊥ occurring in Γ, Γ ⇒ ∆ satisfies all saturation
conditions listed in the upper part of Figure 5.

In Example 6.1, the second bottom-up application of L ∀ is blocked by the
saturation condition associated to L ∀, since formula x : A already occurs in
some antecedent of the derivation branch. In order to block the other cases of
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loop, we need to modify the rules of G3CL, and define a proof search strategy
which governs the application of rules in root-first proof search.

Definition 6.2. We modify the rule L > as rule L >?, and introduce rule Mon∀
in G3CL.

a ∈ N(x), x : A > B,Γ⇒ ∆, a ∃ A a ∃ A, x a A|B, a ∈ N(x), x : A > B,Γ⇒ ∆

a ∈ N(x), x : A > B,Γ⇒ ∆
L >?

b ⊆ a, b ∀ A, a ∀ A,Γ⇒ ∆

b ⊆ a, a ∀ A,Γ⇒ ∆
Mon∀

Lemma 6.1. In G3CL it holds that:

1. Rule Mon∀ is admissible;

2. Rules L > and L >? are equivalent.

Proof. The proof of 1 is immediate, by induction on the height of the derivation.
To prove that L >? is admissible if we have L >, apply weakening to the right
premiss of L > and then apply L >? to obtain the conclusion of L >. To prove
that L > is admissible if we have L >?, we need admissibility of cut. Let (1) and
(2) denote the left and right premiss of L >?. The conclusion of L >? is derived
as follows:

(1)

(1)

x a A|B, a ∈ N(x), x : A > B,Γ⇒ ∆, a ∃ A
WkL

(2)

x a A|B, a ∈ N(x), x : A > B,Γ⇒ ∆
cut

a ∈ N(x), x : A > B,Γ⇒ ∆
L >

Definition 6.3. The saturation conditions for L >? and Mon∀ are defined in
the lower part of Figure 5. The list of saturation conditions needed for the
termination proof is given by the conditions listed in the upper part of Figure
5, in which the condition L > is replaced by L >?, and the saturation condition
for Mon∀ is added.

We shall provide a decision procedure for sequent calculus G3CL modified
with rules Mon∀ and L >?. We now define the proof search strategy.

Definition 6.4. When constructing root-first a derivation tree for a sequent
⇒ x0 : A, apply the following proof search strategy :

1. Apply rules which introduce a new label (dynamic rules) only if rules
which do not introduce a new label (static rules) are not applicable; as an
exception, apply R > before L >?.

2. If a sequent satisfies a saturation condition R, do not apply to that sequent
the rule R corresponding to the saturation condition.
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Observe that if the strategy is applied, world labels in root-first proof search
are processed one after the other, according to the order in which they are
generated.

Example 6.4. In Example 6.2, the loop is stopped because of the proof search
strategy and the saturation condition for L|, which blocks the uppermost ap-
plication of the rule to the formula x b A|B. The proof strategy requires
static rules to be introduced before dynamic rules. Thus, the static rule Ref
is applied before the uppermost occurrence of the dynamic rule L|, introducing
in the derivation formula b ⊆ b12. The saturation condition for L| applied to
x b A|B is met if there is some label d such that formulas d ⊆ b, d ∈ N(x),
d ∃ A and d ∀ A→ B already occur in the antecedent of a sequent occurring
lower in the branch. Thus, if we take d to be b itself, the saturation condition
is met and the uppermost occurrence of L| cannot be applied.

To see how the loop in Example 6.3 is stopped, we re-write the derivation
according to the proof search strategy, highlighting the formulas to which rule
L| cannot be applied. Observe that here rule L >? and Mon∀ become relevant.
The same conventions as in Example 6.3 apply.

...
d ∃ A, d ∃ C, e ∃ A, e ∃ C,x d A|B,x d C|D,x e A|B,x e C|D, · · · ,Ω⇒ ∆

d ⊆ d, e ⊆ e, e ∈ N(x), e ⊆ c, e ∃ A, e ∀ A→ B, e ∀ C → D, . . . ,Ω⇒ ∆
L >? (4)

e ∈ N(x), e ⊆ c, e ∃ A, e ∀ A→ B, e ∀ C → D, . . . ,Ω⇒ ∆
Ref (2)

e ∈ N(x), e ⊆ c, e ∃ A, e ∀ A→ B, . . . ,Ω⇒ ∆
Mon∀

d ∈ N(x), d ⊆ b, d ∃ C, d ∀ C → D, d ∀ A→ B, x c A|B, . . . ,Ω⇒ ∆
L|

d ∈ N(x), d ⊆ b, d ∃ C, d ∀ C → D,x c A|B, . . . ,Ω⇒ ∆
Mon∀

b ∃ A, b ∃ C, c ∃ A, c ∃ C,x b A|B, x b C|D,x c A|B,x c C|D, . . . ,Ω⇒ ∆
L|

b ⊆ b, c ⊆ c, c ∈ N(x), c ⊆ a, c ∃ C, c ∀ C → D, . . . ,Ω⇒ ∆
L >? (4)

c ∈ N(x), c ⊆ a, c ∃ C, c ∀ C → D, . . . ,Ω⇒ ∆
Ref (2)

b ⊆ a, b ∈ N(x), b ∃ A, b ∀ A→ B, x a C|D,Ω⇒ ∆
L|

a ∃ A, a ∃ C, x a A|B, x a C|D,Ω⇒ ∆
L|

a ∈ N(x),Ω⇒ ∆
L >? (2)

Application of L| to formula x b A|B is blocked by the saturation condition,
since b ⊆ b, b ∈ N(x), b ∃ A and b ∀ A → B all occur in the branch.
Application of the rule to x c C|D is blocked in a similar way. Application
of L| to x d A|B is blocked, since all the formulas relevant for the saturation
condition occur in the branch: d ⊆ d (introduced by Ref), d ∈ N(x), d ∃ A
(introduced by L >?) and d ∀ A → B (introduced by Mon∀). Application of
L| to the other formulas in the top sequent is blocked, and the loop is stopped.

Before tackling the termination proof, we define an ordering of the world
labels according to their generation in the branch. The resulting tree of labels
is needed to ensure that the number formulas introduced in root-first proof
search is finite.

12By a similar argument, also a ⊆ a and a number of other formulas should occur in the
derivation before the uppermost application of L|; but they are not relevant here.
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Definition 6.5. Given a sequent Γk ⇒ ∆k, let a, b be neighbourhood labels
and x, y world labels occurring in ↓ Γk∪ ↓ ∆k. We define:

• k(x) = min{t | x occurs in Γt};

• k(a) = min{t | a occurs in Γt};

• x ≺g a, “x generates a” if for some t 6 k and k(a) = t, a ∈ N(x) occurs
in Γt;

• b ≺g y, “b generates y” if for some t 6 k and k(y) = t, y ∈ b occurs in Γt;

• x ≺ y if for some a, x ≺g a and a ≺g y and x 6= y.

Intuitively, the relation x ≺g a holds between x and a if a ∈ N(x) is introduced
at some stage in the derivation (thus, with an application of R > or L|); similarly,
the relation b ≺g y holds between b and y if y ∈ b is introduced in the derivation
(thus, applying either R ∀ or L ∃).

Lemma 6.2. Given a derivation branch, the following hold:

(a) The relation ≺ is acyclic and forms a tree with the world label x0 at the
root;

(b) All labels occurring in a derivation branch also occur in the associated
tree; that is, letting x ≺∗ y be the transitive closure of ≺, if u occurs in
↓ Γk, then x0 ≺∗ u.

Proof. (a) follows from the definition of relation ≺ and from the sequent calculus
rules. Observe that the relation of generation ≺g between world and neighbour-
hood labels is unique: it is defined by taking into account the value k(a) or k(y),
which keeps track of the derivation step at which the new label is introduced.
At each derivation step, dynamic rules introduce a new label which is generated
by at most one world or neighbourhood label. Take a sequent Γk ⇒ ∆k, and
suppose x ≺g a: by definition, there is a t 6 k such that k(a) = t and a ∈ N(x)
occurs in Γt. Now suppose that a ∈ N(y) occurs in some Γs, with t < s 6 k.
Since k(a) = t, relation y ≺g a does not hold in the tree of labels. A similar
reasoning holds for y ≺g a. Thus, except for the label at the root, each label in
a derivation branch has exactly one parent according to the relation ≺g and, by
definition, also according to ≺.

As for (b), it is easily proved by induction on k(u) 6 k. If k(u) = 0, then
u = x0 and (b) trivially holds. If k(u) = t > 0, u does not occur in Γt−1 and u
occurs in Γt. This means that there exist a v and a b such that b ∈ N(v) occurs
in Γt−1 and u ∈ b occurs in Γt; thus, k(v) < k(u). By inductive hypothesis,
x0 ≺∗ v; since v ≺ u, also x0 ≺∗ u holds.

Definition 6.6. The size of a formula A, denoted by |A|, is the number of
symbols occurring in A.

The conditional degree of a formula A corresponds to the level of nesting of
the conditional operator in A and is defined as follows:
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• d(p) = d(⊥) = 0 for p atomic;
• d(C ◦D) = max(d(C), d(D)) for ◦ ∈ {∧,∨,→};
• d(C > D) = max(d(C), d(D)) + 1.

Given a sequent Γ ⇒ ∆ occurring in a derivation branch B, the conditional
degree of a world label is the highest conditional degree among the formulas it
labels:

d(x) = max{d(C) | x : C ∈↓ Γ∪ ↓ ∆}.

We now prove that the proof search strategy ensures termination.

Theorem 6.3 (Termination). Root-first proof search for a G3CL derivation
for a sequent ⇒ x0 : A0 built in accordance with the strategy terminates in a
finite number of steps, with either an initial sequent or a saturated sequent.

Proof. To prove that root-first proof search terminates, we have to show that
all the branches of a derivation starting with ⇒ x0 : A0 and built in accordance
with the proof search strategy are finite. We take an arbitrary derivation branch
B. Since G3CL rules do not increase the complexity of formulas when going
from the conclusion to the premiss(es), the only source of non-termination in
the branch is the presence of an infinite number of labels. We need to show that
the tree of labels associated to B is finite. Let us call GB the graph associated
to B according to Definition 6.5. This amounts to prove that:

1. Each branch of GB has a finite length;

2. Each node of GB has a finite number of immediate successors.

Claim 1 is proved by induction on the conditional degree of a label y occurring
in the branch. If d(y) = 0, y labels either an atomic formula or a propositional
formula. In any case, no new world labels are generated from y, and the branch is
finite. If d(y) > 0, it means that y labels some conditional formula. In this case,
y generates at least one world label z, meaning that for some neighbourhood
label a, y ≺g a and a ≺g z. By definition, y ≺g a if rule R > or L| are applied
in the derivation branch, introducing formula a ∈ N(y). Similarly, a ≺g z if
formula z ∈ a has been introduced in the branch by application of L ∃ or
R ∀. Thus, a new world label z can be generated from a world label y by a
combination of the above rules, possibly with the addition of static rules. In
any case, it holds that the conditional degree of the formulas labelled with z
is strictly smaller than the conditional degree of the formulas labelled with y.
To see this, suppose that y : A > B occurs in the consequent of some sequent
in the branch. Application of R > introduces a relational atom a ∈ N(y),
and generates a formula y a A|B in the consequent. Application of rule R|
introduces in the consequent either formula a ∃ A, to which no dynamic rules
can be applied, or formula a ∀ A→ B. In this case, rule R ∀ can be applied,
and a new world label z ∈ a is generated, along with formula z : A → B in
the consequent. It holds that d(z) < d(y), and similar considerations apply for
the other rules combinations. It holds that d(A0) is bounded by the size of the
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formula A0 at the root. Thus, for n = |A0|, the maximal length of each branch
of GB is bounded by O(n).

Proving claim 2 requires some care. By definition, a world label z is gener-
ated by a world label y if there is some neighbourhood label a such that y ≺g a
and a ≺g z, for k(y) = s, k(a) = t and k(z) = u with s < t < u. To prove that
the number of world labels generated by some y is finite, we need to prove that:

a) A world label y generates a finite number of neighbourhood labels;

b) A neighbourhood label a generates a finite number of new world labels.

As for a), observe that a new neighbourhood label can be generated by appli-
cation of R > or L|. In the former case, the rule is applied to some formula
y : A > B occurring in ∆t−1. Since the formula disappears from ∆t, rule R >
can be applied only once. Thus, the number of new neighbourhood labels lin-
early depends on the size of the formula A0 at the root of the sequent.
The case in which the new neighbourhood is generated by L| is more complex,
since the rule may interact with rule L >?, as shown in Examples 6.2 and 6.3.
To see how the loop is stopped in the general case, suppose that one neigh-
bourhood label a ∈ N(y) occurs in the antecedent of some sequent in B, along
with n conditional formulas y : A1 > B1, . . . , y : An > Bn. After n applications
of L >?, n formulas y a A1|B1, . . . , y a An|Bn occur in the antecedent. By
n applications of L|, n new neighbourhood label are generated, along with the
following formulas in the antecedent:

b1 ⊆ a, b1 ∈ N(y), b1 ∃ A1, b1 ∀ A1 → B1

...
bn ⊆ a, bn ∈ N(y), bn ∃ An, bn ∀ An → Bn

Now, rule L >? can be applied to all the conditional formulas and all the neigh-
bourhood just introduced. Thus, n ·n formulas are generated in the antecedent,
along with formulas b1 ⊆ b1, . . . , bn ⊆ bn introduced by Ref.

b1 ⊆ b1, y b1 A1|B1, . . . y b1 An|Bn
...

...
bn ⊆ bn, y bn A1|B1, . . . y bn An|Bn

In principle, application of L| yields n · n new neighbourhood labels; however,
n applications of the rule are blocked by the saturation condition associated to
the rule. More precisely, L| cannot be applied to formula y b1 A1|B1, because
formulas b1 ⊆ b1, b1 ∈ N(x), b1 ∃ A1 and b1 ∀ A → B occur lower in the
branch. Similarly, the saturation condition for L| blocks applications of the rule
to formulas y b2 A2|B2, y b3 A3|B3, and so on. Thus, only n(n − 1) new
neighbourhood labels are generated. Let k = n− 1.
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c12 ⊆ b1, c12 ∃ A2, c
1
2 
∀ A2 → B2 . . . c1n ⊆ b1, c1n ∃ An, c1n ∀ An → Bn

...
...

cn1 ⊆ bn, cn1 ∃ A1, c
n
1 
∀ A1 → B1 . . . cnk ⊆ bn, bnk ∃ Ak, bnk ∀ Ak → Bk

Before applying L >?, we exhaustively apply the static rules of Ref and Mon∀,
obtaining the following formulas (recall that k = n− 1):

c12 ⊆ c12, c12 ∀ A1 → B1 . . . c1n ⊆ c1n, c1n ∀ A1 → B1

...
...

cn1 ⊆ cn1 , cn1 ∀ An → Bn . . . cnk ⊆ cnk , cnk ∀ An → Bn

We now apply L >?, and introduce n · n(n− 1) formulas to which L| can be
applied. Let us consider the n formulas generated from application of the rule
to label c12. Recall that L >? also introduces local forcing formulas.

c12 
∃ A1, . . . , c

1
2 
∃ An, y c12 A1|B1, y c12 A2|B2, y c12 A3|B3, . . . , y c12 An|Bn

The application of L| to formula y c12 A2|B2 is blocked by the saturation

condition: formulas c12 ⊆ c12, c12 
∃ A2 and c12 

∀ A2 → B2 occur in the branch.
Application of the rule to y c12 A1|B1 is also blocked: formulas c12 

∃ A1

and c12 
∀ A1 → B1 have been introduced in the branch by L >? and Mon∀

respectively. Thus, rule L| can be applied only n(n−1)(n−2) times, generating
the same number of new neighbourhood labels. The process continues: after
the next applications of L >? and L|, n(n − 1)(n − 2)(n − 3) new labels are
introduced, and so on. The number of L| rule applications blocked by the
saturation condition strictly increases, until all the generated neighbourhood
labels are blocked.

To be more precise, count as one step in the generation process all appli-
cations of L >?, Mon∀, Ref and L| to a sequent. During the i-th step, rule
L >? generates a number n of formulas x e G|H for each neighbourhood la-
bel occurring in the sequent. Then, rule L| can be applied, introducing a new
neighbourhood label for each application. However, out of every n formulas
x e G|H, i− 1 applications of L| are blocked.

# of new neighbourhood labels at the ith step =
n!

(n− i)!

It follows that after n + 1 steps, all the generated neighbourhood labels are
blocked and, as a consequence, all applications of L >? and L| are blocked.
In general, for each neighbourhood label a ∈ N(y) and n conditional formulas
labelled with y, we generate at most

n−1∑
k=1

n!

(n− k)!

new neighbourhood labels. The number of neighbourhood labels generated by
L| and L > is bounded by O((n−2) ·n!), since at most n−2 terms appear in the
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sum of labels, and the biggest term in the sum is n!. This can be approximated
to O(n2 · n!).

To prove b), recall that a new world label z is generated from a neighbour-
hood label a if rule L ∃, R ∀, or L| are applied in the derivation. Since in all
these rules the principal formula disappears from the premiss, each rule can be
applied at most once to each suitable formula, generating one world label for
each application. Thus, the number of world labels generated linearly depends
on the size of the formula A0 at the root of the derivation.

Since GB has a finite number of nodes, the world and neighbourhood labels
in the derivation are finite. Since the pure formulas are in a finite number (all
subformulas of A0), in a finite number of steps proof proof search terminates,
yielding either a saturated sequent or an initial sequent.

Take n = |A0|. The number of labels generated from a node of GB is counted
as follows. The number of neighbourhood labels generated by R > is O(n).
Since the number of conditional formulas in the derivation is bounded by |A0|,
the number of neighbourhood labels generated by L| and L > is bounded by
O(n2 · n!). Each neighbourhood label generates one new world labels; thus, the
maximal number of world labels generated from a world label is bounded by
O(n2 ·n!). To conclude, since the maximal length of each branch is bounded by
O(n), the maximal number of world labels introduced in a derivation branch is
bounded by O(n3 ·n!). To obtain a complexity bound for the decision procedure
associated to G3CL, the maximal number of labels has to be combined with
the number of formulas generated at each step. The exponential bound on
labels, however, already shows that the complexity of the decision procedure is
NEXPTIME, far from the PSPACE bound known for PCL (see Remark 6.1).

6.2 Decidability for extensions

Theorem 6.3 can be extended to the calculi for most extensions of PCL.
We show how sequent calculi for logics with normality, total reflexivity, weak

centering, centering and uniformity terminate. We do not treat extensions of
G3CL with the rules for absoluteness. In these logics all N(x) are the same,
and there is no need to keep track of the system of neighbourhood N(x) to
which a certain neighbourhood α belongs. This simplification is not reflected
by sequent calculus G3CLA, which is defined as a modular extension of G3CL.
Thus, proving termination of G3CLA is not worth, since the simplest extension
of PCL would have the most complex decision procedure13.

In order to treat the extensions of PCL we define saturation conditions for the
additional rules and prove that the tree of labels corresponding to a derivation
branch is finite.

13Refer to [6] for terminating a labelled sequent calculus more suitable to treat the condition
of absoluteness. The resulting decision procedure, however, is still not optimal.
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0 If a ∈ N(x) is in Γ then y ∈ a is in Γ for some y
N If x is in ↓ Γ∪ ↓ ∆ then for some a, a ∈ N(x) is in Γ
T If x is in ↓ Γ∪ ↓ ∆, there is an a such that a ∈ N(x) and x ∈ a are in Γ
W If a ∈ N(x) is in Γ then x ∈ a is in Γ
C If a ∈ N(x) is in Γ, both {x} ∈ N(x) and {x} ⊆ a are in Γ
Single If {x} ∈ N(x) is in Γ, then x ∈ {x} is in Γ
Repl1 If y ∈ {x} is in Γ, and if some formula At(x) is in Γ, then At(y) is in Γ
Repl2 If y ∈ {x} is in Γ, and if some formula At(y) is in Γ, then At(x) is in Γ
U1 If a ∈ N(x), y ∈ a, b ∈ N(y) and z ∈ b are in Γ, then for some c, c ∈ N(x)

and z ∈ c are in Γ
U2 If a ∈ N(x), y ∈ a, b ∈ N(x) and z ∈ b are in Γ, then for some c, c ∈ N(y)

and z ∈ c are in Γ

Figure 6: Saturation conditions for extensions

The rules we are concerned with are N, 0, T, W, C, Single, Repl1, Repl2,
U1 and U2. Proof of termination for sequent calculi displaying a combination
of these rules can be obtained by combining the proof strategies exposed in
this section. We start by adding to the conditions in Figure 5 the saturation
conditions for these new rules, listed in Figure 6.

Definition 6.7. The proof search strategy from Definition 6.4 is supplemented
with the following clause:

3. Rule 0 can be applied to a sequent and a formula a ∈ N(x) only if some
formula a ∃ A occurs in the consequent, or some formula a ∀ A occurs
in the antecedent.

Let us see how the proof search strategy stops the two new cases of loop
generated by the rules for extensions. Interaction of 0 and N generate the
following loop.

...
z ∈ b, b ∈ N(y), y ∈ a, a ∈ N(x), x : A,Γ⇒ ∆

b ∈ N(y), y ∈ a, a ∈ N(x), x : A,Γ⇒ ∆
0

y ∈ a, a ∈ N(x), x : A,Γ⇒ ∆
N

a ∈ N(x), x : A,Γ⇒ ∆
0

x : A,Γ⇒ ∆
N

If no formulas a ∃ A occur in ∆ and no formulas a ∀ A occur in Γ, the
first application of rule 0 is blocked. Suppose a ∃ A occurs in ∆. Then 0 is
applied, but if restriction 3 is not met by neighbourhood b, the second uppermost
application of 0 is stopped. The number of formulas a ∃ A in the consequent
and a ∀ A in the antecedent is bounded by the conditional degree of formulas
at the root; thus, the loop is stopped. Intuitively, rule 0 needs to be applied only
to the neighbourhood label introduced by N, to ensure that it is not empty14.

14Refer to the derivation of axiom (N) in the Appendix.
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The neighbourhoods introduced by T, U1 or U2 already contains an element, so
no other loops with 0 arise.

Applications of U1 and U2 generate the following loop, where we take Ω =
a ∈ N(x), y ∈ a, b ∈ N(y), z ∈ b.

...
f ∈ N(y), z ∈ f, e ∈ N(x), z ∈ e, d ∈ N(y), z ∈ d, c ∈ N(y), z ∈ c,Ω,Γ⇒ ∆

e ∈ N(x), z ∈ e, d ∈ N(y), z ∈ d, c ∈ N(y), z ∈ c,Ω,Γ⇒ ∆
U2

d ∈ N(y), z ∈ d, c ∈ N(y), z ∈ c,Ω,Γ⇒ ∆
U1

c ∈ N(x), z ∈ c,Ω,Γ⇒ ∆
U2

Ω,Γ⇒ ∆
U1

The saturation condition for U2 blocks the first bottom-up application of the
rule: there is a neighbourhood label b such that b ∈ N(y) and z ∈ d are in Γ.
Similarly, a loop generated by Repl1 and Repl2 is blocked by their saturation
conditions.

We now prove termination for the sequent calculi extending G3PCL, adapt-
ing the proof of termination for G3PCL (Theorem 6.3). Observe that Lemma
6.2 holds for all the extensions considered: thus, the world labels occurring in a
derivation branch form a tree according to the relation ≺.

Theorem 6.4 (Termination). Root-first proof search for a sequent⇒ x0 : A0 in
the sequent calculi G3CLN, G3CLT, G3CLW, G3CLC, G3CLU, G3CLNU,
G3CLTU, G3CLWU and G3CLCU, built in accordance with the strategy, ter-
minates in a finite number of steps, with either an initial sequent or a saturated
sequent.

Proof. As in the proof of Theorem 6.3, we need to check that the tree of labels
GB associated to an arbitrary derivation branch is finite:

1. Each branch of GB has a finite length;

2. Each node of GB has a finite number of immediate successors.

As for 1, the proof remains the same as in Theorem 6.3. Rule 0 introduces a new
world label but, as we have seen, applications of this rule are restricted: the rule
can be applied only if afterwards some rule of local forcing can be applied to
the new world label. Since the number of local forcing formulas occurring in a
derivation branch is bounded by the size of formula A0, the length of a branch in
GB starting from a world label y is still bounded by O(n), for n = |A0|. Rules T,
W and Single introduce in derivation branch a world label x generated by x itself.
By definition we required that x 6= y in order to have x ≺ y; and thus, the rules
do not introduce a new node in the tree of labels. Rule C does not introduce a
new world label in the derivation. Replacement rules are applied only to atomic
formulas, and operate exclusively on world labels which are already present in
the derivation. Similarly, rules U1 and U2 do not introduce new world labels in
the derivation; thus, they do not affect the length of a branch in GB.
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The proof of 2 remains basically the same as in Theorem 6.3, meaning that
the count of the number of new neighbourhood labels generated by one neigh-
bourhood label and n formulas y : A1 > B1 . . . , y : An > Bn is still bounded by
O(n2 ·n!), for n = |A0|. However, the number of neighbourhood labels generated
from a world label increases, due to the presence of rules for extensions. Each
rule N, T, C, if applicable, adds at most one neighbourhood label a ∈ N(y) or
{y} ∈ N(y) to a world label y. The number of neighbourhood labels generated
by a world labels is bounded by the size of the formula A0 at the root; in logics
with normality, total reflexivity and centering this number is at most O(n+ 3).

As for the rules of replacement, given a world label y and a formula z ∈ {y},
these rules rules may introduce in the derivation formulas a ∈ N(z) or a ∈ N(y).
Thus, the number of world labels introduced from a world label y is bounded
the size of formula A0, and thus by O(n) (as before), to which we have to add
the number of applications of replacement rules introducing relational atoms
a ∈ N(y). Since replacement rules can be applied at most once to each z ∈ {y}
and a ∈ N(z), the total number of neighbourhood labels is bounded by O(2n).

A similar reasoning holds for U1 and U2. The saturation conditions for
uniformity prevent the application of both U1 and U2 to formulas c ∈ N(x) (or
c ∈ N(y)), and z ∈ c if the neighbourhood label has been generated by the rules
of uniformity. Thus, only one rule of uniformity (U1 or U2) can be applied out
of every 4 relational atoms a ∈ N(x), y ∈ a, b ∈ N(y) (or b ∈ N(x)) and z ∈ b.
Moreover, the rule can be applied at most once to these labels. We can thus
estimate the maximal number of neighbourhood labels introduced by a world
label to be bounded by O(2n).

Following the same reasoning as for G3CL, we have that the maximal num-
ber of world labels generated from a world label for calculi without centering or
uniformity is given by O(n2 · n!), while for calculi with centering or uniformity
the bound is O(2n · n · n!).

To conclude, the maximal length of each branch in GB combined with the
maximal number of nodes generated from a node yields the following maximal
bounds for world labels introduced in a derivation branch: O(n3 · n!) in case
of calculi without centering or uniformity, and O(2n · n2 · n!) for calculi with
centering or uniformity, always taking n = |A0|. In both cases, the decision
procedure associated to the logic is NEXPTIME.

7 Semantic completeness

Completeness of a sequent calculus can be proved either with respect to the
axiom system or with respect to the class of models for the logic. Theorem
5.6, along with Theorem 5.5 of cut-admissibility ensures the completeness of all
calculi with respect to the axiomatization of the corresponding logics. In this
section we prove the semantic completeness of the calculi: we show that if a
formula is valid in the class of neighbourhood models for a given logic, then

38



it is derivable in the sequent corresponding calculus. As usual we prove the
counterpositive statement: if a formula is not derivable in the sequent calculus,
we can construct a countermodel (in the intended class). The model wile be
extracted from a saturated upper sequent.

Since the proof requires to build a countermodel from a saturated sequent,
termination of the calculi is needed. For this reason, we prove semantic com-
pleteness of all the systems, except for those with the condition of absoluteness.

7.1 Completeness for G3CL

Theorem 7.1. Let Γ ⇒ ∆ be a saturated upper sequent in a derivation in
G3CL. There exists a finite countermodel M that satisfies all formulas in ↓ Γ
and falsifies all formulas in ↓ ∆.

Proof. Since Γ ⇒ ∆ is saturated, it is the upper sequent of a branch B. We
construct a modelMB that satisfies all formulas in ↓ Γ and falsifies all formulas
in ↓ ∆. The countermodel contains the semantic informations encoded in the
sequents of the derivation branch. Let

SB = {x | x ∈ (↓ Γ ∪ ↓ ∆)} NB = {a | a ∈ (↓ Γ ∪ ↓ ∆)}

Then, we associate to each a ∈ NB a neighbourhood as follows:

αa = {y ∈ SB | y ∈ a belongs to Γ}

Thus, for each neighbourhood a, αa ⊆ SB. We construct the neighbourhood
model MB = 〈WB, NB, J KB〉 as follows.

• WB = SB
• For any x ∈WB, NB(x) = {αa | a ∈ N(x) belongs to ↓ Γ}
• For p atomic, Jp KB = {x ∈WB | x : p belongs to ↓ Γ}

We now show thatMB = 〈WB, NB, J KB〉 satisfies the property of non-emptiness
for PCL neighbourhood models: we have to verify that every αa ∈ N(x) contains
at least one element. If a ∈ N(x) occurs in the sequent, it must have been
introduced either by R > or L|. If the neighbourhood label is not blocked, by
the saturation conditions associated to both rules it holds that a ∃ C occurs
in ↓ Γ. Thus, by the saturation condition (R ∃), formula y ∈ a occurs in Γ.
Moreover, the model MB satisfies the following property:

(∗) If a ⊆ b belongs to Γ, then αa ⊆ αb

To verify (∗), suppose y ∈ αa. This means that y ∈ a belongs to Γ; then, by the
saturation condition L ⊆, also y ∈ b belongs to Γ. By definition of the model
we have y ∈ αb, and thus that αa ⊆ αb.

Next, define a realization (ρ, σ) such that ρ(x) = x and σ(a) = αa and prove
the following claims:
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[Claim 1] If F is in ↓ Γ, then MB �ρ,σ F ;
[Claim 2] If F is in ↓ ∆, then MB 2ρ,σ F ;

where F denotes a labelled formula, i.e., F is a ∈ N(x), x ∈ a, a ⊆ b, x ∀ A,
x ∃ A, x a A|B, x : A, x : A > B. The two claims are proved by cases, by
induction on the weight of the formula F .

[a] If F is a formula of the form a ∈ N(x), x ∈ a or a ⊆ b, Claim 1 holds by
definition of MB, and Claim 2 is empty. For the case of a ⊆ b, employ the fact
(∗) above.

[b] If A is a labelled atomic formula x : p, the claims hold by definition
of the model; by the saturation condition associated to init no inconsistencies
arise. If A ≡ ⊥, the formula is not forced in any model and Claim 2 holds, while
Claim 1 holds by the saturation clause associated to ⊥L. If A is a conjunction,
disjunction or implication, both claims hold for the corresponding saturation
conditions and by inductive hypothesis on formulas on smaller weight.

[c] If A ≡ a ∃ A is in ↓ Γ, then by the saturation clause associated to L ∃

for some x there are x ∈ a, x : A are in ↓ Γ. By definition of the model MB,
for some x, x ∈ αa. Then, since w(x : A) < w(a ∃ A), apply the inductive
hypothesis and obtain MB � x : A. Therefore, by definition of satisfiability,
MB � αa ∃ A.
If a ∃ A is in ↓ ∆, then it is also in ∆. Consider an arbitrary world x in αa.
By definition of MB we have that x ∈ a is in Γ; apply the saturation condition
associated to R ∀ and obtain that x : A is in ↓ ∆. By inductive hypothesis,
MB 2 x : A; thus, since this line of reasoning holds for arbitrary x, we can
conclude by definition of satisfiability that MB 2 αa ∃ A. The case in which
A ≡ a ∀ A is similar.

[d] If x a A|B is in ↓ Γ, then by the saturation condition associated
to L| for some c it holds that c ∈ N(x) and c ⊆ a are in Γ, and a ∃ A,
a ∀ A→ B are in ↓ Γ. By definition of the model, αc ⊆ αa, and by inductive
hypothesis MB � αc ∃ A and MB � αc ∀ A → B. By definition, this yields
MB � x a A|B.
If x a A|B is in ↓ ∆, consider a neighbourhood αc ⊆ αa in N(x). Then by
definition ofMB we have that c ∈ N(x) and c ⊆ a are in Γ; apply the saturation
condition associated to R| and obtain that either c ∃ A or c ∀ A → B is in
↓ ∆. By inductive hypothesis, either M 2 αc ∃ A or MB 2 αc ∀ A→ B. In
both cases, by definition MB 2 x a A|B.

[e] If x : A > B is in ↓ Γ, then it is also in Γ. Consider an arbitrary
neighbourhood αa in N(x). By definition of MB we have that a ∈ N(x) is in
Γ; apply the saturation condition associated to L >′ and conclude that either
a ∃ A is in ↓ ∆, or x a A|B is in ↓ Γ. By inductive hypothesis, it holds
that either MB 2 αa ∃ A or MB � x a A|B. In both cases, by definition
MB � x : A > B.
If x : A > B is in ↓ ∆, by the saturation condition associated to R >, for some
a it holds that a ∈ N(x) is in Γ, a ∃ A is in ↓ Γ and x a A|B is in ↓ ∆. By
inductive hypothesis, MB � αa ∃ A and MB 2 x a A|B, thus, by definition,
we have MB 2 x : A > B.
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Theorem 7.1 together with the soundness of G3CL provides a constructive
proof of the finite model property for the logics: if A is satisfiable in a model
(meaning that ¬A is not valid), by soundness of the calculi ¬A is not provable.
Thus by Theorem 7.1 we build a finite countermodel of ¬A, that is a finite
model in which A is satisfiable. The same holds for the calculi for extensions of
PCL, once their semantic completeness has been proved.

7.2 Semantic completeness for extensions

Semantic completeness for sequent calculi with normality, total reflexivity, weak
centering and uniformity can be proved similarly as for G3CL. Extensions of
the calculi with rules for centering require a modification on the countermodel
construction, to account for singleton neighbourhoods.

Theorem 7.2. If A is valid in PCL combined with normality, total reflexivity
weak centring and uniformity, then sequent ⇒ x : A is derivable in G3CL
combined with the corresponding rules for normality, total reflexivity, weak
centering and uniformity.

Proof. The proof proceeds as the one of Theorem 7.1. For the case of normal-
ity, a clause is added in the countermodel construction; however, Claim 1 and 2
continue to hold in the model. For the remaining cases, the countermodel con-
struction does not change, and it only remains to verify that the countermodel
MB satisfies the properties of normality, total reflexivity, weak centering and
uniformity, provided that the corresponding rules and saturation conditions are
added to the calculus.

Normality : To construct a countermodel for logics featuring only normality,
the following case distinction applies, for Q = ∀,∃: we need to add a clause to
the definition of WB, αa and for Q = ∀,∃:

• If a ∈ N(x) occurs in Γ, and there are some formulas a Q A in ↓ Γ ∪ ↓ ∆,
the countermodel MB is defined as in the case of PCL;

• If a ∈ N(x) occurs in Γ, but no formulas a Q A occur in ↓ Γ ∪ ↓ ∆, we
set: WB = SB ∪{u}, for some variable u not occurring in Γ; αa = {u} and
NB(u) = {{u}}.

The model satisfies the condition of normality: according to the saturation
condition N, for every x occurring in ↓ Γ, there is a such that a ∈ N(x) occurs
in Γ. By definition of MB, αa ∈ NB(x). Moreover, we have to verify that non-
emptiness of the model holds also for the neighbourhood αa introduced by the
rule. If there are some formulas a Q A occurring in ↓ Γ∪ ↓ ∆, the saturation
condition associated to either 0, L ∃ or R ∀ ensures that there is at least one
formula y ∈ a in Γ. If there are no such formulas, the application of N is not
relevant to the derivation; following the definition, we introduce an arbitrary
world u to be placed in the neighbourhood15.

15There is no need to verify non-emptiness for stronger conditions of total reflexivity and
weak centering, since the rules added to the calculus add a world belonging to the neighbour-
hood introduced.
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Total reflexivity : According to the saturation condition T, for every x oc-
curring in ↓ Γ∪ ↓ ∆ also a ∈ N(x), x ∈ a occur in Γ. By definition ofMB, this
means that αa ∈ N(x) and x ∈ αa, and total reflexivity holds.

Weak centering : Suppose αa ∈ N(x). We want to show that x ∈ αa. By
definition, if αa ∈ N(x) then a ∈ N(x) occurs in Γ. By the saturation condition
associated to W, it holds that also x ∈ a occurs in Γ; thus, by definition of the
model x ∈ αa.

Uniformity : Suppose y ∈
⋃
N(x), which means that y ∈ αa and αa ∈ N(x).

By definition, a ∈ N(x) and y ∈ a occur in Γ. We have to show that
⋃
N(x) =⋃

N(y), that is:

z ∈
⋃
N(x) iff z ∈

⋃
N(y)

Assume z ∈
⋃
N(x). This means that z ∈ αb and b ∈ N(x) and, by definition,

z ∈ b and b ∈ N(x) occur in Γ. By the saturation condition associated to U2,
we have that for some c, c ∈ N(y) and z ∈ c occur in Γ. Thus, z ∈ αc and
αc ∈ N(y), meaning that z ∈

⋃
N(y). The saturation condition associated to

U1 is needed to prove the other direction.

Theorem 7.3. If A is valid in PCL extended with centering, then sequent
⇒ x : A is derivable in G3CLC.

Proof. In this case, worlds of the countermodel are not defined as the set SB of
labels occurring in the branch, but as equivalence classes [x] with respect to the
relation y ∈ {x}, which we will show to be an equivalence relation. Then, we
require [x] to be contained in any neighbourhood of N(x). For SB, NB and αa
as defined before, let

[x] = {y ∈ SB | y ∈ {x} occurs in Γ};
[x] ⊆ αa, for a ∈ N(x) occurring in Γ.

We construct a model Mc
B = 〈W c, N c, J Kc〉 as follows:

• W c = {[x] | x ∈ SB};
• for each [x] ∈W c, N c([x]) = {αa | a ∈ N(x) belongs to ↓ Γ};
• for p atomic, Jp Kc = {[x] ∈W c | x : p belongs to ↓ Γ}.

We first prove that y ∈ {x} is an equivalence relation. The relation is reflexive:
for each x occurring in Γ, x ∈ {x} occurs in Γ. This holds from the saturation
conditions associated to N, C and Single. To prove that the relation is symmetric,
we have to show that if y ∈ {x} occurs in Γ, then also x ∈ {y} occurs in
Γ. By reflexivity, we have that y ∈ {y}. Thus, by the saturation condition
associated to Repl2, we have that also x ∈ {y} belongs to Γ. To prove the
converse, use saturation condition associated to Repl1. To show that the relation
is transitive we have to prove that if y ∈ {x} and x ∈ {z} occur in Γ, also
y ∈ {z} occurs in Γ. By saturation conditions N and C and Single, we have
that also {z} ∈ N(z) occurs in Γ. By the saturation condition associated to
Repl1 applied to x ∈ {z}, also {z} ∈ N(x) occurs in the sequent; thus, by the
saturation condition associated to C we have that both formulas {x} ⊆ {z} and
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{x} ∈ N(z) occur in Γ. Finally, by the saturation condition associated to L ⊆,
since y ∈ {x} and {x} ⊆ {z}, we have that y ∈ {z} occurs in the sequent.

Next we need to show that the definitions of N c([x]) and Jp Kc do not depend
on the chosen representative of the equivalence class in question.

i) if y ∈ [x], then a ∈ N(x) is in Γ if and only if a ∈ N(y) is in Γ;
ii) if y ∈ [x], then x : p is in Γ if and only if y : p is in Γ.

Fact i) follows from the saturation conditions associated to Repl1 and Repl2,
applied to on the formulas a ∈ N(x) and a ∈ N(y). Fact ii) follows from
application of the same saturation conditions to x : p and y : p.

The model Mc
B satisfies the property of centering. Observe that in our

model {x} corresponds to [x]: both are defined as the set containing exactly
one element, x. Suppose αa ∈ N(x); we have to show that {x} ⊆ αa and
{x} ∈ N(x). By definition of the model we have that [x] ⊆ αa, and from this
and αa ∈ N(x) it follows that [x] ∈ N([x]); thus, strong centering holds.
The following facts are needed in the proof Claims 1 and 2 below.

1) If a ⊆ b belongs to Γ, then αa ⊆ αb;
2) if [x] ∈ JAK and y ∈ [x], then [y] ∈ JAK;
3) If [x] ∈ JAK, then x : A belongs to ↓ Γ.

Fact 1) is proved in the same way as (∗); the proofs of 2) and 3) are immediate
from admissibility of Repl1 and Repl2 in their generalized form.

Finally, we define define a realization (ρ, σ) such that ρ(x) = [x] and σ(a) =
αa, and prove that:

[Claim 1] If F is in ↓ Γ, then Mc
B �ρ,σ F ;

[Claim 2] If F is in ↓ ∆, then Mc
B 2ρ,σ F .

Again, F denotes the labelled formulas of the language, including y ∈ {x},
{x} ∈ N(x), {x} ∈ a. The two cases are proved by distinction of cases, and by
induction on the height of the derivation. If F is a relational formula that does
not contain any singleton, Claim 1 holds by definition of the model, and Claim
2 is empty as in case a) of proof of the previous models. Similarly, if F is either
y ∈ {x}, {x} ∈ N(x) or {x} ⊆ a, Claim 1 is satisfied by definition.

The cases b)- e) of the previous proof remain unchanged; condition 2) ensures
that all the elements of an equivalence class of world labels satisfy the same sets
of formulas.

8 Related work and discussion

In this paper we have studied Preferential Conditional Logic PCL and its ex-
tensions. We have first provided a natural semantics for this class of logics
in terms of neighbourhood models. Neighbourhood models generalise Lewis’
sphere models for counterfactual logics. We have given a direct proof of sound-
ness and completeness of PCL and its extensions with respect to this class of
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models, with the exception of PW and its extensions with (U) and (A). We have
then presented labelled sequent calculi for all logics of the family. The calculi
are modular and have standard proof-theoretical properties, the most important
one being cut admissibility, by which completeness of the calculi easily follows.
We have then tackled termination of the calculi, with the aim of obtaining a
decision procedure for each logic. For all systems, except for the ones contain-
ing absoluteness, we have shown that by adopting a suitable strategy, it holds
that every derivation either succeeds or ends by producing a finite tree. With
respect to the known complexity of the logics, the decisions procedures are not
optimal, and further work is needed to obtain optimal procedures out of the
labelled calculi. The last result we have shown is semantic completeness for the
calculi, again with the exception of cases of absoluteness.

Concerning the semantics, a few works have considered neighbourhood mod-
els for PCL or closely related logics. The relation between neighbourhood mod-
els and preferential models has been considered in [19, 6] and is based on a
well-known duality between partial orders and so-called Alexandrov topologies.
According to this result, neighbourhood models are build by associating to each
world a topology in which the neighbourhoods are the open sets. For condi-
tional logics this duality is studied in detailed in [13]. However, the topological
semantics of [13] imposes closure under arbitrary unions and non-empty inter-
sections on the neighbourhoods. These conditions are not required by the logic,
and we have not assumed them in the definition of neighbourhood models.

A kind of neighbourhood semantics, called Broccoli Semantics, has been
considered in [5]. In this article, it is shown that the logic BL characterised by
the Broccoli Semantics coincides with PCL. Completeness of BL is obtained by
Burgess’ result.

Yet another kind of neighbourhood semantics bearing some similarity to
ours is the Premise Semantics, considered in the seminal work by Veltman [24].
Premise semantics is shown equivalent to preferential semantics (called “or-
dered semantics”). Premise models are neighbourhood models which do not
require any additional properties, as in our definition. However, the definition
of the conditional is different from ours, as it considers arbitrary intersections
of neighbourhoods. Then, the result of strong completeness is proved indirectly
by resorting to preferential semantics (whence generalising Burgess’ result).

In this respect, the direct completeness result with respect to the neigh-
bourhood semantics contained in this work is new. In future work we wish to
complete it with the missing cases.

Concerning proof systems, very few calculi are known for PCL and its ex-
tensions. Labelled tableaux calculi for PCL and its extensions (including all
the ones considered here, and Lewis’ logics) are proposed in [4]. The calculi are
based on preferential semantics with the Limit assumption, and are defined by
extending the language by pseudo-modalities indexed on worlds. The tableaux
calculi cover all logics considered in this work, but they are inherently different
from the ones we introduced, due to the presence of Limit assumption. As a
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difference with the present work, termination is obtained by relatively complex
blocking conditions. As a side note, the neighbourhood semantics could be re-
formulated by assuming the Limit assumption as follows. Given a formula A,
consider the set of neighbourhoods α ∈ N(x) minimal with respect to set inclu-
sion such that α ∃ A, and define a conditional A > B to be forced at x if each
neighbourhood α in this set forces universally A → B. Corresponding calculi
could possibly be developed based on this semantics.

Labelled sequent calculi based on preferential semantics for PCL and its
extensions, including counterfactual logics, are presented in [9]. In this case,
the semantics is defined without the limit assumption. However, while there
is a proof of termination for all systems of calculi, complexity issues are not
analysed in detail.

An unlabelled sequent calculus for PCL yielding an optimal PSPACE deci-
sion procedure is presented in [21]: the calculus is obtained by closing one step
rules by all possible cuts and by adding a specific rule for PCL. The resulting
system is undoubtedly significant, but the rules have a highly combinatorial
nature and are overly complicated. In particular, a non-trivial calculation (al-
though the algorithm is polynomial) is needed to obtain one backward instance
of the (S)-rule for a given sequent.

Recently, a resolution calculus for PCL has been proposed in [14]. The calcu-
lus does not make use of labels, nor of any additional structure; it relies however
on a non-trivial pre-processing of formulas (including renaming of subformulas
and addition of propositional constants) in order to transform a formula into a
suitable set of clauses to which the resolution rules can be applied.

As a difference with Lewis’ logics16, it is remarkable that today, 40 years
since preferential logics has been introduced, no standard unlabelled sequent
calculi for PCL or its extensions have been found, where by a standard calculus
we mean a proof system with a fixed finite number of rules, each with a fixed
finite number of premisses.

Regarding labelled sequent calculi for preferential logics, from a computa-
tional viewpoint the main issue, to be explored in future work, is whether the
calculi can be refined in order to achieve optimal complexity. This may lead to
a redefinition the semantics itself, in order to obtain sharper labelled rules, or
to a modification of calculus structure in itself.
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[7] Marianna Girlando, Bjöern Lellmann, Nicola Olivetti, and Gian Luca Poz-
zato. Standard sequent calculi for Lewis’ logics of counterfactuals. In Loizos
Michael and Antonis C. Kaks, editors, European Conference on Logics in
Artificial Intelligence, pages 272–287. Springer, 2016.

[8] Marianna Girlando, Björn Lellmann, Nicola Olivetti, and Gian Luca Poz-
zato. Hypersequent calculi for Lewis’ conditional logics with uniformity
and reflexivity. In Renate A. Schmidt and Claudia Nalon, editors, Inter-
national Conference on Automated Reasoning with Analytic Tableaux and
Related Methods, pages 131–148. Springer, 2017.

[9] Marianna Girlando, Sara Negri, and Giorgio Sbardolini. Uniform labelled
calculi for conditional and counterfactual logics. In International Work-
shop on Logic, Language, Information, and Computation, pages 248–263.
Springer, 2019.

[10] Marianna Girlando, Nicola Olivetti, and Sara Negri. Counterfactual logics:
labelled and internal calculi, two sides of the same coin? In Advances in
Modal Logic, volume 12, pages 291–310. College Publications, 2018.

[11] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial intelligence,
44(1-2):167–207, 1990.

[12] David K. Lewis. Counterfactuals. Blackwell, Oxford, 1973.

[13] Johannes Marti and Riccardo Pinosio. Topological semantics for condition-
als. The Logica Yearbook, 2013.

[14] Cláudia Nalon and Dirk Pattinson. A resolution-based calculus for prefer-
ential logics. In International Joint Conference on Automated Reasoning,
pages 498–515. Springer, 2018.

[15] Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic,
34(5-6):507, 2005.

46



[16] Sara Negri. Non-normal modal logics: a challenge to proof theory. The
Logica Yearbook, pages 125–140, 2016.

[17] Sara Negri. Proof theory for non-normal modal logics: The neighbourhood
formalism and basic results. IFCoLog Journal of Logic and its Applications,
to appear.

[18] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge Uni-
versity Press, Cambridge, 2001.

[19] Sara Negri and Nicola Olivetti. A sequent calculus for preferential condi-
tional logic based on neighbourhood semantics. In International Confer-
ence on Automated Reasoning with Analytic Tableaux and Related Methods,
pages 115–134. Springer, 2015.

[20] John L Pollock. A refined theory of counterfactuals. Journal of Philosoph-
ical Logic, 10(2):239–266, 1981.
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Appendix

Proof of Theorem 5.6. We have to show that the inference rules of HPCL are
admissible, and that the axioms of HPCL and its extensions are derivable. By
means of example, we show admissibility of (RCEA) and (RCK) in G3CL, and
derivability of axioms (CM), (N), (T) and (U1) in G3CLT. More derivation
examples can be found in [6].

For (RCEA), suppose ` A ↔ B. Thus, ` x : A → B, whence ⇒ x :
A → B, and ` x : B → A, whence ⇒ x : B → A. We derive three sequents
by application of cut and other rules, and show how to combine them into a
derivation of ⇒ x : (A > C) → (B > C), i.e., ` (A > C) → (B > C). The
other direction of the implication is similar.

From ⇒ x : B → A obtain by substitution ⇒ y : B → A. Sequent y : B, y :
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B → A⇒ y : A is derivable.

⇒ y : B → A,

y : A⇒ y : B → A, y : B
Wk

y : B, y : B → A⇒ y : A

y : A⇒ y : B
cut

a ∈ N(x), y ∈ a, y : B, x : A > C ⇒ x a B|C, a ∃ A, y : A
Wk

a ∈ N(x), y ∈ a, y : B, x : A > C ⇒ x a B|C, a ∃ A
R ∃

(1) a ∈ N(x), a ∃ B, x : A > C ⇒ x a B|C, a ∃ A
L ∃

From ⇒ x : A → B obtain by substitution ⇒ y : A → B. Sequent y : A, y :
A→ B ⇒ y : B is derivable.

⇒ y : A→ B

y : A⇒ y : A→ B, y : B
Wk

y : A, y : A→ B ⇒ y : B

y : A⇒ y : B
cut

c ⊆ a, a ∈ N(x), c ∈ N(x), y ∈ c, a ∃ B, y : A, c ∀ A→ C, y : A→ C, , x : A > C ⇒ x a B|C
Wk

c ⊆ a, a ∈ N(x), c ∈ N(x), y ∈ c, a ∃ B, y : A, c ∀ A→ C, , x : A > C ⇒ x a B|C
R ∃

(2) c ⊆ a, a ∈ N(x), c ∈ N(x), a ∃ B, c ∃ A, c ∀ A→ C, x : A > C ⇒ x a B|C
L ∃

From ⇒ x : B → A obtain by substitution ⇒ z : B → A, for some variable
z different from y. Sequent z : C ⇒ z : C is derivable, as well as sequent
z : B, z : B → A⇒ z : A.

z : C ⇒ z : C

⇒ z : B → A
z : B ⇒ z : B → A, z : A

Wk
z : B, z : B → A⇒ z : A

z : B ⇒ z : A
cut

z : A→ C, z : B ⇒ z : C
L→

z : A→ C ⇒ z : B → C
R→

z ∈ c, c ⊆ a, a ∈ N(x), c ∈ N(x), c ∃ A, c ∀ A→ C, z : A→ C, a ∃ B, x : A > C ⇒ x a B|C, z : B → C
Wk

z ∈ c, c ⊆ a, a ∈ N(x), c ∈ N(x), c ∃ A, c ∀ A→ C, a ∃ B, x : A > C ⇒ x a B|C, z : B → C
L ∀

(3) c ⊆ a, a ∈ N(x), c ∈ N(x), c ∃ A, c ∀ A→ C, a ∃ B, x : A > C ⇒ x a B|C, c ∀ B → C
R ∀

To conclude, we combine the above derivations into the following:

(1)

(2) (3)

c ⊆ a, a ∈ N(x), c ∈ N(x), c ∃ A, c ∀ A→ C, a ∃ B, x : A > C ⇒ x a B|C
R|

x a A|C, a ∃ B, x : A > C ⇒ x a B|C
L|

a ∈ N(x), a ∃ B, x : A > C ⇒ x a B|C
L >

x : A > C ⇒ x : B > C
R >

⇒ x : (A > C)→ (B > C)
R→

For (RCK), suppose ` A → B. Thus, ⇒ x : A → B. We show how to derive
sequent ⇒ x : (C > A)→ (C > B). From ⇒ x : A→ B obtain by substitution
⇒ y : A→ B. Then, from this sequent and the derivable sequent y : C ⇒ y : C
obtain sequent (1):
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y : C ⇒ y : C

y : A⇒ y : B

y : C, y : A⇒ y : B
Wk

y : C → A, y : C ⇒ y : B
L→

y : C → A⇒ y : C → B
R→

y ∈ b, b ⊆ a, a ∈ N(x), b ∈ N(x), b ∃ C, b ∃ C → A, y : C → A, a ∃ C, x : C > A⇒ x a C|B, y : C → B
Wk

y ∈ b, b ⊆ a, a ∈ N(x), b ∈ N(x), b ∃ C, b ∃ C → A, a ∃ C, x : C > A⇒ x a C|B, y : C → B
L ∀

(1) b ⊆ a, a ∈ N(x), b ∈ N(x), b ∃ C, b ∃ C → A, a ∃ C, x : C > A⇒ x a C|B, b ∀ C → B
R ∀

The following two sequents are derivable, by Lemma 5.2:

(2) a ∈ N(x), a ∃ C, x : C > A⇒ x a C|B, a ∃ C
(3) b ⊆ a, a ∈ N(x), b ∈ N(x), b ∃ C, b ∃ C → A, a ∃ C, x : C >
A⇒ x a C|B, b ∃ C

To conclude the proof, apply the following rules to y : C → A⇒ y : C → B:

(2)

(3) (1)

b ⊆ a, a ∈ N(x), b ∈ N(x), b ∃ C, b ∃ C → A, a ∃ C, x : C > A⇒ x a C|B
R|

x a C|A, a ∈ N(x), a ∃ C, x : C > A⇒ x a C|B
L|

a ∈ N(x), a ∃ C, x : C > A⇒ x a C|B
L >

x : C > A⇒ x : C > B
R >

⇒ x : (C > A)→ (C > B)
R→

Here follows the derivation of (CM), in which we have omitted three derivable
left premisses: a ∃ a ∧ B · · · ⇒ . . . a ∃ A, premiss of the lower occurrence
of L >, b ∃ A · · · ⇒ . . . b ∃ A premiss of the upper occurrence of L >, and
c ⊆ a, a ∃ A ∧B · · · ⇒ . . . c ∃ A ∧B, premiss of R|.

O
. . . y : C ⇒ y : C . . .

O
. . . y : A ∧B ⇒ y : A . . .

y ∈ c, c ⊆ a, c ⊆ b, c ∃ A, y : A→ C, b ∃ A, b ∀ A→ B, a ∃ A ∧B, y : A ∧B · · · ⇒ . . . y : C
L→

y ∈ c, c ⊆ a, c ⊆ b, c ∃ A, c ∀ A→ C, b ∃ A, b ∃ A→ B, a ∃ A ∧B, y : A ∧B · · · ⇒ . . . y : C
L ∀

y ∈ c, c ⊆ a, c ⊆ b, c ∃ A, c ∀ A→ C, b ∃ A, b ∃ A→ B, a ∃ A ∧B · · · ⇒ . . . y : A ∧B → C
R→

c ⊆ a . . . c ⊆ b, c ∃ A, c ∀ A→ C, b ∃ A, b ∃ A→ B, a ∃ A ∧B · · · ⇒ . . . c ∀ A ∧B → C
R ∀

c ⊆ a, c ⊆ b, c ∃ A, c ∃ A, c ∀ A→ C, b ∃ A, b ∃ A→ B, a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
R|

c ∈ N(x), c ⊆ b, b ∈ N(x), b ⊆ a, a ∈ N(x), c ∃ A, c ∃ A→ C, b ∃ A, b ∃ A→ B, a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
Tr

x b A|C, b ∈ N(x), b ⊆ a, a ∈ N(x), b ∃ A, b ∃ A→ B, a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
L|

b ∈ N(x), b ⊆ a, a ∈ N(x), b ∃ A, b ∃ A→ B, a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
L >

x a A|B, a ∈ N(x), a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
L|

a ∈ N(x), a ∃ A ∧B, x : A > B, x : A > C ⇒ x a A ∧B|C
L >

x : A > B, x : A > C ⇒ x : (A ∧B) > C
R >

x : (A > B) ∧ (A > C)⇒ x : (A ∧B) > C
L∧

⇒ x : (A > B) ∧ (A > C)→ ((A ∧B) > C)
R→

Here follows the derivation of (N).

y ∈ a, a ∈ N(x), x : > > ⊥ ⇒ a ∃ >, y : >
y ∈ a, a ∈ N(x), x : > > ⊥ ⇒ a ∃ > R ∃

a ∈ N(x), x : > > ⊥ ⇒ a ∃ >
0

· · · ⇒ y : > y : ⊥ ⇒ . . .

c ∈ N(x), c ⊆ a, a ∃ >, a ∀ > → ⊥, y : > → ⊥, y ∈ a, a ∈ N(x), x : > > ⊥ ⇒ x : ⊥
L ⊆

c ∈ N(x), c ⊆ a, a ∃ >, a ∀ > → ⊥, y ∈ a, a ∈ N(x), x : > > ⊥ ⇒ x : ⊥ L ∀

x a >|⊥, y ∈ a, a ∈ N(x), x : > > ⊥ ⇒ x : ⊥
L|

a ∈ N(x), x : > > ⊥ ⇒ L >

x : > > ⊥ ⇒ N

⇒ x : ¬(> > ⊥)
R¬

Here follows the derivation of axiom (T). The left premiss of L > is the derivable
sequent x ∈ a, a ∈ N(x), x : A, x : A > ⊥ ⇒ x : ⊥, a ∃ A, not shown for
reasons of space.
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y : A→ ⊥, y ∈ b, y : A · · · ⇒ x : ⊥, y : A y : ⊥ · · · ⇒
y : A→ ⊥, y ∈ b, y : A, b ∈ N(x), b ⊆ a, x ∈ a, a ∈ N(x), x : A > ⊥ ⇒ x : ⊥ L→

y ∈ b, y : A, b ∈ N(x), b ⊆ a, b ∀ A→ ⊥, x ∈ a, a ∈ N(x), x : A > ⊥ ⇒ x : ⊥ L ∀

b ∈ N(x), b ⊆ a, b ∃ A, b ∀ A→ ⊥, x ∈ a, a ∈ N(x), x : A > ⊥ ⇒ x : ⊥ L ∃

x a A|⊥, x ∈ a, a ∈ N(x), x : A, x : A > ⊥,⇒ x : ⊥ L ⊆

x ∈ a, a ∈ N(x), x : A, x : A > ⊥ ⇒ x : ⊥ L >

x : A, x : A < ⊥ ⇒ x : ⊥ T

x : A⇒ x : (A > ⊥)→ ⊥ R→

⇒ x : A→ ((A > ⊥)→ ⊥)
R→

Finally, here follows the derivation of (U1). The derivable left premiss of L >,
sequent z ∈ c, z ∈ b . . . z : ¬A⇒ . . . c ∃ ¬A, z : ¬A, is not shown.

O
. . . k : ¬A⇒ . . . k : ¬A

init
. . . k : ⊥ ⇒ . . .

k ∈ d, d ⊆ c . . . k : ¬A, d ∀ ¬A→ ⊥, k : ¬A→ ⊥, z : ¬A, x : ¬A > ⊥ ⇒ . . .
L→

k ∈ d, d ⊆ c . . . k : ¬A, d ∀ ¬A→ ⊥, z : ¬A, x : ¬A > ⊥ ⇒ . . .
L ∀

d ⊆ c, d ∈ N(x) . . . d ∃ ¬A, d ∀ ¬A→ ⊥, z : ¬A, x : ¬A > ⊥ ⇒ . . .
L ∃

x c ¬A|⊥ . . . z : ¬A, x : ¬A > ⊥ ⇒ . . .
L|

z ∈ c, z ∈ b, b ∈ N(y), y ∈ a, a ∈ N(x), z : ¬A, x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥, y b ¬A|⊥
L >

z ∈ b, b ∈ N(y), y ∈ a, a ∈ N(x), z : ¬A, x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥, y b ¬A|⊥
U1

b ∈ N(y), y ∈ a, a ∈ N(x), b ∃ ¬A, x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥, y b ¬A|⊥
L ∃

y ∈ a, a ∈ N(x), x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥, y : ¬A > ⊥ R >

y ∈ a, a ∈ N(x), y : ¬(¬A > ⊥), x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥ L¬

a ∈ N(x), a ∃ ¬(¬A > ⊥), x : ¬A > ⊥ ⇒ x a ¬(¬A > ⊥) > ⊥ L ∃

x : ¬A > ⊥ ⇒ x : ¬(¬A > ⊥) > ⊥ R >

⇒ x : (¬A > ⊥)→ (¬(¬A > ⊥) > ⊥)
R→
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