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Abstract 

An increased interest in Pickering emulsions has emerged over the last 15 years, mainly related 

to their very attractive properties compared to regular emulsions, namely their excellent stability 

and their numerous possible applications. In this review, after detailing the interest of Pickering 

emulsions, their main preparation processes are presented and their advantages and 

disadvantages discussed. In the third part, the key parameters that govern Pickering emulsions 

type, droplet size and stability are analyzed. Finally, the interest and the potential of Pickering 

emulsions for pharmaceutical applications are exposed and discussed, taking all the 

administration routes into consideration and focusing on organic particles.  
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List of abbreviations: AFM, atomic force microscopy; API, active pharmaceutical ingredient; 

CD, cyclodextrin; CNC, cellulose nanocrystals; DME, direct membrane emulsification; GTT, gel 

trapping technique; HIPE, high internal phase emulsion; LCST, lower critical solution 

temperature; MFC, microfibrillated cellulose; NP, nanoparticles; O/O, oil in oil; O/O/O, oil in oil in 

oil; O/W, oil in water; O/W/O, oil in water in oil; PME, premix membrane emulsification; RME, 

rotational membrane emulsification; SCME, stirred-cell membrane emulsification; SEM, 

scanning electron microscopy; SNC, starch nanocrystals; VME, vibrational membrane 

emulsification; W/O, water in oil; W/O/W, water in oil in water; W/W, water in water; W/W/W, 

water in water in water; XME, cross-flow membrane emulsification. 

 

1. Introduction 

Emulsions are widely used in pharmaceutical applications [1]. Creams, as well as some 

ointments, gels, pastes, transdermal patches and vaccines, are emulsions [2]. Pharmaceutical 

emulsions can be used as therapeutic vehicles by various routes of administration: injection 

(intravenously, intramuscularly) [3–5], oral administration [6], topical application (skin, 

transdermal and vaginal applications) [7], ocular application [8,9], pulmonary [10] and nasal 

administrations [11]. In simple emulsions, hydrophilic active pharmaceutical ingredients (API) are 

encapsulated in the aqueous droplets of a water-in-oil (W/O) emulsion, whereas hydrophobic 

API are incorporated in the oil droplets of an oil-in-water (O/W) emulsion. The main interest of 

pharmaceutical emulsions is that they protect the encapsulated API while increasing its solubility 

and bioavailability [12]. By the oral route, emulsions, in addition to improving API protection and 

absorption, also mask their possible unpleasant taste or texture, making them more palatable 

[13]. By topical route, they often improve the permeability of the API [12], and both O/W and 

W/O emulsions can be used. O/W emulsions have the advantage of being non-greasy and 

easily removable from the skin surface [14]. W/O emulsions possess an occlusive effect by 

hydrating the upper layer of the skin and avoiding evaporation. They are also greasy and not 

water washable [12]. By the intravenous route, the emulsion form may help to prevent the 

tendency of poorly water soluble API to crystallize [13] as the API is in the oil droplets of the O/W 

or W/O/W (water-in-oil-in-water) emulsions generally used in this case [12]. By the ophthalmic 

route, O/W emulsions are better tolerated than solutions and suspensions and avoid vision 

blurring effect observed with ointments [12]. Among emulsified systems, multiple emulsions are 

very attractive for pharmaceutical applications such as taste masking, vaccine adjuvants and so 
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on, thanks to their ability to encapsulate and protect simultaneously several API. They also allow 

a controlled and sustained release of the encapsulated API [14]. Despite their attractiveness, 

multiple emulsions can have limitations because of their complex structure and their 

thermodynamic instability due to an exchange of surfactants between the interfaces of the 

droplets and the inner droplets [15]. 

As emulsions are thermodynamically unstable systems, the use of stabilizers for the formulation 

of emulsions and for their long-term stability is required [16]. Until now, emulsions have mostly 

been stabilized by synthetic surfactants [17]. The list of surfactants usable for pharmaceutical 

applications is however reduced [12,18], and is even more limited for ocular and parenteral 

routes. Unfortunately, even with pharmaceutical authorized synthetic surfactants, irritations or 

allergic responses are often observed [19–22]. New and less toxic stabilization approaches have 

been developed such as the use of biopolymers [23] or solid particles [24–26]. They could be 

attractive for pharmaceutical applications. 

This review is focused on emulsions stabilized by particles. Such emulsions are called Pickering 

emulsions according to the pioneering work of Pickering [27], even if they were first described by 

Ramsden [28]. Such stabilizers lower, or even avoid, the use of synthetic surfactants. Between 

2000 and 2018, the proportion of publications on “Pickering emulsions” among all publications 

on “emulsions” increased from 0.05% to 8.0% (source: data from Web of Science). This 

increased interest is directly related to the very attractive properties of these emulsions. Indeed, 

Pickering emulsions display very good stability (sometimes up to several years), thanks to their 

high resistance to coalescence [25]. They also allow the fine-tuning of the emulsions towards 

their application, thanks to the very large number of possible combinations of the different types 

of particles, the aqueous and the oily phases used. Many types of particles (inorganic or organic) 

have been used to prepare Pickering emulsions, such as silica particles (widely studied because 

of the easy modification of their surface hydrophobicity with organosilanes) [29,30], metallic 

particles [31,32], natural clays [33,34], polymeric particles [35–38], proteins [39–41], cellulose 

[42,43], starch [44,45] and others. Besides allowing the stabilization of O/W and W/O simple 

emulsions [24,26], solid particles also allow the stabilization of W/W [46] and O/O [47] 

emulsions. Multiple W/O/W, O/W/O (oil-in-water-in-oil) and O/O/O (oil-in-oil-in-oil) Pickering 

emulsions can also be prepared in two steps using two types of particles [24,48] and, more 

surprisingly, in a single step using only one type of particle [38,49–56]. Multiple Pickering 

emulsions, in addition to providing the same benefits as multiple emulsions stabilized by 

surfactants (multiple encapsulation, protection, controlled and sustained release), are particularly 
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attractive as they exhibit a simple preparation process (the possibility to be prepared in a single 

step) and a long-term stability that are challenging to obtain when using surfactants [57]. More 

recently, high internal phase emulsions (HIPE, which is an emulsion with a volume fraction of 

dispersed phase above 0.74) stabilized by solid particles [58] and Pickering nanoemulsions [59] 

have also been prepared. 

The increasing use of Pickering emulsions is also due to the numerous possibilities for 

applications in food [60], pharmaceuticals [61,62], material preparation [63–67], crude oil 

recuperation [68–70], colloidosomes formation [71–74], Pickering emulsion polymerization [75], 

catalysis [76–78], molecular imprinting [79] or solid dried emulsions [80,81]. The studies 

presented in this review deal with Pickering emulsions that can be potentially used for a 

pharmaceutical application and which are exclusively stabilized by particles without any 

additional surfactant. Numerous reviews have already been published on Pickering emulsions in 

general and on some of the key parameters governing their properties [24–26,62,82–86]. More 

recently, a few reviews have dealt with emulsions stabilized by natural emulsifiers [87], particles 

of biological origin [88], naturally-derived or biodegradable particles [89], or by particles intended 

for food applications [60]. However, very few reviews have focused on pharmaceutical aspects. 

Marto et al. [61] and Chevalier et al. [90] both proposed reviews devoted to topical delivery only 

and Wu & Ma [62] described biomedical applications of Pickering emulsions in the last part of 

their article.  

Here, we propose to discuss the interest and the potential of Pickering emulsions for 

pharmaceutical applications, taking all possible administration routes into consideration. 

Regarding these pharmaceutical applications, even if biocompatible inorganic particles are 

interesting especially for theranostic [91], we will exclusively focus on organic particles as they 

are potentially more biocompatible and biodegradable than inorganic ones. Many definitions of 

the term biodegradable exist. We will consider biodegradable here to mean materials that are 

degradable in biological environments through enzymatic or non-enzymatic hydrolysis. In the 

first part, the main preparation processes of Pickering emulsions are presented and their 

advantages and disadvantages are discussed. Then, the key parameters governing Pickering 

emulsions type, droplet size and stability are analyzed. Finally, the potential of Pickering 

emulsions stabilized by various organic particles for pharmaceutical applications are discussed.    
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2. Emulsification processes for Pickering emulsions preparation 

All emulsification processes used to prepare emulsions stabilized by surfactants can be applied 

to prepare Pickering emulsions. However, rotor-stator homogenization, high-pressure 

homogenization and sonication are the most commonly used to formulate Pickering emulsions. 

Recently, techniques such as membrane emulsification and microfluidic emulsification were also 

applied to Pickering emulsion preparation.  

2.1. Rotor-stator homogenization 

More than half of the Pickering emulsions presented in this review are prepared by rotor-stator 

homogenization (see part 4). A rotor-stator homogenizer simply consists of a rotor with blades 

and a stator with openings. As the rotor rotates, a depression is created, drawing the liquid in 

and out and resulting in liquid circulation (Figure 1). The droplet size of the dispersed phase is 

reduced because of the high liquid acceleration and of the shear force occurring between rotor 

and stator. The rotation speed and the homogenization time are the first parameters for the 

control of the emulsion droplet size with a rotor-stator homogenizer [92]. In most publications, 

the speed of the rotor-stator homogenizer is given in rpm (revolution per minute) which is not an 

indicator of power. Instead, the velocity of the rotor should be given but, as it cannot be 

calculated from most publications (because the diameter value is seldom provided), the rpm 

value will be presented here as well. Thus, in the case of Pickering emulsions, the rotation 

speeds are mostly in a range from 5 000 to 30 000 rpm (corresponding to a velocity of 5 to 

20 m/s when calculation is possible), while the emulsification times range from 30 s to a few 

minutes. With such parameters, the droplet size distribution is broad (from a few microns to 

hundreds of microns).  
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Figure 1: Schematic representation of a rotor-stator homogenizer 

The advantages of rotor-stator homogenization are i) the low operating cost and the ease of 

setting-up which only requires to plunge the probe of the rotor-stator in the container of the three 

components of the emulsion [93]; ii) the rapidity of the process which typically takes a few 

minutes to obtain an emulsion [93]; iii) the small amount of liquid required, with the possibility to 

use only a few milliliters (for a preliminary test with expensive components for example) [93]; and 

iv) the existence of rotor-stator apparatus available for each step of an emulsion development, 

from the laboratory to industrial scales. The major drawbacks of the rotor-stator homogenization 

process are i) a possible lack of uniformity of the homogenized sample, especially when 

operating near the limit volume of the probe used, but which can be overcome by moving the 

probe around inside the sample during homogenization) [93]; ii) the risk of temperature increase 

that is mostly due to frictional forces during the process, which can induce the destabilization of 

temperature-sensitive particles and/or of the emulsion (to avoid this effect, the sample can be 

cooled during homogenization); iii) the limited energy input which limits the formation of small 

droplets (generally, the droplets formed with a rotor-stator are above 1 µm) [94]; iv) the broad 

droplet size distribution obtained [95]; and v) the high shear rate occurring between the rotor and 

the stator, which can destabilize or deform fragile particles or aggregates during the 

emulsification process [96,97]. In the case of microgels, Destribats et al. [96] showed that the 

morphology of the microgel changed with the emulsification energy. The microgels were 

flattened at the interface of emulsions prepared with high energy supply, while they remained 

spherical at the interface with low energy emulsification. Moreover, they noticed the occurrence 

of bridging between the droplets in the case of high energy emulsification. 

Stator

Rotor
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2.2. High-pressure homogenization 

Although high-pressure homogenization is the most frequently used continuous emulsifying 

process in the industry [98], this technique is not predominant to prepare Pickering emulsions. 

Only less than a fourth of the Pickering emulsions presented in this review was prepared by 

high-pressure homogenization (see part 4), probably because of the high running cost and the 

risk of NP degradation during the process (see the drawbacks of the technique discussed 

below). This technique consists of a high-pressure pump and a homogenizing nozzle. A step of 

pre-emulsification to obtain a primary coarse emulsion is recommended to obtain, afterward, a 

fine emulsion at the outlet of the homogenizer. This pre-emulsification step is often performed 

with a rotor-stator or with a vortex mixer (see part 4). The particles can be introduced at this step 

or at the inlet of the fine emulsion. Then, the pressure increases thanks to a high-pressure pump 

and the pre-emulsified mixture is injected in a homogenizing nozzle of small size which disrupts 

the drops, inducing emulsification (Figure 2). Various homogenizing nozzles exist and can be 

coupled with a high-pressure pump to form a high-pressure homogenizer [98]. For Pickering 

emulsions, the pressure values are commonly in the range from tens to hundreds of MPa (see 

part 4). Moreover, it is possible to pass the emulsion through the homogenizer repeatedly to 

reduce the droplet size even further down to the nanometer range [99]. The number of cycles 

through the homogenizer for Pickering emulsion formation is not always provided by authors. 

When information is given, it is often in the range from 1 to 10 (see part 4). With these 

parameters, the droplet sizes of the obtained Pickering emulsions range from hundreds of 

nanometers to hundreds of micrometers (see part 4). The emulsion droplet size can be 

controlled, during the emulsification process, by both the pressure value and the number of 

homogenizing cycles. Köhler et al. [94] noticed that, for emulsions stabilized with silica NP, a 

pressure increase from 10 to 100 MPa induces a droplet size decrease from 40 down to 9 µm. 

As a general rule, droplets formed with high-pressure homogenization are smaller than those 

formed with rotor-stator homogenization. The main difference between these two 

homogenization processes lies in the possibility to form Pickering nanoemulsions with high-

pressure homogenization [99,100]. The formation of Pickering nanoemulsions may appear 

surprising as it is commonly admitted that the particles should be much smaller than the droplet 

they stabilize (see section 3.5). However, Gupta and Rousseau [99] successfully stabilized 

nanodroplets with an average diameter of 460 nm with solid lipid nanoparticles (SLN) of 150 nm. 

It appeared that the size of the SLN actually stabilizing the nanodroplets was between 20 and 

120 nm. In this case, particles might have possibly been disrupted during the high energy 

emulsification process. 
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Figure 2: Schematic representation of a high-pressure homogenizer with a standard homogenizing nozzle 

The advantages of high-pressure homogenization are i) the ability to process large volume 

samples in a continuous and reproducible manner [94]; ii) the possibility to obtain very small 

droplets, even down to hundreds of nanometers [94]; and iii) the possibility to tune the droplet 

size by increasing the pressure value [94] or the number of homogenizing cycles [101]. 

However, it also has some drawbacks such as i) the energy consumption inducing a high 

running cost [94]; ii) the minimum volume needed, which is of tens of milliliters (larger than with 

rotor-stator homogenizer), also inducing a high cost for emulsions with expensive components; 

iii) the difficult cleaning, which can induce cross-contamination; iv) the risk of damage to the 

high-pressure homogenizer that can be caused by highly abrasive particles. This last problem 

can be solved by the addition of the particles just after the nozzle with the mixing stream [94]. In 

this latter case, the droplet size is highly dependent on the adsorption kinetics of particles (see 

section 3.3); v) a temperature increase can require a cooling system to avoid particle and/or 

emulsion destabilization, as with rotor-stator homogenization  [101]; vi) the high shear rate can 

deform or destabilize fragile particles or aggregates during the emulsification process [97] and 

vii) a broad droplet size distribution is obtained [95]. 

2.3. Ultrasonic (or sonic) emulsification 

Ultrasounds are characterized by a frequency above 16 kHz. Only high power ultrasounds, with 

a frequency between 16 and 100 kHz (and to a lesser extent those between 100 kHz and 

1 MHz), are able to interact with matter and can be used for emulsification [102]. As for high-

pressure homogenization, only less than a fourth of the Pickering emulsions presented in this 
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review were prepared by ultrasonic emulsification (see part 4). Various types of ultrasonic 

devices exist, the most commonly used for Pickering emulsion preparation is the ultrasonic 

probe. A titanium probe vibrates due to a transducer that contains a piezoelectric crystal, which 

converts the electric energy to very high-frequency mechanical motion. The probe transmits the 

ultrasonic energy to the surrounding sample, inducing the emulsification mostly by cavitation 

[102] and ultrasonic forces. The ultrasound frequency and amplitude, as well as the 

emulsification time, are the major parameters influencing the droplet size [103]. As with the high-

pressure homogenizer, a pre-emulsification step can help to form finer emulsion droplets [102]. 

Ultrasonic homogenization can be used with a large range of volumes, from hundreds of 

microliters to hundreds of milliliters. The most commonly used parameters to prepare Pickering 

emulsions are difficult to provide as, surprisingly, the frequency and the amplitude are often 

missing information in publications. Moreover, when the amplitude is provided, it is expressed in 

percentage, which is useless without the technical specification of the apparatus used. When 

provided, the amplitude ranges from tens to hundreds of watts and the frequency is often in the 

low range (20 - 40 kHz), which is known to be the range in which the smallest droplet sizes are 

obtained [102] (see part 4). The emulsification time is, generally, of a few minutes. With these 

parameters, the droplet sizes of the Pickering emulsions obtained are close to those obtained 

with high-pressure homogenization, from hundreds of nanometers to hundreds of micrometers 

(see part 4). With graphene oxide particles, He et al. [53] observed that an increased sonication 

time allowed to reduce droplet size and polydispersity. They explained this phenomenon by a 

decrease of the particle size (see section 3.5), since sonication can crush the particles. The 

authors also noticed that the influence of the emulsification time is less important than that of the 

particle concentration. 

The main advantages of ultrasonic emulsification are, as with rotor-stator homogenization, i) the 

ease of setting up the process, which only requires lowering the ultrasonic probe in the vessel 

containing the three components of the emulsion; ii) the rapidity of the process which usually 

takes a few minutes to obtain an emulsion; iii) the small amount of liquid required to use the 

technique, with the possibility to use only a few milliliters (for preliminary tests with expensive 

components for example); and iv) the possibility to prepare Pickering emulsions with droplets of 

nanometer size [104–106]. 

However, the major drawbacks of this process are i) the risk of trace amounts of titanium 

deposition into the sample, which can be a problem in the case of pharmaceutical Pickering 

emulsions [107]; ii) the risk of fragile particle or particle aggregate disruption during 
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emulsification, as with the two previous processes presented above [53,97]; iii) the difficulties to 

use this technique for an industrial scale-up [104]; iv) the broad droplet size distribution obtained 

[95]; and v) the important temperature increase during the emulsification process [102], which 

can be a problem for thermo-sensitive particles or emulsion stability. However, this latter 

drawback can be overcome by using ultrasounds with a pulsed mode or, as seen in the two 

processes above, by using a cooling system. 

2.4. Membrane emulsification 

The membrane emulsification method is a drop-by-drop technology [108]. The two main types of 

membrane emulsification techniques are the direct membrane emulsification (DME) and the 

premix membrane emulsification (PME). In the DME, the dispersed phase is pressed or injected 

through a microporous membrane into the continuous phase (Figure 3a) [109]. The same 

principle is applied to the PME, except that it is the pre-emulsified mixture that is pressed 

through the membrane (Figure 3b).  

Techniques derived from the DME principle using low shear forces acting on the surface of the 

membrane to detach the droplets are also used, such as the stirred-cell membrane 

emulsification (SCME) [95,110], the rotational membrane emulsification (RME) [97,111], the 

vibrational membrane emulsification (VME) [112] and the cross-flow membrane emulsification 

(XME) [97]. For the SCME (Figure 3d), an additional mechanical agitation is applied in the 

receptor chamber [95]. For the RME (Figure 3c) and VME, the dispersed phase is pressed 

through, respectively, a rotating or a vibrating membrane in the continuous phase [97]. For the 

XME (Figure 3d), the dispersed phase is pressed through a membrane tube in a flowing 

continuous phase. In all cases, the agitation causes the detachment of the droplets from the 

membrane, and thus induces a smaller droplet size [113]. 

In comparison with the three processes previously presented, the membrane emulsification 

processes have the advantages of i) being a well-suited technique for shear-sensitive products: 

as the shear is low, there is no risk of disruption for sensitive particles or particles aggregates 

[97]; ii) producing small, size-controlled and uniform emulsions with low polydispersity 

[97,110,113]; iii) consuming low energy, inducing a low running cost [95]; and iv) producing no 

heat during the emulsification process, and thus limiting the risk of destabilization for thermo-

sensitive particles and emulsions. 
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Figure 3: Schematic representation of the four main types of membrane emulsification techniques: 
a) direct membrane emulsification (DME), b) premix membrane emulsification, both adapted from 
Piacentini et al. [114], c) cross-flow membrane emulsification (XME), adapted from Yuan et al. [115], d) 
rotational membrane emulsification (RME), adapted from Manga et al. [111] and e) stirred-cell membrane 

emulsification (SCME). 

Nevertheless, this technique also has some drawbacks: it is time-consuming (for example Sun et 

al. [110] used a flow rate of 2 mL/h). It is suitable for low viscosity systems only (the system 

should be able to be pushed through the membrane) [115] and this system is presently not 

suitable for industrial scale-up [116], even if parallelization is considered. 

The droplet size is principally controlled by the membrane pore size, the injection rate and the 

agitation speed for SCME, RME, VME and XME. The membranes can exhibit a wide range of 

uniform pore size from tens of nanometers to tens of micrometers, with a tunable hydrophobicity 
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[113]. An increase of the membrane pore size logically induces an increase of the Pickering 

emulsion droplet size. The emulsion droplet size is usually 3 to 9 times larger than the 

membrane pore size [113]. A slower injection rate leads to smaller and more uniform droplets 

[95,97]. Yuan et al. [97] showed the existence of a critical flow rate value (0.1 m3.m-2.h-1 with 

their parameters) below which the emulsions produced were very stable with constant droplet 

size, and above which the emulsion droplets were larger due to a coalescence phenomenon. 

Finally, an agitation/rotation speed increase leads to a droplet size decrease, because it induces 

an easier detachment of the droplets from the membrane [97,111]. At low rotation speed, the 

shear is very low. Thus, the droplets grow on the membrane before detachment occurs, leading 

to large droplet size. Manga et al. [111] also demonstrated that a minimum droplet size exists, 

even if the rotation speed still increases. This has been attributed to a competition between the 

particle adsorption rate at the oil/water interface and the droplet detachment rate from the 

membrane. If the particles have a slow rate of adsorption at the interface, the uncovered 

droplets have time to coalesce before being stabilized inducing a size increase [97,111]. This 

particle adsorption rate parameter will be further discussed in section 3.3.  

2.5. Microfluidic devices 

Microfluidic emulsification, as membrane emulsification, is a drop-by-drop technology that can 

be used to prepare Pickering emulsions [117–120]. Microfluidic devices consist of a micrometer 

size channel with a particular geometry in which fluids are circulating. They allow the formation 

of droplets of liquid in another liquid, and thus to produce emulsions. Indeed, in laminar flow, 

droplets are deformed and broken by simple shear flow or elongational flow. Droplet break-up 

results from extension, tip streaming or trailing. Several microfluidics devices are able to produce 

emulsions, such as T-junction devices [121–123] in which the dispersed phase is forced to flow 

through a small orifice into the perpendicular flowing continuous phase (Figure 4a), flow focusing 

devices [121–123] in which the flowing dispersed phase is focused by two perpendicular 

streams of the continuous phase from both sides, inducing the formation of a jet and then of 

droplets (Figure 4b), and terrace (or plateau) devices [116,123] in which the dispersed phase, 

surrounded by the continuous phase, circulates in a restricted microchannel with a step. Once 

arriving at the step, the Laplace pressure is reduced, inducing the formation of droplets. All these 

microfluidic devices can be used to prepare Pickering emulsions. However, to avoid 

coalescence in the system, sufficient time is needed for the droplets to be covered by particles 

before encountering other droplets [117]. The droplet size and the droplet coverage with 

particles can be tuned by changing the flow rate [118] or the microchannel geometry. An 
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increase in the flow rate induces an increase of droplet size [124]. Interestingly, this is also the 

only emulsification technique which allows the production of multiple emulsions with complete 

control on the number of encapsulated inner droplets and on their encapsulation rate [121]. 

 

Figure 4: a) and b) examples of microfluidic devices for Pickering emulsions preparation: a) T-junction, 
b) flow-focusing. c) and d) light micrographs of silica-stabilized emulsions prepared by c) a homogenizer 
and d) a microchannel emulsification. Same scale bar on both. (c) and d) from Xu et al. [117] 

As for the membrane emulsification methods, the microfluidic emulsification is interesting 

because of the following advantages: i) there is no extensive mechanical shear, and thus no 

significant disrupting effect on fragile particles or on particle aggregates during emulsification 

[97,117]; ii) an excellent control of droplet size is achieved [97] with an even better 

monodispersity (typically with coefficient of variation below 5%) than with membrane 

emulsification and, therefore, than with homogenization techniques (see Figure 4c and 4d) 

[95,110,117]; iii) the low energy consumption induces a low running cost; iv) a small amount of 

liquid is required; and v) there is no heat production during the emulsification process, and thus 

no risk of destabilization for thermo-sensitive particles and emulsions. 

Nevertheless, this technique also presents some drawbacks such as i) the low preparation flux 

which leads to a low-throughput production, which can be a problem for a potential 

industrialization [116,124]; ii) the risk of interaction between the droplets and the channel 

 

a) 
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[121,125]; and iii) the limitation to liquids with low viscosities able to flow through the 

microchannel [118]. 

Table 1 summarizes the major advantages of each technique. Currently, no Pickering emulsion 

is produced at an industrial scale, but only rotor-stator homogenization and high-pressure 

homogenization could be used right away in case of industrialization. However, the other 

processes remain interesting. Indeed, if the scale-up issues were overcome, the low shear 

processes (membrane and microfluidic emulsification) would be particularly well suited for the 

formulation of pharmaceutical emulsions, as they allow the production of droplets with low 

polydispersity, they do not damage fragile particles and they present no risk of temperature 

increase, which is interesting for temperature-sensitive API. They also allow the formation of 

droplets with low energy consumption, which is a crucial criterion for future industrialization. 

Moreover, the low shear processes as well as the high-pressure homogenization allow the 

preparation of sub-micrometer droplets, which is interesting for parenteral administration, as the 

droplet should be smaller than 5 µm. 

Table 1: Summary of the major advantages of the different emulsification techniques.  

 
Easy 

setting-
up 

Quick 
process 

Absence 
of risk of 
particle 

disruption 

Absence of 
risk of 

temperature 
rise 

Possibility 
to obtain 

sub 
micrometric 

droplets 

Low 
polydispersity 

Low energy 
consumption 

Current 
industrialization 

possibilities 

Rotor-stator 
homogenization + + - - - - +/- + 

High-pressure 
homogenization - + - - + - - + 

Ultrasonic 
emulsification + + - - + - +/- - 

Membrane 
emulsification - - + + + + + - 
Microfluidic 

emulsification - - + + + + + - 
+ = yes; - = no; +/- = intermediate 

The emulsification process is the first leverage on which it is possible to act in order to control 

the emulsion properties such as emulsion type and droplet size, but there are numerous other 

key parameters which can be used in order to tune emulsion properties. 

3. Key parameters governing Pickering emulsion type, droplet size and stability 

3.1. Particle wettability: the three-phase contact angle 

The particles used to formulate Pickering emulsions should be wetted by both the dispersed and 

the continuous phases. Thus, particle wettability is a crucial parameter [126,127]. In Pickering 



 

15 
 

emulsion studies, particle wettability is characterized by the three-phase contact angle (θ). The 

latter, measured in the aqueous phase, corresponds to the angle between the aqueous phase, 

the oil phase and the particles (Figure 5), and is commonly defined by the Young equation: 

     
       

   
         Equation 1 

where γpo, γpw, γow are, respectively the particle-oil, particle-water and oil-water interfacial 

tensions (Figure 5).  

  

Figure 5: Schematic representation of an O/W and a W/O Pickering emulsion at microscopic, and 
nanoscopic scales. The three-phase contact angle (θ) as well as the particle-oil (γpo), particle-water (γpw) 
and oil-water (γow) interfacial tensions are materialized on nanoscopic scale pictures (right). 

For particles stabilizing Pickering emulsions, θ is the equivalent of the HLB (hydrophilic-lipophilic 

balance) for surfactants [128]. They both denote the relative affinity of the particles or surfactants 

for oil and water. The emulsion type mainly follows the empirical Finkle rule, which is the 

equivalent for Pickering emulsions of the Bancroft rule used for emulsions stabilized by 

surfactants [126,129]. Indeed, it is commonly admitted that θ is directly linked to the type of the 

stabilized emulsion (O/W, W/O or multiple) [24]. When θ < 90 °, particles are mostly hydrophilic 

and can stabilize O/W emulsions as a larger part of the particles is immersed in the aqueous 

phase. Conversely, when θ > 90 °, particles are mostly hydrophilic and favor the stabilization of 
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W/O emulsion (Figure 5). To obtain a firm anchoring of the particles at the interface, θ should be 

close to 90° (this point will be further discussed in section 3.3.). However, this rule is not always 

verified. By changing other parameters that will be later described, particles with initially θ < 90  

are able to stabilize O/W emulsions and, conversely, particles with θ > 90° are able to stabilize 

W/O emulsions [53]. It should also be noted that emulsion stabilization has been obtained with 

fully hydrophilic or hydrophobic particles [117]. In some recent studies, it was assumed that 

particles with θ = 90  (or very close) would enable the formation of double emulsions, thanks to 

their capacity to adsorb at both interfaces: O/W and W/O [51,52,130]. The stabilization 

mechanism with “droplets bridging” also depends on θ, as it is usually observed with particles 

whose θ is between 30° and 70° [131]. To control the emulsion type (O/W or W/O, simple or 

multiple) or the droplet size, the wettability of the particles can be tuned [132], as for example 

with silica NP silanization [50,130,133].  

Numerous techniques were developed to measure θ at the oil/water interface. The review of 

Zanini & Isa [134] gives an excellent overview and description of these techniques. Briefly, they 

can be classified into two categories: the “ensemble methods” and the “single-particle methods”. 

The “ensemble methods” are based on statistical measurements on a large range of particles. 

They include interfacial particle expulsion [135], monolayer compression [136], pendant drop 

tensiometer [137] or reflectivity methods [138]. The major advantages of this kind of techniques 

are that they can be applied to a large range of particles given statistical measurements and that 

they can be applied to very small particles. Nevertheless, they also present major drawbacks, 

namely they are insensitive to the particle heterogeneity due to an averaging effect, and they 

involve assumptions on the interface microstructure, on the particle shape at the interface and 

on specific adsorption/desorption mechanisms. 

For their part, “single particle methods” are mostly based on direct observation of the particles or 

of their imprint, allowing the assessment of particles heterogeneity without requiring an 

assumption on particles and interface. The major drawbacks of these methods are that statistical 

measurements are a challenging task and that the measure of θ on very small particles is 

extremely complicated or even impossible, since techniques used for the observation are limited 

to tens of micrometers (in optical and bright field microscopies) or to few micrometers (in 

interferometry, scanning confocal, digital holographic and Bessel beam microscopies). To 

improve the sensitivity, some single-particle methods use an additional particle-immobilization 

technique thus allowing the use of more sensitive observation methods such as SEM (scanning 

electron microscopy) or AFM (atomic force microscopy). One of them is GTT (gel trapping 
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technique). In this technique, one of the phases is gelified to entrap the particles at the interface. 

It is combined with SEM [139], which requires a further metalization of the sample or with AFM 

[140]. The size resolution is then pushed down to hundreds of nanometers [141], but the addition 

of a gelation agent (such as gellan gum) in the aqueous phase and an additional heating step 

are required, which can induce particle or interface deformation. More recently, the freeze-

fracture and shadow-casting cryo-SEM (FreSCa cryo-SEM), another single-particle method 

using a particle-immobilization technique, was developed [142]. Even if a complex machinery is 

required for this technique, the resolution is pushed down to tens of nanometers. This is the best 

resolution obtained with “single-particle methods” so far. However, the choice of the oil is 

primordial in cryo-SEM techniques in order to avoid oil crystallization, which can induce artifacts 

or interface deformation during freezing. A self-adsorption of the particles at the interface is also 

essential, as particles are deposed on a planar liquid-liquid interface without further energy input, 

which may be a limitation to the adsorption of some particles.  

3.2. The oil phase and the oil phase/aqueous phase ratio 

According to the Young equation (equation 1), the three-phase contact angle is directly linked to 

the oil used through the interfacial tensions (γpo and γow). Consequently, the choice of the oil is 

crucial, as the nature of the oil directly affects the value of θ. Even if every other parameter such 

as the particle type, the particle concentration, the aqueous phase/oil phase ratio and the 

emulsification process are kept constant, a change in oil can be dramatic for the emulsion 

stabilization [53,56,143–146].  

The oil polarity can induce a change in the type or in the stability of the emulsions obtained. 

Binks and Lumsdon [143] showed that silica NP with intermediate wettability allow the 

stabilization of O/W emulsion with non-polar oils (such as hydrocarbons) and W/O emulsions 

with polar oils (such as esters and alcohols). Silica NP were found to be more hydrophilic in the 

presence of non-polar oils and more hydrophobic in the presence of polar oils. Read et al. [56] 

made the same observation with polystyrene latex. Thickett and Zetterlund [144] found that the 

stabilization energy associated with the adsorption of graphene oxide particles was higher for 

non-polar oil compared to polar oils, leading to more stable emulsions in the first case. For their 

part, He et al. [53] highlighted that the stabilizing ability of graphene oxide is improved with 

aromatic solvents such as aromatic benzyl chloride than with non-aromatic ones such as 

n-hexane. They explained this phenomenon by preferential π-π interactions between graphene 

oxide particles and aromatic oil molecules. 
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The oil phase viscosity can also influence the droplet size and the stability of the emulsion 

[145,147]. Fournier et al. [145] noticed that, at constant emulsification time and for a fixed 

amount of iron particles, the volume of emulsified oil increased when the oil viscosity decreased. 

The oil viscosity is a damping factor for particles anchoring at the oil/water interface as it slows 

down the particles diffusion and adsorption rate. Tsabet and Fradette [147] obtained a constant 

emulsion droplet size distribution with silicone oils with a viscosity lower than 486 mPa.s. Above 

this value, they observed a dramatic size increase. They explained this behavior as a result of a 

combination between a decrease of the droplets breakage efficacy, the increase of droplets 

coalescence and the slowdown of the glass particle adsorption rate at the interface.   

The oil phase/aqueous phase ratio also affects the droplet size and the type of emulsions. He et 

al. [53] also noticed that the emulsion droplet size increased as the dispersed phase ratio 

increased with constant graphene oxide particle concentration. Indeed, at a constant droplet 

size, an increase of the dispersed phase ratio leads to an increase of the interfacial area. 

However, if the quantity of particles remains constant, it is not possible to stabilize a larger 

interfacial area, inducing the formation of larger droplets. Some authors have observed, upon an 

increase of the dispersed phase ratio, a critical phase inversion (from O/W to W/O or conversely) 

[143] or a change in the emulsion type (from simple to multiple or conversely) [53,54]. He et al. 

[53] and Tang et al. [54] both noticed, without providing any explanation, the formation of 

multiple emulsions for an oil/water ratio of 50/50 or higher. Binks & Lumsdon [143] also showed 

that, in a water/toluene emulsion stabilized by silica particles containing 67 % of silanol groups 

on their surface, the critical phase inversion occurred at different ratios depending on the phase 

in which the particles were firstly dispersed: at a ratio of 60/40 for particles initially dispersed in 

oil, of 40/60 for particles initially dispersed equally in oil and water, and of 35/65 for particles 

initially dispersed in water. Below these ratios, these emulsions were W/O, and above, they were 

O/W. 

Moreover, the phase in which the particles are dispersed before emulsification also plays a 

significant role in the type of emulsion obtained. Particles previously dispersed in the aqueous 

phase will often lead to O/W emulsions. Conversely, when particles are previously dispersed in 

the oil phase, W/O emulsions will often be preferentially formed [30,143]. The interactions 

between the particles and the liquids could induce a variation of particle hydrophobicity [50,55]: 

particles with initially the same wettability could then display different wettabilities according to 

the liquid with which they first established contact. 



 

19 
 

3.3. Particle adsorption at the interface 

The stabilization mechanism of Pickering emulsion is based on the adsorption of the particles at 

the oil/water interface. Thus, the adsorption of particles at the interface is a key parameter for 

Pickering emulsion stabilization.  

The free energy of adsorption ΔGd represents the energy required to remove a spherical particle 

of radius r and of three-phase contact angle θ from an oil/water interface with an interfacial 

tension γow. It is defined by equation 2 [148]: 

       γ                     Equation 2 

As shown in Figure 6a, the energy required to desorb the particles from the interface is the 

highest for θ = 90 °. This is consistent with the observation exposed in section 3.1 on the three-

phase contact angle influence on Pickering emulsion stabilization. For particles of same θ but of 

different size, the energy of adsorption is the highest for the larger ones (Figure 6b). For 

particles of same radius r and same contact angle θ, the O/W interfacial tension also affects the 

energy of adsorption, but the influence is less important than the one of the radius (Figure 6c). In 

all three cases, the energy of adsorption is higher than the thermal energy (kBT) at 293 K. Thus, 

from an energetic standpoint, the particles can be considered as irreversibly anchored at the 

interface. This principle of irreversibility of adsorption is commonly admitted in Pickering 

emulsion studies [29,149]. 
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Figure 6: Variation of the energy required to remove a particle from an oil/water interface as a function of 
a) the three-phase contact angle (with γow = 30 mN/m and r = 10 nm), b) the radius of the particles (with θ 
= 90   and γow = 30 mN/m) and c) the interfacial tension at the oil/water interface (with θ = 90   and r = 
10 nm). In Fig. 6a, the y-axis is on a logarithmic scale. In Fig. 6b, x- and y-axes are on a logarithmic scale. 
On the three graphs, the red horizontal dashed line corresponds to the kBT value at 293 K. 

The adsorption rate of the particles at the interface is also an important parameter. If the 

adsorption rate is slower than the coalescence rate of the droplets, droplets can coalesce before 

being stabilized by particles. This is particularly important in the emulsification techniques 

without shear, such as membrane and microfluidic emulsifications. With the homogenization 

techniques, shear facilitates the contact between particles and interface, which reduces the 

importance of the adsorption rate. An increase of the particle concentration can also favor the 

formation of smaller droplets, as the interaction between particles and interface is facilitated due 

to a reduced particle-interface distance. 

3.4. Particles concentration and surface coverage 

Several studies have highlighted a correlation between particle concentration and droplet size. 

Three regimes have been identified at low, intermediate and high particle concentration, and 

related to the interfacial area created during the emulsification process [150]. At intermediate 

concentration, the interfacial area created during the emulsification is slightly larger than the one 

the quantity of particles is able to stabilize. Thus, the droplets coalesce until the entire droplets 

are sufficiently covered. An emulsion with droplet size controlled by the particle content is often 
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obtained: the size of the droplets decreases when the particle concentration increases. This 

phenomenon has been called “limited coalescence” [151]. The resulting emulsions present a 

homogeneous droplet size distribution directly linked to the particle mass and to the droplet 

coverage by the following equation [26]: 

 

 
 

  

         

  

  
     Equation 3 

where D is the final drop diameter, mp is the mass of particles, ρp is the particle density, Vd is the 

volume of the dispersed phase, C is the surface coverage (the fraction of the droplet interfacial 

area covered by the particles), ap is the particle area projected on the interface and    is the 

particle volume. 

This equation can be applied only if the particles are completely and irreversibly adsorbed at the 

interface and if the emulsification process produced more O/W interface than what the particles 

can cover. Then, the coalescence process stops as soon as the O/W interface is sufficiently 

covered by the particles (Figure 7).  

 

Figure 7: Schematic representation of the limited coalescence theory. The double arrows schematize the 

droplets coming closer together.  

At low particle content, instability is often observed due to a lack of particles to stabilize the 

droplets: the droplets coalesce before the particles have time to stabilize them [152]. At high 

particle concentration, there are too many particles compared to the oil/water interfacial area 

created during the emulsification process. Thus, two possibilities are encountered: the droplets 

formed during the emulsification process are stabilized right away no matter their size, which 

induces size heterogeneity, or constant droplet size are obtained but particles are in excess in 
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the continuous phase, possibly leading to a network in the continuous phase. This network can 

possibly improve emulsion stability [24]. 

However, for most Pickering emulsion systems, even if the increase in particle concentration 

improves surface coverage, high concentration of particles does not always result in a dense 

coverage (i.e. densely packed particles layer on the surface) of the droplets [29,148]. Levine et 

al. [148] also noticed that, rather than having a random distribution, the weakly covered (i.e. not 

densely packed particles on the surface) droplets exhibited areas with close-packed particles 

and areas without particles. Conversely, weak coverage does not necessarily induce poor 

emulsion stability [153–155]. Stable Pickering emulsions were obtained by Vignati et al. [155] 

using silica particles with coverage of only 5%. They also observed that at low surface coverage, 

the particles adsorbed at the droplet surface were able to redistribute themselves in the contact 

region between droplets and to inhibit droplet coalescence. 

The particle concentration can also induce a phase inversion [156] or tune the emulsion type 

(simple or multiple) [53, 54]. For example, by only increasing the concentration of silica particles 

of intermediate wettability (57% and 71% of silanol on the surface), an O/W emulsion is inverted 

into a W/O emulsion [156]. The particle concentration of inversion is lower for the most 

hydrophobic particles (approximately 1% (w/w) with the 57% SiOH and 2% (w/w) with the 71% 

SiOH). This inversion only occurred if the particles were first dispersed in oil. Binks et al. [156] 

suggested that the effective hydrophobicity of silica particles in the oil dispersion increased with 

particle concentration because, at high concentration, particles aggregates were formed by 

hydrogen bonds between silanol groups of different particles. This led to fewer free (hydrophilic) 

silanol groups available among all particles. Consequently, the particle aggregates, rendered 

more hydrophobic, stabilized preferentially W/O emulsions. In addition, the formation of multiple 

emulsions was observed near the inversion point [130,156]. He et al. [53] and Tang et al. [54] 

observed this change from simple to multiple emulsion by reducing particle concentration. They 

obtained multiple W/O/W emulsions for particle concentrations below 1 mg/mL and simple O/W 

emulsion above. 

3.5. Particle size 

It is currently admitted that the particles used to stabilize emulsions should be substantially 

smaller than the targeted emulsion droplet size [35,157]. Levine et al. [148] claimed that the 

stabilizing particles should be, at least, one order of magnitude smaller in diameter than the 

smallest droplets. However, in some studies [53,99,100], the particle diameter seems too large 
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compared to the diameter of the resulting stabilized droplets (for example, 150 nm particles 

stabilizing 450 nm droplets [99]). He et al. [53] linked this to a loss of particle integrity during the 

emulsification process: the particles effectively stabilizing the emulsion were much smaller than 

those initially introduced.  

The particle size influences the emulsion stability and the droplet size. The diameter of the 

emulsion droplets increases with increasing the particle diameter [94,158]. Indeed, the larger the 

particle size, the longer the adsorption time at the interface, resulting in an increase of the final 

droplet size [147]. This is consistent with equation 2 in which, through the energy of adsorption, 

the size influences the ability of the particles to adsorb at the interface. For their part, Binks & 

Lumdson [35] showed that the stability of the emulsion towards sedimentation increased upon 

size decrease.  

3.6. Particle shape 

The first Pickering emulsion studies were conducted with spherical particles. Then, Pickering 

emulsions stabilized with non-spherical particles were also obtained with rods [42,159–161] 

(Figure 8a and 8b), ellipsoidal particles [162] (Figure 8c and 8d), fibers [161], cubes [163,164] 

(Figure 8 g), peanuts [163] (Figure 8h), Janus [165], microbowls [55] (Figure 8i) and even with 

deformable nanogels [166–168] (Figure 8e and 8f). 
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Figure 8: a) and b) SEM images of polymerized styrene–water emulsions stabilized by bacterial cellulose 
nanocrystals (images from Kalashnikova et al. [159]), c) and d) Cryo-SEM images of a water droplet 
covered with polystyrene ellipsoids (images from Madivala et al. [162]), e) and f) Cryo-SEM images of 
dodecane drops covered by microgels; during sample fracture the frozen oil has been removed, allowing 
direct visualization of microgels residing at the interface (images from Destribats et al. [166]), g) 
arrangement of cubic particles at the oil−water interface (image from de Folter et al. [163]), h) peanuts 
assembled at the oil−water interface in interdigitating stacks (image from de Folter et al. [163]) and i) SEM 
image of microbowls but not at the O/W interface (image from Nonomura et al. [55]) 

Stable O/W [159,161] and W/O [162], as well as stable multiple emulsions [55], were obtained 

with non-spherical particles. The mechanisms of stabilization with such particles are not exactly 

the same as with spherical particles and are not yet fully elucidated. With non-spherical particles, 

the detachment energy is trickier to determine as equation 2 is not applicable anymore. The 

particle orientation and at least two characteristic sizes should be taken into account. 

Equation 3, too, is not valid anymore with non-spherical particles. However, de Folter et al. [163] 

showed that the limited coalescence principle was applicable to emulsions stabilized with cubic 
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or peanut-like particles using an equation derived from equation 3. Other authors noticed a 

higher droplet size polydispersity with non-spherical particles than with spherical particles 

[161,162]. Madivala et al. [162] prepared particles of the same composition but with different 

aspect ratios (from 1 to 9). They observed that emulsions stabilized with low aspect ratio 

particles were less stable than those stabilized with high aspect ratio particles. They also noticed 

that the amount of the emulsified phase increased with the aspect ratio. This could be explained 

by the fact that anisotropic particles were able to cover a larger area of the interface, inducing 

higher interfacial packing, viscoelastic moduli and stability [84,162,163,169].  

The coverage can also be enhanced if the particles are deformable like rod-shaped cellulose 

nanocrystals [42] or microgels [166,168]. Indeed, if they are flexible enough, they can bend at 

the droplet surface, resulting in an efficient interfacial anchoring [42]. Moreover, microgels that 

are spherical before adsorption may undergo substantial flattening upon adsorption at the oil-

water interface. They can adopt fried-egg or core-corona morphologies (Figure 9) upon 

adsorption at an oil-water interface [166,168]. The softness of particles induces a change of 

particle-particle interactions and of the adsorption mechanism compared to rigid particles [85]. 

The way particles adsorb and arrange at the interface directly impacts the emulsion stability. Li 

et al. [37] noticed that by varying the poly(N-isopropyl acrylamide)-styrene microgels softness, 

the softer ones allowed better emulsification and better stability than the rigid ones. Moreover, 

these microgel-stabilized emulsions can be produced using the limited coalescence principle, in 

the same way as rigid particle-stabilized emulsions [167].  

 

Figure 9: Cryo-SEM image of the interface of a heptane-in-water emulsion drop covered by 2.5 mol% 
N,N’-Methylenebisacrylamide cross-linked microgels after sublimation (front view). From Destribat et al. 

[166]. 

The three-phase contact angle determination is also more complex with non-spherical particles. 

However, Coertjens et al. [170] demonstrated that the three-phase contact angle of an ellipsoidal 

particle can be assessed with the freeze-fracture shadow-casting cryo-SEM technique. 

1µm
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Moreover, characterizing soft particles such as microgels with their three-phase contact angle in 

their spherical state is also questionable as they will not remain in their original spherical state at 

the interface after the emulsification step [96].  

3.7. Particle surface roughness 

The wettability of particles can be significantly influenced by their surface roughness. Yet, as 

previously mentioned, the particle wettability influences the formation and the stability properties 

of Pickering emulsions. Vignati et al. [155] noticed that the particle roughness reduced their 

contact surface and negatively affected the emulsion stability. However, the opposite 

phenomenon was also observed by San-Miguel & Behrens [171]. In this latter study, the zeta 

potential was also slightly modified in addition to roughness modification. More studies should be 

conducted in order to make a general claim on the influence of particle roughness in Pickering 

emulsions.  

3.8. Particle charge, salt concentration and pH 

Particle surface charge is a parameter influencing the stability of Pickering emulsions [172,173]. 

Indeed, in case of poor adsorption of particles at the interface, the electrostatic repulsion can 

play an important role in emulsions stability. Ridel et al. [172] decreased the surface charge of 

bare silica particles using pH modification. They observed a stability improvement with the 

surface charge decrease. They also noticed that this improvement was more effective when the 

surface charge was modified by a surface charge density decrease than when it was modified by 

an ionic strength increase. Moreover, electrostatic repulsions between particles and droplets 

induce a slow adsorption rate of particles, and subsequently poor stability of the emulsions [172]. 

With a pH or a salt concentration modification, significant variations in the zeta potential of the 

particles as well as in their three-phase contact angle are often noticed [51,53,54,174]. So, it is 

not surprising that, in numerous studies, pH or salt concentration variations were used to control 

the stability of Pickering emulsions. Aveyard et al. [24] observed that the stability of their 

emulsions was very dependent on salt concentration. He et al. [53] noticed an improvement of 

the emulsification efficiency with salt (NaCl or MgCl2) concentration increase. Yang et al. [174] 

even observed that emulsions could not be formed without salt (NaCl) and that the droplet size 

of the emulsion could be tuned by varying the salt concentration. For their part, Binks & 

Lumsdon [35] showed that an increase of salt (NaCl) concentration could induce a phase 

inversion of the emulsion and that the salt concentration required for the phase inversion 

depended on the droplet size. Moreover, the interparticle interactions can be varied from 
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repulsive to attractive by modifying the salt concentration or pH [53,82,175]. This can induce the 

aggregation of the particles and affect their adsorption at the interface, which in turns influences 

emulsions properties and stability. 

A change in pH can also stimulate pH-responsive particles inducing significant changes in the 

emulsion properties and stability. The reader can refer to the review of Tang et al. [176] on 

stimuli-responsive Pickering emulsions for further information on these kinds of systems. 

All these key parameters reviewed in section 3 are interlinked and may influence the 

nanoparticle wetting properties, and consequently, the obtained emulsion and its stability. 

Though these parameters allow the tuning of emulsion properties and characteristics in order to 

meet the requirements of specific applications, it is very complicated to study their contribution 

independently. It would indeed be interesting to know what kind of emulsions would be formed 

with particles of same charge, size, shape and surface roughness, but with different materials. 

All other parameters being identical, different surface chemical composition could lead to 

different surface physicochemical properties, and consequently to different wetting properties 

and emulsions. Nevertheless, to our knowledge, no systematic studies on this question have 

been conducted yet. 

4. Promising Pickering emulsions for pharmaceutical applications 

In the pharmaceutical field, oral delivery accounts for 50% of the dosage forms, parenteral for 

25% and topical for 10%. For emulsions, this repartition is completely changed as 55% of 

dosage forms are parenteral (mostly for parenteral nutrition), 30% are topical and only 5% are 

oral [2]. Among topical emulsions, creams are the most popular and commonly used. 

Until now, studies performed on Pickering emulsions are mostly fundamental works aiming to 

better understand the stabilization mechanisms or the parameters influencing the emulsion 

properties. Studies devoted to pharmaceutical applications are scarce. Unlike conventional 

emulsions in which 55% of dosage forms are parenteral, pharmaceutical Pickering emulsion 

studies are mostly devoted to topical and oral drug delivery systems and to a lesser extent to the 

injection route. This can be explained by the size of the droplets of Pickering emulsions and 

sometimes by the nature of the stabilizing particles. Indeed, objects with a size above 5 µm are 

usually not suitable for injections [1] as the diameter of the smallest vessel is approximately 

6 µm [5]. Moreover, all injected formulations should also be at pH 7.4 and isotonic with blood 

[12]. Yet, we have seen in section 3.8 that the salt concentration and the pH value of Pickering 
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emulsions were key parameters of the emulsions properties and could induce emulsion 

destabilization. 

A wide range of inorganic and organic biocompatible particles was studied to stabilize either 

O/W or W/O emulsions. Both, organic and inorganic particles can be biocompatible but only 

organic particles can be biodegradable. Moreover, inorganic particles might be able to cross 

biological barriers and accumulate, over time, in the human body inducing adverse effects [177]. 

For this reason, in this part devoted to Pickering emulsions with potential interest for 

pharmaceutical applications, we only focused on emulsions stabilized with biocompatible and/or 

biodegradable organic particles.  

The oils used to formulate pharmaceutical emulsions also have to be biocompatible. They must 

be non-toxic and be readily excreted or metabolized after administration [178]. There is an 

extensive list of approved and regulated natural and synthetic oils among which castor oil, 

soybean oil, arachis oil, sunflower oil, olive oil, tri/di/mono glycerides, cocoa butter, coconut oil, 

vaseline, paraffin, dimethicone… As much as possible, we present in this review emulsions 

formulated with biocompatible oils. However, some emulsions using a non-biocompatible oil but 

stabilized with particles which could be of interest for pharmaceutical applications were also 

described in the literature. Regarding their potential interest for future pharmaceutical 

applications, we decided to also present these systems. However, replacement of a non-

biocompatible oil by a biocompatible one could completely modify the properties of the systems. 

4.1. Natural polymer-based particles 

4.1.1. Polysaccharide-based particles 

Polysaccharides are natural polymers. Some of them are insoluble in water and in oil, which 

makes their particles valuable candidates for Pickering emulsion stabilization [179]. The most 

represented polysaccharides in Pickering emulsion stabilization are starch, cellulose and 

chitosan. 

4.1.1.1. Starch-based particles 

Starch is extracted from plants such as corn, potato, wheat or rice. It is composed of linear 

amylose and branched amylopectin. Native starch contains crystalline and amorphous regions 

[180]. Its molecular weight (from 50 000 to 500 000 kDa) depends on its origin. Starch is an 

odorless, tasteless, non-toxic and non-irritant material, widely used as a food ingredient and as a 

pharmaceutical excipient in both oral and topical pharmaceutical applications [18]. In capsules 
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and tablets, it is used as a binder, a diluent or a disintegrant. In pharmaceutical preparation, the 

particle size generally ranges from 5 to 50 µm. It is insoluble in cold water but it is able to swell 

in hot water [181]. The swelling temperature depends on the starch origin (for example 64 °C for 

corn starch). 

Studies intended or not for pharmaceutical applications have been conducted on Pickering 

emulsions stabilized with starch particles using biocompatible oils. In these works, small starch 

particles of micron size (few micrometers) [182–184] and nano size (tens to hundreds of 

nanometers) [100,185,186] were used (see Table 2). The micron size starch granules are 

commercially available; consequently, their preparation is often not described in publications. 
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Table 2: Examples of Pickering emulsions stabilized by natural polymer-based particles (starch- and cellulose-based particles) 

particles emulsion drug / 
localization 

route references 
composition shape size aqueous phase oil phase type droplet size emulsification method 

s
ta

rc
h

 

modified cassava starch discs ≈ 5 nm x 100 nm water * olive oil O/W ≈ 300 nm 
rotor-stator 

(2 min, 24 000 rpm) 

thymol 
amphotericin B / 

oil 
oral Cossu et al, 2015 [100] 

modified quinoa starch 
granules 

granules ≈ 1–2 µm 
phosphate buffer  

pH=7, NaCl * 

Miglyol 
paraffin 

shea nut oil 
O/W ≈ 30 to 75 µm 

high-shear mixer 
(1 min, 22 000 rpm) 

pre-emulsion vortex mixer 

methyl salicylate / 
oil 

topical Marku et al., 2012 [182] 

granules ≈ 2–4 µm 
phosphate buffer 

pH = 6.5 * 
Miglyol 812 N O/W ≈ 30 µm 

high-shear mixer 
(30 s, 22 000 rpm) 

curcumin / oil oral Marefati et al., 2017 [183] 

OSA-modified starch 
granules 

granules ≈ 0.85 µm water * 
Miglyol  

Orange oil 
O/W ≈ 50 µm high-shear homogenization Resveratrol - Matos et al., 2018 [187] 

corn starch nanocrystals polygonal ≈ 40 to 100 nm 
water, 0.002%(w) 

NaN3* 

short, medium 
and long chain 
triacylglycerols 

O/W ≈ 25 to 50 µm 
rotor-stator 

(2.5 min, 22 000 rpm) 
- oral Liang et al., 2016 [185] 

OSA corn starch 
nanoparticles 

spherical ≈ 10 nm to 1 µm 
phosphate buffer 

 pH=7, NaCl * 
MCT oil O/W ≈ 10 to 30 µm 

high-shear mixer 
(1 min, 22 000 rpm) 

pre-emulsion vortex mixer 
- - Saari et al., 2017 [186] 

esterified starch 
nanospheres 

nanosphere ≈ 360-3000 nm water * Tricaprylin 
O/W and 

W/O 
≈ 35 to 60 µm 

rotor-stator 
(30 s, 13 500 rpm) 

- - Tan et al., 2014 [188] 

corn and OSA (2%) corn 
starch spherulites 

spherulite ≈ 4 µm water * orange oil O/W ≈ 1 to 50 µm 

high-pressure homogenizer 
(300 bar = 30 MPa) 

pre-mixing rotor-stator 
(3 min, 150 000 rpm) 

- - Wang et al., 2017 [184] 

c
e
ll
u

lo
s
e

 

cellulose nanocrystal (CNC) 
microfibrillated cellulose 

(MFC) 
fiber 

CNC ≈ 230 x 30 nm  
MFC > 1 µm x 30 nm 

water, 
calcium chloride  

3mM * 

cinnamaldehyde 
eugenol limonene 

O/W 

≈ 10 to 35 µm 
(CNC) 

≈ 30 to 50 µm 
(MFC) 

rotor-stator 
(5 min, 24 000 rpm) 

antimicrobial oil - 
Mikulcova et al., 2016 

[189] 

Nanofibrillated mangosteen 
cellulose (NFC) 

fiber > 1 µm x 60 nm 
phosphate buffer 
pH=7 (Nanofiber) 

Soybean oil O/W ≈ 9-24 µm 
high-shear mixer 

(2 min) 
vitamin D3 oral 

Winuprasith et al., 2018 
[190] 

cellulose microgels 
cellulose microgels-Fe3O4 

spherical ≈ 30 to 600 nm water * paraffin O/W ≈ 4 µm sonication probe (5 min) - - Zhang et al., 2016 [191] 

Aminated nanocellulose NP 
(ANC) at 0.2 wt% 

spherical - water * MCT oil O/W ≈ 89 nm 
high-shear mixer 

(2 min, 10 000 rpm) 
Coumarin 
Curcumin 

- Asabuwa et al., 2018 [192] 

butylamino fonctionalized 
cellulose nanocrystals 

rod like ≈ 3.5 x 130 nm water * soybean oil O/W ≈ 10–15 µm 
rotor-stator  

(1 h, 10 000 rpm) 
- - Visanko et al., 2014 [193] 

Cellulose nanocrystals 
(CNC) 

rod like - water * 
Oregano essential 

oil  
O/W ≈ 1.2 - 2.9 µm 

sonication at 0.4 kW for 3s 
with 2 s stand by for 3 min 

antimicrobial oil - Zhou et al., 2018 [194] 

bacterial cellulose 
nanocrystals 

fiber ≈ 10 x 200 nm water * palm oil O/W ≈ 1 to 10 µm 

ultrasonic bath  
(power level 45%, 3 min) 
cycles of 3 s sonication 

 3 s pause 

- - Wang et al., 2016 [195] 

bacterial microfibrillated 
cellulose  

- - water * soy bean oil O/W ≈ 2 to 50 µm 
rotor-stator (1 min, 
11000 rpm + 4 min, 

15000 rpm) 
- - 

Winuprasith et al., 2015 
[196] 

nanofibrillated cellulose + 
cellulose nanocrystal 

(native and C12 modified) 
needle like 

≈ 8 x 1000 nm (NFC) 
≈ 10 x 150 nm (CNC) 

water * hexadecane 
W/O 

O/W/O 
≈ 3 µm to 80 µm 

rotor-stator 30s, 5 000 rpm 
(hand premixing) 

- - Cunha et al., 2014 [197] 

PNIPAM grafted on 
cellulose nanocrystals 

rod-like ≈ 3–15 x 50–250 nm water * heptane O/W ≈ 30 to 300 µm 
rotor-stator  

(1 min, 6 000 rpm) 
- - Zoppe et al., 2012 [198] 

PDMAEMA grafted on 
cellulose nanocrystals 

rod-like ≈ 60 to 350 nm length water * heptane toluene O/W ≈ 8 to 20 µm 
rotor-stator 

(2 min, 6 000 rpm) 
- - Tang et al., 2014 [199] 

POEGMA-PMAA grafted 
cellulose nanocrystals 

rod-like - water * heptane O/W ≈ 10 to 50 µm 
rotor-stator  

(2 min, 6 000 rpm) 
- - Tang et al., 2016 [200] 

Fe3O4-cellulose nanocrystal 
nanocomposite 

rod-like ≈ 150–200 nm water * palm olein O/W ≈ 10 to 110 µm ultrasonic horn (3 min) - - Low et al., 2017 [201] 

OSA = octenyl succinate, MCT = medium chain triglycerides, PNIPAM = poly(N-isopropylacrylamide), PDMAEMA = poly[2-(dimethylamino)ethyl methacrylate], POEGMA-PMAA = poly(oligoethylene glycol) 

methacrylate - poly(methacrylic acid), * = phase containing the particles 
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Table 3: Examples of Pickering emulsions stabilized by natural polymer-based particles (chitosan-, chitin-, lignin-based particles and others) 

particles emulsion 
drug / 

localization 
route references 

composition shape size 
aqueous 

phase 
oil phase type droplet size emulsification method 

c
h

it
o

s
a

n
 -

 c
h

it
in

 

chitosan NP-
tripolyphosphate 

spherical ≈ 200 to 500 nm water (NP) MCT O/W ≈ 40 to 250 µm rotor-stator (3 min, 10 000 rpm) curcumin / oil - Shah et al., 2016 [202] 

Chitosan NP spherical 

≈ 550 nm or 1 µm 
water 

pH = 6.9 * 
palm oil O/W ≈ 50 to 150 µm rotor-stator (5 min, 5 000 rpm) - - Ho et al., 2016 [203] 

≈ 180 to 830 nm water * liquid paraffin O/W ≈ 50 to 500 µm hand-shaking (5 min) - - Liu et al., 2012 [204] 

≈ 4 to 850 nm water * corn oil O/W ≈ 2 µm 
ultrasonic probe (1 000 W, 20 kHz) 
(8 min, 90% amplitude = 900 W)) 

- - Wang et al., 2016 [205] 

≈ 38 nm 

soybean 

lecithin in water 
(NP) 

Soybean oil O/W ≈ 2.5 µm rotor-stator (5-15 min, 10 000 rpm) Hesperidin - Dammak et al., 2017 [206] 

chitin nanocrystals rod like 

≈ 20 x 250 nm 
water, 

HCl pH= 3 * 
corn oil O/W ≈ 10 to 100 µm 

ultra-sonic probe (50/60 Hz) 
(2 min with 20 s intervals) 

- - Tzoumaki et al., 2011 [207] 

- 
water, 

HCl pH= 3 * 
sunflower oil O/W ≈ 5 to 10 µm 

ultrasonic probe (24 kHz) 
(2 min, 20 s intervals) 

- oral Tzoumaki et al., 2013 [208] 

Zein - chitosan 
complex particles 

spherical ≈ 2 to 6 µm water * corn oil O/W ≈ 10 - 20 µm rotor-stator (5 min, 6 000 rpm) curcumin / NP  Wang et al., 2015 [209] 

chitosan-gelatin 
complex 

spherical ≈ 15 to 450 nm water * corn oil O/W ≈ 4 to 10 µm 
high intensity ultrasonic processor 

(20 kHz, 1 000 W) 
(8 min, 90% amplitude = 900 W) 

- - Wang & Heuzey, 2016 [210] 

Dopamine-hyaluronan 
nanoparticles 
(HA-DOPA) 

spherical ≈ 150 - 220 nm water * 

white oil, toluene 
silicone oil 

isooctyl palmitate 
dicaprylyl carbonate 
propylheptylcaprylate 

O/W ≈ 20–100 µm 
XHF-D H-speed dispersator 

homogenizer 
(2 min, 8 000 rpm) 

dopamine / NP - Zhu et al., 2015 [211] 

hydrophobic modified 
calcium alginate NP (MCA) 

at 4 %wt 
 ≈ 316-412 nm water pH=6,5 * corn oil O/W ≈ 3-6 µm 

homogenizer 
(5 min, 10 000 rpm) 

curcumin oral Zhang et al., 2018 [212] 

li
g

n
in

 

Lignin particles spherical ≈ 350 nm to 2 µm water * kerosene O/W ≈ 5 to 20 µm 
sonication probe (400 W) 

(10% amplitude, 1 min) cycles of 
10 s sonication and 5 s pause 

- - Ago et al., 2016 [213] 

Lignin supracolloids spherical ≈ 90 to 600 nm water * hexadecane O/W ≈ 7 to 35 µm 
sonication probe (400 W) (10% 

amplitude, 1 min) 
cycles of 3 s sonication 3 s pause 

- - Nypelo et al, 2015 [214] 

Lignin NP - 
polyacrylamide 

spherical ≈ 7 to 100 nm 
water, 
NaCl * 

cyclohexane O/W ≈ 5 to 200 µm 
ultrasonication probe (70% 

amplitude, 10 min) 
cycles of 85 W pulses 1 s pause 

- - Silmore et al., 2016 [215] 

lignin-DEAEMA NP  ≈ 240 - 400 nm water * decane O/W ≈ 20–60 µm homogenizer (1 min, 20 000 rpm) - - Qian et al., 2014 [216] 

MCT = medium chain triglycerides, DEAEMA = 2-(diethylamino)ethyl methacrylate  

* = phase containing the particles 
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Table 4: Examples of Pickering emulsions stabilized by biocompatible synthetic polymer-based particles 

particles emulsion 
drug / 

localization 
route references 

composition shape size 
aqueous 

phase 
oil phase type droplet size emulsification method 

s
y

n
th

e
ti

c
 p

o
ly

m
e
r 

PNIPAM-co-AA 
nanogels 

nanogels ≈ 70–200 nm water * isopropyl myristate O/W ≈ 2 µm rotor-stator (10 min, 13 000 rpm) paclitaxel / oil IV Chen et al., 2011 [217] 

PNIPAM-co-MAA 
microgels 

microgels - water * sunflower oil O/W ≈ 10–50 µm 
membrane emulsification 

(2 mL/h, 400 rpm, 2.5 to 9.2 µm) 
- - Sun et al., 2014 [110] 

PLA-PEG NP spherical ≈ 40–50 nm PB pH=7.4* Miglyol 812 N (MCT) O/W ≈ 2–3 µm spontaneous emulsification all-trans retinol / oil topical 
Laredj-Bourezg et al., 2013 

[218] 

PCL-b-PEO NP spherical ≈ 35–50 nm water * triglyceride oil O/W ≈ 2–15 µm rotor-stator (5 min, 22 000 rpm) - - Laredj-Bourezg et al., 2012 [36] 

Cashew gum - poly-
L-lactide copolymer 

NP (CGPLAP) 
spherical ≈ 10 nm water * Miglyol 812 (MCT) O/W ≈ 450 nm 

spontaneous emulsification, 
centrifugation (1h, 15 000 G, 25 °C)  

amphotericin B oral Richter et al., 2018 [219] 

PLGA NP 
PLGA-PVA NP 

spherical ≈ 200 nm water * Miglyol 812 N 
W/O/W 

O/W 
≈ 30–50 µm rotor-stator (2 min, 20 000 rpm) - - Albert et al., 2018 [38] 

PLGA-PVA NP spherical 

≈ 200 nm water * Lipiodol W/O ≈ 30–50 µm Syringe mixing 
Oxaliplatine / water 

Doxorubicin 
IV 

Deschamps et al, 2018, 2019 
[220,221] 

≈ 200 nm water * 
Dodecan, PDMS, 
Toluene,Isopropyl 

myristate 
O/W ≈ 4 to 30 µm rotor-stator (10 min, 1300 rpm) - - Whitby et al., 2012 [222] 

≈ 300 nm to 1 µm  water * 
hexadecane, octanol, 

sunflower oil 
O/W ≈ 30 to 200 µm rotor-stator (30 s, 7200 rpm) - - Qi et al., 2014 [223] 

PEO brushed ≈ 24 nm water, NaCl* 
cyclohexane 

xylene 
O/W ≈ 5–40µm rotor-stator (60 s, 1.65 W) - - Saigal et al., 2013 [224] 

MCT = medium chain triglycerides, PNIPAM = poly(N-isopropyl acrylamide), AA = coallylamine, IV = intravenous, MAA = methacrylic acid, PLA = poly(lactic acid), PEG = poly(ethylene glycol), PCL = poly(caprolactone), PEO = poly(ethylene oxide), 
PLGA = poly(acid lactic-co-glycolic) acid, PVA = poly(vinyl alcool) 

* = phase containing the particles 
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The starch spherulites of micron size particles are prepared by heating a starch suspension 

followed by recrystallization upon cooling [184]. Nano size starch particles can be starch 

nanoparticles (starch NP) or starch nanocrystals (SNC) (also called starch crystallite, 

microcrystalline starch and hydrolyzed starch). Their techniques of preparation are well 

described in the review of Le Corre et al. [180]. Briefly, SCN can be obtained by disruption of 

amorphous regions by acid hydrolysis of native starch and starch NP can be prepared by 

regeneration techniques (such as precipitation [186,188]) or mechanical techniques (such as 

high-pressure homogenization). For both types of nanosize starch particles, the process 

parameters as well as the resulting composition, size (from few nanometers to hundreds of 

nanometers) and shape (spherical [186,188], oval, discs [100]…) vary as a function of the starch 

origin. Often, the particle surface is tuned for example with octenyl succinic anhydride to modify 

its hydrophobic properties. 

It was shown by Saari et al. [225] that small starch particles obtained by starch granules 

hydrolysis stabilized smaller droplets than the original granules. However, surprisingly, the 

resulting Pickering emulsion droplet sizes, in the studies presented in Table 2, were similar 

(≈ tens of micrometers) independently of the biocompatible oil as well as of the size or of the 

origin of the particles used. The only exception is the emulsions of Cossu et al. [100], using olive 

oil and stabilized with modified cassava starch discs of ≈ 5 nm x 100 nm, for which the droplet 

size was of approximately 300 nm.  

Liang et al. [185] tested the in vitro digestion of Pickering emulsions stabilized with SNC from 

corn starch. They demonstrated that, when the chain length of the triglyceride oil used 

increased, the rate of lipid digestion decreased whereas the percentage of SNC digested 

increased. This is most likely caused by the different properties of the triglyceride oils and it 

could lead to Pickering emulsions with tunable digestion rates.   

The interest of such emulsions stabilized by starch particles for pharmaceutical application has 

been further explored by Cossu et al. [100], Marefati et al. [183], Marku et al. [182], Matos et al. 

[187] and Marto et al. [226]. They formulated O/W emulsions with an encapsulated API in the oil 

droplets intended for oral [100,183] or topical [182,187,226] applications. Marefati et al. [183] 

successfully encapsulated curcumin in Miglyol 812 oil droplets with high encapsulation efficiency 

(≈ 80%). This API has numerous biological and pharmacological activities (antioxidant, anti-

inflammatory…), but is very challenging to formulate due to its low solubility and its easy 
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degradation [227]. The starch-based Pickering emulsion efficiently retained and protected 

curcumin from degradation during storage and simulated in vitro oral, gastric and intestinal 

digestions [183]. Another study by Cossu et al. [100] showed the potential of starch Pickering 

emulsions, alone or incorporated in an alginate film, as antifungal preparations against candida 

albicans in the oral cavity. Thymol and amphotericin B were encapsulated and released in a 

controlled manner from the Pickering emulsion during in vitro digestion with α-amylase. Marku et 

al. [182] performed simple sensory tests on starch Pickering emulsion without API on a panel of 

nine volunteers. They evaluated the visual appearance and the skin feel. They also evaluated 

the in vitro skin penetration for these emulsions with encapsulated methyl salicylate. They found 

a nearly twice higher API penetration rate with Pickering emulsions than with the API solution. 

This result is in agreement with previous observations performed with Pickering emulsions 

stabilized by silica particles and encapsulating caffeine [228]. Marto et al. [226] performed in 

vitro and in vivo (with mice) experiments with starch-based W/O emulsions loaded with 

minocycline hydrochloride, an effective drug for the eradication of topical pathogens in 

superficial infections. The emulsions provided a sustained release of the drug (which did not 

permeate through the entire skin layer) and led to an efficient topical treatment.  

Pickering emulsions stabilized by starch particles seem very promising for pharmaceutical 

applications. However, further in vitro and in vivo studies should be conducted to confirm their 

potential. 

4.1.1.2. Cellulose-based particles 

Cellulose is mostly extracted as fibers from fibrous plants but is also synthesized by algae and 

some bacteria [229]. Cellulose fibers are constituted of amorphous and crystalline domains. 

Crystallinity and molecular weight depend on the cellulose origin [230]. Like starch, cellulose is 

an odorless, tasteless, relatively non-toxic and non-irritant material [18], widely used as a food 

ingredient and a pharmaceutical excipient. Cellulose has interesting properties such as 

biodegradability, low density, high aspect ratio, high strength and stiffness. As a pharmaceutical 

excipient, cellulose is used for oral or topical formulations and to a lesser extent for ophthalmic, 

injectable or inhalable formulations [18]. Since the cellulose surface contains many reactive 

hydroxyl groups, it can be easily chemically modified [231]. It is then used in pharmaceutical 

formulations under several forms, such as cellulose powder, microcrystalline cellulose, cellulose 

acetate, methyl or ethylcellulose, hydroxyethyl or propyl cellulose. It acts as an absorbent, 

glidant, coating, emulsifying, viscosity increasing, anti-adherent, binder, diluent, disintegrant, 
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thickening or suspending agent depending on its chemical composition [18]. In pharmaceutical 

preparations, the size of the particles usually ranges between 20 and 200 µm. 

As cellulose is insoluble in water, it is a valuable candidate for pharmaceutical Pickering 

emulsions stabilization. It has been extensively studied, using sometimes biocompatible oils for 

pharmaceutical applications. For Pickering emulsion stabilization, nano-scale cellulose is used 

with various aspect ratios (from few nanometers to tens of nanometers in width and from tens of 

nanometers to few micrometers in length) (Table 2). The nano-scale cellulose used can be 

cellulose nanocrystals (CNC) (also called cellulose microcrystals, nanoparticles whiskers, 

nanorods, rod-like or needle-like particles) [193,195,198–200], microfibrillated cellulose (MFC) 

(also called cellulose nanofibers or nanofibrils) [196,197] or cellulose microgels [191]. In their 

review, Siro & Plackett [229] and Habibi et al. [232] described the preparation methods of 

respectively MFC and CNC. Briefly, MFC can be prepared from native cellulose by mechanical 

treatments, such as high-pressure homogenization, cryocrushing or grinding. An alkaline, 

oxidative or enzymatic pretreatment can also be applied to increase cellulose purity or to reduce 

the energy input [229]. For their part, CNC can be prepared by acid disruption of the amorphous 

regions of native cellulose. Specific protocols have been developed depending on native 

cellulose origin [232]. The resulting nanoscaled cellulose is usually obtained as whiskers, 

needle-like, rod-like or ribbon-like particles. However, spherical nanocrystals can be obtained by 

a combination of acidic and ultrasonic treatments [232]. The source of the cellulose as well as 

the parameters under which the hydrolysis is performed drive the length and width of the CNC 

obtained. Cellulose microgels can be prepared by mechanical treatment of a cellulose hydrogel 

formed by the cross-linking of a cellulose suspension [191]. 

The properties of cellulose particles can be tuned by modification of their surface with oxidation, 

cationization, esterification, silylation or polymer grafting. These modifications can induce a 

change in the surface charge, in the surface charge density or in the hydrophobicity of the 

particles [232], resulting in a change of the Pickering emulsion properties [160]. 

Zoppe et al. [198] have grafted thermo-responsive poly(N-isopropyl acrylamide) (PNIPAM) on 

the surface of CNC, inducing an emulsion destabilization at a temperature above the lower 

critical solution temperature (LCST) of PNIPAM (around 30–35 °C). This could be used for 

pharmaceutical applications: an encapsulated API could be retained and protected during 

storage at a temperature under the LCST of the polymer and be immediately released from the 

emulsion once in the body at 37 °C (temperature higher than the polymer LCST). Tang et al. 

[199,200] prepared pH-responsive CNC by grafting PDMAEMA (poly[2-dimethylamino)ethyl 
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methacrylate]) or POEGMA (poly(oligoethylene glycol) methacrylate) and PMAA 

(poly(methacrylic acid)). The resulting Pickering emulsions are pH-responsive inducing 

destabilization below a critical pH value. If the polymer used is biocompatible, the resulting 

emulsions could be used for pharmaceutical applications as the pH is not the same in all the 

regions of the body: an encapsulated API could be retained and protected in some region in 

which the pH is above the critical pH value and be immediately released from the emulsion once 

in a region of the body in which the pH is under the critical pH value. In these three cases, the oil 

used was non-biocompatible (heptane) and should be replaced by a biocompatible one for 

further investigation of pharmaceutical applications. Magneto-responsive Pickering emulsions 

based on biocompatible but not biodegradable Fe3O4-CNC complexes have also been 

formulated by Low et al. [201].  

Pickering emulsions stabilized by nano-scale cellulose particles and using a biocompatible oil 

were mostly O/W emulsions with a droplet size ranging from few to hundreds of micrometers 

(Table 2). However, Cunha et al. [197] were able to produce W/O Pickering emulsions using 

MFC or CNC hydrophobized by surface esterification inducing more hydrophobic particles. They 

also obtained O/W/O emulsions by combining native and modified MFC and/or CNC. However, 

in both cases, they used a non-biocompatible oil (hexadecane) that should be replaced for a 

pharmaceutical application. 

The interest of emulsions stabilized by cellulose particles for pharmaceutical application has 

been further explored by Mikulcova et al. [189] and Zhou et al. [194] to investigate the 

antimicrobial activity of some essential oils. For example, Mikulcova and co-workers used CNC 

and MFC to stabilize droplets of antimicrobial essential oils. These Pickering emulsions exhibited 

better antimicrobial activities compared to the non-emulsified essential oils. In this study, no 

significant difference of antimicrobial activities was observed between emulsions stabilized with 

cellulose microcrystals or with microfibrillated cellulose. More recently, new structure-modified 

celluloses such as NFC (nanofibrilated mangosteen cellulose) and ANC (aminated 

nanocellulose) have been investigated for the stabilization of green Pickering emulsions as novel 

oral delivery systems for curcumin [192] and vitamins [190]. 

4.1.1.3. Chitin/chitosan-based particles 

Chitin is an odorless and insoluble in water polysaccharide. It is extracted from crustacean shells 

such as shrimps and crabs. Chitin polymer can be deacetylated and, when the degree of 

deacetylation is sufficient to obtain a soluble product in acidic conditions, the resulting polymer is 
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called chitosan. Chitosan is already used in cosmetic applications and under investigation for 

numerous pharmaceutical applications such as drug delivery for oral, nasal, parenteral, 

transdermal, ophthalmic and implant administration [233]. It is considered as a non-toxic and 

non-irritant material and it has intrinsic antibacterial properties [18,234]. Moreover, like cellulose, 

chitin surface contains many reactive hydroxyl groups which can easily be modified [233]. It is 

also pH-sensitive. Indeed, it is water soluble at low pH (under 6.5, its pKa value) thanks to its 

amine groups which are protonated and positively charged and it is insoluble in water at pH 

above 6.5, as its amine groups become deprotonated and uncharged [204]. Its solubility also 

depends on its degree of deacetylation. For all these reasons, chitin and chitosan under their 

insoluble form are very attractive candidates for pharmaceutical Pickering emulsion stabilization. 

Pickering emulsions can be stabilized for example by self-aggregated chitosan particles 

[203,204,235], chitin nanocrystals (also called chitin whiskers, nanowhiskers or rod-like chitin) 

[207,208] or chitosan complex with proteins such as zein or gelatin [209,210] (Table 3).   

Chitosan nanoparticles can be prepared by various techniques such as ionic gelation, or by 

emulsion-diffusion-evaporation [233,236]. The size of the self-aggregated chitosan particles can 

be reduced by lowering the molecular weight of chitosan using enzymatic hydrolysis, chemical 

hydrolysis or ultrasonication pretreatments [203,205,235]. However, Ho et al. [203] have shown 

that an ultrasonication pretreatment of chitosan reduced the hydrophobicity of self-aggregated 

particles, inducing larger Pickering emulsion droplets (from ≈ 80 to 150 µm vs from ≈ 50 to 

70 µm), even if the particles were twice smaller (≈ 500 nm vs ≈ 1 µm). They explained the 

hydrophobicity decrease by a reduction of the number of acetyl units per polymer chain due to 

the shortening of the polymer chain by ultrasonication. The resulting smaller particles contained 

fewer acetyl units in their surface, inducing a lower hydrophobicity. The size of the self-

aggregated particle can also be tuned with pH and salt concentration [204,205]. Liu et al. [204] 

showed that, by changing the pH from 6.4 to 6.7, the particle size increased from ≈ 85 up to 

180 nm, and their zeta potential decreased from ≈ 12 down to 7.5 mV. An increase of salt 

concentration (from 0 to 200 mmol/L of NaCl) induced a particle size increase (from ≈ 180 up to 

830 nm). The authors also demonstrated the possibility to prepare pH-responsive Pickering 

emulsions with such particles: the emulsions stabilized by self-aggregated chitosan particles at 

pH > pKa were destabilized at pH < pKa when chitosan become water soluble. This type of pH-

responsive emulsions is easy to prepare, as the particle preparation is much simpler than the 

grafting of cellulose particles with pH-responsive polymers. 



 

38 
 

Chitin nanocrystals are usually prepared by disruption of the amorphous region of chitin by acid 

hydrolysis which generally leads to rod-like nanocrystals [237]. Tzoumaki et al. [207,208] 

prepared Pickering emulsions using chitin nanocrystals (≈ 20 x 250 nm) with two different 

biocompatible vegetable oils (sunflower and corn oils). They obtained a significantly smaller 

emulsion droplet size with sunflower oil (≈ 5 to 10 µm) than with corn oil (≈ 10 to 100 µm), which 

confirmed the importance of the oil used as discussed in section 3.2. Moreover, they 

demonstrated the potential of Pickering emulsions stabilized with chitin nanocrystals, to slow 

down the lipid digestion during in vitro enzymatic protocol [208]. The authors proposed to use 

these systems to treat obesity by reducing appetite and promoting satiety. It could also increase 

API bioavailability and promote its gastrointestinal delivery. 

Chitosan-protein complexes such as chitosan-gelatin or chitosan-zein are also used to stabilize 

Pickering emulsions. These complexations are mostly driven by electrostatic interactions 

between chitosan and a protein [210]. Wang & Heuzey [210] successfully stabilized Pickering 

emulsions with chitosan-gelatin complex (size ≈15-450 nm). This complex was insoluble in water 

at pH from 5.5 to 6.5. Thus, it is conceivable to produce pH-responsive Pickering emulsions with 

a destabilization induced once the pH is in the range in which the complex becomes water 

soluble. Wang et al. [209] have, for their part, demonstrated the potential of Pickering emulsions 

stabilized by chitosan-protein complex to protect lipid droplets from peroxidation. This protection 

was further improved by introducing curcumin, known for its antioxidant properties, in the 

particles. This property could be useful to protect fragile encapsulated API.  

Shah et al. [202] successfully encapsulated curcumin in the oil droplets of emulsions stabilized 

by chitosan nanoparticles crosslinked with tripolyphosphate. Better protection of curcumin 

against degradation during storage and slower release rate were obtained with such Pickering 

emulsions than with classical emulsions. A sustained release depending on the pH was also 

obtained with such systems: after 24 h, ≈ 40% of curcumin was released at pH 7.4, whereas 

≈ 50–55 % were released at pH 2 (corresponding to a gastric environment). Dammak et al. [206] 

also described an O/W Pickering emulsion stabilized by chitosan NP for the encapsulation of 

hesperidin, a flavonoid commonly used for its antioxidant and anti-inflammatory properties. They 

obtained very stable Pickering emulsions with a small droplet size (≈ 2 µm), a polydisperse 

droplet size distribution (PDI=0.33) and a sustained release of hesperidin. 

These emulsions stabilized by chitosan- or chitin-based particles seem to be very promising for 

a potential pharmaceutical application with the advantage to allow the easy preparation of 

pH-responsive emulsions. 
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4.1.1.4. Other polysaccharides-based particles 

Polysaccharides other than starch, cellulose and chitin/chitosan were also used as insoluble 

particles to stabilized O/W Pickering emulsions. For example, Zhu et al. [211] used particles of 

hyaluronan-dopamine as Pickering emulsions stabilizers. Hyaluronan is a well-known 

polysaccharide involved in many biological processes and widely studied for tissue engineering 

and drug delivery [238]. Dopamine is a biocompatible and natural compound which exhibits 

strong bonds with organic and inorganic surfaces, and which could consequently improve the 

interfacial stabilization of the emulsions according to the authors. The dopamine modified 

hyaluronan was prepared by self-assembly of dopamine grafted hyaluronan co-polymers. The 

co-polymer grafting degree could be tuned, which influences the size of the resulting spherical 

NP (from ≈ 150 - 220 nm) as well as the emulsion properties (droplet size from ≈ 20–100 µm) 

(Table 3). Interestingly, some of the oils used in this study were biocompatible. 

Another promising pH-responsive Pickering emulsion was described by Zhang et al. [212]. They 

used hydrophobically-modified calcium alginate (MCA) NP as pH-sensitive emulsifiers. Alginate 

particles are obtained from the crosslinks between sodium alginate and Ca2+, and exhibited 

several properties such as pH-responsibility, biodegradability, bioadhesion and non-toxicity. pH-

responsive O/W Pickering emulsions were prepared using corn oil as an oily phase, in which 

curcumin was solubilized. The release behavior of curcumin in vitro was then investigated. 

Authors demonstrated that these Pickering emulsions released more specifically curcumin in the 

simulated intestinal fluid (37% at pH=6.8) compared to the simulated gastric fluid (3% at pH=1.5) 

after 4h, proving that MCA stabilizing pH-sensitivity Pickering emulsions appears as a promising 

candidate for the controlled oral delivery of drug substances. 

4.1.2. Lignin-based particles 

Natural polymers that do not belong to the polysaccharide family can be used as particles to 

stabilize Pickering emulsions. Lignins belong to this category. They are complex, non-toxic, 

aromatic natural polymers with variability in composition and structure depending on their origin 

and isolation procedure [239,240].  

For Pickering emulsion stabilization, lignins were used as nanoparticles [213–216] (see Table 3). 

Lignin nanoparticles can be prepared by numerous preparation methods such as precipitation, 

emulsification-polymerization [214] and aerosol flow [213]. Lignin can also be modified 

chemically by, for example, alkylation, acetylation, esterification or polymer grafting. Qian et al. 

[216] and Silmore et al. [215] used polymer modified lignin nanoparticles with respectively 
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diethylaminoethyl and polyacrylamide to stabilized Pickering emulsions. This modification 

allowed to tune NP hydrophobicity and thus, the emulsion properties, depending on the grafting 

degree.  

Pickering emulsions stabilized by lignin NP are valuable candidates for a pharmaceutical 

application as they are non-toxic, but, on the downside, they are complex and depend a lot on 

their bulk materials. Moreover, to the best of our knowledge, none of the studies using lignin NP 

as Pickering emulsion stabilizers were performed with a biocompatible oil.  

4.2. Biocompatible synthetic polymer-based particles 

Only a few synthetic polymers are largely recognized for their biocompatibility and their 

biodegradability. The best-known are poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and their 

co-polymers, poly(lactide-co-glycolide) (PLGA) and poly(caprolactone) (PCL) [241]. Poly(N-

isopropyl acrylamide) (PNIPAM) and poly(ethylene oxide) (PEO), which are also widely used in 

the biomedical field, are considered biocompatible, but not biodegradable [242–244]. 

Biocompatible synthetic polymers have been extensively studied, particularly for the formation of 

nanoparticles, intended for pharmaceutical applications such as drug delivery [245]. Thus, they 

are valuable candidates for the stabilization of pharmaceutical Pickering emulsions.  

Numerous synthetic polymer-based particles have been proposed as emulsion stabilizers, but 

their biocompatibility remains to be proved and a biocompatible oil is not always used in these 

studies. For Pickering emulsion stabilization, biocompatible synthetic polymers have been used 

as nanoparticles [36,218,224], nanogels [217] and microgels [110] (Table 4) prepared with 

numerous techniques. These techniques are well described in the reviews of Rao & Geckeler 

[246] and of Chacko et al. [247] for NP and nanogels, respectively. Briefly, NP can be prepared 

either from the polymer by nanoprecipitation, emulsion evaporation, salting-out, dialysis or 

supercritical fluid technology, or directly from monomer polymerization, by emulsion  

polymerization or interfacial polymerization. Nanogels can also be prepared either from the 

polymer (by cross-linking) or directly from monomers (by heterogeneous polymerization). 

Usually, the biocompatible synthetic polymer-based particles used to stabilize Pickering 

emulsions are spherical with a size ranging from tens to hundreds of nanometers (see Table 4). 

The resulting droplets are relatively small, ranging from a few to tens of micrometers. For 

example, Laredj-Bourezg et al. [36] used PCL-b-PEO (poly (caprolactone)-block-poly(ethylene 

oxide)) NP (≈ 35–50 nm) as stabilizers using a biocompatible oil (triglyceride oil). The resulting 



 

41 
 

emulsion is an O/W emulsion with a droplet size of ≈ 2 to 15 µm. In previous works [38,220,221], 

our team used PLGA-PVA (poly(vinyl alcohol)) NP and PLGA NP (≈ 200 nm) to stabilize 

emulsions prepared with biocompatible oils (Miglyol 812N and Lipiodol). Albert et al. [38] 

formulated emulsions with bare PLGA NP on the one hand (i.e. without stabilizing polymers 

during NP preparation), and PLGA-PVA NP (i.e. PLGA NP covered with PVA) on the other hand. 

With bare PLGA NP, a co-existence between multiple W/O/W droplets and simple oil droplets 

was observed, whereas a simple O/W emulsion was obtained with PLGA-PVA NP. The 

existence of multiple droplets with bare PLGA NP could be explained by a contact angle close to 

90°, an intrinsic variation of the NP hydrophobicity and/or the proximity of the phase inversion. 

The resulting emulsion droplet size, for either simple or multiple (W/O/W) droplets, were ≈ 30–50 

µm. Multiple emulsions are interesting for pharmaceutical use as they could allow a multiple co-

encapsulation (see section 5). 

Laredj-Bourezg et al. [218] encapsulated a model API (all-trans retinol) in the oil droplets of an 

emulsion stabilized with PLA-PEG (polylactic acid-polyethyleneglycol) NP. They studied the in 

vitro skin distribution and penetration with pig skin. They observed a greater accumulation of the 

API in the stratum corneum with such formulation compared to the emulsion stabilized with 

surfactants. The authors suggested that this effect was probably due to the hydrophobicity and 

surface charge properties of the NP. This accumulation is promising for topical drug delivery. 

Interestingly, Chen et al. [217] encapsulated an anti-cancer drug, paclitaxel, in the oil droplets of 

an emulsion intended for intravenous injection stabilized with PNIPAM-co-AA (poly(N-

isopropylacrylamide-co-allylamine)) nanogels. This is one of the rare Pickering emulsions 

studied for intravenous injection. The tissue distribution and antitumor efficacy studies proved 

that this Pickering emulsion, loaded with an anti-cancer drug, was promising as a drug delivery 

system for cancer therapy. Richter et al. [219] provided proof-of-concept of the formation of O/W 

Pickering emulsion stabilized by nanoprecipitated NP of hydrophobic derivatives of cashew tree 

gum grafted with polylactide (CGPLAP) (size ≈ 10 nm). These CGPLAP nanoparticles were also 

loaded with Amphotericin B (AmB), an antifungal drug characterized by a low oral bioavailability, 

generally used for the treatment of neglected diseases such as leishmaniasis. The AmB-loaded 

Pickering emulsions were obtained by spontaneous emulsification, by mixing CGPLAP 

nanoparticles suspension as aqueous phase, and Miglyol 812 as oil phase. The resulted 

emulsions exhibited a small droplet size of ≈ 450 nm with narrow size distribution and good 

stability. Furthermore, AmB was incorporated with 21-47 % of encapsulation efficiency in these 

nano-sized emulsions, with less aggregated state than observed in commercial AmB 

formulations. Deschamps et al. formulated W/O Pickering emulsions for the treatment of 
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hepatocellular carcinoma, stabilized by PLGA [220,221]. Doxorubicin, a chemotherapy drug, was 

encapsulated in the aqueous emulsion droplets (physiological saline). The external phase was 

composed of Lipiodol, an iodized oil used for its embolic effect and its radiopacity. For an 

emulsion with a 1/3 water/oil ratio (as recommended by the medical community for this kind of 

treatment), the doxorubicin release was very progressive and stretched out over more than 10 

days. With a conventional emulsion, the release was complete in 24 h. In vitro experiments on 

two different cell lines showed no significant toxicity of the emulsion (without API) and of its 

components. Droplet sizes were controlled by NP concentration via the limited coalescence 

phenomenon, and droplets of 40 µm were obtained with a 25 mg/mL NP concentration. Such 

droplet size was adapted to the diameter of the vessels close to the tumor (40-60 µm) [221]. 

Oxaliplatin, another chemotherapy drug, could also be encapsulated in these water/Lipiodol 

emulsions. Compared to conventional emulsions, the in vivo drug release in an animal liver 

tumor model was sustained, avoiding a burst effect [220]. 



 

43 
 

Table 5: Examples of Pickering emulsions stabilized by protein-based particles 

particles emulsion drug / 
localization 

route references 
composition shape size aqueous phase oil phase type droplet size emulsification method 

p
ro

te
in

 

soy glycine protein 
particles 

- - 
water, sodium 

azide * 
soybean oil O/W ≈ 2–10 µm 

microfluidizer (40 MPa, 1 x) 
pre-emulsion rotor-stator (2 min, 

10 000 rpm) 
beta-carotene / oil oral Liu & Tang, 2016 [248] 

soybean protein isolate gel particles ≈ 0,2–160 µm water * corn oil O/W - 
high-pressure homogenizer (240 bar = 24 

MPa) 
pre-mixing Rosso hand blender, 2 min 

- -  Matsumiya et al, 2016 [249] 

pea protein isolate - - 
water pH = 3,  
sodium azide* 

soybean oil O/W ≈ 3–20 µm 
microfluidizer (40 MPa, 1 x) 

pre-emulsion rotor-stator (2 min, 8 000 rpm) 
beta-carotene / oil oral Shao et al., 2016 [250] 

whey protein microgels spherical ≈ 250–300 nm water * sunflower oil O/W ≈ 40 µm 
2 stage high-pressure homogenizer  

(25/5 MPa, 2x) 
pre-emulsion rotor-stator (5 min, 5 000 rpm) 

- oral Sarkar et al., 2016 [251] 

gelatin NP spherical ≈ 250 nm water * sunflower oil O/W ≈ 10–30 µm rotor-stator (30 s, 12 000 rpm) beta-carotene / oil oral Tan et al., 2017 [252] 

kafirin NP - - water * vegetable oil O/W ≈ 50 µm rotor-stator (3 min, 13 000 rpm) curcumin / oil oral Xiao et al., 2015 [253] 

ovalbumin 
fibrous or 
granular 

≈ 80 nm Water pH = 3–4 * sunflower oil O/W ≈ 10–20 µm rotor-stator (2 min, 13 000 rpm) -  -  Chang et al., 2016 [254] 

zein colloidal particles ≈ 70–85 nm water pH = 4 * soybean oil O/W ≈ 10–200 µm rotor-stator (13 500 rpm) -  -  Folter et al., 2012 [255] 

ferritin NP ≈ 12 nm water * 

n-dodecane, 
toluene, castor 

oil, olive oil, 
vegetable oil 

O/W ≈ 20 - 200 µm rotor-stator (2 min, 30 000 rpm)  - -  Fujii et al, 2009 [256] 

lactoferrin 
lactoferrin NP-alginate 

lactoferrin NP-
carrageenan 

NP - water * olive oil O/W ≈ 0.45-10 µm 
high-pressure homogenizer, 103 MPa, 4x 

pre-emulsion rotor-stator  
(1 min, 35 000 rpm) 

-  -  Meshulam et al., 2014 [257] 

Lactoferrin nanogel 
particles 

Composite layer of 
lactoferrin-inulin NP 

spherical ≈ 100 -116 nm water * sunflower oil O/W ≈ 25 µm rotor-stator type mixer (2 min, 10 000 rpm) - - Sarkar et al., 2018 [258] 

E2 protein 
dodecahedron 

nanocage 
≈ 25 nm 

tris buffer  
pH = 8.7, EDTA, 
sodium azide * 

rosemary oil O/W ≈ 300 nm 
ultrasonication probe (500 W, 20 kHz)  

2 min, 40% amplitude 
pre-emulsion mechanical stirring 

-  -  Sarker et al., 2017 [105] 

casein 
nanoemulsion 

droplets 
≈ 150 nm 

phosphate buffer  
pH = 7 * 

n-hexane O/W ≈ 1–70 µm rotor-stator (2 min, 30 000 rpm) -  -  Ye et al., 2013 [259] 

βlactoglobulin fibrils- 
dipalmitoyl 

phosphatidylcholine 
fiber like 

≈ 100–400 nm 
length 

phosphate buffer  
pH = 7 

sodium azide* 
soybean oil O/W ≈ 10–100 µm rotor-stator (3 min, 20 000 rpm)  -  - Gao et al., 2017 b [260] 

βlactoglobuline - pectin microgel ≈ 55–300 nm 

sodium acetate 
buffer pH = 6* 

acetate buffer pH = 
4.8* 

corn oil O/W ≈ 1 µm 
high-pressure microfluidic homogenizer 

(5 000 psi ≈35 MPa, 5x) 
pre-emulsion rotor-stator (20s, 22000 rpm) 

 - -  Zimmerer et al., 2014 [261] 

Lupin protein aggregate 
particles (LP22-APs) 

aggregates - water pH = 7 * sunflower oil O/W ≈ 1.9 - 6.26 µm 
high-speed homogenization (2 min, 

10 000 rpm) 
- - Diaz et al., 2019 [262] 

Soluble flaxseed 
protein and mucilage 

nano-assemblies 
- ≈ 369 nm water pH=3 * tricaprylin oil O/W ≈ 4.75 - 9.76 µm high shear blender (5 min, 24 000 rpm) - - Nasrabadi et al., 2019 [263] 

EDTA = Ethylenediaminetetraacetic acid, IV = intravenous, * = phase containing the particles 
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4.3. Protein-based particles 

Proteins are biocompatible biopolymers already largely used in food formulations. Protein 

particles can be prepared from the native protein by various techniques such as anti-solvent 

precipitation [252,253,255], heat treatment [40,248,257,258] or mechanical treatment (with for 

example high-pressure homogenization) [254]. Protein microgels can also be obtained by heat 

treatment of the globular protein [261], cross-linking of the protein isolate [251] or top-down 

approach by breaking a protein macrogel [249]. Many protein-based particles impart proper 

hydrophobicity and hydrophilicity balance allowing them to stabilize Pickering emulsions. 

Various protein particles have already been studied as Pickering emulsions stabilizers such as 

soy [248,249], pea [250], whey [251], gelatin [252], kafirin [253], ovalbumin [254], zein [255], 

beta-lactoglobulin-pectin [261], beta-lactoglobulin [40,264,265], ferritin [256], lactoferrin 

[257,258], lupin [262], flaxseed protein [263] (Table 5). These particles have different shapes 

and softness as some of them are spherical NP [255–257,266], microgels [251,261], fibers 

[40,254], granules [254], dodecahedron nanocages [105] or gel particles [249]. Those particles 

can have very different size range (from tens of nanometer to hundreds of micrometers) and can 

stabilize emulsion droplets from hundreds of nanometers to hundreds of micrometers (Table 5). 

For instance, Sarker et al. [105] formulated O/W Pickering nanoemulsions (≈ 300 nm) with 

dodecahedron hollow protein nanocages using a biocompatible oil (rosemary oil).  

Liu & Tang [248], Shao & Tang [250] and Tan et al. [252] encapsulated β-carotene in the oil 

droplets of Pickering emulsions respectively stabilized by soy protein particles, pea protein 

particles and gelatin particles. In these three cases, the emulsion droplets had the same size 

range (from a few to tens of micrometers). They studied the release of β-carotene during in vitro 

digestion and found a sustained release and additional stability of the API. Tan et al. [252] 

showed that the API bioaccessibility was improved by a factor of 5 after the in vitro digestion of 

the Pickering emulsion encapsulating API compared to the in vitro digestion of the API 

solubilized in oil. Xiao et al. [253] encapsulated curcumin in oil droplets of Pickering emulsions 

stabilized by kafirin particles and demonstrated the protection of curcumin from photo-oxidation 

and the protection of oil from lipid oxidation.  

Even if these emulsions were intended for a food application and not for a pharmaceutical one, 

they all used biocompatible oil making these systems potential pharmaceutical Pickering 

emulsions, especially for oral administration. 
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4.4. Fat crystals 

Fat crystals (also called solid lipid nanoparticles) are colloidal systems with a size below 1 µm 

and with a weak polydispersity [267,268]. To the best of our knowledge, no fat crystal stabilized 

Pickering emulsions have been studied for pharmaceutical application even if they are valuable 

candidates. Indeed, fat crystals are non-toxic, cost-effective, easy to prepare and they offer 

scale-up possibilities. They were intensively studied for drug delivery by various routes 

[267,269]. Moreover, they are already used as emulsion stabilizers in food products such as 

margarine or ice cream [99]. Thus, they might also be used in pharmaceutical applications, at 

least for oral administration.  

Such Pickering emulsions can be prepared at a temperature above or below the fat melting 

point. If the emulsification process is performed at a temperature above the melting point, the 

crystals are formed directly at the droplet surface during a cooling phase, decreasing the 

temperature below the fat melting point. If the emulsification process is performed below the fat 

melting point, the fat crystals are prepared upstream. Numerous techniques that can be used to 

prepare fat crystals are well described in the review of Mehnert & Mäder [268]. The most 

common emulsification processes are high shear homogenization, ultrasound, high-pressure 

homogenization, membrane and microfluidic emulsifications. These techniques sometimes 

require the use of surfactants, which can modify the surface properties of the fat crystals such as 

their hydrophobicity, and thus their ability to stabilize Pickering emulsions [270].  
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Table 6: Examples of Pickering emulsions stabilized by fat crystals, cyclodextrin particles, drug nanocrystals, viruses, spores, bacteria and yeasts 

particles emulsion drug / 
localization 

route reference 
composition shape size aqueous phase oil phase type droplet size emulsification method 

fa
t 

c
ry

s
ta

ls
 

glyceryl stearyl 
citrate crystals 

spherical 
ellipsoidal 

≈ 10–20 x 
20–140 nm 

water * canola oil O/W ≈ 460 nm 
high-pressure homogenizer 
(7 000 psi ≈ 48 MPa, 5x) 

pre-mixing rotor-stator 30 s, 27 000 rpm 
- - Gupta et al., 2012 [99] 

tripalmitin crystals spherical ≈ 130 nm water * sunflower oil W/O ≈ 5–15 µm high-shear mixer (2 min, 10 000 rpm) - - Pawlik et al., 2016 [270] 

mono/tri glyceride 
crystals 

- - water sunflower oil W/O/W ≈ 2–50 µm rotor-stator (3 min, 8 000 rpm) - - 
Spyropoulos et al, 2011 

[271] 

c
y
c

lo
d

e
x
tr

in
s

 

β-cyclodextrin 
emulsifier (βCD) 

- - water * isopropyl myristate  O/W < 100 µm homogenizer (5 min, 10 000 rpm) 
captopril / 

water 
transdermal Taguchi et al., 2019 [272] 

α-, β- and γ-CD/oil 
complexes 

and complexes NP 
spherical 

≈ 30–250 
nm 

≈ 1–4 µm 
Water 

paraffin oil 
isopropyl myristate 

O/W ≈ 10–20 µm rotor-stator (1 min, 11 500 rpm) 
econazole 
nitrate / oil 

topical Leclercq et al., 2016 [273] 

β-, tripropanoyl-β- 
and tributanoyl-β-
CD/oil complexes  

- - water * 
squalene 

soybean oil 
liquid paraffin 

O/W and 
W/O 

≈ few to 
hundreds µm 

high shear homogenizer (5 min, 10 000 rpm) - - Inoue et al., 2010 [274] 

soft heptakis(2,6-di-
O-methyl)-β-CD 

nanogels 
≈ 30–120 

nm 
water * 

n-dodecane 
toluene 

O/W and 
W/O 

≈ 20–200 µm rotor-stator (1 min, 8 000 rpm) - - Kawano et al., 2015 [275] 

α- and β- CD/oil 
complexes 

microrods ≈ 5–100 µm water * 
n-tetradecane 

silicone tricaprylin 
sunflower oil 

O/W ≈ 10–40 µm rotor-stator (20 s, 11 000 rpm) - - 
Mathapa et al., 2013 b 

[276] 

drug nanocrystals 
drug nanoparticles 

spherical ≈ 220 nm Water (NP) sunflower oil O/W ≈ 1 µm 
sonication probe (20 s, 95% amplitude) 
pre-mixing high shear mixer, 3 min, 6 

000 rpm 
curcumin / NP - Aditya et al., 2017 [277] 

 ≈ 300 nm Water (NP) 
glyceryl 

monocaprylate 
O/W ≈ 30–70 µm 

high-pressure homogenizer (100 MPa, 10x) 
pre-mixing 

silybin / NP oral Yi et al., 2017 [278] 

- - water n-tetradecane O/W ≈ 5–16 µm 
high-pressure jet homogenizer  

(300 bar =30 MPa) 
pre-emulsification vortex full speed, 2.5 min 

Tiliroside, 
rutin, naringin 

/ NP 
- 

Luo et al., 2011 and 2012 
[279,280] 

s
p

o
re

s
 

spore coated with 
divinyl benzene-
methacrylic acid 
or hydroxyethyl 
methacrylate 

polymer 

spherical with 
polygon like 
patterned 
surface 

≈ 20 µm water hexadecane * O/W - mechanical or hand shaking (10 min) - - Ballard et al., 2011 [281] 

spore of 
lycopodium 
clavatum 

spherical 
with polygon 

like 
patterned 
surface 

≈ 30 µm water, NaCl 

octane, 
isopropyl, myristate, 

methyl myristate, 
toluene, 

cyclohexane, 
tricaprylin, PDMS, 

undecanol * 

O/W ≈ 0.2-6 mm 
hand shaking (50 s) 

or 
rotor-stator (2 min, 13 000 rpm) 

- - Binks et al., 2005 [282] 

v
ir

u
s

 

turnip yellow 
mosaic virus 

hexagonal 
arrays 

≈ 30 nm water, NaCl * perfluorodecalin O/W ≈ 50–200 µm hand shaking - - Kaur et al., 2009 [283] 

cowpea mosaic 
virus 

hexagonal 
arrays 

≈ 30 nm 
potassium 

phosphate buffer 
pH=7 * 

perfluorodecalin O/W ≈ 20–70 µm hand shaking - - Russel et al., 2005 [284] 

B
a
c
te

ri
a
 a

n
d

 

y
e
a

s
ts

 

bacterial cells - - 
phosphate 

buffer pH=7 * 
n-hexadecane 

O/W and 
W/O 

- vortex mixer (5 min) - - Dorobantu et al., 2004 [285] 

bacterial cells-
chitosan 

rod-like ≈ 2–3 µm water, acetic acid* tetradecane O/W ≈ 100–250 µm hand shaking - - 
Wongkongkatep et al., 

2012 [286] 

baker’s yeast 
lactic acid bacteria 

- - water * olive oil O/W 

≈ 1- 5 µm 
(yeast) 
≈ 10 µm 

(bacteria) 

magnetic stirring (500 rpm) 
or for 50/50 (w/w) vortexing (3 000 rpm) 

- - 
Firoozmand et al., 2015 

[287] 

yeast - ≈ 5 µm water * hexadecane O/W ≈ 60 µm high shear homogenizer (30 min, 900 rpm) - - Furtado et al., 2015 [288] 

* = phase containing the particles 
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The fat crystals used to stabilize Pickering emulsions have a size of hundreds of nanometers 

and the resulting emulsion droplets are relatively small (from hundreds of nanometers to tens of 

micrometers) (Table 6). All types of emulsions, O/W, W/O and multiple, can be obtained with fat 

crystals. Gupta & Rousseau [99] formulated O/W emulsions stabilized with glyceryl stearyl 

citrate crystals of spherical or ellipsoidal form (≈ 10–20 x 20–140 nm) using a biocompatible oil 

(canola oil). The resulting emulsions exhibited small droplets (≈ 460 nm). Pawlik et al. [270] 

formulated W/O emulsions stabilized with tripalmitin spherical crystals using a biocompatible oil 

(sunflower). They varied the surfactants used to prepare the tripalmitin crystals and obtained 

emulsion droplets of ≈ 5–15 µm. Spyropoulos et al. [271] formulated W/O/W emulsion using 

sunflower oil. Only the inner droplets of the emulsion were stabilized by mono and triglyceride 

crystals. But, in principle, it should be possible to stabilize multiple emulsions with fat crystals 

only as they allow the stabilization of O/W and W/O emulsions. However, studies of these kinds 

of systems in the pharmaceutical field are still lacking. 

4.5. Cyclodextrin particles 

Cyclodextrins (CD) are cyclic oligosaccharides derived from starch hydrolysis by cyclodextrin 

glycosyl transferase bacterial enzyme (CG-Tase). There are three major types of native CD: 

α-CD, β-CD and γ-CD corresponding to six, seven and eight glucose units, respectively, bridged 

through glycosidic bonds. CD possess a cone-shaped chemical structure with a hydrophobic 

subnanometer-sized cavity allowing encapsulating molecules through non-covalent interactions 

forming inclusion complexes. The cavity volume changes with the type of CD: 174 Å for α-CD, 

262 Å for β-CD and 427 Å for γ-CD [289]. CD are non-toxic depending on the dosage and the 

administration route. They are used as pharmaceutical excipients to increase the aqueous 

solubility, stability and bioavailability of complexed API, but also to reduce gastrointestinal or 

ocular irritation or to mask an unpleasant taste or smell [290]. Though CD molecules in water 

have no surface activity, they can form amphiphilic complexes with oil. Inoue et al. [291] showed 

the ability of precipitated α-, β- and γ- CD/oil complexes to stabilize emulsions with an influence 

of the complex on the interfacial tension. They found that the most stable emulsions were 

obtained using β-CD/oil complexes which, among the three types of CD, had its three-phase 

contact angle the closest to 90 °. A non-biocompatible oil (n-alkane) was, however, used in this 

study. Inoue et al. [274] demonstrated the emulsification ability of β-CD complex with 

biocompatible oils (squalene, soybean oil and liquid paraffin) (Table 6). They formulated O/W 

Pickering emulsions stabilized with β-CD/oil complexes and W/O Pickering emulsions stabilized 

with complexes between the oil and β-CD modified with tripropanoyl or tributanoyl. Mathapa & 
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Paunov [276] demonstrated the ability of molecularly dissolved α- and β-CD to assemble into 

microrod particles directly at the emulsion droplet surface, and thus to effectively allow the 

formation of Pickering emulsions. They also showed that these microrod particles were longer 

with α-CD (≈ 100 µm) than with β-CD (<10 µm). Taguchi et al. [272] formulated O/W emulsions 

stabilized with β-CD/oil complexes, with isopropyl myristate as the oil phase. Captopril, an 

angiotensin converting enzyme inhibitor used as a model drug in this study, was located in the 

aqueous phase. In vitro skin permeation studies on excised skin of hairless mice showed that 

these Pickering emulsions could improve skin permeability of captopril compared to aqueous 

solutions, oil suspensions or surfactant-stabilized emulsions. Above a given drug concentration, 

β-CD/captopril complexes were formed, which inhibited the formation of β-CD/oil complexes. 

This led to more unstable emulsions, since it was expected that the contact angle of β-

CD/captopril complexes was smaller than that of β-CD/oil complexes. 

CD/oil complexes are not the only form of CD capable of stabilizing Pickering emulsions 

(Table 6). Kawano et al. [275] showed the ability of a soft CD nanogel to stabilize emulsions 

using non-biocompatible oils. CD nanogels were prepared by the cross-linking of 

heptakis(2,6-di-O-methyl)-β-CD. The CD nanogel hydrophobicity could be tuned by their 

cross-linking degree. Leclerq & Nardello-Rataj [273] demonstrated the potentiality of Pickering 

emulsions stabilized by CD/oil complexes and CD/oil complexes particles for pharmaceutical 

applications. CD/oil complexes acted as a surfactant with the CD as the polar head and the 

uncomplexed apolar part of the oil as the hydrophobic tail. The CD/oil complexes were then able 

to self-assemble, forming NP when their concentration increased. Thus, the authors were able to 

formulate Pickering emulsions stabilized either by CD/oil complexes (at low CD concentration) or 

by CD/oil complexes NP (at high concentration) and to encapsulate econazole nitrate, an 

antifungal API, in the oil droplets of these emulsions. The antifungal and antimicrobial activities 

of such Pickering emulsions were evaluated in vitro, showing an efficiency at least as important 

as a commercially available form and without the risk associated with the synthetic surfactants.  

4.6. Drug nanocrystals/nanoparticles 

Pickering emulsions were also directly stabilized by active molecule or drug nanoparticles or 

nanocrystals [277–280] (Table 6). Aditya et al. [277] stabilized sunflower oil Pickering emulsions 

with nanosized amorphous curcumin. Curcumin nanoparticles (≈ 220 nm) were obtained by 

antisolvent precipitation technique. The resulting Pickering emulsions were stable with relatively 

small droplets (≈ 1 µm). For their part, Luo et al. [279,280] prepared particles from various 
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flavonoids (a family of molecules known for their potential health impact that are insoluble in 

water and in oil) to stabilize emulsions using a non-biocompatible oil (n-tetradecane). They 

obtained stable emulsions with tiliroside, rutin and naringin with droplet size of ≈ 16 µm, 6 µm 

and 5 µm, respectively. These flavonoids were pH-responsive due to their change of solubility 

with pH. Yi et al. [278] used silybin nanocrystals to stabilize an O/W emulsion using a 

biocompatible oil (glyceryl monocaprylate). This flavonoid has a poor solubility in water and a 

poor oral bioavailability. It was already used for the treatment of acute and chronic liver diseases 

and it showed efficacy against tumor growth, angiogenesis, inflammation and metastasis [292]. 

The silybin nanocrystals (≈ 300 nm) were prepared by high-pressure homogenization treatment 

of silybin coarse powder suspension in water. An in vitro dissolution study of the silybin and a 

pharmacokinetic study in rats were also conducted. The authors noticed a faster in vitro 

dissolution and released of the silybin from the Pickering emulsion than from the nanocrystal 

suspension, which was itself faster than with the coarse suspension. These differences were 

explained by i) the silybin state (the size of nanocrystals was smaller with a larger surface, 

inducing more contact with the medium), and by ii) the dissolution of part of the sibylin in the oil 

phase of the emulsion, leading to a faster dissolution than when sibylin was only present in 

water. They also noticed an increase in the blood concentration of sibylin in rats in the case of 

the Pickering emulsion compared to the nanocrystal suspension. Such systems could thus 

enhance the bioavailability of a poorly soluble drug due to its accelerated and partial dissolution 

in the oil phase of the emulsion. These emulsions are undoubtedly promising for pharmaceutical 

applications. 

4.7. Virus, spores, bacteria and yeasts 

Nature is also able to produce directly particles of micro-nanometer size such as viruses, spores, 

bacteria and yeasts. They present the advantage of being very monodisperse in size and 

possibly functionalized [284]. Moreover, they are already used for pharmaceutical applications. 

For example, probiotics are human-friendly bacteria for the treatment and prevention of diseases 

[293]. Various viruses (human, plant or animal viruses) can be used as vaccines or as 

vectors/carriers for drugs or genes to target cells; the bacteriophage viruses can even be used 

as an alternative to antibiotic treatments [294,295].  

Some works have demonstrated the ability of such natural particles to stabilize Pickering 

emulsions. Binks et al. [282] have shown that lycopodium clavatum spores (already used in 

homeopathic treatments) could stabilize Pickering emulsions using various oils, including some 
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biocompatible ones. These spores are valuable candidates to stabilize pharmaceutical Pickering 

emulsions as they have been used for centuries in the treatment of diarrhea, eczema and gout. 

Ballard & Bon [281] have modified the hydrophobicity of spores by coating their surface with 

polymers. The polymer was adsorbed onto the polygon-like surface of the spore, modifying it 

according to the polymerization degree. They also showed that these polymer coated spores 

were able to stabilize Pickering emulsions. However, the non-biocompatible oil used 

(hexadecane) should be changed for a further possible pharmaceutical application. 

For their part, Russel et al. [284] and Kaur et al. [283] used, respectively, cowpea and turnip 

yellow mosaic virus as a model virus to stabilize O/W Pickering emulsions using perfluorodecalin 

as the oil. They demonstrated that the droplets were fully covered by a monolayer of viruses. 

They also showed that viruses maintained their structure and integrity during emulsification. 

Bacterial cells can also be used as Pickering emulsions stabilizers. Dorobantu et al. [285] and 

Firoozmand & Rousseau [287] used various bacterial cells to stabilize O/W and W/O Pickering 

emulsions (Acinetobacter venetianus, Rhodococcus erythropolis, Rhizomonas suberifaciens, 

Pseudomonas fluorescens, Lactobacillus acidophilus and Streptococcus thermophilus). They 

noticed that the bacteria were able to attach and form a film with particle interactions at the 

interface, inducing the Pickering emulsion stabilization. The ability of bacteria to adsorb at the 

interface is linked to their surface properties and composition (in proteins, polysaccharides and 

polypeptides) and their ability to induce hydrophobic interactions [285]. Wongkongkatep et al. 

[286] have coated bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, 

Escherichia coli and Lactobacillus sakei) with chitosan in order to enhance their hydrophobic 

properties. Such particles were able to stabilize Pickering emulsions by the formation of a self-

assembled bacterial-chitosan network at the droplet interface. However, among the studies 

performed with bacteria, only Firoozmand & Rousseau [287] used a biocompatible oil (olive oil). 

Firoozmand & Rousseau [287] and Furtado et al. [288] also demonstrated the ability of yeast 

cells to stabilize Pickering emulsions using a biocompatible oil (olive oil) for the first ones and a 

non-biocompatible oil (hexadecane) for the second. Like bacteria, yeast cells have proteins and 

polysaccharides on their surface allowing them to anchor at the interface of the droplets.  

4.8. Other particles 

Ye et al. [259] firstly prepared a nanoemulsion stabilized by native protein micelles (casein). This 

nanoemulsion is not a Pickering emulsion. Then, they used these oil nanodroplets stabilized by 
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casein micelles (≈ 150 nm) to stabilize an O/W emulsion with droplet size around 1 to 70 µm. 

The same non-biocompatible oil (n-hexadecane) was used for the nanoemulsion droplets and 

for the Pickering emulsion droplets. The nanodroplets are deformed at the interface and the 

authors noted the influence of the nanoemulsion droplets on the size of the emulsion droplets 

and on their surface coverage. They compared the resulting emulsion to a Pickering emulsion. 

This concept could be used for pharmaceutical applications. Two different API could also be 

encapsulated: one in the oil of the nanoemulsion droplets and one in the oil of the Pickering 

emulsion droplets. It is even conceivable to encapsulate two API with the highest possible 

encapsulation rate as possible by using two different biocompatible oils, the ones leading to the 

best solubility for each API. 

5. Discussion 

5.1. Main interests of Pickering emulsions for pharmaceutical applications 

The use of NP in Pickering emulsions can be seen as an issue since possible health concerns 

are raised by NP [296–298]. The impact of NP on the body and the environment is still relatively 

unknown [297–300]. In this context, biodegradable Pickering emulsions obtained from 

biodegradable and biocompatible particles and oils appear particularly attractive. This includes, 

among others, particles of cellulose, chitosan, chitin, starch, PLGA and PCL which are already 

used to prepared Pickering emulsions intended or not for pharmaceutical applications [301]. 

5.1.1. API encapsulation and co-encapsulation 

As with classical emulsions stabilized by synthetic surfactants, an API can be encapsulated in 

the droplets of Pickering emulsions. Many examples have been provided in section 4. They 

exhibit the same advantages, such as API protection, API solubility and bioavailability increase, 

bad taste or texture masking. Moreover, Pickering emulsions could help to lower or even to 

avoid the toxicity risk linked to synthetic surfactants. They also display very good physical 

stability, sometimes up to several years. Compared to conventional emulsions, Pickering 

emulsions improve the protection of the API from degradation due to the solid barrier of particles 

around the droplets [209,248,250,252,253]. Thanks to this protection during oral and gastric 

digestion they allow an intestinal release [183]. They could also enhance API skin absorption 

and accumulation [182,217,218,228] as well as API efficacy [189,273] and bioaccessibility [252]. 

To the best of our knowledge, no clear mechanisms were provided for these observations. 
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In Pickering emulsions, the API can be encapsulated not only in the oil but also within the 

particles or grafted onto their surface. For instance, Wang et al. [209] have encapsulated an 

active molecule (curcumin) in particles (zein-chitosan complex particles). However, API could be 

encapsulated or grafted at the surface of all the particles presented in section 4. The API 

particles can also be by themselves the emulsion stabilizer like with drug nanocrystals or 

nanoparticles [277–280]. 

The major advantage of Pickering emulsions, compared to classical simple emulsions stabilized 

with synthetic surfactants, is the possibility to co-encapsulate several API in a single emulsion: 

one in the droplets and one in the particles. Various sustained release profiles could be obtained 

between the API encapsulated in the droplets and the one encapsulated in the particles, 

allowing to reduce the number of administrations needed, and thus to improve the patient 

compliance. A synergistic effect between the co-encapsulated API might also be obtained, 

allowing to decrease the doses. 

It is interesting to note that the potential pharmaceutical Pickering emulsions presented in 

section 4 are almost exclusively simple and mostly O/W ones. However, multiple W/O/W [271] 

and O/W/O [197] Pickering emulsions were also formulated. Multiple emulsions are interesting 

for pharmaceutical applications as they should allow the co-encapsulation of three API: one in 

the internal droplets, the second one in the larger droplets and the last one in the particles. 

When stabilized by surfactants, multiple emulsions are highly unstable due to the use of two 

types of surfactants, one hydrophilic and the other hydrophobic, being both able to desorb from 

the interface [302]. With multiple Pickering emulsions, the particles are strongly adsorbed at the 

interface, creating much more stable multiple emulsions than with synthetic surfactants. To the 

best of our knowledge, no study has been conducted to confirm the potential of multiple 

Pickering emulsions for pharmaceutical applications yet. 

5.1.2. Tuning the Pickering emulsion characteristics for pharmaceutical applications 

The targeted droplet size depends on the desired pharmaceutical application. For example, as 

previously mentioned in section 4, for the injection route, the droplet size should usually be 

smaller than 5 µm. The opportunity to tune the droplet size towards the application is, thus, 

particularly attractive for the pharmaceutical field. As shown in sections 2 and 3, particles 

composition, wettability, adsorption, concentration, size, shape, surface charge as well as the 

emulsification process, oil phase type, salt concentration and pH, are many ways to modulate 

the droplet size of Pickering emulsions. 
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Particles are available with various size ranges, rigidities, shapes and surfaces. Thus, according 

to the particles chosen to stabilize the emulsion, the pharmaceutical benefit can be tuned. For 

example, when the particles reach the bloodstream, these parameters significantly influenced 

their long-term circulation. Particles with a size lower than 5 nm are recognized for having a fast 

clearance from the circulation, whereas the larger particles (up to 5 µm) are accumulated in the 

body and can be uptaken by the cells [303]. The characteristics of the particles can also 

influence their biodistribution, their cellular uptake in a specific cell type, their internalization rate 

or their ability to cross biological barriers [303]. If the particles do not contain an API, it might be 

appropriate to choose particles which exhibit a fast clearance if they reach the bloodstream, or 

which are not able to penetrate the skin if the emulsions are applied topically. 

Most of the studies on Pickering emulsions were performed with non-biocompatible model oils 

such as n-dodecane, toluene, n-tetradecane or hexadecane. This is because these oils are 

well-defined model oils, and thus are easier to use for numerous characterization techniques 

than most of the biocompatible oils which are complex mixtures of triglycerides. The change for 

a biocompatible oil is required for a pharmaceutical application. This could induce dramatic 

modifications in the emulsion properties as already explained in part 3.2. 

5.1.3. Stimuli-responsive emulsions 

The possibility to obtain stimuli-responsive emulsions using particles sensitive [176] to pH [304–

307], ionic strength [308], temperature [309] magnetic field [31,310,311] or electric field [312–

314] is also very promising. Indeed, an emulsion disruption with external stimuli can induce i) 

enhanced stability during storage if the emulsion is only destabilized with an external stimulus 

which can be controlled during storage; and ii) a targeted release of the API in the human body. 

For example, an emulsion stabilized with temperature-responsive particles can be stored with 

good stability at a given temperature and be disrupted once in the human body, allowing the 

release of the API. With an emulsion stabilized with pH-responsive particles, it is possible to 

target a body region for the API release as the physiological pH varies (≈ 6.7-7.4 for the lungs, 

≈ 4.5-5.5 for the skin, ≈ 7.35-7.45 for the blood, ≈ 1-3 for the stomach, ≈ 8 for the rectum or the 

gut, ≈ 3.8-4.5 for the vagina) [2]. For example, an emulsion that is stable at pH = 13 and 

disrupted at pH = 8 will release the API in the gut when administered by the oral route. 

Emulsions stabilized with electric or magnetic field responsive particles, for their part, could be 

used for theranostic applications, with an API release induced by an external electric or a 

magnetic field, even if such particles are often only biocompatible and not biodegradable [176]. 
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Those potential pharmaceutical applications of Pickering emulsions represent exciting 

opportunities. 

5.2. Challenges to overcome for an industrial application of Pickering emulsions 

No product based on Pickering emulsions is commercialized yet, but a lot of systems were 

patented. Some obstacles to the Pickering emulsions industrialization remained to be overcome. 

The particles preparation will need to be scaled up, which is not obvious for all the particle types. 

The storage stability should be improved, in particular when API are encapsulated in 

biodegradable particles. The particles should be degraded only once administered and not 

during storage. The use of stimuli-sensitive particles can be helpful in this aspect. Interestingly, 

some Pickering emulsions can be dried. Indeed, in certain cases, the particles at the interface 

are able to maintain the droplet integrity even after the external phase removal. Such systems 

can be compared to liquid marbles [81]. For example, Marefati et al. [315] freeze-dried Pickering 

emulsions stabilized with starch granules forming an oil powder. This oil powder can then be 

rehydrated to reconstitute the Pickering emulsion. This technique can be a valuable strategy for 

Pickering emulsion storage. Indeed, if the particles degradation mechanisms imply hydrolysis, 

removing the aqueous phase could protect the NP from degradation, and thus allow long-term 

stability. Moreover, the API contained in the oil phase or in the particles would be protected 

against oxidation during storage.  

The sterilization of the formulations is already an issue for emulsions stabilized by surfactants 

[316] and is again more likely to be problematic for Pickering emulsions. The sterilization 

process by filtration is performed with a membrane with 0.2 µm pores. This cut off is sometimes 

smaller than the particles used for Pickering emulsions [317]. The sterilization by heating is not 

appropriate for high temperature-sensitive particles. The best strategy would be to produce 

aseptically the emulsions from sterilized components [316], but the sterilization of particles could 

be difficult to achieve. A lot of work remains to be done on this issue.  

6. Conclusion 

Pickering emulsions are mostly prepared by high shear techniques (rotor-stator, high-pressure 

homogenization and sonication) and low shear techniques (membrane and microfluidic 

emulsifications). High shear techniques are quicker and easier to set up than low shear 

techniques, but the latter have the advantages not to modify the particles and to produce 

droplets in a controlled manner and with a lower polydispersity. The emulsification parameters 
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as well as the particle wettability, the nature of the oil phase, the aqueous phase/oil phase ratio, 

the particle adsorption rate, concentration, size, shape, roughness, surface charge, the salt 

concentration and the pH can be modified to tune the emulsions type (simple or multiple, O/W or 

O/W), the droplet sizes and their stability. All these parameters are interlinked and, often, 

changing one parameter induces changes for the others.  

Pickering emulsions stabilized with organic particles exhibit a real potential for pharmaceutical 

applications. This includes Pickering emulsions stabilized with particles based on natural 

polymers (such as starch, cellulose, chitin/chitosan or lignin-based particles), biocompatible 

synthetic polymers (such as PNIPAM, PLA, PLGA, PCL or PEO), proteins (from soy, pea, whey, 

egg white, zein, ferritin, gelatin or β-lactoglobulin) and cyclodextrin complexes. This also 

encompasses emulsions stabilized by fat crystals, drug nanocrystals or nanoparticles, viruses, 

spores, bacteria and yeast. A part of the studies on the subject was already performed for 

specific pharmaceutical applications and others could be adapted for the pharmaceutical field by 

changing the oil nature. Numerous combinations of particles and oils are possible for as many 

possible pharmaceutical emulsion preparations. These emulsions could be used for multiple API 

encapsulations as well as for theranostic applications with stimuli-responsive particles. A 

growing scientific community focuses its interest on Pickering emulsions and their application, 

especially in the pharmaceutical field. Some work remains to be done to gain a better knowledge 

of their stability during storage, to successfully sterilize these emulsions or to clearly 

demonstrate the benefit to co-encapsulate API in such systems. 
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