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Abstract: Sound waves in the ocean are affected by the space and time variabilities of the 
propagation medium. These fluctuations, mainly caused by internal waves such as tides and 
gyres, can lead to a loss of phase information in measured wave-fronts, and make hardly pre-
dictable the true location of a source. As a consequence, the performance of classical direc-
tion-of-arrival (DOA) estimation algorithms are significantly degraded. An important litera-
ture addresses this issue by considering either the phase as non-informative or the environ-
ment as a noise with no physical information. In this work, we propose to introduce a phase 
prior inspired by random fluctuation theories. This prior is combined with a sparsity assump-
tion on the number of expected DOAs and exploited within a Bayesian framework. The con-
tributions of such an approach are two-fold: by the use of suitable prior information (small 
number of DOAs and phase distortion), it allows an estimation of DOAs from a single snap-
shot, while simultaneously providing a posterior estimation of the mean fluctuations of the 
propagation medium. Bayesian inference can be performed in different ways. Among the dif-
ferent possible procedures, we chose here to resort to a Bethe approximation and a message-
passing approach recently considered in compressive sensing setups. The resulting algorithm 
places in the continuation of our previous works. The main improvement lies in the proba-
bilistic model used to describe the phase distortion. Here we use a Multivariate Von Mises 
distribution, more suitable to directional statistics and still fitting the simplified theory of 
phase fluctuation. Numerical experiments with synthetic datasets show that the proposed al-
gorithm, dubbed as VITAMIN for ``Von mIses swepT Approximate Message passINg'', 
presents interesting performance compared to other state-of-the-art algorithms. In particular, 
in the considered experiments, VITAMIN behaves well regarding its robustness to additive 
noise and phase fluctuations. 

Keywords: Compressed Sensing, DOA Estimation, Message Passing, WPRM, Bayesian Esti-
mation. 
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1. INTRODUCTION 

Wave propagation through random media is at the heart of many applications (RADAR, 
acoustics, telecommunications…). Studies in this research field aim at characterizing the fluc-
tuations of the propagation medium and their impact on a transmitted signal to improve asso-
ciated processing. In this respect, the problem of direction-of-arrival (DOA) estimation occu-
pies an important place in the literature. However, despite the large number of methods pro-
posed, very few explicitly address the problem of fluctuating environments. 

DOA estimation in well-known environments simply corrupted by additive white Gaussian 
noises constitute indeed the wide majority of the approaches. In that family, we find first the 
very popular beamforming approach [1], which relies on a simple inversion of the measure-
ment matrix. Other methods put additional assumptions about the nature of the source signal. 
For example, some ‘high resolution’ techniques rely on the hypothesis of orthogonality bet-
ween signal and noise subspaces like in the MUSIC algorithm [2]. More recent contributions 
propose to exploit a sparsity assumption on the number of DOA to recover, leading to so-cal-
led 'compressive' beamforming techniques [3]. 

To the best of our knowledge, DOA estimation in noisy environments has been mostly ad-
dressed from two major perspectives: the corrupting effect of the propagation medium on 
measurement is modelled either as a non-informative phase perturbation [4] or informative 
but uncorrelated phase noises [5]. 

Our previous work [6] started from this vein of methods. We tried however to go further by 
considering a perturbation model compatible with some perturbation regimes observed and 
defined by [7, 8]. Given a high-frequency approximation, we were able to modelize the per-
turbation as a multiplicative phase noise following a multivariate Gaussian law with a cova-
riance matrix carrying the information related to the strength of the fluctuations. This model 
was exploited through a Message Passing Algorithm, resulting in a procedure named paSAMP 
[9]. 

In this paper, we refine our noise model to be more suitable for the issue of phase perturba-
tion, using a Multivariate Von Mise Prior, more adapted to directional statistics [10]. As a re-
sult, we propose an improved version of paSAMP: the VITAMIN (for Von mIses swepT Ap-
proximate Message passINg) algorithm. 

2. CHARACTERIZATION OF RANDOM FLUCTUATION IN THE OCEAN 

We use here the results of works initiated in [7] and then updated in [8] to characterize the 
impact of multi-scale fluctuations of the ocean on a measured signal. Given a certain fluctua-
tion strength of the internal waves, the signal can be corrupted as a function of its frequency, 
the propagation range and other interactions bottom-surface. Considering a high frequency 
approximation, we can define three saturation regimes which can be easily described through 
geometrical optics: 

- The unsaturated regime: variations are not strong enough to alter the source ray. In this 
cas, there is no perturbation on the measured DOA. 
- The partially saturated regime: stronger variations cause a diffraction phenomenon of the 

source ray. As a result, the sensors measure a coherent ray and multi-rays due to this spread. 
This spread is directly linked to the strength of the fluctuations and impacts the consistency 
of the wave propagated in the random medium. Beyond a so-called 'coherence-length’, we 
observe a loss of consistency, this length can be retrieved from measurement and easily mo-
delled as a covariance structure within a random phase noise. 
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- The fully saturated regime: this regime can be observed when the variations are too 
strong, the micro-rays spread beyond the coherence ray. In that case, we observe a total loss 
of information on the phase noise statistics. 
In this paper, we focus on DOA estimation in presence of a partially saturated regime.  

3. FRAMEWORK 

Observation model 

Considering a N sensors array, one snapshot of the acoustic signal received on the n-th sen-
sor can be written as: 

                                            !                                                (1) 

 with !  the phase noise due to the spatial fluctuations of the medium, !  an element of 
the plane wave dictionary !  with !  , !  the sensor spacing 
and !  the signal wavelength. The aim here is to retrieve !  whose components 
index the atoms of !  (i.e. the directions of arrival ! ) in presence of phase noise and additive 
noise ! . 

Bayesian framework : prior assumptions 

Prior on the sources 

As a first assumption, we consider a small number of DOA: !  is assumed to be sparse. Wi-
thin a Bayesian framework, this constraint can be formulated as a Bernoulli-Gaussian prior on 
!  [11], so that, for each !  : 

   !                               (2) 

 where !  is the Bernoulli parameter, standing for the ‘sparse rate’ , i.e. the probability for  
!  to be non-zero, !  stands for the circular Gaussian distribution with mean !  
and variance ! . Finally, !  is the Dirac distribution. 

Prior on the phase noise 

As mentioned above, we choose the prior on !  with regard to previous works dealing with 
phase retrieval algorithms used for solving DOA estimation problem, studies [7,8] addressing  
the statistical impacts of the fluctuations on the measured signal and works about directional 
statistics [12,10]. In this respect, the multivariate Von Mises distribution appeared to be parti-
cularly suitable [10]: 

                  !                        (3) 
  
with parameters ! and !  relative to a precision matrix,  

also introducing the cosine and sine vector relative to the angular noise,
! . 

yn = e jθn
M

∑
m=1

dnmxm + ηn

θn dnm

D dm = [e j 2π
λ Δsin(ϕm)…e j 2π

λ ΔNsin(ϕm)]T Δ
λ x = [x1, …, xM]T

D ϕm
ηn

x

x xm

p(xm) = ρ𝒞𝒩(xm; mx, σ2
x ) + (1 − ρ)δ0(xm)

ρ
xm 𝒞𝒩(xm; mx, σ2

x ) mx
σ2

x δ0

θn

p(θ ) ∝ exp(κT c(θ, μ) − s(θ, μ)T Λs(θ, μ) − c(θ, μ)T Λc(θ, μ))

μ = [μ1, …, μM]T , κ = [κ1, …, κM]T Λ

c(θ, μ) ≜ [cos(θ1 − μ1), …, cos(θM − μM)]T , s(θ, μ) ≜ [sin(θ1 − μ1), …, sin(θM − μM)]T
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Prior over the additive noise 

Classically, we finally consider the additive noise !  as a white gaussian noise, with zero 
mean and a variance ! . 

4. BAYESIAN ESTIMATION OF THE DOA 

Considering model (1)-(3), we can formulate the DOA estimation problem as a Minimum 
Mean Square Error problem: 

   !                                          (4) 

where !  is the posterior distribution over !  marginalized over the 

phase perturbation ! . Because of this marginalization, solving (4) leads to an intractable pro-
blem. One possible way to circumvent the issue is to search for an approximation of 
! . More specifically, we propose here to resort to variational Bayesian approxima-
tions which try to approach !  with some suitable factorisations minimizing the Kull-
back-Leibler divergence (i.e. the loss of information between the true distribution and the fac-
torized one). Among them, we focus on the so-called Bethe approximation. 

From Bethe approximation to the paSAMP and VITAMIN algorithms 

The Bethe approximation relies on a factorisation of the posterior distribution of interest 
according to some clusters of variables. Minimizing the Kullback-Leibler divergence under 
such a penalization can then be well-handled by Message Passing algorithms [13], namely 
methods based on Belief Propagation. Among them, the Swept Approximate Message Passing 
algorithm [14] was proposed to solve non-linear but still component-wise problem (namely, 
measurements (1) are assumed to be independent from each other). In [6], we extended this 
approach to a Gaussian phase noise, leading to the paSAMP algorithm. Here, we adapt it to 
the multivariate Von Mises distribution (2). Due to space limitations, we omit the derivations 
of the algorithm. We refer however the reader to [15] for more details. We named the ap-
proach VITAMIN (for Von mIses swepT Approximate Message passINg) algorithm. 

5. PROOF OF CONCEPT 

In this section we discuss the performance of the VITAMIN algorithm to justify the inter-
est in refining the phase noise model with more ‘directional-inspired’ methods.  

For this, we run this algorithm on a set of simulated data according to a specific configura-
tion. We want to recover the directions of arrival of !  plane waves over a set of !  poten-
tial angles with an antenna of !  sensors. We consider here a simple setup where the 
phase noise obey a univariate Von Mises law. This corresponds to model (3) with parameter 
! . For the discussed result, we consider homogenous !  and set !  for all n, this 
value is equivalent to a Gaussian noise with a standard deviation of 0.25 radians, correspon-
ding to an important angular perturbation. 

ηn
σ2

̂x = argmin
x̃

∫x
| |x − x̃ | |2

2 p(x |y)d x

p(x |y) = ∫θ
p(x, θ |y)d θ x

θ

p(x, θ |y)
p(x, θ |y)

k N = 32
M = 32

Λ = 032×32 κ κn = 4
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We set the parameter !  and for each of the !  incident waves, each coefficient  of  !  
is designed as a realisation of distribution (2) with ! , !  and ! . 

We want to observe the contribution in terms of reconstruction performance of such a 

prior. To do this, we observe the normalized correlation !  between the true vector !  

and its estimate !  as a function of the additive noise variance and for different numbers of 
sources ! . To obtain stable results we mean this performance index over 200 trials, correspon-
ding to the number of realizations of !  and angular noise.  

Figure 1: Normalized correlation regarding the additive noise variance ! . Here we ob-
serve the performance of conventional beamforming (squared line), prSAMP(dashed line), 
paSAMP(dotted line) and VITAMIN (triangle, solid line), one source (left) and ten sources 

(right). 

Figure 1 illustrates the performance of VITAMIN and - even if the equivalence between 
the Von Mises distribution and the Gaussian distribution can be made for small variances - the 
importance of considering a directional prior in presence of phase noise. Indeed, we can see 
on this figure that VITAMIN outperforms the compressive beamforming and the prSAMP al-
gorithm which do not integrate any informative prior over the phase noise. Moreover, the per-
formance gap between VITAMIN and paSAMP (which exploits a Gaussian prior over the 
phase noise) tends to increase with the number of sources. This may due to the loss of infor-
mation while considering an approximated prior: with a small number of sources, the loss is 
minimized but it tends to rise with the amount of information. 

CONCLUSION 

In this work, we proposed a new implementation of prSAMP with a modelization of phase 
noise from directional statistics. Such an approach can be justified by the fact that in such 
compressive sensing method, good prior knowledge is necessary to achieve perfect estimation 
of ! . After derivation of the calculations, we are able to propose the VITAMIN algorithm, al-
lowing us to perform a better DOA estimation than algorithms which integrate a non-informa-
tive or Gaussian noise prior. 

λ /Δ = 4 k x
mx = 0 + j × 0 ρ = K /M σ2

x = 0.1

|xH x̂ |
∥x∥∥x̂∥
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