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Abstract 

The epigenome represents non-sequence-based modifications heritable during cell 

division, such as DNA methylation, that may affect normal phenotypes and 

predisposition to disease. Here we have performed unbiased genome-scale analysis of 

~4 million CpG sites in 74 individuals using comprehensive array-based relative 

methylation (CHARM) analysis. We find 227 regions with extreme inter-individual 

variability (variably methylated regions (VMRs)) across the genome, which are enriched 

for developmental genes based on Gene Ontology analysis. Furthermore, half of these 

VMRs are stable within individuals over an average of 11 years, and these VMRs define a 

personalized epigenomic signature. Four of these VMRs show covariation with body 

mass index consistently at two study visits and are located in or near genes previously 

implicated in regulating body weight or diabetes. This work suggests a novel epigenetic 

strategy for identifying patients at risk of common disease. 
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Introduction 

A role for epigenetics in common disease has long been suspected [1], and a strong 

relationship has previously been shown for cancer [2]. We have argued that common disease 

involves both genetic and epigenetic factors, and that epigenetic modification could both mark 

environmental effects as well as mediate genetic effects [1]. In addition to particular studies of 

exposure-epigenetic relationships, evidence of epigenetic changes with aging support an 

environmental component to epigenetic variation [3,4,5,6]. Studies of identical twins show 

greater differences in global DNA methylation in older than in younger twins, supporting an age-

dependent progression of epigenetic change [4,6]. Previously we showed global methylation 

changes over an 11 year span in participants of an Icelandic cohort from the Age, 

Gene/Environment Susceptibility (AGES)-Reykjavik Study [7]. Recently, Christensen showed 

age- and tissue-related alterations in some CpG islands based on an array of 1,413 arbitrarily 

chosen CpG sites near gene promoters [5], further supporting the evidence for dynamic 

methylation patterns over time. Other work, however, has suggested that epigenetic marks, or 

their maintenance, are themselves controlled by genes, and are thus heritable in the traditional 

sense and associated with particular DNA variants [8]. This would imply stability of methylation 

marks, rather than variation controlled by changing environments.  

The work we will describe represents the first genome-scale, gene-specific analysis of DNA 

methylation in the same individuals over time. The results offer a solution to the conundrum of 

stable vs. time-sensitive differences in DNA methylation, as we will show both stable and 

dynamic sites of variable DNA methylation. Furthermore, the more stable sites of variation can 

identify a personalized epigenomic signature that may correlate with common genetic disease. 

Methods 

Samples. Non-immortalized lymphocyte samples were taken from participants of the AGES 

Reykjavik Study, which is described in detail elsewhere [9]. 74 samples contributed to these 

analyses. These reflect samples meeting our high quality array data filter among a randomly 

chosen set of 100 samples from the 638 AGES participants that had ample DNA from two visits. 

CHARM data were only considered in analyses if they passed our internal quality assessment. 

For cross-sectional analyses of the most recent collection (visit 7), 64 samples contributed data, 

while 48 contributed to cross-sectional analyses of the earlier visit 6 data. For identification of 

dynamic VMRs, a subset of 38 samples had quality CHARM data at both time points. For the 
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analyses with BMI presented here, BMI was calculated as the body weight in kilograms (kg) 

divided by the height in meters (m) squared. 

Genome-wide methylation assay. We performed comprehensive high-throughput array-based 

relative methylation (CHARM) analysis, which is a microarray-based method agnostic to 

preconceptions about methylation, including location relative to genes and CpG content [10,11]. 

The resulting quantitative measurements of methylation, denoted with M, are log ratios of 

intensities from total (Cy3) and McrBC-fractionated DNA (Cy5): positive and negative M values 

are quantitatively associated with methylated and unmethylated sites, respectively. For each 

sample we analyze ~4.5 milion CpG sites across the genome using a custom designed 

NimbleGen HD2 microarray, including all of the classically defined CpG islands as well as all 

non-repetitive lower CpG density genomic regions of the genome. We include 4,500 control 

probes to standardize these M values so that unmethylated regions are associated, on average, 

with values of 0. CHARM is 100% specific at 90% sensitive for known methylation marks 

identified by other methods (e.g., in promoters), while including the more than half of the 

genome not identified by conventional region pre-selection.  The CHARM results have also 

been extensively corroborated by quantitative bisulfite pyrosequencing analysis [10]. 

Identification of VMRs. We first screened the methylome for regions where methylation varied 

substantially across individuals. We term these variably methylated regions “VMRs”, to 

distinguish them from regions identified for their discrimination of groups, such as tissue types 

or cases versus controls, which we and others have previously called DMRs. Our use of the 

term “VMR” can be considered a specific type of “metastable epi-allele” introduced by Rakyan 

in 2002 to denote variable expression of imprinted loci or variable methylation of an agouti 

methylation variant [12]. 

To identify VMRs from our data, the raw CHARM data were first processed using the statistical 

procedure described by Aryee et al [13]. This statistical procedure produced quality metrics 

(percent between 0-100) for each sample and, for those that passed our quality test (>80%), a 

vector of methylation percentage estimates for each feature on the array. These were then 

smoothed to reduce measurement error using the standard CHARM approach [10,11]. We 

denote the resulting methylation percentages for subject i at microarray feature j for time t as 

Mijt.  

We used cross-sectional analysis of visit 7 data to identify polymorphic variably methylated 

regions (VMRs) based on extreme inter-individual variance across consecutive probes. 
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Specifically, we estimated between subject variability using the median absolute deviation 

(MAD), a robust estimate of the standard deviation [14].  We computed the median of |Mijt-mjt| 

across subjects, with mjt, the median Mijt across subjects i, and referred to it as sjt [14]. To avoid 

false positives in subsequent analysis of correlations with covariates, we required a very 

stringent definition for designating a polymorphic VMR: a region of 10 or more consecutive 

probes attaining values of sjt above the 99th percentile of all the sjt and an average sjt > 0.125.  

We chose these cut-off values using permutation tests. Specifically, we randomized the 

genomic order of the CHARM probes and applied the above algorithm to find VMRs (including 

the smoothing step) for each permuted data set.  Using our criteria, we obtained 0 false 

positives. Lowering either the number of consecutive probes or the average sjt thresholds 

produced false positives. 

These VMRs were then annotated for genomic location and gene proximity. Genes within 3kb of 

VMRs were considered in a GO analysis of biological process categories. For each GO 

category, we performed a hypergeometric test [15], with corresponding nominal p value, to 

determine enrichment of genes near VMRs. We also calculated the false discovery rate for each 

category statistic, to account for the multiple comparisons. 

Identification of stable versus dynamic VMRs. We generated methylation profiles for each 

sample using the average Mijt within the range of each VMR. This included a vector of k VMR 

values for each subject i and time point t. We calculated Dik, the median absolute within-person 

difference between methylation profiles from visit 6 to visit 7 for each VMR k. We then fit a two 

component Gaussian mixture model [16] to these values and used the resulting estimated 

posterior distributions to classify VMRs into three groups: “stable”: those with posterior 

probability of membership in the lower distribution > 0.99, reflecting little intra-individual change 

over time; “dynamic”: those with posterior probability of membership in the higher distribution 

>0.99, reflecting those with high intra-individual change over time; and “ambiguous”: those not 

meeting either criteria, and thus in the overlap between the two distributions. (Note: Among the 

stable VMRs, there is some change over time observed in both directions, and when one takes 

the absolute value of this difference, the result is a small positive number, and thus the central 

tendency of Dk for stable VMRs is not zero.)  

To evaluate discrimination of individuals based on patterns, we applied hierarchical clustering to 

the vectors of methylation values for the VMRs and graphed individuals into a dendogram 
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based on similarity of VMRs. We then selected only those VMRs designated as “stable” in the 

analysis above and repeated the hierarchical clustering and dendogram graphic. 

Identification of BMI-related methylated regions. We performed cross-sectional analyses for 

data at each visit separately. For each stable VMR, we fit a linear regression model to 

summarize the relationship between BMI and methylation. Specifically, for each VMR k, we fit 

the following model: 

Yi=ak + bkMik+eik 

with Yi is BMI for individual i, Mik the methylation level for individual i in the k-th VMR, and e 

representing unexplained variability. Here bk represents the parameter of interest that 

summarizes the correlation between BMI and methylation. This produced one Wald-statistic for 

each VMR. We fit this model to the data from visit 7 and to account for the multiple comparisons 

due to multiple VMRs, we reported a list of regions with a false discovery rate of 0.30. To 

confirm these results, we independently applied the same regression approach to visit 6 and 

obtained estimates of b along with p-values. 

Results 

We report CHARM analyses on samples of the AGES study, assessing 4.5 million CpG sites 

genome-wide. In brief, the AGES study constitutes visit 7 (in 2002-2005) of the Reykjavik Study, 

which began with 18,000 residents of Reykjavik recruited in 1967. The AGES study recruited 

5758 of the surviving members, who were aged 69–96 years in 2002. Of these, 638 gave a 

DNA sample in 1991 as part of the sixth Reykjavik Study visit, and therefore have DNA from two 

time points, about 11 years apart, available for methylation analysis. We present data for 74 

samples, a random set of those who had ample DNA remaining for both study visits. Descriptive 

statistics for these samples are given in Table 1. 

We performed Comprehensive High-Throughput Array-based Relative Methylation (CHARM) 

analysis, which has been shown to identify differential DNA methylation without assumptions 

regarding where such changes would be, and uses arrays tiled through regions based on their 

relative CpG content, including all CpG islands, as well as CpG island “shores” which have been 

shown to be enriched in differential methylation  {Feinberg,  #47}. 

CHARM analysis in the visit 7 sample identified 227 regions meeting our criteria for polymorphic 

methylation patterns across individuals (variably methylated regions, VMRs). These represent 
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regions of extreme variability across individuals defined by 10 or more consecutive probes with 

an average standard deviation > 0.125 (Supplementary Table 1). These VMRs showed 

enrichment for development and morphogenesis categories (Table 2), including genes from all 

four HOX clusters. The appearance of developmental genes is predicted by our model that 

epigenetic variation would involve developmental genes, and this variability itself increases 

evolutionary fitness in an environmentally changing world [14]. 

We then considered whether methylation at these regions changed within individuals over time. 

The distribution of the absolute value of average within-person change in methylation over time 

per VMR is shown in Figure 1, which implies two underlying distributions. This fit a two-

component mixture model, with 41 VMRs easily classified into the higher intra-individual 

difference group (probability of membership in orange distribution > 0.99, Figure 1), which we 

label “dynamic VMRs”, 119 VMRs easily classified into the lower distribution (probability of 

green distribution > 0.99), which we label “stable VMRs”, and 67 residing in the overlapping 

region and thus labeled “ambiguous” with respect to intra-individual change over time.  Thus, 

approximately half the regions that are variably methylated across individuals appear to be 

stable over time within individuals. 

These VMRs appear to act as an epigenetic signature. Figure 2A shows a dendrogram based 

on clustering of similarity in vectors of methylation values at VMRs. Use of only stable VMRs in 

the clustering algorithm uniquely identifies each individual (Figure 2B). These stable VMRs may 

represent polymorphic methylated regions that are not particularly susceptible to exposure 

modifications or that do not naturally change with age. One can postulate that these stable 

VMRs, sites that are variable across individuals but not due to exposures or age, may be the 

methylomic sites with variation most likely controlled by inherited mechanisms such as DNA 

variation or stochastic methylation reassignment in development. 

Our results help focus epidemiologic hypotheses about how methylation may play a role in 

disease risk by allowing focused attention to particular VMRs in the methylome. In this vein, we 

explored the relationship between methylation and an easily measured phenotype, BMI, that is 

known to have many disease correlates. We identified 13 VMRs that met a false discovery rate 

(FDR) criteria of <25% in cross-sectional analyses of visit 7 (Table 3). Of these, 4 had a P < 

0.10 and the same strength and direction of correlation with BMI at the earlier visit 6. These 

VMRs are in or near genes PM20D1, MMP9, PRKG1, and RFC5. To illustrate our findings, the 

methylation curves among obese (BMI≥30) and normal (BMI<25) subjects for the VMR at 
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PM20D1 are shown in Figure 3. Scatter plots for the relationship between methylation and BMI 

for all four VMRs showing significant correlations at both visits are shown in Figure 4.  

Discussion 

We previously showed that global DNA methylation changes within individuals over time [7], and 

we have now confirmed and identified the locations of site-specific changes at “dynamic VMRs” 

using a genome-wide approach. In addition, we identified a separate set of “stable VMRs” that 

can be used to uniquely identify individuals, in a epigenetic signature akin to genetic 

fingerprinting. This signature may be correlated with disease status, implying epigenetic 

signature can mark disease risk or disease states. In particular, we show stable VMRs that 

correlate with BMI at two separate visits a decade apart. 

Some have argued that DNA methylation changes over time and is an important biological 

mediator of environmental effects on human disease, while others support the concept of 

inherited DNA methylation patterns, implying they are potentially variable across individuals but 

less likely to be dynamic over time. This has been a conundrum, since these appear to be 

opposing ideas. However, we show that both ideas have merit. It is important to identify these 

regions in the context of disease consequences, since those that are particularly labile may be 

the sites relevant when considering epigenetic marks as mediators of environmental effects, 

while those that are stable may be relevant as mediators or moderators of genetic effects. 

Further, those that do not change over time can be used as an epigenetic signature for and 

individual, similar to genotype. These regions can then be considered as candidates for 

assessment of methylation associations with disease or health-related phenotypes under 

specific risk models. 

Our results help focus the integration of methylation measurement into epidemiologic studies of 

disease risk by providing specific genomic sites for inquiry. Our exploration of possible 

correlations between methylation at these VMRs and an easily measured disease-related 

phenotype, BMI, identified 13 genes, 4 of which were consistently correlated with BMI across 

two separate study visits. Remarkably, many of these have been previously implicated in 

obesity or diabetes. MMP9, as well as another member of this family, MMP3, encodes a 

metallopeptidase that have been shown to be upregulated in obese individuals [17]. Several 

MMPs, including MMP9, are upregulated in human adipocytes [18]. Matrix metallopeptidases 

have also been previously associated with obesity in rodent models [19,20]. Interestingly, 



9 
 

PM20D1 is also a metalloproteinase, and, although not yet well-characterized, may have similar 

implications for obesity. PRKG1, a cGMP-dependent protein kinase, plays an important role in 

foraging behavior, food acquisition and energy balance [21]. RFC5 is an intriguing gene as it 

encodes a metabolism-linked DNA replication complex loading protein, dysfunction of which 

leads to DNA repair defects. It might thus play a role in well-known but poorly understood DNA 

damage related complications of diabetes.  

In an obese mouse model, SORCS1 has been located on a type 2 diabetes quantitative trait 

locus (QTL) [22], and this has been confirmed in humans, where SORCS1 SNPs and 

haplotypes were associated with fasting insulin secretion [23]. IL1RAPL2 is located at a region 

on chromosome X that is associated with Prader-Willi like syndrome, while DACH2 is also an X-

linked gene associated with Wilson-Turner syndrome, both of which are Mendelian disorders 

with obesity features. TTC13 is part of a family containing another tetratricopeptide repeat gene, 

TTC8, that has been directly linked to Bardet-Biedl syndrome, which includes obesity as a 

primary feature. APCDD1 is a positional candidate gene associated with QTL that affects fat 

deposition in pigs [24], and is located at a region on chromosome 18 that is linked to body fat 

(%) in men [25].  

Our identification of VMRs is of course limited by the number of individuals contributing to this 

genome-wide CHARM analysis. It is likely that increased sample sizes will improve detection of 

additional VMRs. Further, the dynamic VMRs defined here are based on an eleven year window 

among elderly participants. It is important to also identify methylomic regions that show intra-

individual changes at early segments of the lifespan, and to connect these changes to particular 

environmental exposures.  Also, our analyses were based on methylation patterns in DNA 

derived from blood, thus containing a mixture of cell types that could confound our results. 

However, in our previous study of global DNA methylation (i.e. non-site-specific) in these 

samples, we found no relationship between lymphocyte count and methylation [7].  A recent 

paper by Heijmans (2010) also showed that cellular heterogeneity was not associated with DNA 

methylation amounts for the majority of sites they studied [26]. Our use of blood as a DNA 

source may also limit the interpretations of these results, given the tissue specificity of DNA 

methylation. However, there is growing precedent for lymphoid tissues serving as a good 

surrogate tissue for changes in other target tissues. For example, loss of imprinting (LOI) of 

IGF2, one of the best studied disease-related epigenetic mutations, is found in both 

lymphocytes and colon, and changes of either are associated with increased colorectal cancer 

risk (Cui et al. Science 2003).  Finally, our exploration of the correlation between BMI and 
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methylation was based on availability of quantitative data and relevance to human disease. We 

were unable to assess the relationship of VMRs to categorical outcomes in this sample that is, 

although larger than previous genome-wide site-specific methylation reports, is limited for 

categorical phenotypes. This study supports further examination of other measures of obesity, 

diabetes, and related health consequences with respect to the particular VMRs identified here. 

These results have important implications. An individual epigenetic signature that is stable over 

time has not previously been described. Such a signature could be driven by underlying 

sequence variation, by early environmental exposure, e.g. prenatally, or both. Even if in part or 

completely genetically driven, this epigenotype may be more proximate to the ultimate 

phenotype, in this case body mass index, and thus have considerable value for disease risk 

assessment. While the sample size is larger than previous genome-scale gene-specific 

methylation studies, it is still relatively small compared to classical sequence-driven approaches 

such as GWAS. Even so, the data suggest that this epigenomic approach to disease phenotype 

will be an important complement to such studies. Even with these numbers, we could identify 

four genes with VMRs related to BMI. In addition, the identification of stable VMRs may have 

long term consequences for developing personalized epigenomics in medicine, that might 

reflect both one's genome and early (e.g. in utero) environment.  
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Table 1. Descriptive Information (Mean (standard error)) for 

Samples Used in CHARM Analyses at Each Time Point 

 Visit 6 

(1991) 

Visit 7 

(2002-2005) 

Age 74.08 (3.49) 82.80 (3.45) 

Sex (% male) 0.33 0.31 

BMI 26.56 (3.81) 26.01 (4.10) 

Glucose 0.08 (0.28) 0.11 (0.32) 

Type 2 diabetes (%) 5.90 5.79 

Coronary events (%) 0.10 0.14 

Waist/hip ratio - 0.66 (0.10) 

Fat percent - 29.31 (7.89) 

Hemoglobin A1C - 0.47 (0.07) 

 N=48 N=64 
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Table 2. Gene Ontology Results with P<0.01 for 227 VMRs Identified  

Pvalue 
 

FDR 
Odds 
Ratio 

Obs 
Count 

Expected 
Count GO Term 

 
Genes 

0.0011 0.222 7.04 5 0.79 Ant./post. pattern formation HOXA5; HOXB6; HOXD8; HOXC10; HOXA1 
0.0019 0.222 43.31 2 0.07 blastoderm segmentation HOXB6; HOXD8 
0.0019 0.222 43.31 2 0.07 determ. anterior/post. axis,  embryo HOXB6; HOXD8 
0.0082 0.256 17.31 2 0.14 neuron recognition FOXG1; NTM 
0.0086 0.256 3.63 6 1.77 pattern specification process HOXA5; FOXG1; LEF1; HOXC10; MYF6; HOXA1 
0.0096 0.256 7.47 3 0.44 placenta development ESX1; LEF1; CDX4 
0.0096 0.256 15.74 2 0.15 intra-Golgi vesicle-mediated transport COPZ1; GABARAPL2 
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Table 3. Stable VMRs Associated with BMI 
    Visit 7   Visit 6 

Chr 
Nearest 

Gene Qval Pval 
Regression 

Estimate Pval 
Regression 

Estimate 
chrX IL1RAPL2 0.114 0.00304 -20.3 0.266 -8.9 
chr1 PM2OD1 0.114 0.00332 7.6 0.00824 7.7 
chr6 NEDD9 0.114 0.00351 12.1 0.38 5.2 
chr20 MMP9 0.160 0.00658 11.6 0.0605 8.9 
chr10 SORCS1 0.215 0.0128 -13.6 0.112 -9.4 
chr10 PRKG1 0.215 0.0132 11.8 0.000711 18.9 
chr12 RFC5 0.243 0.0175 -11.8 0.0653 -8.8 
chr1 TTC13 0.249 0.022 9.27 0.523 3.3 
chrX DACH2 0.249 0.0311 -15.1 0.539 4.1 
chr5 TRIM36 0.249 0.0326 11.3 0.0781 -14.1 
chr14 FLRT2 0.249 0.0278 -9.5 0.19 -5.8 
chr1 C1orf57 0.249 0.0253 -10.6 0.282 -6.5 
chr18 APCDD1 0.249 0.0332 -10.7 0.901 0.7 
Bold values indicate confirmation in visit 6 analysis (p<0.1 and consistent 
regression parameter estimates); italics indicate conflicting directions of correlation 
with BMI 
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Figure Legends 

Figure 1: Distribution of intra-individual change over time at VMRs. Mixture distribution 

analysis shows Dk, the average absolute value of intra-individual differences in methylation over 

time, fits two underlying curves: little change, “stable” in green and larger changes, “dynamic” in  

orange. 

Figure 2: Similarity between individuals based on VMR methylation. Panel A: Dendogram 

based on clustering applied to methylation profiles at all 227 VMRs. Panel B: Dendogram 

based on clustering applied to methylation profiles using only the 119 stable VMRs. Numbers 

represent individual IDs. 

Figure 3: Methylation Curves at PM20D1. Methylation curves for visit 7 and visit 6 data. 

Dashed lines are individual methylation curves. Solid lines are average curves by obese (blue) 

and normal (red) groups. The green line indicates the boundaries of the VMR. CpG density is 

shown below with CpG islands marked in orange. Gene location shown at bottom. 

Figure 4: Correlations Between Methylation and BMI at Six BMI-Related VMRs. Points are 

individual IDs, blue indicates visit 7, red indicates visit 6. 
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