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Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors.
Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often
installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although
undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or
transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become
so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come.

1. Introduction

The threatened epidemic of T2DM, largely driven by the
increase in obesity, is projected to affect >400 million adults
worldwide by 2030. Obesity and T2DM, beyond their def-
inition as “diseases,” are becoming the “normal” metabolic
fate of a large fraction of modern human populations,
notably in those of Asian descent [1]. This human tendency
to eat in excess of the needs, to gain fat, and not to
have an unlimited insulin secretion capacity, certainly has a
widespread genetic background in our species, but the recent
epidemics obviously finds its main sources in environmental
changes. Those environmental changes can affect phenotype
directly or through epigenetic mechanisms that provide an
interface with the genome. This is why, in the minds of many,
epigenetics has become a leading causative candidate for the
causation (and possibly inheritance) of obesity and T2DM.
There is no smoke without fire: epigenetic mechanisms
have great potential to contribute to the mechanisms and
possibly the causes of many environmentally sensitive human
diseases. But epigenomics and epigenetic epidemiology are
yet at a stage where genomics was 30 years ago, when
everyone was working on his part of the puzzle.

The complete DNA sequence of an organism does not
contain the information necessary to specify the organism.
The outcome of developmental processes depends both on

the genotype and on the temporal sequence of environments
in which the organism develops. If the phenotype of
the organism of a given genotype is plotted against an
environmental variable, the function that is produced is
called the norm of reaction of the genotype [2]; it is the
mapping function of environment into phenotype for that
genotype. Since norms of reaction of different genotypes
are curves of irregular shape that cross each other, it is not
possible to predict the phenotypes of different genotypes
in new environments. Indeed, the outcome of development
of any genotype is a unique consequence of the interaction
between genome and environment.

The term epigenetics was originally introduced to
describe how genetics and environment can interact to give
rise to phenotypes during development [3]. Epigenetics
more specifically defines cellular modifications that can be
heritable during division, but appear unrelated to DNA
sequence changes, and can be modified by environmental
stimuli [4, 5]. In a more recent view, epigenetics encom-
passes “mitotically heritable alterations in gene expression
potential” [6], a definition that we have favored in this paper.
Epigenetic mechanisms typically comprise DNA methylation
and histone modifications (referred to as epigenetic marks),
but also include other mechanisms. Epigenetic marks are
established during prenatal and early postnatal development
and function throughout life to maintain the diverse gene
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expression patterns of different cell types within complex
organisms but can also arise in mature humans, either by
random change or under the influence of the environment.
Epigenetic mechanisms, thus, make possible that changes
in gene expression in response to an environmental cue
can persist in an individual, and possibly in his offspring
and grand offspring, long after the cue has disappeared.
In addition to mitotic inheritance, some epigenetic marks
may be meiotically heritable, conferring the potential for
transgenerational epigenetic inheritance [7]. For all of these
reasons, a yet hypothetical causal pathway emerges in
which some environmental factors that have been increas-
ing in recent decades are commensurately deranging the
establishment of epigenetic mechanisms that contribute to
plasma glucose regulation, leading to the current explosion
in T2DM incidence. Epigenetics might, thus, contribute
to self-perpetuate and amplify environmentally sensitive
mechanisms through which obesity and T2DM beget obesity
and T2DM.

2. The Medical Definition of T2DM

The medical definition of T2DM relies upon the minimal
value of plasma glucose (PG) that is associated with an
increased risk of microvascular and macrovascular complica-
tions in late life. The threshold of fasting PG used for defining
T2DM has been set at 7.0 mM at the end of the 1990s [8].
People whose fasting PG exceeds this value have, for example,
a nearly 2.5 fold increase in coronary disease [9, 10]. This
value is also said to represent an optimal cut-off point to
separate the components of bimodal frequency distributions
of PG, but this cutoff does not always exist or varies across
populations [11]. The risk of developing T2DM increases
as fasting PG increases, even within the normal range [12–
14]. Rarely an isolated condition, T2DM, is most often
one of a set of features called metabolic syndrome (MS),
of increasing prevalence in middle-aged humans, including
obesity, hypertension, dyslipidemia.

3. The Causation of T2DM

Observational epidemiology, through population-based
cohorts or case-control studies, found a robust association
of T2DM with age, obesity, affluent diets, sedentary life,
low socioeconomic status (in developed countries), high
socioeconomic status (in underdeveloped countries), eth-
nicity [15], and smoking [16]. Association does not mean
causation [17]. However, losing weight, eating less, and
exercising are able to reverse T2DM [14], establishing a clear
cause-to-effect relationship between these environmental
conditions and T2DM. The biological mechanisms through
which environmental factors can cause T2DM are partly
known for obesity, lack of muscular activity, and ageing [18],
but yet remain largely unknown for socioeconomic factors,
smoking, and ethnicity. Some of these factors, like adiposity
[19], waist-to-hip ratio [20], ethnicity [21], and smoking
[22], are themselves determined partly by genetic factors,
which are, thus, components of the genetic susceptibility to
T2DM [23].

Following enthusiastic claims by geneticists in their early
papers, agnostic genome-wide association studies (GWASs)
were supposed to provide a novel understanding of T2DM
causation. However, the common variants found associated
with T2DM provided little biological indication about their
implication in T2DM pathogenesis; some were located in
gene regions, but functional variants in linkage disequilib-
rium with the common variants found by GWAS were rarely
found [24]. Furthermore, taken together and added, the
common variants statistically associated with T2D (each with
a small odd ratio) have a very limited capacity to help predict
T2DM, compared with simple indices like obesity, waist-to-
hip ration, or a familial history of T2DM [25]. It is hoped
that new genetic [26, 27] or nongenetic causative factors, like
the epigenetic regulation of the expression of genes involved
in the maintenance of PG homeostasis, will emerge.

Since PG is both a predictor of T2DM [13, 14] and the
basis for its medical definition, it was attractive to study
the variation of PG as a quantitative trait (QT) in the
general population. The causality of QT variation such as
PG is known to be a mixing of genetic, epigenetic [28],
and environmental factors. This turned out to be a poorly
fertile approach for T2DM. Environmental factors already
associated with T2DM, such as obesity or diet [29], were
found causative of variation in PG levels. In contrast, the
sharing of genetic factors between T2DM and glucose has
remained limited [30–35]. Studying MS was another option
to gain understanding in T2DM causality [36], but again the
overlap of genetic factors with T2DM was minimal.

4. Phenotypic Dissection of T2DM

PG or MS may not be the best phenotypic traits to interrogate
in order to understand the causes of T2DM. A phenotypic
dissection of T2DM mechanisms at the level of the whole
organism, using the tools of physiological investigation, may
be more meaningful. T2DM results from the imbalance
between glucose production and glucose utilization [37],
reflecting the imbalance between the insulin resistance (IR)
of muscle, adipose tissue, and liver and the secretion of
insulin (IS) by the β-cell mass [38–44]. Sometimes called
the “endophenotypes” or the “subphenotypes” of T2DM,
these QTs are the physiological mechanisms that underlie
T2DM [45]. Studying IR and IS separately could overcome
the problem that each individual with T2DM may display
his own pattern of alterations in IR and IS (phenotypic
heterogeneity) [46]. For example, autopsy studies report
deficits in β-cell mass ranging from 0 to 65% in T2DM [47].
Phenotypic heterogeneity is also observed at a population
level; for example, T2DM develops at a younger age in
Asian populations than in the European population [1].
Other difficulties are that IR and IS are not easy to measure
reliably in hundreds of persons, are dependent on each
other (phenotypic interaction), and show various patterns
of intra -and interindividual changes during the different
life periods preceding T2DM diagnosis [42]. In addition,
once T2DM has occurred, it creates its own perturbations
including changes in lifestyle, diet, treatment, and metabolic
and endocrine dysfunctions which are then difficult to
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disentangle from primary changes in IR and IS [48]. Three
different approaches taken to study the distinctive genetics of
IR and IS could inspire future epigenetic studies of T2DM. A
first approach is to test the genetic variants found associated
with T2DM for their subsequent “sub-association” with IR
or IS in nondiabetic individuals [49–53]. Another possibility
is to perform GWAS for IR and IS directly in non diabetic
individuals [34, 54]. A third approach is to test whether
genetic variants in the genes known to be involved in
monogenic forms of T2DM play a role in common forms of
T2DM [55]. Among susceptibility loci for T2DM identified
by GWAS, most are situated near genes involved in IS and
almost none in IR [50, 52, 53]. GWASs are usually performed
without reference to patients’ environment, diet, or physical
activity, which have their own effects and may modify
genetic predisposition [56]. Since it conveys environmental
influences in phenotypic traits, epigenetics are likely to
provide new mechanisms to understand the natural history
of a failing IS or of augmenting IR in a gene-environment
context.

5. Complex Traits Inheritance

Distinct from the causation of T2DM, the following two
paragraphs deal with the inheritance of T2DM. All causative
factors of T2DM are not inherited, while all inherited factors
of a disease are necessarily causative, even as a small part of
the disease causes. Inheritance, the driving force of evolution,
is defined by “the transmission of traits from one generation
to another”, while heredity is restricted to “the passing
of genetic factors from parent to offspring (or from one
generation to the next).” There is no doubt that inheritance
in humans includes the four dimensions initially described
by Jablonka and Lamb: genetics, epigenetics, learning, and
symbols [7].

Heritability is the proportion of the phenotypic variance
in a population that is attributed to genetic variation between
individuals. Phenotypic variation among individuals may
be due to genetic, environmental factors, and/or random
chance. Heritability analyses estimate the relative contribu-
tions of differences in genetic and nongenetic factors to
the total phenotypic variance in a population. Heritability
estimates are traditionally obtained by comparing the extent
of similarity between relatives in classical twin studies, twin-
adoption studies, sib/half-sib studies, and transgenerational
family studies. Twin studies are unbiased by age effects and
help separate environmental from genetic effects.

Heredity is a part of the T2DM inheritance system,
as shown by monozygotic (MZ) twin concordance and
familial aggregation [57] but it is further undermined by an
impressive degree of “missing heritability” as well. Missing
heritability of T2DM comprises the supposedly genetic
causes of T2DM that have not yet been identified in current
GWASs. Probandwise and pairwise concordance rates for
T2DM have been estimated from 0.18 to 0.43 in dizygotic
(DZ) twins and from 0.17 to 0.76 in MZ twins [58–62]. If
these numbers reflect the true heritability of T2DM, they
indicate that inheritance is high for T2DM but has only a
limited genetic component. Phenotypic differences within

MZ twin pairs are classically attributed to environmental
factors. We know now that variation in epigenetic marks
between two MZ twins [63–65] can also explain phenotypic
differences. MZ twins are derived from the same one-cell
zygote, thus, share not only their genomic sequence but also
the same initial epigenetic factors except for egg cleavage
asymmetry.

Rather than questioning the true genetic nature of
their heritability estimate, geneticists have proposed several
explanations for the missing heritability problem [66–68].
First, they took an optimistic look on the idea of rare variants
not seen in the current GWASs that would either be in
linkage disequilibrium with the observed common variants
or have to be found by themselves [69]; few of these rare and
functional variants have emerged till now [26, 27]. To explain
missing heritability, geneticists also call for the rescue of the
concept of gene-gene epistatic interrelations [70] that would
increase significantly the role of found gene variants [71, 72],
a hypothesis that remains yet impossible to prove but has
a lot of biological rationale. Epistatic interactions are not
restricted to gene-gene interactions but are widely opened
to gene-epigenetic factors or gene-environment interactions.
Disregarding gene-environment interactions, as if genes were
having their predisposing effects in whatever environment,
could also be a key to the missing heritability of T2DM
[73–75], given the major role of environmental factors in
this disease. As said before, it is also possible that the
poor phenotypic resolution of calling T2DM a number
of different IR and IS phenotypes, which disregards the
phenotypic complexity and heterogeneity of this disease,
contributes to the missing heritability problem, by missing
not the analysis of the genotype but that of the phenotype
[76]. But it also possible that MZ twins, and to a lesser
degree DZ twins, or siblings share more nongenetic factors
than expected, resulting in an overestimation of heritability,
the genetic part of inheritance. Among these nongenetic
factors that may confound heritability estimates, one finds
again environment in the first place, possibly expressed
via epigenetic marks inherited from a shared womb or
via transgenerational epigenetic inheritance of methylation
patterns from mother or even grand mother [67]. Epigenetic
changes clearly contribute to phenotypes, but the extent to
which they contribute to phenotype heritability is unknown.
To address this point from a methodological point of view,
a study suggested that although epigenetic changes can add
to individual disease risk (T2DM causation), they can only
contribute to heritability when the stability of methylation
transmission during meiosis is very high. To overcome this
restriction, Tal et al. have combined a quantitative genet-
ics approach with information about the epigenetic reset
between generations and assumptions about environmental
induction to estimate the heritable epigenetic variance and
epigenetic transmissibility [77].

6. Gene-Environment Interactions:
The Epigenetic Interface

To state that most complex diseases are caused by an interac-
tion between genome and environment is a cliché. Such
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interactions, while likely, have for the most part not been
demonstrated. Genetics, that is the DNA sequence with its
individual variants, is inherited from the parents and will
remain intact for the whole lifespan: it will participate to
the individual variation of the phenotype, thus, to disease
causation, through functional variants that are shared by
T2DM cases in excess of controls. Environment is even more
complex than genetics, since it is made of a continuous flow
of space-time exposures from the time of one-cell zygote to
the time of disease onset. A first EWAS (Environmental-Wide
association study) was performed in a T2DM cohort and
identified potential environmental factors with effect sizes
comparable to loci found by GWAS [78]. Since the quantifi-
cation of environmental influences is notoriously difficult,
it is hoped that greater understanding of the epigenome
will offer a direct and quantifiable link between putative
environmental influences and pathways relevant to T2DM
pathogenesis. However, our understanding of environmental
influences on epigenetic processes remains rudimentary.
Hence, we currently have a limited ability to propose specific
environmental exposures whose increasing magnitude might
influence epigenetic mechanisms at the population level and
thereby contribute to the secular increase in T2DM.

Environmental factors are many. Because of the rapid
increase in T2DM incidence in most countries, it is interest-
ing to suspect emerging factors that have become common
part of modern human environments. For simplicity, one
can distinguish two different parts in our environment: the
physical-chemical-biotic world that is surrounding us at
every moment of our lives and the psychological exchanges
with other human beings. The first world includes available
food, climate, nutrients, tobacco, endocrine disruptors [79],
food micronutrients such as vitamin D, zinc or folate, trace
elements, gut microbiome [80], infectious agents [81], and
many other environmental factors that we do not suspect yet
to be causative of T2DM. Some of these factors, like food
history and agriculture, may have shaped part of the ethnic
and geographic differences in T2DM prevalence that are
observed across human populations, for example, between
European and Asians [82]. But human environment is not
restricted to physical, chemical, or biotic factors. “Man is
a thinking reed” (B. Pascal, Pensées, VI, 346–348). A lot of
changes faced by humans, like those defining their lifestyle,
mode of feeding, physical activity, and habitat, are directly
dependent on personal choices and social interactions, which
are themselves dependent on individual behaviors, intel-
lectual skills, education, learning, psychological experiences
including stress, as well as emotional, cognitive, and cultural
factors. Affluent diets, access to food, feeding choices, and
nutrition along whole life belong to both categories of envi-
ronmental factors since they depend as much on personal
choices, social interactions [83], and history [82] as on the
foodstuff itself. Gene-environment interactions can also be
defined at a population level, where epigenetics is likely to be
one of the components of the “ethnical melting pot” [84, 85]
that already relies on geographically driven genetic variation
[86], possibly fixed in East Asia [87, 88], past adaptations
to climate [89], and current environmental and cultural
differences: some of these interacting factors are likely to

contribute to create variation in T2DM incidence in specific
populations [90, 91]. Gene environment interactions should
also be viewed in an evolutionary perspective since it is
considered that these interactions have shaped the variation
of complex traits, among which glucose-insulin homeostasis
is central to energy metabolism, thus, human fitness. As
a driving force of evolution associated with genetics [92,
93], epigenetics may have played a role in the metabolic
adaptation of men to their changing environments.

7. The Molecular Bricks of Epigenetics

A person’s liver cells, pancreatic β cells, muscle cells, adipose
cells, and hypothalamic neurons look different, replicate,
and function differently, yet they contain the same genetic
information. With very few exceptions, the differences
between specialized cells are epigenetic not genetic. They
are the consequences of events that occurred during the
developmental history of each cell type, starting with the
initial one-cell zygote and determined which genes are
turned on and how their products act and interact (Table 1).
Not only specialized cells can maintain their own particular
phenotype for long periods, but they can transmit it to
daughter cells. This information is transmitted through
epigenetic systems.

The first types of epigenetic systems are the chromatin-
marking system and the DNA methylation system, which we
call “epigenetic marks.” Much of today’s epigenetic research is
converging on the study of covalent and noncovalent modi-
fications of DNA and histone proteins and the mechanisms
by which such modifications influence overall chromatin
structure. Genomic DNA in eukaryotic cells is packed
together with special proteins, termed histones, to form
chromatin (Figure 1). The basic building block of chromatin
is the nucleosome, which consists of <147 base pairs of DNA
wrapped around an octamer of histone proteins composed
of an H3-H4 tetramer flanked on either side with an
H2A-H2B dimer. Although the core histones are densely
packed, their NH2-terminal tails can be modified by histone-
modifying enzymes, resulting in acetylation, methylation,
phosphorylation, sumoylation, or ubiquitination [94]. These
modifications are important for determining the accessibility
of the DNA to the transcription machinery as well as for
replication, recombination, and chromosomal organization.
HDACs remove and histone acetyl transferases (HATs) add
acetyl groups to the lysine residues on histone tails [94–
96]. Although it is well established that HAT activity and
increased histone acetylation correlate with increased gene
transcription, the exact mechanisms promoting transcrip-
tion are less clear [97]. Native lysine residues on histone
tails contain a positive charge that can bind negatively
charged DNA to form a condensed structure with low tran-
scriptional activity. However, different models have recently
been proposed, including the histone code hypothesis,
where multiple histone modifications act in combination
to regulate transcription [97, 98]. Histone methylation can
result in either transcriptional activation or inactivation,
depending on the degree of methylation and the specific
lysine and/or arginine residues modified [99, 100]. Histone
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Table 1: A glimpse at the epigenetic agenda in the T2DM context.

Genome Epigenome
Immediate

environment
Known relations
with T2D

Germ cells

Oocyte
Meiosis I completed
Meiosis II arrested

Establishment of methylation
imprints

Maternal diabetes increases
oocyte apoptosis

Spermatozoan

Establishment of methylation
imprints
Displacement of histones by
protamines

Fecundation

One-cell
zygote to
morula

Female DNA
Meiosis II completed Passive DNA demethylation

Imprinted genes retain their
germline imprints.

Male DNA

Protamines/histones exchange
Histone acetylation

Oviductal
(maternal)

“Fertility ?”
Histone monomethylation

Active DNA demethylation

Methylation remains in
centromeric regions, IAP
retrotransposons, and paternal
imprinted regions

Both sex Histone di- and trimethylation

Implantation

Foetus

Embryo XX
PGC female:

meiosis I

X inactivation
PGC: DNA demethylation and
imprint erasure

Placental
(maternal)

Maternal T2DM/GDM
increases embryo
malformations.

Embryo XY

PGC: DNA demethylation and
imprint erasure and then DNA
remethylation in
prospermatogonia

Maternal nutrition changes
DNA methylation on key
metabolic genes: PPARα,
IGF2, . . ., etc.

Both sexes

De novo DNA methylation
Ectoderm (brain), endoderm
(liver, β cells), mesoderm
(skeletal muscle, adipose tissue,
blood)
Tissue differentiation: T-DMRs

Birth

Baby/child
Girl
Boy

Both sexes

PGC: DNA remethylation
—

Stochastic modifications
Whole organism

Delivery of a macrosomic
fetus.
Nutrition affects DNA
methylation of key
metabolic genes: FASN,
POMC, . . ., etc.
Insulin and glucose effects
on methionine metabolism

Puberty

Adulthood

Both sexes Aging: stochastic modifications Whole organism

methyltransferases and histone demethylases mediate these
processes [100]. Chromatin marks are transmitted during
cell division and enable states of gene activity or inactivity
to be perpetuated.

One of the main epigenetic systems studied is DNA
methylation. DNA methylation occurs principally at a cyto-
sine base, mainly in CpG dinucleotides in vertebrates.

Methionine reacts with ATP to form S-adenosyl methionine
(SAM), which is the methyl (–CH3) donor for DNA methy-
lation (Figure 1). DNA methylation requires the activity of
methyltransferases: DNMT1, which copies the DNA methy-
lation pattern between cell generations during replication
(maintenance methylation) and DNMT3A and DNMT3B,
which are responsible for de novo methylation of DNA. The
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DNA

Folate Methionine

Remethylation
Betaine

Choline

Homocysteine

Transmethylation

CH3-DNA

Transsulfuration
CβS

SAH

DNMT

SAM

BHMTMS

MTHFR

Cysteine

(a) Methionine metabolism and DNA methylation

TBP

CG

Gene repression

Gene expressionIIB

DNMT

MeCP MBD

Pol II

IIF

CmG

(b) DNA methylation in a gene promoter region

CG

Gene repression

Gene expression

IIF

IIB

DNMT

MeCP
MBD

HDAC

H3
H4

H2A H2B

H3
H4

H2A
H2B

HAT

Pol II
TBP

CmG

SAM: S-adenosyl methionine

DNMT: DNA methyltransferase

SAH: S-adenosyl homocysteine

CβS: cystathionine β-synthase

BHMT: betaine-homocysteine S-methyltransferase

MS: methionine synthase

MTHFR: methylene tetrahydrofolate reductase

IIB, IIF: initiation factors

TBP: TATA-binding protein

Pol II: RNA polymerase II

HAT: histone acetyltransferase

H3, H4, H2A, H2B: histones

HDAC: histone deacetylase

MeCP, MBD: methyl-binding protein

(c) Histone acetylation plays an important role in the regulation of gene expression

Figure 1: Schematic figure of epigenetic regulation mechanisms.

haploid human genome contains approximately 29 million
CpGs. The stochastic DNA methylation at particular loci
may be altered by environmental exposures and diet and
may be heritable transgenerationally [101]. In mammals,
centromeric and pericentromeric regions, as well as other
repetitive elements are heavily methylated. Many genes also

show high degrees of methylation, like bodies of active genes.
In contrast most promoter regions and CpG islands (CGIs)
lack DNA methylation. CGIs are CpG-rich regions [102],
which overlap the promoter region of 60–70% of all human
genes [103–107]. Recent studies identified CGI shores as key
DNA methylation gene regulatory sites [108, 109]. These
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regions are defined as regions of lower CpG density that
lie in close proximity (≤2 kb) but often not within CGIs.
Biophysical studies reveal that DNA methylation plays an
important role in repressing accessibility of the transcrip-
tional machinery to the DNA. Indeed, the binding of some
transcription factors like Sp1 is known to be methylation
sensitive. A second potential mechanism for methylation-
induced gene silencing is through its direct binding of
specific transcriptional repressors to methylated DNA, like
MsecCP-1 and MeCP-2. MeCp-1 binds to DNA containing
multiple symmetrically methylated CpG sites [110]. MeCP-2
is more abundant than MeCP-1 and is able to bind a single
methylated CpG pair [111]. A third mechanism by which
DNA methylation may mediate transcriptional repression is
by the recruitment chromatin remodeling enzymes, which
change histone posttraductional modification.

Noncoding RNAs (ncRNAs) are another type of epi-
genetic actors [112], since they can impact expression of
imprinted and nonimprinted genes and are transmitted to
daughter cells during mitosis and from sperm and oocyte to
the zygote. A large proportion of eukaryotic transcription
is bidirectional, producing ncRNAs that can overlap with
the transcription of protein-coding genes. NcRNA regu-
lated gene expression by cis- and trans-acting mechanisms
[113]. Some ncRNAs act in concert with components of
chromatin and the DNA methylation machinery to establish
and/or sustain gene silencing [114]. Through RNA-RNA
base pairing, RNA-protein interactions and intrinsic RNA
activity, ncRNAs can also regulate RNA processing, mRNA
stability, translation, and protein stability and secretion.
Some ncRNAs interact with transfer RNAs, ribosomal
RNAs, and mRNAs, and can contribute to gene splicing,
nucleotide modification protein transport and regulation
of gene expression. There are various classes of ncRNAs
[115–118]. Two categories have already some relevance in
T2DM causation. Micro-RNAs (miRNAs) can regulate gene
expression by posttranslational silencing of gene expression
and could play a role in T2DM [119–121]. Long noncoding
RNAs (lncRNAs) can act as tethers and guides to bind
proteins responsible for modifying chromatin and mediate
their deposition at specific genomic locations. Large RNAs
have been shown to control gene expression from a single
locus (Tsix RNA), from chromosomal regions (Air RNA),
and from entire chromosomes (roX and Xist RNAs). A gene
coding for the lncRNA ANRIL has been found at a locus
associated with T2DM in the 9p21.3 region [122].

Self-sustaining feedback loops, made of multiple pro-
teins, mRNAs, and ncRNA, is one these systems [7]. Daugh-
ter cells can inherit patterns of gene activity present in the
parent cell when the control of gene activity involves self-
sustaining loops. The initial cue that switched the gene on
might have been an external environment change or an
internal or regulatory factor. Whatever the cause of the gene
being switched on, for as long as the amount of the protein
does not fall too much, it will remain active after cell division.
The inheritance of the active or inactive state is simply an
automatic consequence of more or less asymmetrical cell
division.

A last type of epigenetic system exists as cell mem-
branes, endoplasmic reticulum, and mitochondria mem-
branes, which template the formation of new membranes in
daughter cells [93].

8. Inherited Epigenetic Variations in T2DM

The transmission of epigenetic variants through sexual
generations poses theoretical difficulties. The main problem
is that the fertilized egg has to be in a state that allows
descendant cells to differentiate into all the various cell
types. For years, scientists thought that all memories of
the “epigenetic past” had to be completely erased before
cells can become germ cells, ruling out any possibility that
induced epigenetic variations could be inherited. Epigenetics
was first suggested by Jablonka to play a role in evolution
through Lamarckian inheritance that is a direct modification
of the genome by the environment, which is then transmitted
transgenerationally [7]. There are currently several routes for
inherited epigenetic variation.

8.1. Parental Imprinting. The discovery of parental genomic
imprinting in the 80s showing that the epigenetic state is not
wiped clean was unexpected; some epigenetic information
can be passed from a generation to the other. The best known
process by which epigenetic marks are transmitted between
generations is genomic imprinting, whereby certain genes are
expressed in a parent-of-origin-specific manner. Imprinted
genes are epigenetically marked and are expressed only from
the maternally or the paternally inherited chromosome. They
are located in clusters ∼1 Mb long. These clusters contain at
least one ncRNA that regulates the imprinting of adjacent
genes. Genes in these clusters are regulated through DNA
sequences known as imprinting control regions (ICRs). ICRs
are differentially methylated regions (DMRs) that undergo
DNA methylation on only one allele. DNA methylation at
these DMRs results in gene repression. Parental imprints
are established during gametogenesis and survive the second
round of epigenetic reprogramming that occurs during
pre-implantation embryo development (Table 1). Imprinted
genes have important effects on physiology, brain function,
and behaviors by affecting neurodevelopmental processes
[123]. Transient neonatal diabetes (TND) is the commonest
cause of diabetes presenting in the first week of life. Most
patients recover by 3 months of age but could develop T2DM
in later life. TND is usually due to genetic or epigenetic
aberrations at the 6q24 imprinted locus comprising two
genes PLAGL1 and HYMAI and can be sporadic or inherited.
In some individuals, TND may be the initial presentation
of a more complex imprinting disorder due to recessive
mutations in the ZFP57 gene [124].

8.2. Genetic Variation Inheritance Causing Epigenetic Inher-
itance. The second type of epigenetic transgenerational
inheritance is when obligatory epigenetic variation is depen-
dent on cis- or trans-acting genetic variation. In these cases,
epigenetic variation can be viewed as a readout of the
genotype. Substantive evidence for epigenetic heritability has
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been obtained in age-matched MZ and DZ twin pairs [125–
128]. Kaminsky et al. found that MZ twins have more similar
DNA methylation patterns than DZ twins across tissues. The
most heritable CpG sites were correlated with functional
and regulatory regions of the genome, suggesting that more
functionally relevant methylation signals are under stronger
genetic control. DNA methylation is, thus, a heritable trait on
a genome-wide basis, as also shown by recent population-
based findings of quantitative trait loci (QTL) for DNA
methylation [85, 129, 130], transgenerational and family
clustering of methylation patterns [131, 132], and heritable
effects of other epigenetic processes [133, 134].

Allele-specific methylation (ASM) is another kind of
genetic control on epigenetics whereby DNA methylation
is influenced by cis-DNA sequence. In loci where it occurs,
ASM, may, thus have a major importance in the inter-
pretation of GWAS results. ASM is relatively widespread
across the mammalian genome, is quantitative rather than
qualitative, and is often heterogeneous across tissues and
individuals [135]. DNA methylation is increased on the FTO
T2DM and obesity susceptibility haplotype, tagged by the
rs8050136 risk allele A [136]. Another example of ASM
concerns the expression of NDUFB6 which is decreased
in muscle from patients with T2DM. A polymorphism in
the promoter of NDUFB6 (rs629566) is associated with
increased DNA methylation on G/G haplotypes and a decline
in gene expression in muscle with age [124], suggesting that
genetic and epigenetic factors may interact to increase age-
dependent susceptibility to IR.

8.3. Other Routes of Transgenerational Epigenetic Inheritance.
Three different processes of inheritance have been observed
in inbred laboratory rodents. The first is germline epigenetic
inheritance, which occurs when the epigenetic state of the
DNA is present in germline cells and is, thus, transmitted to
the offspring over many generations. The only solid example
we know is the prenatal exposure of pregnant dams to
vinclozolin of F0 during a sensitive developmental period
between days 8 and 15 of pregnancy. This pesticide induces
changes in DNA methylation in the first generation (F1) of
male offspring that persist to the F4 generation and beyond
in male gametes [137, 138]. Prepregnancy paternal smoking
seems capable of inducing epigenetic modifications that pass
through the male germline to influence obesity risk in the
offspring [139]. Paternal nutrition also matters, since a high-
fat diet (HFD) eaten by rat fathers was shown to alter the
expression of 642 pancreatic islet genes in adult female F1

offspring [140].

Another type of transgenerational epigenetic inheritance
could be of major importance to human physiology and
diseases. An epigenetic state can affect parental behavior in
a way that generates the same epigenetic state in offspring
[141], so that the maternal care provided by female rats
to their young litters leads to the inheritance of their own
behavior by their daughters [142]. This effect may persist
over many generations. However, if maternal behaviour
is altered by stress, there may be an interruption of the
transgenerational continuity.

Another type of epigenetic inheritance concerns alleles
that are variably expressed in genetically identical individuals
due to epigenetic modifications. In mice, a group of genes,
known as metastable epialleles, such as Agouti’s viable yellow
(Avy) and Aiapy epialleles are sensitive to maternal diet
and undergo epigenetic changes during fetal life. They are
famous in the epigenetic field because they have allowed
the demonstration of true transgenerational inheritance in
mice, by transferring embryos between mothers to rule
out persistent maternal effects of all kinds [143]. They are
not, however, established as “natural” mammalian epialleles,
since they have yet been only observed in animals in which a
transposon has been inserted upstream of the Agouti coding
sequence, leading to overexpression of the Agouti gene and
modulation of the mice coat color. In these genetically
identical mice, the variation of the Agouti gene expression
is strictly dependent on the variation of the epigenetic state
at the transposon that determines the phenotype. Maternal
methyl-rich or methyl-depleted nutrition is able to modify
Agouti’s gene expression in offspring, by modifying DNA
methylation at this locus. Although metastable epialleles
provide an appealing mechanism to epigenetic inheritance
[144], there is only nascent indication that they could
apply to human diseases. In a single recent study, the
methylation patterns of 38 genomic regions were shown
to vary independently of genetic variation, across tissues
and among individuals in response to environment cues,
suggesting that these regions could fit the definition of
metastable epiallele [145].

9. Noninherited Epigenetic Variations in T2DM

A cause of epigenetic variation that is not inherited from
the parents is when alternative epialleles (alleles that can
stably exist in more than one epigenetic state) are generated
by stochastic events at some finite frequency, regardless
of the genotype. Striking examples that are consistent
with stochastic alterations in epigenetic marks have been
described in somatic cell lineages in humans, including the
growing divergence in epigenotype during aging.

9.1. Effects of Environmental Factors on Metabolic Phenotypes

and T2DM

9.1.1. The Human Fetus. Interactions between the develop-
ing embryo or fetus and its environment can be categorized
as developmental plasticity [146], with the aim of producing
a phenotype that is matched to the anticipated environment
in order to increase the fitness of the organism [147]. There
are robust clinical observations [148] in the mid-20th cen-
tury that early life cues can have lasting effects on metabolic,
endocrinem, and neurodevelopmental phenotypes. This was
initially reported by Barker in born small offspring of
women exposed to poor socioeconomic conditions in South
England, Wales, India, and other countries, who have an
increased incidence of cardiovascular diseases (CVD) and
T2DM when they reach mid-adulthood [149–152]. The
relationship between low birth weight (LBW) and later
adult diseases gave birth to the “Barker’s fetal origins of
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adult disease hypothesis.” An increased incidence of obesity,
T2DM and/or CVD has also been observed in middle-
aged adults who had been exposed as fetuses to maternal
starving and stress during specific periods of development.
Famines and/or wartime [153–155] and maternal infection
[156] provided examples suggesting fetal programming,
where inappropriate anticipatory choices made in utero may
underlie the relationship between altered fetal development
and the increased metabolic or cardiovascular risks [157],
specially when the offspring has to face an affluent postnatal
life [155].

Persistent changes in DNA methylation may be a com-
mon consequence of prenatal exposure to mother’s starving.
These changes can depend on the gestational timing of the
exposure and on the sex of the offspring [158]. Individuals
prenatally exposed to the Dutch famine showed decreased
methylation of the imprinted IGF2 gene and increased
methylation at IL10, LEP, ABCA1, GNASAS, and MEG3
[159], a finding partly replicated in recently born LBW
infants [160]. In rural Gambian women, who experience
dramatic seasonal fluctuations in nutritional status, DNA
methylation at different metastable epialleles was elevated
in offspring conceived during the nutritionally challenged
rainy season, providing the first evidence of a permanent,
systemic effect of periconceptional environment on human
epigenotype. Yet we lack knowledge on mother’s signals
received by the fetus, and there is no established relationship
between these changes in methylation and the occurrence of
obesity or T2DM.

9.1.2. Animal Gestation. In laboratory rodents, maternal
nutrition is able to change epigenetic marks during fetal
growth, but only a limited number of studies have yet
examined DNA methylation changes in a diabetic context.
Studies in pregnant rodents subjected to a variety of
dietary challenges show a relatively consistent outcome for
the offspring, including abnormalities of IS, IR, appetite
disturbance, and obesity [161]. In offspring of rat dams
given a low-protein diet during pregnancy, which later
develop metabolic and cardiovascular abnormalities, there
are changes in hepatic expression and in gene promoter
methylation and histone acetylation of metabolically rele-
vant receptors, the glucocorticoid receptor (GR) and the
peroxisome proliferator-activated receptor α (PPARα). These
effects are prevented by concurrently supplementing the diet
of the pregnant dam with folate, which promotes methyl
group provision [162, 163]. Once established, these fetal
adaptive responses are not immutable. Metabolic features
are particularly apparent when the animals are placed on
a high-fat diet after weaning. All of the observed aspects
of the induced phenotype after maternal undernutrition
are prevented from developing when the female offspring’s
are treated in the neonatal period with leptin [164, 165].
Leptin administration can give a false developmental cue,
signaling adiposity to pups that were actually thin. The
pups can, therefore, set their ultimate metabolic phenotype
to be more appropriate to a high-nutrition environment.
Neonatal leptin treatment not only induces epigenetic and
expression changes in specific genes measured in the adult

liver, but the direction of these changes is also influenced
by previous environmental history (maternal diet). In other
studies, growth restriction can also alter histone marks
and expression of metabolic genes in offspring, including
hepatic IGF-1 [166] and Glut-4 [167], pancreatic Pdx1 [142],
and hippocampal glucocorticoid receptor (hpGR) [168].
In a primate model of maternal high-fat diet, fetal livers
demonstrated increased site-specific histone acetylation and
gene expression changes [169].

9.1.3. Early Postnatal Life. Adaptation and phenotypic plas-
ticity are not confined to intrauterine life. Early postnatal
life is a period of active nutritional changes and the start
of social exchanges, mostly with the parents. We have seen
before (epigenetic transmission of maternal behavior) that
increased pup licking and grooming by rat mothers altered
the offspring epigenome at hpGR [168] and at the ERalpha1b
promoter [170]. These differences emerged over the first
week of life, were reversed with cross-fostering, persisted
into adulthood, and were associated with altered histone
acetylation and transcription factor (NGFI-A) binding to
the hpGR promoter and behavioral responses to stress.
Methionine infusion could reverse these effects. Studies of
the hippocampal transcriptome identified >900 genes stably
regulated by maternal care [171]. Deranging babies’ nests,
an early-life stress in mice, cause enduring hypersecretion
of corticosterone and alterations in offspring’s passive stress
coping and memory. This phenotype is accompanied by a
persistent increase in arginine vasopressin (AVP) expression
in postmitotic neurons of the hypothalamus associated with
sustained DNA hypomethylation of an important regulatory
region that resisted age-related drifts in methylation and
centered on those CpG residues that serve as DNA-binding
sites for MeCP2. Methylation changes differed widely among
the stressed pups (Spengler D., Personal communication),
due to different individual perceptions of the stress itself
or to the stochasticity of the epigenetic response. Such
neurodevelopmental observations may be important for
the establishment of early epigenetic effects on metabolic
phenotypes in humans, including T2DM.

9.1.4. Adult Life. Developmental changes continue dur-
ing the whole life. Exposure to stress continues to be
an important environmental cue for triggering persistent
epigenetic changes. In adult laboratory mice, social stress
can induce long-term demethylation of the corticotrophin-
releasing factor Crf promoter region [172]. Several studies
suggest that the risk of obesity increases by 20% to 50% for
several adversities [173] (physical, or verbal abuse, humil-
iation, neglect, physical punishment, conflict or tension,
low parental aspirations or interest in education), but no
correlation of these events with epigenetic changes has yet
been established, and the database on the role of childhood
adversities for the future risk of T2DM or obesity is yet too
small to draw conclusions [174].

Adult nutrition can also change epigenetic marks and
corresponding gene expression in rodents. HFD induces
hypermethylation of hepatic glucokinase (Gck) gene [175]
and induces changes in the methylation patterns of fatty acid
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synthase (FASN) and NDUFB6 promoters [176]. Anorexia
as well as overfeeding can change epigenetic marks at the
POMC locus [177]. The fact that childhood obesity may be
a better predictor of later T2DM than adult obesity may also
suggest persistent epigenetic effects of childhood nutrition.

Another mechanism through which nutrition can affect
DNA and histone methylation is through the provision of
methyl groups used for DNA and histone methylation. A
high-fat sucrose diet increases plasma insulin, homocysteine,
and methylene-tetrahydrofolate reductase (MTHFR) activ-
ity, while decreasing cystathionine-β-synthase activity (CβS)
[178]. Insulin and glucose can affect methionine metabolism
[179]. Hyperinsulinemia decreases MTHFR activity [180]
and CβS-1b promoter activity [181] in hepatocytes; when
cells are exposed to elevated insulin and glucose, homo-
cysteine (Hcy) remethylation; hence, intracellular SAM
concentrations are increased, due to SAM synthase activity
[182]. Elevated glucose further enhances DNA methyltrans-
ferase activity that subsequently led to increased global
DNA methylation [182]. Obese diabetic rats have increased
hepatic CβS and betaine-homocysteine S-methyltransferase
(BHMT) [183]. Glycine N-methyltransferase knock-out
mice have high hepatic SAM levels and hypoglycaemia, sug-
gesting an association between perturbed SAM-dependent
transmethylation and abnormal glucose metabolism [184].
Insulin-induced increments of methionine transmethyla-
tion, homocysteine transsulfuration, and clearance are
impaired in patients with T2DM [185].

9.2. Aging of the Organism. Even if early T2DM forms,
prompted by childhood obesity epidemics, are emerging,
T2DM currently remains a late-onset disease. The effects of
passing time are not only made up of a purely temporal
biological dimension, but also depend on a steady stream
of exposure to various environmental factors. Despite the
evidence that DNA methylation is heritable during cell
division, substantial changes in methylation patterns take
place over time [63, 65, 186–188], suggesting that certain
regions [189] of the genome are undergoing epigenetic drift,
thus, perhaps contribute to the aging process. We do not
know yet the timing of age-related epigenetic changes in the
different human tissues. In turn, epigenetic variation can
influence cellular lifespan (review in [190]). DNA methyla-
tion differences are detectable even between very young MZ
twins [64], then epigenetic discordance seems to increase
with age [63] in a cross-sectional study which did not
assess developmental changes in the same individual. More
powerfully, an intraindividual longitudinal study found that
global DNA methylation changes >10% over 11 years [131].
The same authors identified later the dynamic VMRs [191],
defined by Feinberg et al. as particularly labile sites. Although
there is no information about their environmental sensitivity,
some of these VMRs could be metastable epialleles. The
study of DNA methylation within the promoter region of
3 genes, 5 years apart, in 46 young MZ twins also showed
differences in DNA methylation across time [65]. The age of
onset of a strongly aged-related disease like T2DM depends
on the epigenetic peculiarities of a set of specific genes and
the tissues in which these genes are expressed, as well as

on environmental and stochastic events. DNA methylation
errors that accumulate with increasing age could contribute,
for example, by accumulating in the liver or in β cells.
Such stochastic process taking place over lifetime could be
important for causation of T2DM. The liver displays reduced
levels of Gck expression in parallel with increased DNA
methylation of Gck promoter in aged rats [192]. COX7A1,
which shows decreased expression in diabetic muscle, is also
a target of age-related DNA methylation changes [193, 194].
DNA methylation also decreases in NDUFB6 (cited below)
with increasing age [195].

10. The Epigenetic Epidemiology of T2DM

Epigenetic epidemiology provides new opportunities to
identify disease biomarkers and to discover links between
environmental exposures and diseases. Since a number of
thoughtful reviews about genetic epidemiology are available
[196–199], we will only discuss the issues of where and
when epigenetic marks could or should be studied. There
may be separate but coordinated epidemiological approaches
for studying epigenetic causation and epigenetic inheritance.
Population-based association studies are a way to identify
association between epigenetic variation in DNA methy-
lation and disease frequency. Cross-sectional, retrospective
case-control or family-based studies are suitable for epidemi-
ological epigenetic studies, as long as the studied samples
have a size appropriate to the detection of the expected
modest differences in epigenetic patterns.

DNA methylation is currently the most suitable epi-
genetic mark for large-scale epidemiological studies, since
methyl groups covalently bound to CpG are both durable
in vivo and survive DNA extraction, unlike histone modifi-
cations or ncRNA. This opens the possibility of exploiting
existing DNA biobanks. DNA in biobanks is mostly extracted
from whole blood, which restricts the meaning and inter-
pretation of the epigenetic observations, given the tissue
specificity of most epigenetic patterns. Indeed, the genome
contains numerous tissue-specific differentially methylated
regions (T-DMRs), defined as a genomic region having a
different methylation pattern between tissues. T-DMRs were
identified by comparing DNA methylation profiles of various
somatic tissues, as well as stem cells and germ cells [109,
200, 201]. For example, in 12 different tissues, 17% of 873
analyzed genes on chromosomes 6, 20, and 22 were found
to be differentially methylated in their 5′promoter regions
[200]. But many tissues are a mix of different cell types
that each shows distinct patterns of DNA methylation. In
blood, DNA methylation differs in lymphoid and myeloid
cells [202]. For understanding T2DM epigenetics, it would
be ideal to obtain information in hypothalamus, β cells,
liver, muscle, and adipose tissue, but only postmortem tissue
can provide valuable insights into the epigenetic profile of
such tissues. However, several studies showed that DNA
methylation measured in whole blood is a marker for less
accessible tissues that are directly involved in disease [203,
204]. Studying changes of metastable allele methylation
could allow to avoid part of the problems of tissue specificity
[205].
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Timing of epigenetic epidemiological studies is another
major issue since DNA methylation pattern changes with age,
and age increases most of disease risks. The timing of the
epigenetic changes is crucial to understanding their role in
complex traits. Time-related changes in methylation need to
be identified with respect to T2DM onset and progression
so as to distinguish between epigenetic changes that could
be causal and those that arise secondary to T2DM. To
delineate true epigenetic predisposition to T2DM, there is
a need to study “baseline” epigenetic profile before T2DM
onset, ideally at birth or at the beginning of adulthood,
with sampling at regular intervals thereafter. To understand
epigenetic predisposition, epidemiologist should, thus, get
prepared to the organization of longitudinal studies, for
example, in obese populations at risk for T2DM.

To be credible, the epigenetic hypotheses that can be
tested for T2DM should be consistent with both biological
mechanisms causing the disease and increased incidence of
T2DM. Each hypothetical scenario should involve alterations
or individual differences somewhere in a sequence of epige-
netic processes [206] comprising (i) a signal which emanates
from the environment, (ii) an “epigenetic initiator” which
translates this signal to mediate the establishment of a local
chromatin context at a given location of the genome, and
(iii) an “epigenetic maintainer” which sustains the epigenetic
state.

Introducing epigenetic disease markers in epidemiolog-
ical studies will face the general Simpson’s paradox [207],
a statistical phenomenon in which marginal effects, for
example, effects associated with a given factor, such as genetic
or epigenetic variants can be masked, enhanced, or even
reversed in the presence of interactions that are not detected
and accounted for [208]. Many interactions may obviously
emanate from environment and/or from environmentally
sensitive epigenetic processes. The implications of Simpson’s
paradox for the causality of complex diseases such as T2DM
are that it may not be possible to predict a phenotype from
a given genotype as long as the interactions among genetic,
environmental, and epigenetic components of the system
cannot be fully characterized.

11. Conclusion

In conclusion, we have seen that stochastic epigenetic mech-
anisms can mediate the gene-environment dialog in early
life and give rise to persistent epigenetic programming of
adult physiology and dysfunctions eventually resulting in
T2DM. Understanding how early life experiences can give
rise to lasting epigenetic marks conferring increased risk
for T2DM, how they are maintained, and how they could
be reversed is increasingly becoming a focus of studies in
humans. Most often, T2DM is closely linked to obesity,
which is itself highly dependent on behavioral, familial,
and social interaction [83]. In this respect, epigenetic
programming seems particularly important at two levels:
(1) the brain, which has a high degree of plasticity and can
use epigenetics for the integrated modulation of metabolism
and feeding behaviors in response to multiple environmental
cues, including nutrition signals and cognitive processes and

(2) the metabolic tissues, including the β cells, the liver,
muscle, and adipose tissue where epigenetic events can allow
persistent and time-dependent changes in gene expression
potential.
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