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Abstract

None of the polymorphic variants of the IL2RA gene found associated with Type 1 Diabetes (T1D) was shown to have a
functional effect. To test if the epigenetic variation could play a role at this locus, we studied the methylation of 6 CpGs
located within the proximal promoter of IL2RA gene in 252 T1D patients compared with 286 age-matched controls. We
found that DNA methylation at CpGs 2373 and 2456 was slightly but significantly higher in patients than in controls
(40.464.6 vs 38.365.4, p = 1.4E4; 91.462.8 vs 89.565.3, p = 1.8E-6), while other CpG showed a strictly comparable
methylation. Among 106 single nucleotide polymorphisms (SNPs) located in the neighboring 180kb region, we found that
28 SNPs were associated with DNA methylation at CpG2373. Sixteen of these SNPs were known to be associated with T1D.
Our findings suggest that the effect of IL2RA risk alleles on T1D may be partially mediated through epigenetic changes.
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Introduction

Type 1 Diabetes (T1D) is characterized by an autoimmune

destruction of pancreatic b cells, a process in which autoreactive T

cells play a pivotal role [1–3]. IL2RA (IL-2 receptor a-chain,
CD25) is part of the high-affinity IL-2 receptor complex. IL2RA is

expressed constitutively on regulatory T cells, a population of T

cells that have a potent ability to suppress autoreactive T cells [4],

whereas is induced in other T cells. IL-2RA polymorphisms are

associated with T1D [5–8] and other autoimmune diseases such as

multiple sclerosis or rheumatoid arthritis [9,10].

Six positive regulatory region (PRR) and two negative

regulatory elements (NRE) located between 29 kb and +3.6 kb

around the transcriptional start site (TSS) are implicated in the

regulation of IL2RA expression in response to stimuli [11]. No

disease-associated SNPs have been reported in these regions.

However, each of these regions encompasses several CpGs known

to modify gene expression by altering the binding of transcrip-

tional proteins or by allowing the binding of methyl-CpG binding

domain proteins. DNA methylation changes have also been shown

to be important for the selective transcription of cytokine genes in

T cell subsets [12,13].

For these reasons, we studied the DNA methylation status of

6 CpGs located in the proximal promoter of IL2RA in T1D

patients together with the genetic variants located on the

surrounding 180 kb region of chromosome 10p15.1.

Results

DNA Methylation Specific Pattern across Tissues
The pattern of methylation in the whole blood cells (WBC) of

286 non-diabetic individuals (Table 1) showed important varia-

tions across the 6 studied CpGs located in the proximal promoter

region of the IL2RA gene (Figure 1). CpGs 2241, 2272 and

2356, close to the TSS, are almost unmethylated whereas the

more distant CpGs 2456 and 2459 are almost completely

methylated and CpG 2373 had an intermediate level of

methylation. This global pattern of methylation was also seen in

T1D patients, with subtle changes that will be discussed.

Methylation of the studied CpG was different in other tissues.

CpGs 2241, 2272 and 2356 showed an intermediate DNA

methylation level in liver, islet and peritoneum and remained

unmethylated in the thymus. CpG 2373 showed also a higher

methylation level in liver, islet or peritoneum than in WBC and

thymus. Methylation of CpGs 2456 and 2459 was comparable

across studied tissues. The level of methylation at CpGs 2459,

2456 and 2373 was lower in regulatory T cells.

Differential DNA Methylation is Related to T1D Status
The comparison of the 252 T1D patients with 286 age-matched

controls (Table 1) showed no T1D-related global directional

change in DNA methylation level that would affect all CpGs

equally (Table 1). There were, however, significant differences at
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the specific CpG level. T1D patients had a higher level of CpGs

2373 and 2456 methylation than controls (p = 1.1024 and

p= 2.1026 respectively). Methylation levels of these two CpGs

were closely correlated (r = 0.44, p,3.10212, Figure 2), suggesting

a shared regulation of the methylation status of these CpG

residues. CpG2356 showed a slight and less significant increase in

percent of methylation in T1D group (p= 0.02), while methylation

of the three other CpGs was comparable with controls (Table 1).

We found no relationship between CpG methylation levels at

any position with age at diagnostic, current glycemic status

reflected by glycated haemoglobin (HbA1c) or T1D duration,

except for CpG 2241 that showed a slight increase of methylation

with diabetes duration (p = 0.004, Figure S1).

Influence of SNP Genotypes upon CG Methylation at the
IL2RA Locus
Among the analyzed 106 SNPs located within 180kb of the

chromosome 10p15.1, we found 32 SNPs that were associated

with DNA methylation of CpG 2241, 2272, 2356 and 2373

(Table 2). Twenty of these 32 SNPs were previously shown to be

associated with T1D by GWAS [5,14,15].

The association between rs6602398 and CpG -373 was the

strongest observed, with methylation of 42%, 40%, and 37% in

the GG, GT, and TT genotypes respectively. DNA methylation

level at CpG 2373 showed an association with 28/32 SNPs

located from 23 kb to 116 kb of this CpG, and 16/28 SNPs

previously found to be associated with T1D (Figure 3).

We observed no genetic-epigenetic statistical correlation

between SNPs and DNA methylation at CpGs 2456 and 2459.

Discussion

Using a candidate locus approach, the current study of CpG

methylation in the IL2RA promoter found that differences could

be detected in T1D patients. Two CpGs (2373 and2456) showed

an increased methylation in T1D patients compared to controls.

These significant differences were of small magnitude, but were in

the range previously reported for CpG in other gene promoters in

case control studies [16,17]. These methylation differences could

also be described in a categorical manner to simplify the

presentation of results: if classified as low (,1 Standard Deviation

(SD)), intermediate and high (.1SD), the methylation of CpGs

Figure 1. Schematic representation of DNA methylation levels in the proximal promoter of the IL2RA gene. Tissues come from different
non-diabetic controls: WBC (n = 286), liver (n = 7), peritoneum (n= 8), thymus (n = 16) and Langerhans islets (n = 7), regulatory T cells (n = 8).
doi:10.1371/journal.pone.0068093.g001

IL2RA CpG Methylation in Type 1 Diabetes
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2373 and 456 indicates that 4.6% of T1D patients versus 2.6% of

controls were in the upper category.

It was interesting to see that DNA methylation at CpG 2373

was correlated with 16 SNPs located at the IL2RA locus and

previously known to be associated with T1D [5,14,15].

The most significant association with CpG 2373 methylation

was seen for rs6602398 and rs4749926 (6.3E-05) that are both

located on intron 1. The IL2RA region encompasses large blocks of

linkage disequilibrium and it is possible that part of the genetic-

epigenetic associations observed is supported predominantly by

only a few tag SNPs. These associations allow to postulate the

existence of short distance genetic-epigenetic interactions resem-

bling the allele-specific methylation phenomenon reported at the

INS [16] or FTO locus [18]. Our observation is consistent with the

fact that loci harboring genetic variants that influence methylation

state, called methylation quantitative trait loci (methQTL) [19–

22], are known to be preferentially located in cis, outside CpG

islands and within a variable distance from CpG sites that averages

about 81 Kb [19].

Among the SNPs associated with CpG2373 methylation was

the rs2104286 variant (p = 2.9E-9), located in the 59end of the long

intron 1, that is the third independent IL2RA marker of T1D [23].

The odds ratio for T1D is 1.57 (CI 1.25–1.99) for AA

homozygotes at this SNP [23]. In our T1D cohort, rs2104286

AA carriers showed a 4% decrease in DNA methylation level in

CpG 2373 compared to GG carriers, with an intermediate level

for heterozygotes.

The two other SNPs that tag the first and the second T1D-

associated haplotypes are rs12722495 (not available in our

genotyping arrays) and rs11594656 that shows a strong association

with the methylation of CpG 2373 (p= 2.7E-5). Homozygote risk

allele carriers are more methylated at CpG 2373 than other

homozygotes or heterozygotes. The finding of a link between

genetic variants and epigenomic marks in T1D patients at the

IL2RA locus may provide a more general example of how genetic

and epigenetic variation can be related. This may help our future

understanding of the ‘‘missing heritability’’ enigma seen with

many genome wide association studies of multifactorial traits or

diseases, if it proves true that SNPs are only the markers that tag

neighboring epigenomic variations. According to this view, certain

SNPs showing strong statistical association with complex diseases

may not have any functional effects per se, but may be associated

with epitypes that have functional effects on gene expression. It

could be the case of rs11594656, where carriers of risk alleles are

more methylated and leading probably to less expression of IL2RA

gene.

According to our results in various tissues, the IL2RA promoter

region could be defined as a T-DMR (tissue-specific differentially

methylated region). T-DMRs are known to be involved in the

expression of tissue-specific genes as well as of key transcription

factors that govern transcription networks and tissue specificity

[24–30]. Peripheral blood being the only readily accessible tissue

sample for epidemiological studies, initial reports indicated that

DNA methylation measured in WBC may in some instances be

informative when tissues where the disease originates are not

available [31–33]. In this respect, most interesting cells to study the

methylation of the IL2RA gene promoter are regulatory T cells in

which IL-2 signaling seems to be a major effector in the

pathophysiology of T1D [34]. However, since T cells represent

40–60% of WBC and regulatory T cells expressing IL2RA only

Table 1. Main characteristics and CpG methylation levels in
the IL2RA promoter of T1D patients and age-matched non-
diabetic controls.

T1D Patients Controls pvalue

N 252 286

Sex (M/F) 132/120 130/156

Current age (yrs) 11.4564.13 11.0863.09 0.19

BMI (kg/m2) 18.6763.07 21.6369.51 0.86

Age at clinical onset
(yrs)

6.2263 – –

Diabetes Duration 5.2463.71 – –

Hba1c 8.0961.32 – –

CpG-241 9.7461.91 9.9462.72 0.71

CpG-272 1.761.79 1.9262.02 0.38

CpG-356 6.2461.27 5.9462.11 0.017

CpG-373 40.3864.64 38.3465.46 1.4.1024

CpG-456 91.4362.77 89.565.3 1.79.1026

CpG-459 82.3264.5 82.3464.57 0.82

Results are expressed as mean 6 sd.
doi:10.1371/journal.pone.0068093.t001

Figure 2. Correlation matrix of the methylation values (%) at the IL2RA promoter CpG sites in T1D patients (R in bold, p-value
below).
doi:10.1371/journal.pone.0068093.g002
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10% of peripheral CD4+ and ,1% of CD8+ [35], this was beyond the reach of our study. To get IL2RA expressing cells, large

Table 2. SNPs associated with DNA methylation at IL2RA promoter locus.

SNP position (hg18) p-value FDR Associated CpG GWAS p-value*

rs942201 chr10:6,126,298 0.0008 0.05 2272 1.1E-7

rs10905669 chr10:6,132,099 1.4E-03 4.9E-02 2272 5.8E-9

rs8177775 chr10:6,052,396 6.2E-04 2.0E-02 2241 0.05

rs8177772 chr10:6,055,063 6.2E-04 2.0E-02 2241 0.05

rs6602360 chr10:6,069,732 0.006 0.02 2373 1.2E-4

0.002 0.02 2241

rs7911500 chr10:6,077,732 0.002 0.01 2373

rs7898880 chr10:6,077,559 0.001 0.008 2373 1.0E-4

rs10795737 chr10:6,089,350 3.5E-05 0.0007 2373

rs12722588 chr10:6,100,439 0.003 0.01 2373

rs7900744 chr10:6,105,617 0.002 0.009 2373 4.8E-3

rs2025345 chr10:6,107,694 3.4E-05 0.0007 2373 0.01

0.0004 0.02 2241

rs12722561 chr10:6,109,899 0.0001 0.002 2373

4.6E-04 2.4E-02 2356

0.002 0.02 2241

rs7910961 chr10:6,117,802 0.001 0.007 2373 0.02

rs12722523 chr10:6,118,396 0.0003 0.003 2373

0.002 0.02 2241

rs7100984 chr10:6,118,545 0.0007 0.004 2373

rs7072398 chr10:6,119,852 0.0005 0.004 2373

rs12722515 chr10:6,121,236 0.0003 0.003 2373

0.002 0.02 2241

rs4749924 chr10:6,122,402 0.002 0.008 2373 5.8E-4

rs6602398 chr10:6,122,959 5.9E-07 6.3E-05 2373 9.0E-5

7.5E-04 0.02 2241

rs4749926 chr10:6,125,318 1.2E-06 6.3E-05 2373 6.6E-3

1.3E-03 4.9E-02 2272

1.0E-03 0.02 2241

rs791587 chr10:6,128,705 4.7E-06 0.0002 2373

0.005 0.04 2241

rs791589 chr10:6,129,577 0.002 0.009 2373 0.03

0.001 0.02 2241

rs2104286 chr10:6,139,051 0.0002 0.003 2373 2.9E-9

1.2E-03 0.02 2241

rs7090512 chr10:6,150,835 0.0001 0.002 2373 1.9E-4

rs4749955 chr10:6,158,672 0.0008 0.005 2373 1.4E-3

rs11594656 chr10:6,162,015 0.0007 0.004 2373 2.7E-5

rs6602437 chr10:6,170,083 0.0003 0.003 2373 2.6E-3

1.3E-03 0.05 2356

rs10905806 chr10:6,192,316 0.001 0.008 2373 0.03

rs6602450 chr10:6,193,303 0.0003 0.003 2373

rs4749997 chr10:6,201,787 0.0004 0.003 2373

rs7905816 chr10:6,209,278 0.002 0.01 2373

rs4750005 chr10:6,209,691 0.002 0.009 2373 4.1E-3

2.3E-04 2.4E-02 2356

*p-value from Todd et al. 2007, Barrett et al. 2009 and Bradfield et al. 2011.
doi:10.1371/journal.pone.0068093.t002

IL2RA CpG Methylation in Type 1 Diabetes
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amounts of WBC can be freshly sorted, but this needs exceedingly

large blood sample not accessible in clinical research in children or

adolescents and was not feasible from our preexisting DNA bank.

This is why, we confined our study to a subset of 8 healthy persons,

in whom we found that the level of DNA methylation in the

IL2RA promoter of regulatory T cells was lower than in other

Figure 3. Association results for the IL2RA region and CpG 2373. Manhattan plot represented p-values of Wald test based on linear
regression model (for each SNP, association test performed in plink which compares the quantitative phenotype means for three genotypes). The red
horizontal line represents the significance threshold of P = 4.761024.
doi:10.1371/journal.pone.0068093.g003
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WBC while being correlated with methylation in other blood cells

(figure S2). Whether this has a functional meaning cannot be

known from the current data. IL2RA is also expressed in a variety

of hematopoietic cell types, including activated T and B-

lymphocytes [36,37], NK (Natural Killer) cells [38–40], monocytes

[41,42] and a subset of dendritic cells [43,44].

In conclusion, the picture of genetic and epigenetic variation at

a T1D risk locus was shown by the current study to be both

entangled and complex. A given risk allele of a T1D associated

SNP is associated with increased methylation at a risk CpG, while

another risk allele of another T1D-associated SNP is associated

with decreased methylation. The overall level of methylation of the

risk CpG being increased in T1D patients, it is clear that the

genetic influence of the studied SNPs was not the sole factor that

could explain the changes in methylation observed in the T1D

patients. Only 1.7% of the variance of methylation at CpG 2373

could be attributed to rs2104286 and 4.6% to rs11594656. This

leaves a large contribution to influences from other genetic

variants or environmental factors shaping the methylation of CpG

throughout development. We do not think that the observed

methylation changes in T1D could be attributed to the disease

status, since they were independent from diabetes duration or

HbA1c, although subtle T1D-associated environmental factors

acting for example through dietary changes could be important in

determining DNA methylation level in specific positions (il faudrait

une ref indiquant un exemple de cette affirmation).

Materials and Methods

Participants
Whole blood cell samples were obtained from 252 patients and

286 controls were randomly extracted from the ISIS-Diab cohort

[16]. Patients and controls were included in the study according to

the French bioethics law. Families were carefully informed and

signed a detailed informed consent. Ethical approval for the study

was given by the Ethical Review Board of Ile de France (DC-2008-

693 NI 2620, CPP) and CNIL (DK-2010-0035).

Tissues
Samples from human liver (n = 7), peritoneum (n= 8), thymus

(n = 16) and Langerhans islets (n = 7), were provided by F. Pattou

and J. Kerr-Conte (UMR1011, U859, Lille). Each tissue comes

from a different person.

Isolation of Regulatory T cells
Human CD4+CD25+ T cells were isolated from 50 ml of

peripheral blood of 8 randomly chosen healthy blood donor

volunteers using density gradient centrifugation (Lymphocytes

separation medium, Eurobio) and purified by Human

CD4+CD25+ regulatory T Cell Isolation Kit according to

manufacturer’s instructions (Miltenyi). Briefly, CD4+ T cells were

negatively selected from the total PBMCs. Positive selection with

anti-CD25 magnetic microbeads was then used to separate the

negative CD4+CD252 T cell fraction from the CD4+CD25+ T

cells. Cells were applied to a second magnetic column, washed and

eluted again. This procedure led to the complete positive selection

of CD4+CD25+ T cells. Genomic DNA was extracted using

Gentra Puregene DNA isolation kit (Qiagen).

Isolation of Genomic DNA and Bisulfite Genomic
Conversion
Nucleic acids were extracted from whole blood cells (WBC) or

tissue samples using the phenol chloroform method. Genomic

DNA was treated with EZ-96 DNA Methylation-Gold Kit,

according to manufacturer’s protocol (Zymo Research Corpora-

tion).

Pyrosequencing
We PCR-amplified the bisulfite treated genomic DNA using

unbiased primers (sequences on request) and performed quanti-

tative pyrosequencing. Pyrosequencing was performed using a

PyroMark Q96 ID Pyrosequencing instrument (Qiagen). Pyrose-

quencing assays were designed using MethPrimer (http://www.

urogene.org/cgi-bin/methprimer/methprimer.cgi). Briefly,

200 ng of genomic DNA was treated with EZ DNA Methyla-

tion-Gold Kit and amplified. Biotin-labeled single stranded

amplicons were isolated according to protocol using the Qiagen

Pyromark Q96 Work Station and underwent pyrosequencing with

0.5mM primer. The percent methylation for each of the CpGs

within the target sequence was calculated using PyroQ CpG

Software (Qiagen).

Genotyping and Quality Control
Genotyping was attempted for 252 T1D samples on the

Illumina HumanHap300 array and the Illumina Human610-

Quad BeadChips at the Centre National de Génotypage (CNG,

France). Standard quality control procedures were applied. Briefly,

genotype data were retained in the study for samples that had been

successfully genotyped for .95% of the SNP markers. SNPs with

call rates of ,98%, with MAF ,2% or showing departure from

Hardy-Weinberg equilibrium in the control population (P,1023)

were excluded. For our study, we selected polymorphisms located

on chromosome 10, from 6,030,000 to 6,210,000 bp (Hg18),

corresponding to 106 SNPs.

Statistical Analysis
Differences in DNA methylation of the IL2RA promoter

between T1D and non-diabetic controls were analyzed using

non-parametric Wilcoxon rank sum test. Correlations were

calculated as adjusted R square that measures the proportion of

the variation in the independent variable accounted for by the

explanatory variables. The analysis of differences in DNA

methylation of the IL2RA promoter according to genotypes was

performed in PLINK. For each SNP, we compared the

methylation mean for the three genotypic states using the Wald

test statistic, based on a linear regression model, to generate a p-

value. Associations were considered significant when p-val-

ue,0.05/106= 4.7E-04. The results were visualized as a Man-

hattan plot. Methylation analyses adjusted for age were conducted

using logistic regression. Results are expressed as mean 6 sd. All

statistical analysis were conducted using R2.14.2.

Supporting Information

Figure S1 Lack of correlation between age at diagnos-
tic, Hba1c and diabetes duration and IL2RA promoter
methylation in T1D patients. Only CpG 2241 showed a

slight trend with diabetes duration (p= 0.004).

(TIF)

Figure S2 Correlation between IL2RA promoter meth-
ylation in regulatory T cells and other blood cells from 8
healthy individuals. Only CpG 2356 showed a significant

correlation however, all other CpG seemed correlated but failed to

reach the significativity because of the weak number of

participants.

(TIF)
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Table S1 List of the 77 diabetic centers by alphabetic
order participating to the ISIS-DIAB network.
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