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ABSTRACT   12 

The domestic usage of water generates approximately 310 km3 of wastewater worldwide 13 

(2015, AQUASTAT, Food and Agriculture Organization of United Nations). This sewage 14 

contains an important organic load due to the use of this water; this organic load is 15 

characterized using a standard method, namely, the biological oxygen demand measurement 16 

(BOD5). The BOD5 provides information about the biodegradable organic load (standard ISO 17 

5815). However, this measurement protocol is very time-consuming (5 days) and may 18 

produce variability in approximately 20% of results mainly due to variation in the 19 

environmental inocula.  20 

To remedy these limitations, this work proposes an innovative concept relying on the 21 

implementation of a set of rigorously selected bacterial strains. This publication depicts the 22 

different steps used in this study, from bio-indicator selection to validation with real 23 

wastewater samples. The results obtained in the final step show a strong correlation between 24 

the developed approach and the reference method (ISO 5815) with a correlation rate of 25 

approximately 0.9. In addition, the optimization of the experimental conditions and the use of 26 

controlled strains (8 selected strains) allow significant reduction in the duration of the BOD5 27 

analysis, with only 3 hours required for the proposed method versus 5 days for the reference 28 

method. This technological breakthrough should simplify the monitoring of wastewater 29 

treatment plants and provide quicker, easier and more coherent control in terms of the 30 

treatment time. 31 

 32 

KEYWORDS: BOD5, multivariate approach, bacterial biosensor, neural network, wastewater. 33 
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1. Introduction  36 

The global production of domestic wastewater was assessed to be 315 km3 in 2010 and will 37 

tend to increase in the future concomitant with population expansion (Flörke et al., 2013; 38 

Mateo-Sagasta et al., 2015). These wastewaters, which are mainly contaminated by organic 39 

materials (i.e., carbohydrates, fats, proteins, etc.) resulting from human body wastes (20% - 40 

faeces and urine) and domestic uses (80% - personal washing, laundry, food preparation, etc.) 41 

(Duncan, 2004; Garcia et al., 2006) present a real risk for the receiving environment and the 42 

exposed population. To limit the consequences of release of these wastewaters into the 43 

environment, they are treated to remove the organic load through bioprocesses, such as 44 

wastewater treatment plants (WWTPs). To measure the conformity of the released waters, the 45 

organic load in the treated water is tested weekly in average samples according to the 46 

reference method (ISO 5815-1:2003, 2003; ISO 5815-2:2003, 2003) based on BOD 47 

(biological oxygen demand). 48 

This method dates from the beginning of the twentieth century (Great Britain. Royal 49 

commission on sewage disposal, 1908; Jouanneau et al., 2014), and its implementation is 50 

widespread worldwide. This method is based on assessment of the biochemical oxygen 51 

demand [i.e., the amount of oxygen consumed over 5 days by environmental microorganisms 52 

to biodegrade the organic matter under aerobic conditions (BOD5 in mg.L-1 of consumed O2)].  53 

However, this method has several drawbacks: 54 

- The method exhibits important intrinsic variability (higher than 20%) that is mainly 55 

due to the broad diversity of inocula used to carry out the measurements (Guyard, 56 

2010). 57 

- The 5-day period required for a measurement is longer than the retention time of water 58 

in WWTPs (close to 3 days). 59 
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- The measurement carries a significant risk of measurement error due to the available 60 

amount of oxygen in water. Indeed, the maximal load measured with this method 61 

cannot exceeded 6 mg/L BOD (ISO 5815-1:2003, 2003; ISO 5815-2:2003, 2003), 62 

whereas the BOD5 value of wastewater is close to 300 mg/L and thus requires pre-63 

dilution.   64 

Over the last several decades, many research teams have focused on these issues to propose 65 

new measurement strategies with an aim of removing these drawbacks (Jouanneau et al., 66 

2014; Sun et al., 2015; Yang et al., 2015). A specific focus on the biological aspect of the 67 

measurement highlights two strategies based on (i) the use of environmental inocula and (ii) 68 

the implementation of only one microbial strain. The first strategy has the advantage of 69 

ensuring great representativeness of the biological answers due to broad microbial diversity 70 

but induces significant variability (i.e., origin, density, and diversity) (Liu et al., 2012; 71 

Rastogi et al., 2003; Rocher et al., 2011) due to the intrinsic characteristics of the inocula. 72 

Conversely, the second strategy, based on the use of one known strain, is very reproducible 73 

but is limited by the range of metabolic abilities of the selected strain (Arlyapov et al., 2012; 74 

Raud et al., 2012; Yoshida et al., 2001), which consequently provides a truncated view of 75 

the biodegradable organic diversity.  76 

In light of these issues, some researchers have proposed an alternative strategy based on the 77 

use of several known microbial strains. Two strategies were proposed based on either (i) an 78 

artificial mixture of 2-4 strains or (ii) a set of several strains used individually. The aims of 79 

these strategies were the same, namely, to enlarge the biodegradation spectra while ensuring a 80 

great level of reproducibility (Catterall et al., 2003; Jia et al., 2003; Jiang et al., 2006; Lin 81 

et al., 2006; Xin et al., 2007). In the case of multi-species mixtures (i), the stability of the 82 

initial properties of the consortia (i.e., cell density, diversity, ratio between strains, 83 

biodegradation abilities, etc.) was difficult to ensure long-term mostly due to competition for 84 
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the carbon substrate. The second strategy (ii) (Pitman et al., 2015; Raud and Kikas, 2013) 85 

also relies on several strains but is based on the use of several selected strains (not structured 86 

in the consortium). This strategy ensures good reproducibility while freeing the results from 87 

potential inocula drifts (this strategy was applied in this work). Nevertheless, this multivariate 88 

approach (based on several biological descriptors) increases the complexity of the data 89 

analysis (one value per strains). To overcome this limitation, Raud and Kikas (2013) analysed 90 

the data with a PLS (partial least squares) regression method to simultaneously take into 91 

consideration all the information provided by the different strains. The results were very 92 

encouraging, but the validation was performed only on synthetic wastewaters and not on real 93 

samples.   94 

Moreover, bio-element selection is a crucial parameter in these metrological approaches based 95 

on controlled strains and directly conditions the potential performances of the future 96 

analytical method (i.e., biodegradation spectra and response kinetics) (Jouanneau et al., 97 

2014). The selection step, when included, generally is based on either the intrinsic properties 98 

of the strains (i.e., biodegradation range and growth conditions) (Kwok et al., 2005; Oota et 99 

al., 2010; Raud et al., 2012; Raud and Kikas, 2013) or isolation of strains from a specific 100 

environment (Chan et al., 2000; Kwok et al., 2005; Yoshida et al., 2000). Nevertheless, no 101 

characterization or comparison has been carried out to determine the relevance of this choice. 102 

Moreover, questions remain concerning how to ensure the representativity of the proposed 103 

analytical approach under these conditions.  104 

The aim of the proposed study was to design a relevant analytical method for the assessment 105 

of the BOD5 to address these limitations. This strategy is based on the separate use (not 106 

structured in the consortium) of a set of 8 bacterial strains that have been rigorously selected 107 

using defined characteristics, such as the biodegradation potential, metabolic rate and 108 

toxicological robustness (Fig. 1). Coupled with an algorithm of data processing allowing to 109 
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analyses the multivariate information provided by the bacterial set, the proposed method is 110 

able to assess BOD5 in only 3 hours with a high reliability (r²=0.85).  111 

2. Experimental section 112 

2.1. Bacterial strains 113 

A total of 28 strains were preselected from the literature according to the following 114 

characteristics: (i) their representativity with regard to the microbial population of an 115 

activated sludge from a WWTP (Kong et al., 2007; Snaidr et al., 1997; Xia et al., 2010), (ii) 116 

their weak pathogenicity (mainly group 1 risk according to the 2000/54/EC classification 117 

proposed by the European Directive), (iii) their broad biodegradation abilities (Gao et al., 118 

2010) and (iv) their resistance to freeze-drying conditions (information collected from 119 

microbial collections, such as ATCC, DSMZ or CIP) (specification relative to an eventual 120 

industrial transfer). The full list of pre-selected strains at this step is described in the 121 

supplementary data (Table SD-1).  122 

2.2. Growth medium of the strains and other solutions 123 

The Luria Bertani medium (LB medium) was prepared in distilled water and supplemented 124 

with 5 g.L-1 NaCl (Merck, Germany), 5 g.L-1 tryptone (Biokar Diagnostics, France) and 1 g.L-125 

1 yeast extract (Biokar Diagnostics, France). 15 g.L-1 of agar type E (Biokar Diagnostics, 126 

France) was added to obtain the solid medium. The pH was adjusted to 7 using a solution of 127 

HCl (Sigma Aldrich, USA) or NaOH (Merck, Germany) before autoclaving at 120°C for 20 128 

min.  129 

The synthetic wastewater (SWW) solution was prepared in accordance with the OECD 209 130 

standard28 as follows: 1 L of distilled water was supplemented with 16 g of tryptone (Biokar 131 

Diagnostics, France), 11 g of meat extract (Biokar Diagnostics, France), 3 g of urea (Sigma-132 



 

 

7

Aldrich, USA), 0.7 g of NaCl (Merck, Germany), 0.4 g of CaCl2 • 2H2O (Merck, Germany), 133 

0.2 g of MgCl2 • 7H2O (Sigma-Aldrich, USA), and 2.8 g of K2HPO4 (Merck, Germany).   134 

The mineral medium [MM, derived from M9 medium (Atlas, 1997)] without a carbon source 135 

used in this study was prepared in two steps. The first step consisted of preparation of several 136 

concentrated solutions (S1, S2, S3, St and Sb) in distilled water. S1 consists of 60 g.L-1 137 

Na2HPO4 (Fluka, Germany), 30 g.L-1 KH2PO4 (Merck, Germany), 10 g.L-1 NH4Cl (Merck, 138 

Germany) and 5 g.L-1 NaCl (Merck, Germany). S2, S3, Sb and St are composed of 264.5 g.L-1 139 

MgSO4 • 7H2O (Sigma-Aldrich, USA), 14.7 g.L-1 CaCl2 • 2H2O (Merck, Germany), 0.5 g.L-1 140 

biotin (Sigma-Aldrich, USA) and 0.15 g.L-1 thiamine • HCl (Sigma-Aldrich, USA), 141 

respectively. S1, S2 and S3 were sterilized by autoclaving, and St and Sb were filtered 142 

through 0.2 µm cellulose acetate filters (146560, Dutscher, France) and stored at +4°C. The 143 

second step consisted of mixing these solutions according to the following ratio (for 1 L of 144 

MM): 100 mL of S1, 1 mL of S2/S3/St/Sb and if required 10 mL of a carbon source at the 145 

desired concentration. The mixture was adjusted to 1 L with sterile distilled water.    146 

Glucose solutions (GSs) were prepared at several carbon concentrations in the MM medium 147 

and sterilized by filtration (cellulose acetate filters, 146560, Dutscher, France). 148 

Glycerol solution (GlyS) at 50% (v/v) was prepared in distilled water and sterilized by 149 

autoclaving. 150 

2.3. Growth and preparation of bacterial cells 151 

All strains were stored and cultivated under the same conditions. The cells were stored at -152 

80°C in a mixture (v/v) of LB medium (50%) and GlyS (50%). The cells were isolated on 153 

solid LB medium at +30°C during 12 to 24 hours and the obtained colonies were used to 154 

inoculated the first cultivations. 155 
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For the first cultures, the cells were grown overnight (14 hours) in LB medium at 30°C under 156 

shaking at 250 rpm. Then, the cells were diluted to an optical density of OD620nm = 0.2 in 157 

fresh LB medium and cultivated at 30°C under shaking at 250 rpm until an OD620nm = 0.6 158 

(exponential growth stage) was reached. This OD620nm value (0.6) corresponds to a cell 159 

density varying between 108 and 109 CFU.ml-1 for the tested strains (results not shown). For 160 

the sake of simplicity, we considered that these cell densities were not significantly different 161 

from strain to strain. 162 

The cultivated cells (OD620nm = 0.6) were refreshed in an ethanol bath at -20°C for 1 minute. 163 

The aim of this step is not to freeze the cells but to decrease quickly the temperature in order 164 

to avoid any change of their physiological state. Then, the cells were centrifuged (6,400 x g, 5 165 

min, +4°C) to remove the growth medium and resuspended in a cold washing solution of 166 

MgSO4 • 7H2O (10-2 M). After three washes, the cells were resuspended in MM without a 167 

carbon source and adjusted to obtain the required cellular density 168 

(OD620nm = 0.43/0.86/1/1.72/2.57/3.43/4.29). 169 

2.4. Optimization of the experimental conditions 170 

We were interested in improving some of the experimental conditions through two strategies: 171 

the replacement of oxygen (used as an activity marker of biodegradation in the reference 172 

method) with a fluorescent dye (resazurin) that was a priori better suited for this metrological 173 

context and the optimization of the cell density in the biodegradation assays. The aim of this 174 

second strategy was to define the condition that ensured both a reduced analysis duration and 175 

a measurement range that was as large as possible. The resazurin solution used in this work 176 

was a commercial solution (PrestoBlue®, InvitrogenTM, USA). No information was available 177 

relative its concentration. 178 

These steps were performed with the model strain E. coli K12 MG1655 in duplicate.  179 
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2.4.1. Comparison of two activity markers: oxygen versus resazurin (fluorescent dye) 180 

2.4.1.1. Monitoring the biodegradation activity via the fluorescent marker.  181 

The bacterial suspension was prepared as described above (see 2.3) at an OD620nm = 0.43. The 182 

assay solution was prepared by mixing the washed bacterial suspension, MM supplemented 183 

with glucose and the commercial resazurin solution (PrestoBlue®, InvitrogenTM, USA).  184 

 Several glucose concentrations (final concentration) ranging from 0.1 mg.L-1 to 500 mg.L-1 185 

were tested to define the limits of the measurement range. The mixtures were prepared 186 

directly in the microplate wells (Nunc™ F96 MicroWell™, 236108) in following the ratio 187 

(final volume = 150 µL/well): 35 µL of bacterial suspension (final OD620nm = 0.1), 100 µL of 188 

MM with glucose and 15 µL of dye (PrestoBlue®, InvitrogenTM, USA, in accordance with the 189 

provider protocol: 10% v/v).  190 

Monitoring of the biological activity via the fluorescent marker (Cregut et al., 2013; Dudal 191 

et al., 2006; Tizzard et al., 2006) was performed with the TriStar LB 941 Multimode 192 

Microplate Reader (Berthold Technologies GmbH, Germany) every ten minutes [λexcitation = 193 

540 nm (bandwidth = 10 nm), λemission = 610 nm (bandwidth = 10 nm), counting time = 0.1 s 194 

and incubation temperature = 30°C]. 195 

2.4.1.2. Monitoring of the biodegradation activity via oxygen consumption.  196 

For the assay based on the oxygen marker, the resazurin solution was replaced by distilled 197 

water in the assay solution. In this case, the biological activity was monitored in an Oxodish® 198 

OD24 microplate reader (24-well microplate with an integrated oxygen sensor, PreSens 199 

Precision Sensing, GmbH, Germany). Each well was filled with 3 mL of assay solution (same 200 

ratio as in 2.4.1.(a) – 700 µL of bacterial suspension, 2 mL of MM with glucose but 300 µL of 201 

distilled water) and sealed using an AB-0558 adhesive PCR film (Thermo, ABgene, France) 202 

to prevent atmospheric oxygen from entering the system (Cregut et al., 2013) during the test. 203 

Oxygen was monitored at 30°C with the SensorDish Reader (PreSens Precision Sensing).  204 
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2.4.2. Optimization of the cellular density. 205 

The impact of the cell density was evaluated as described in the previous paragraph (2.4.1.). 206 

The same protocol based on resazurin as the biodegradation marker was used except for the 207 

final bacterial concentration, which ranged from OD620nm = 0.1 to OD620nm = 1.  208 

2.5. Characterization of the strains 209 

The characterization steps described below were performed for the 28 selected strains in 210 

parallel with the optimization phases. The cellular density after the washing step (see 2.3) was 211 

adjusted to OD620nm = 1 for all strains.  212 

2.5.1. Metabolic profile and stress robustness 213 

The objective was to characterize the selected strains according to two criteria: their 214 

biodegradation capabilities and their intrinsic robustness towards several environmental 215 

stresses (i.e., pH, salinity, antibiotics, reference toxic compounds, etc.). These two parameters 216 

were assessed simultaneously using GEN III microplatesTM (Biolog Inc., USA – see Fig. SD-217 

1) with 71 different carbon sources and 23 stress conditions (test based on the growth 218 

inhibition induced by specific conditions such as osmotic and pH stresses or several reference 219 

toxics) supplemented with tetrazolium redox dyes (as a colorimetric respiratory marker) 220 

following the protocol provided by the manufacturer.  221 

Briefly, after the washing step (see 2.3), the bacterial suspension was diluted tenfold in an IF-222 

A solution (Biolog Inc., No. 72401, IF-A, USA) to obtain a cellular density between 107 and 223 

108 cell.mL-1 (OD620nm = 0.1). Then, 100 µL of this diluted suspension was added to each 224 

microplate well, and the plate was incubated for 40 hours at 30°C. The reading was performed 225 

at a wavelength of 590 nm (Preston-Mafham et al., 2002) with the TriStar LB 941 226 

multimode microplate reader (Berthold Technologies, Germany). Each strain was tested in 227 

duplicate.   228 
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The results obtained from the 71 carbon sources were used to establish biodegradation 229 

profiles specific to each strain and then compared and clustered using statistical approaches 230 

(agglomerative hierarchical clustering, XLStat, Addinsoft).  231 

For each strain, an index of robustness was calculated from the number of stress conditions, 232 

conditions inducing a growth inhibition (none observed cellular development), divided by the 233 

overall number of tested conditions (n=23). This index aims to compare the sensitivity of the 234 

strains to potential environmental stresses. 235 

2.5.2. Assessment of the biodegradation kinetics  236 

The biodegradation kinetics of the 28 strains were compared in the SWW medium to evaluate 237 

their respective response times. First, 2.7 mL of SWW and 300 µL of the washed suspension 238 

(OD620nm = 1) were added to the wells of an Oxodish® OD24 microplate (PreSens, Germany). 239 

An AB-0558 adhesive PCR film (Thermo, ABgene, France) was applied on the microplates to 240 

limit atmospheric oxygen diffusion in the reaction medium. Measurements were performed 241 

with the SensorDish Reader (PreSens Precision Sensing) each minute at 30°C for 10 hours in 242 

triplicate. The kinetics values were calculated from the maximal slope of the measured 243 

oxygen consumption.  244 

2.6. Environmental samples 245 

The environmental samples (n = 104 - Table SD-2) had several origins, including raw or 246 

treated waters from several WWTPs in the Nantes countryside (France, n = 72), stormwaters 247 

from the Bordeaux Region (France, n = 8) and treated waters collected from non-collective 248 

treatment units (autonomous sanitation system dedicated to the isolated private dwellings) 249 

installed in the Scientific and Technical Centre for Building of Nantes (CSTB, France, n = 250 

24). The sampling procedure used for this study follows the conditions described by the ISO 251 

5667-2 and ISO 5667-3 standards. The samples were collected in 250 mL disposable plastic 252 
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bottles (PE, 030424, Dustcher, France) that were previously washed with distilled water. The 253 

samples were aliquoted into 2 mL tubes (PP, BiopurTM Safe-LockTM tubes, Eppendorf®, 254 

Germany) and stored at -20°C prior to use. 255 

Several parameters were measured to characterize the samples, including the BOD5 (see 2.7), 256 

chemical oxygen demand (NF T90-101/NF EN 872), and toxicity (ISO 11348, ISO 6341 and 257 

ISO 20666) (data shown in Table SD-2). 258 

2.7. BOD5 measurement  259 

2.7.1. Reference method (ISO 5815)  260 

The reference analyses for BOD5 were performed according to the standard method 261 

(ISO 5815) by the INOVALYS NANTES Lab (Nantes, France), which is certified by the 262 

French Accreditation Committee (COFRAC). 263 

2.7.2. Method developed in this work 264 

The measurement protocol for the proposed BOD5 test was carried out in 96-well microplates 265 

(Nunc™ F96 MicroWell™, 236108) according to the following ratio: 35 µL of bacterial 266 

suspension at an OD620nm = 2.57 (final OD620nm in well = 0.6), 100 µL of sample and 15 µL of 267 

resazurin (PrestoBlue®, InvitrogenTM, USA). The microplate was incubated for 3 hours at 268 

30°C. These test conditions (incubation period, cell density, oxygen marker, and used strains) 269 

were determined during the optimization step of the experimental conditions (see results in 270 

3.1 and 3.2). Subsequently, the fluorescence signal relative to the biological activity of the 271 

strains was individually read with the TriStar LB941 Multimode Microplate Reader as 272 

described above (see 2.4.1).  273 

All the samples (see 2.6) were tested in duplicate, and the collected values were exported to 274 

an overall database. This data set was used to establish the correlation algorithm between the 275 

biological values provided by the bacterial set and the BOD5 reference method (ISO 5815). 276 
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2.8. Data processing: design of correlation models by a statistical approach 277 

The aim of the data processing was to design algorithms to correlate the biological data 278 

(fluorescence values) obtained from the selected strains with the BOD5 reference values; the 279 

final goal was to propose a mathematical model to predict the BOD5 value from only the data 280 

provided by these strains. All models were designed via a dedicated software (Neuro One 281 

6.13.0.5, Netral, France). 282 

2.8.1. Architecture of the model (number of biological descriptors and nature of the model) 283 

First, the data were analysed using a mono-parametric approach. The information 284 

(fluorescence values) from each strain was individually correlated with the reference values 285 

by linear regression. Because the results were insufficient (low correlation rates), the data 286 

processing focused on a multi-component strategy (based on several strains), which was also 287 

based on a linear regression algorithm. This step allowed the determination of the number of 288 

biological descriptors (selected strain) required to assess the BOD5. The predictive abilities of 289 

these models are limited.   290 

To improve the performance of the models for the assessment of the BOD5, non-linear 291 

algorithms by neural networks were deployed. These models are defined according to 292 

architectural characteristics, such as the number of hidden neurons, the activation modalities 293 

of the neurons, and the data standardization conditions. Several architectures were compared 294 

for the overall database to identify a priori the most relevant algorithms.  295 

2.8.2. Model validation 296 

The last data processing step consisted of comparing the preselected architectures based on 297 

their predictive abilities with new samples. For this purpose, the overall database was 298 

randomly separated into two groups: a learning set (n= 148 assays) and a validation set (n= 60 299 

assays). The learning set was used to design new algorithms based on the preselected 300 
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architectures (number of hidden neurons, activation mode, and data standardization). To 301 

assess the robustness of these new models and choose the most relevant model, the estimated 302 

BOD5 values obtained from the validation set were compared to the reference values. This 303 

step was also performed with Neuro One 6.13.0.5 (Netral, France). 304 

3. Results and discussion 305 

3.1. Improvement of biological activity monitoring 306 

The reference method used to assess BOD5 is based on oxygen consumption as a marker of 307 

the biodegradation activity. This approach induces some technical constraints, such as a 308 

measurement range that is limited by the saturation rate of oxygen in water (Cregut et al., 309 

2013) or the tightness of the system to air (contaminant oxygen). In this context, resazurin 310 

appears to be a relevant marker for monitoring biological activity (Cregut et al., 2013). This 311 

non-toxic non-fluorescent dye (λabsorbance max = 601 nm) is reduced in the cell cytoplasm to a 312 

fluorescent compound, resorufin (λabsorbance max = 571 nm, λexcitation = 535-560 nm, λemission = 313 

590-615 nm – see Fig. SD-2), by the enzymatic chain involved in cellular respiration (Cregut 314 

et al., 2013; Fai and Grant, 2009; O’Brien et al., 2000). 315 

These two cell activity markers were compared during glucose biodegradation monitoring 316 

(MM supplemented with glucose as the sole carbon source) in E. coli. Several glucose 317 

concentrations (range from 0.1 to 500 mg.L-1) were tested to determine the highest 318 

measurable concentration according to the marker used (Fig. 2A). Comparative analysis of 319 

these results showed that use of resazurin as a marker could assess the glucose concentration 320 

up to 495 mg.L-1 versus only 125 mg.L-1 with oxygen. In light of these data, the fluorescent 321 

dye was selected for continuation of the study.  322 
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Subsequently, we were interested in the effect of the cell density of E. coli on the 323 

measurement duration with resazurin as cell activity marker. Figure 2B shows that an increase 324 

in the cell density substantially reduced the analysis duration; a cell density of 0.1 (OD620nm) 325 

resulted in a measurement duration of almost 12 hours versus 2 hours for an OD620nm = 1. The 326 

results also showed a reduction in the measurement range that was linked to the increasing 327 

cell density. This trend can be explained by an increase in the signal-to-noise ratio (see Fig. 328 

SD-3). An important noise (fluorescence baseline) measured with the high cell densities 329 

probably is induced by endogenous cellular respiration. At the same time, the saturation limit 330 

of the approach is reached at approximately 800,000 RFU. Consequently, the maximal 331 

measurable concentrations should not exceed 500 mg.L-1 for a cell density of 0.1 (OD620nm) 332 

versus 170 mg.L-1 for an OD620nm = 1.  333 

To comply with the approach expectations (analysis limited in time but ensuring a relevant 334 

measurement range), the better compromise seemed to be a cellular density of 0.6 335 

corresponding to an analysis duration of approximately 3 hours.   336 

3.2. Selection of a representative set of strains 337 

The objective of this step was to constitute a set of controlled bacterial strains that were able 338 

to reliably assess the BOD5 in a limited time and under reproducible conditions.  339 

3.2.1. Pre-selection of bacterial candidates 340 

The first step was dedicated to the preselection of bacterial strains that were likely to become 341 

a biological strain capable of assessing the BOD5. A literature review identified the major 342 

phyla present in the activated sludge of wastewater treatment plants (main targets of the 343 

proposed metrological approach) (Isazadeh et al., 2016; Xia et al., 2010; Zhang et al., 344 

2018). More than 1200 operational taxonomic units (OTUs) were identified as potential 345 

candidates in activated sludge from WWTPs. Several of these OTUs were directly rejected 346 
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due to their strong pathogenicity (i.e., Campylobacteraceae, Helicobacteraceae, 347 

Xanthomonadales, some Burkholderiales, some Bacteriodetes, etc.) or their unsuitable 348 

metabolism (strictly anaerobic strains, such as Desulfobacterales and Desulfovibrionales, and 349 

marine strains, such as Alteromonadales), which were incompatible with the intended use of 350 

the technology (Fig. 3).  351 

Among the selected families, we focused on the identification of bacterial species that met the 352 

criteria of the approach. The pre-selected strains should preferably be isolated from activated 353 

sludge of WWTPs, should be largely represented in these environments, should have wide 354 

and complementary a priori biodegradation abilities, should not be pathogenic and should be 355 

available in the current strain banks (i.e., DSMZ or ATCC). In accordance with these five 356 

criteria, 31 strains (among more than 1200 identified OTUs) were pre-selected before a 357 

second characterization step based on their ease of use (quick growth and ease of cultivation). 358 

From the obtained results, 3 strains were discarded (complexity of culture or too low a growth 359 

rate), which reduced the bacterial preselection to 28 strains (see Table SD-1). The overall pre-360 

selection strategy is shown in Figure 3.  361 

3.2.2. Selection of a representative set of strains 362 

The simultaneous use of the 28 strains as individual descriptors of the BOD5 was extremely 363 

technically complex and expensive. Consequently, we needed to reduce the number of strains 364 

used in the bioassay. First, we focused on the biodegradation capabilities of the selected 365 

strains. The biodegradation profile of each candidate was determined using 71 carbon sources 366 

(see Fig. SD-1), and hierarchical clustering was performed according to their similarities 367 

(agglomerative hierarchical clustering) (Fig. 4). Eight clusters with comparable 368 

biodegradation capabilities were identified among the 28 preselected strains (similar profiles 369 

at 95%). For example, group A, which consisted of 6 strains (A. towneri, B. aquatica, P. 370 
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pantrophus, Z. resiniphila, B. vertrisii and B. funiculus), exhibited a modest range (only 6) of 371 

molecules that were likely to be biodegraded among the 71 proposed carbon sources. 372 

Conversely, group H offered a very wide set of biodegradation capabilities with ca. 85% 373 

biodegraded molecules (R. radiobacter, B. subtilis, Staphylococcus sp., S. yanoikuyae and A. 374 

aurescens).   375 

In parallel, all strains were characterized according to their robustness and biodegradation 376 

kinetics (Fig. 5). These criteria were taken into account to select a representative among the 377 

bacterial groups with similar biodegradation profiles. To limit the effect of the water toxicity 378 

on the metrological approach, strains with strong robustness were preferred because of their 379 

inherent capabilities to resist environmental stresses. Indeed, in the case of excessive water 380 

toxicity or too high sensitivity of strains, the bacterial cells will be not able to provide reliable 381 

information inducing erroneous results. However, strains with high biodegradation kinetics 382 

were a priori more likely to provide a biological signal quickly. Consequently, these strains 383 

were also preferred in view of the context of technological development of this study. 384 

Figure 5A reports the specific robustness of each strain. These values were calculated based 385 

on 23 stress conditions and varied between 0.13 for B. mycoides (the most sensitive strain 386 

among the 28 tested) and 1 for E. coli. Figure 5B depicts the biodegradation kinetics of each 387 

strain for the synthetic wastewater (SWW). From these data that were calculated from the 388 

maximal measured slope of oxygen consumption, we noted significant differences between 389 

strains. For example, the biodegradation kinetics reached 0.33 mg BOD.L-1.h-1 for B. vertrisii, 390 

whereas the kinetics achieved by P. putida (DSM 1868) were approximately 12 mg BOD.L-391 

1.h-1. Consequently, the second strain should a priori provide a faster biological signal, as 392 

desired for our bioassay.    393 
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The final selection process of representative strains among each cluster was based on these 394 

last two criteria in addition to some criteria relative to the utilization of the strains, such as the 395 

flocculation of cells during growth (complexity of the preparation step). For example, group 396 

A consists of 6 strains (B. funiculus, B. vertrisii, Z. resiniphila, P. pantrophus, B. aquatica 397 

and A. towneri). Among these 6 strains, B. aquatica was selected to represent this group 398 

because of its capabilities (highest robustness and fastest biodegradation kinetics).  399 

Finally, among the 28 candidates, a representative set of 8 strains was definitively selected, 400 

consisting of B. aquatica, C. testosteroni, P. putida (DSM 1868), V. paradoxus, C. 401 

pseudodiphteriticum, P. mirabilis, E. coli and B. subtilis. 402 

3.3. BOD5 assessment with the standard method and the bioassay. 403 

The BOD5 values of the 104 real samples (collective or non-collective sanitation or 404 

stormwater) were determined according to the standard method (ISO 5815) (see Table SD-2). 405 

As expected, the samples taken before treatment by a WWTP showed significant pollution 406 

levels, with an average BOD5 of nearly 120 mg.L-1 (min. 66 mg.L-1; max. 190 mg.L-1). The 407 

levels measured in the treated waters varied strongly according to their origins (collective or 408 

non-collective sanitation). The average BOD5 of stormwater was approximately 40 mg.L-1 409 

(min. 12 mg.L-1 ; max. 54 mg.L-1); this pollution is probably due to runoff of water on roads 410 

and roofs, which transfers pollutants from support to water.  411 

In parallel, each sample was subjected to the selected strains to determine the corresponding 412 

biological activity (fluorescence values obtained after 3 hours of exposure for the 104 413 

analysed samples in duplicate). The final database consisted of 208 assays. Each sample is 414 

defined by 8 fluorescence values (one per strain) and a BOD5 reference value obtained using 415 

the standard method. The data analysis was performed from this database. The main objective 416 

of this supplementary step was to propose a reliable correlation model that allowed prediction 417 
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of the BOD5 after only 3 hours. Nevertheless, we were focused on the number of strains 418 

required to assess the BOD5 before improving the correlation algorithm a second time 419 

(numerical model allowing calculation of the BOD5 from fluorescence values provided by the 420 

selected strains).    421 

3.3.1. Determination of the number of biological descriptors needed to assess the BOD5 422 

The data provided by each selected bacterial strain were individually correlated by linear 423 

regression with the BOD5 reference values (Fig. 6). The average correlation rate was 424 

approximately 0.11, with a standard deviation of 0.08. Among the 8 selected strains, the best 425 

correlation rate obtained with B. aquatica (r²=0.2638) was too low to be used as a reliable 426 

bio-indicator of the BOD5.  427 

Nevertheless, each strain provided a portion of the overall information. Consequently, 428 

increasing the number of strains used to assess the BOD5 should improve the relevance of the 429 

approach. However, the number of strains required to ensure a reliable measurement is 430 

unknown. 431 

Correlation models (linear regression) were designed based on the use of 1 to 8 strains. The 432 

obtained models are presented on Figure 7. The correlation rate between the predicted 433 

(calculated from fluorescence data provided by the selected strains) and reference values 434 

(standard method) tended to increase with the number of strains used. Indeed, the average rate 435 

obtained from a single strain was approximately 0.11, whereas this rate reached 436 

approximately 0.6 when the 8 strains were used. 437 

Increasing the number of strains used to assess the BOD5 was associated with a significant 438 

increase in the correlation rate of the models. However, the predictive capabilities of the best 439 

model based on the 8 strains was not sufficient (r²=0.58). In view of these results, a second 440 

step was required to improve the predictive capabilities of the data analysis model.  441 
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3.3.2. Improvement of the correlation model 442 

To overcome this limitation and to propose a more reliable method for the assessment of the 443 

BOD5, the regression linear algorithms were compared to a neural network approach. The 444 

neural network is a framework for many different machine learning algorithms that can 445 

process complex data. Consequently, an exploratory step was performed to screen the 446 

architectures with the most potential. Several architectures were compared with the dedicated 447 

Neuro One software (Version 6.13.0.5, Netral, France). The differences between the tested 448 

architectures were based on the number of hidden neurons, the activation mode, and the data 449 

standardization. More than 800 models (80 architectures and 10 models by architecture 450 

obtained by iterations) were generated (see Table SD-3) by supervised learning from the 451 

overall database. The correlation rate obtained between the predicted and reference BOD5 452 

values varied from 0.36 (below the model based on linear regression – 0.58) to 0.93. Among 453 

the 80 tested architectures, several architectures had relevant predictive capacities with 454 

correlation rates superior to 0.8. The best model (r² = 0.93) was based on an 455 

orthonormalization (Gram Schmidt process) of inputs, 4 hidden neurons activated by a 456 

hyperbolic tangent algorithm and post-treatment of the outputs.  457 

These models are iteratively designed from existing data (i.e., they modify the different 458 

variables that control the variables during the learning process according to the data taken into 459 

account). Consequently, over-learning is a significant risk, which leads to questions about the 460 

relevance and the robustness of the predicted BOD5 values obtained from new data. To 461 

remove this uncertainty, new models were designed using a fraction of the overall database.  462 

3.3.3. Model validation  463 

The global database was randomly separated into two sets: the learning (n=148) and the 464 

validation (n=60) sets (see 2.8.2). The learning set was used to design models with the 10 best 465 

a priori architectures determined during the previous step (see Table SD-3, conditions 466 
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overlined in grey). Ten models were generated based on the architecture. The robustness of 467 

these models was compared from unused data in the validation set based on the correlation 468 

rate between the predicted and reference values.  469 

Among the 100 models, the most relevant was able to estimate the BOD5 of the validation 470 

samples (data not included during the learning process) with strong reliability (r²=0.851) (Fig. 471 

8). This model consists of a hidden layer of three neurons activated by a hyperbolic tangent 472 

function. The input and output data are standardized with respect to a centred, reduced, 473 

normal distribution. From a global perspective, the BOD5 values calculated from the bacterial 474 

set are relatively consistent with the reference values. The model seems to be particularly 475 

reliable between 25 and 300 mg/L-1 BOD5 (according to the reference method) for 476 

wastewaters (collective or non-collective sanitation). Nevertheless, its performance decreases 477 

for samples with low biodegradable organic loads (inferior to 25 mg.L-1 according to the 478 

reference method) and for stormwaters. Two hypotheses can explain this result: (i) the current 479 

model is not sufficiently accurate to predict low BOD5 values (a specific model must be 480 

designed to analyse specifically these low values) and/or (ii) an organic composition of 481 

stormwater different from that of wastewaters (organic compounds collected during water 482 

runoff on roads or roofs) induces specific findings from the bacterial descriptors.  483 

Similar results were obtained by Raud and Kikas (2013). Their strategy was based on a 484 

microbial set consisting of 7 bacterial strains selected from their intrinsic biodegradation 485 

properties. The processing of multivariate data was performed using a PLS algorithm. The 486 

validation was only performed on artificial samples (synthetic wastewater spiked with phenol, 487 

milk, fat or cellulose) and not on real wastewater samples. Nevertheless, the correlation rate 488 

between the calculated and reference values was close to 1 (r²=0.85 in our study). Opposition 489 

to real samples seems to decrease the correlation rate (calculated values versus reference 490 

values), because mimicking a real sample with synthetic effluents is difficult.  491 



 

 

22

The reference values own an inherent variability close to 20% (Jouanneau et al., 2014) 492 

notably due to the environmental variability of used inoculum. Conversely, the mean 493 

variability of data provided by the selected strains is 6.62% (results not showed). During the 494 

learning process, the model adjusts the model variables to match the data provided by the 495 

bacterial set with the reference data integrating at the same time its inherent variability (20%). 496 

To improve prediction reliability, it is required to know the “true” reference value. For this, it 497 

would be necessary to carry out several reference analysis by samples to determinate these 498 

"true" values (statistical analysis) in order to design new predictive models. 499 

3.3.4. Post analysis 500 

In accordance with the selected architecture, a post analysis was performed to demonstrate the 501 

relevance of the use of several strains as bio-indicators associated with data processing by the 502 

neural network. Figure 9 shows the average correlation rates (linear least squares method) and 503 

the associated standard deviations depending on the number of strains used and according to 504 

the models used (linear regression or neural network). The results show a significant 505 

improvement in the reliability of the provided BOD5 values compared with those obtained 506 

with the linear regression models.  507 

With this post-analysis, we demonstrated firstly that the number of biological descriptors was 508 

a crucial factor in the development of a method to assess the biodegradable organic load. The 509 

use of a single bio-indicator seems to significantly limit the measurement performance of the 510 

strategy. The review of Jouanneau et al. (2014) tended to reinforce this observation. Indeed, 511 

among the many cited publications, strategies based on a unique biological descriptor show 512 

lower abilities to assess the BOD5 in real samples (see Fig. SD-4) and wider variability 513 

between studies. From the publications cited in this review, the average correlation rate was 514 

close to 0.81 (SD=0.24) with a unique biological descriptor (r²min = 0.09 / r²max = 1) versus 515 

0.95 (SD=0.07) with a consortium (r²min = 0.81 / r²max = 1). Strategies based on consortium-516 
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related systems use microbial mixtures from natural or artificial origins in most cases. These 517 

strategies are in agreement the protocol described in the reference method (ISO 5815) but 518 

induce wide inherent variability due to the descriptors used.  519 

4. Conclusion 520 

In this work, we proposed an overall strategy to assess the BOD5 from the selection of 521 

bacterial indicators to the validation of real wastewater samples. By acting on some levers, 522 

such as the measurement conditions or the selection of 8 bacterial bio-indicators, we 523 

developed a bioassay that allowed reliable and accurate BOD5 measurement and required only 524 

3 hours versus 5 days for the reference method. The measurement range being enlarged, no 525 

dilution is required to assess BOD5 in most wastewater, contrary to the reference method 526 

limited to 6 mg/L BOD. The obtained results are very encouraging and show a strong 527 

correlation with the reference BOD5 values (r²=0.85). Nevertheless the method seems to reach 528 

its limits regarding to the assessing of low BOD5 levels (inferior to 25 mg.L-1 according to the 529 

reference method). Further work will have to be carried out to improve the model in these 530 

cases.  531 

This significant technological improvement should increase the monitoring level of 532 

wastewaters. Indeed, by reducing the analysis duration, it is easier to control the process of 533 

water treatment and, if necessary, to adjust some parameters, such as the oxygen intake or the 534 

water flow, due to the time scale that is consistent with the treatment duration (2-3 days in 535 

WWTPs).  536 

This metrological strategy was filed with the National Institute of Industrial Property to be 537 

patented (deposit number: 1851496). 538 
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Fig.1. Strategy applied to the development of the BOD5 assessment 

method (Isazadeh et al., 2016; Xia et al., 2010; Zhang et al., 2018). 
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Fig 2. Optimization of the measurement conditions. (A) Comparison of two 

activity marker (oxygen or resazurin) on the maximal measured 

concentration of glucose (strain; E.coli; analysis duration: 12 hours; cellular 

density: OD620nm = 0.1, standard deviation calculated from duplicates). (B) 

Effect of the cellular density (OD620nm = 0.1/0.2/0.4/0.6/0.8/1) on the 

analysis duration (red dotted line) and the measurement range with resazurin 

(grey bars) (standard deviation calculated from duplicates).    



0% 20% 40% 60% 80% 100%

1

Alpha-proteobacteria
Beta-proteobacteria
Delta-proteobacteria
Epsilon-proteobacteria
Gamma-proteobacteria
Others

0% 20% 40% 60% 80% 100%

1

Firmicutes

Actinobacteria

Bacteroidetes

Proteobacteria

Others

0% 20% 40% 60% 80% 100%

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1

Firmicutes

Actinobacteria

Bacteroidetes

Proteobacteria

Others

Preselection from published literatures 

28 pre-selected strains 

0% 20% 40% 60% 80% 100%

1

31 pre-selected strains 

0% 20% 40% 60% 80% 100%

1

Firmicutes

Actinobacteria

Bacteroidetes

Proteobacteria

Others

0% 20% 40% 60% 80% 100%

1

Firmicutes

Actinobacteria

Bacteroidetes

Proteobacteria

Others

0% 20% 40% 60% 80% 100%

1

Alpha-proteobacteria
Beta-proteobacteria
Delta-proteobacteria
Epsilon-proteobacteria
Gamma-proteobacteria
Others

0% 20% 40% 60% 80% 100%

1

Firmicutes
Actinobacteria
Bacteroidetes
Proteobacteria
Others

0% 50% 100%

1

Burkholderiales Rhodocyclales
Nitrosomonadales Neisseriales
Others

0% 20% 40% 60% 80% 100%

1

Rhizobiales Rhodobacterales

Sphingomonadales Others

0% 20% 40% 60% 80% 100%

1

0% 20% 40% 60% 80% 100%

1

0% 50% 100%

1

0% 50% 100%

1

0% 20% 40% 60% 80% 100%

1

Desulfobacteriales Myxococcales

Desulfovibrionales Others

0% 20% 40% 60% 80% 100%

1

0% 20% 40% 60% 80% 100%

1

0% 20% 40% 60% 80% 100%

1

Helicobacteraceae

Campylobacteraceae

Others

0% 20% 40% 60% 80% 100%

1

Enterobacteriales Alteromonadales

Pseudomonadales Xanthomonadales

Others

0% 20% 40% 60% 80% 100%

1

0% 20% 40% 60% 80% 100%

1

Experimental characterization 

A
ve

ra
ge

  b
ac

te
ri

al
 c

o
m

m
u

n
it

y 
in

 a
ct

iv
at

e
d

 s
lu

d
ge

 o
f 

W
W

TP
s 

Fig 3. Overall preselection strategy of bacterial candidates. 
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Fig 4. Average profiles obtained after clustering of the data collected from the 28 

preselected bacterial strains (clustering carried out from 71 carbon sources). Black squares 

correspond to the carbon sources used as substrate by the bacteria strains. 
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Fig 5. Biological characterization of pre-selected candidates. (A) Index of stress 

robustness of strains, (B) biodegradation kinetics obtained with a standardized 

wastewater. For the sake of clarity, the error bars are not represented but the 

standard deviations do not exceed 10% between the duplicates. 
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Fig. 6. Linear correlation between the fluorescence values and the corresponding reference 

values of BOD5; according to an individual approach. Sensor BOD : Fluorescence value 

provided by the strain convert in BOD5 equivalent 
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Fig. 7. Correlation rate (linear regression) obtained according to the number of used 

strains.Sensor BOD: BOD5 equivalent calculated from fluorescence values of n strain(s).  n = 

number of strains used in the linear models. 
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Fig. 8. Correlation between the reference values (5 days required) and the BOD5 estimation 

calculated from the bacterial set (3 hours required). Broken line: confidence interval of model. 

1/1 correlation between calculated and reference values is shown with the center-line on the 

graph.  
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Fig. 9. Relationship between the correlation rate and the number of biological strains used to 

estimate the BOD5. Correlation rates and standard deviations were calculated from available 

models (a single model for the overall bacterial set). Black circle: Correlation rate obtained 

from linear regression. Empty circle: Correlation rate calculated from neural network models. 




