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Abstract 14 

Social network analysis provides a powerful tool for understanding social organisation of 15 

animals. However, in free-ranging populations, it is almost impossible to monitor 16 

exhaustively the individuals of a population and to track their associations. Ignoring the issue 17 

of imperfect and possibly heterogeneous individual detection can lead to substantial bias in 18 

standard network measures. Here, we develop capture-recapture models to analyse network 19 

data while accounting for imperfect and heterogeneous detection. We carry out a simulation 20 

study to validate our approach. In addition, we show how the visualisation of networks and 21 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304380019301309
Manuscript_cc808ca5a142bd8f665d4d17013d80c0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304380019301309
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304380019301309


 2

the calculation of standard metrics can account for detection probabilities. The method is 22 

illustrated with data from a population of Commerson’s dolphin (Cephalorhynchus 23 

commersonii) in Patagonia Argentina. Our approach provides a step towards a general 24 

statistical framework for the analysis of social networks of wild animal populations. 25 

Keywords: Bayesian inference; capture-recapture; multistate models; social networks 26 

 27 

1. INTRODUCTION 28 

Knowledge of the social organisation of animal populations is essential to develop 29 

sound conservation and management strategies as social structure affects habitat use, 30 

information diffusion, as well as the genetic composition and the spread of information and 31 

diseases within these populations (Krause and Ruxton, 2002). 32 

Social network analysis (SNA; Croft et al., 2008; Whitehead, 2008) has recently 33 

known an increasing number of applications to characterize in particular the social structure 34 

of animal populations. SNA allows the study of social networks through their visualisation 35 

and the calculation of several descriptive statistics, with important applications in ecology, 36 

evolution, epidemiology and behavioural ecology (Craft and Caillaud, 2011; Farine and 37 

Whitehead, 2015; Krause et al., 2007; Sih et al., 2009; Wey et al., 2008).  38 

In free-ranging populations however, individuals may or may not be seen (or 39 

recaptured) at various times over a study period. This raises the issue of detectability less than 40 

one that makes it difficult to track associations between individuals. In other words, when one 41 

or two individuals of a dyad are missed, were they associated or not? Besides being imperfect, 42 

detection is often heterogeneous due to variation in individual traits such as, e.g., sex 43 

(Tavecchia et al., 2001), social status (Cubaynes et al., 2010; Hickey and Sollmann, n.d.), 44 
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infection status (Marescot et al., 2018) or pair-bond status (Choquet and Gimenez, 2012; 45 

Culina et al., 2013). Overall, ignoring the issue of imperfect and heterogeneous individual 46 

detection can lead to substantial bias in estimating the probability of association between 47 

individuals (Hoppitt and Farine, 2018; Lusseau et al., 2008; Weko, 2018).  48 

To address these issues, Klaich et al. (2011) developed a capture-recapture model 49 

where detection probabilities of individuals in dyads varied between individuals that are 50 

associated and those that are not. Their approach requires complex probabilistic calculations 51 

that make it specific to their case study, and therefore difficult to extend to other situations. 52 

Here, we use a state-space modelling (SSM) approach (e.g., Buckland et al., 2004) to 53 

acknowledge that data on associations between individuals derived from field studies are 54 

imperfect observations of the underlying social structure. Specifically, the SSM approach 55 

makes the two-component process underlying network structure explicit: i) the temporal 56 

dynamic of associations between individuals and ii) the observations generated from the 57 

underlying process in i). 58 

We apply the SSM framework to capture-recapture (CR) data (Gimenez et al., 2007) 59 

to analyse network data while accounting for imperfect and heterogeneous detection of 60 

individuals. We estimate dyad association probability and distinguish the dynamic of 61 

associated vs. non-associated states from their partial observation. We carry out a simulation 62 

study to assess bias in the association probability. Last, we show how the visualisation and the 63 

calculation of standard network metrics can account for detection probabilities. The approach 64 

is illustrated with data from a population of Commerson’s dolphin (Cephalorhynchus 65 

commersonii) in Patagonia Argentina. 66 

 67 

2. MODEL DEVELOPMENT 68 
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(a) State-space modelling of capture-recapture data  69 

Following (Klaich et al., 2011), we derived dyad association histories from individual 70 

captures and non-captures. For example, let us assume a 4-occasion CR experiment in which 71 

two individuals have capture histories ‘1011’ and ‘1001’ where a ‘1’ stands for an individual 72 

detection and ‘0’ for a non-detection. We considered that behavioural interactions between 73 

individuals occurred within groups (‘gambit of the group’ sensu (Whitehead and Dufault, 74 

1999)). Let us assume that these two individuals were both detected in the same group at the 75 

first occasion but in a different group at the last one, then the association history for this 76 

particular dyad is ‘2013’ where ‘0’ stands for none of the two individuals of a dyad are seen, 77 

‘1’ for one individual only of the dyad is seen, ‘2’ for the two individuals of a dyad are seen 78 

associated and ‘3’ for the two individuals of a dyad are seen non-associated.  79 

To analyse these dyadic data, we implemented a SSM formulation (Gimenez et al., 80 

2007) of multistate CR models (Lebreton et al., 2009) for closed populations. We considered 81 

two states A and B for ‘dyad associated’ and ‘dyad non-associated’ respectively. We denoted 82 

xt

i , a multinomial trial taking values (1,0) or (0,1) if, at time t, dyad i is in state A or B 83 

respectively. Given the underlying states, a dyad may be recaptured in the observations 0, 1, 2 84 

or 3 defined above considering imperfect detection. We denoted yt

i , a multinomial trial taking 85 

values (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) if, at time t, dyad i is observed as a 0, 1, 2 or 3. 86 

The state–space model relies on a combination of two equations. First, the state equation 87 

specifies the state of dyad i at time t given its state at time t – 1: 88 

xt

i  ~ Multinomial 1, Ψxt−1
i( )   

where Ψ  gathers the probabilities for a dyad of staying associated and non-associated 89 

between two successive occasions (Table 1a). We also defined the probability π for a dyad of 90 
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being in initial state associated. Second, the observation equation specifies the observation of 91 

dyad i at time t given its state at time t: 92 

yt

i  ~ Multinomial 1, Pxt

i( )   

where P gathers the detection probabilities  and  of an individual being associated and non-93 

associated in a dyad (Table 1b).  94 

 95 

(b) Bayesian fitting using MCMC methods 96 

We used Bayesian theory in conjunction with Markov Chain Monte Carlo (MCMC) 97 

methods to carry out inference. Inference was based on empirical medians and credible 98 

intervals. As a by-product of the MCMC simulations, we also obtained numerical summaries 99 

for any function of the parameters, in particular the metrics describing the network structure.  100 

 101 

(c) Calculating network measures while accounting for imperfect detection 102 

In SNA, a wide range of descriptive statistics can be used to characterize the properties 103 

of the structure of a network. Here, we focused on four of them. We used for each animal in 104 

the network the number of other animals with which it was associated – degree – and the 105 

number of shortest paths between pairs of animals that passed through it – betweeness. In 106 

addition, we quantified the degree to which an animal’s immediate neighbours were 107 

associated – cluster coefficient – and the average of all path lengths between all pairs of 108 

animals in the network – average path length (Croft et al., 2008). These measures are useful 109 

to characterize the properties of a network regarding the spread of disease or information 110 

(Craft and Caillaud, 2011; Watts and Strogatz, 1998).  111 

A feature of MCMC algorithms is that the dyad states xt

i ’s are treated as parameters to 112 

be estimated, just like the transition and detection probabilities. We generated values from the 113 

posterior distributions of the dyads’ states, which, in turn, were used to visualize the network 114 
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and characterize its structure over time. Specifically, for each MCMC iteration, we calculated 115 

the degree and betweeness for each individual (R package sna; (Butts, 2008)), as well as the 116 

clustering coefficient and the average path length (R package igraph; (Csardi and Nepusz, 117 

n.d.)), hence obtaining the posterior distribution for each of these metrics. Data and codes are 118 

available on GitHub https://github.com/oliviergimenez/social_networks_capture_recapture. 119 

 120 

3. SIMULATION STUDY  121 

We conducted a simulation study to assess the bias in parameter estimates. We 122 

considered a scenario where detection probabilities were homogeneous. We simulated 100 123 

CR datasets with π = 0.2, 0.7, ψAA = 0.1, 0.4, 0.9 and ψBB = 0.1, 0.4, 0.9 and pA = pB = 0.3, 0.8 124 

(in total, 36 different configurations) and to each simulated dataset we fitted a CR model with 125 

homogeneous detection probabilities. We also considered a heterogeneous scenario where all 126 

parameters were set to the same values as in the homogeneous scenarios, except the detection 127 

probabilities which we set to pA = 0.3, pB = 0.8 and pA = 0.8, pB = 0.3 (in total, 36 different 128 

configurations). We fitted a model with heterogeneous detection probabilities to these 129 

simulated datasets. For both the homogeneous and the heterogeneous scenarios, we calculated 130 

the relative bias of all parameters. 131 

For the homogeneous scenarios, the bias decreased when detection increased (Table 132 

2). Bias was negligible on detection, around +5% on the transition probabilities and around -133 

13% on π in scenario 19 with ψBB = 0.4. When ψBB = 0.9 in scenario 31, the bias in π 134 

decreased by a factor 2. For the heterogeneous scenarios, the bias was negligible, except for 135 

scenario 31 in which the proportion of associated dyads was low and all dyads tended to 136 

remain non-associated. 137 

 138 

4. CASE STUDY 139 
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To illustrate our methodological approach, we used a real-world example as a case 140 

study. We used photo-identification data on a population of Commerson’s dolphin (C. 141 

commersonii) that was monitored in the coastal waters near the Chubut River mouth 142 

(43◦20`_S, 65◦00`_W) in the Patagonian coast (Coscarella et al., 2003). Commerson’s 143 

dolphins are particularly abundant in the area during the austral spring (Coscarella et al., 144 

2010). The mean residence time in the sampling area was 15 days (SE = 6.4), therefore we 145 

sampled 5 times in October 2007 to unravel which individual was associated with which, 146 

while arriving and leaving the area together (Coscarella et al., 2011).  Two individuals were 147 

considered associated when they were photo-identified during the same encounter, while they 148 

were considered not associated otherwise (Coscarella et al., 2011).  149 

Over the study, a total of 71 dolphins were detected which led to 71*(71-1)/2 = 2485 150 

association histories. Based on previous analyses (Klaich et al., 2011), we considered time-151 

dependent state-independent individual detection probabilities. Individual detections varied 152 

between 11% and 44% (Table 4). The probability of staying associated was 33% while that of 153 

staying non-associated was 57% with very little overlap in the credible intervals (Table 4), 154 

suggesting a high turnover in the dynamic of associations and a fission-fusion social 155 

organization.  156 

Along the five sampling occasions, the estimated network showed changes in its 157 

structure (Figure 1). At occasions 1, 2, 3 and 5, the estimated network had a single component 158 

with a higher number of associated dyads at occasion 1 than at occasions 2, 3 and 5. Although 159 

the number of dyads was higher at occasion 1, all networks were fully connected (i.e. none 160 

individual or group of individuals were isolated form other individuals). At occasion 4, the 161 

network estimated had two components, isolated from each other (i.e. none of the individuals 162 

from one component was associated with any of the individuals in the other component). This 163 
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suggests that at least two groups might exist having preferential associations between 164 

individuals inside each group.  165 

Average path length was lower on the first sampling occasion than in the subsequent 166 

ones, while the reverse pattern was observed for the clustering coefficient (Table 4). These 167 

estimated values also suggest high individual connectivity and that the estimated social 168 

network has features related to a small-world type network. At the individual level, degree 169 

was heterogeneous (Figure 2), with individuals spreading all over the range of its distribution 170 

(Figure 2). In contrast, betweeness appeared relatively homogeneous, despite some dolphins 171 

with low betweeness and a single animal with very high betweeness (Figure 2). 172 

 173 

5. DISCUSSION 174 

We have proposed a new statistical approach combining network analyses with CR 175 

models formulated as state-space models. Our framework has several appealing advantages. 176 

First and most importantly, ignoring imperfect and possibly heterogeneous detection may lead 177 

to biased results about the structure and dynamics of associations (see Figure 1). Our CR 178 

model provides a robust method to estimate social networks. Second, in addition to social 179 

status, our model can easily incorporate individual-level traits such as age or sex through 180 

regression-like functions. This opens an avenue towards investigating the relationships 181 

between the phenotype and social position of individuals. Third, our method provides 182 

unbiased and precise estimates of relevant metrics to characterise the properties of social 183 

networks (see the Simulation study section), the whole process being controlled for imperfect 184 

and heterogeneous detection. Another appealing feature of our approach is the quantification 185 

of uncertainty associated to network measures under the form of Bayesian credible intervals 186 

(Table 2 and Figure 2). Last, the social organisation can be visualised over time while 187 
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accounting for imperfect detection, providing the opportunity for testing socio-ecological 188 

hypotheses in free-ranging animal populations. For example, the rapid turnover of the free 189 

ranging Commerson’s dolphin groups has been previously proposed (Coscarella et al., 2011), 190 

and here we could identify this turnover within the fission-fusion society model.  191 

When inspecting the results of the dolphin case study, there are advantages in adopting 192 

a CR approach to infer social networks. First, when it comes to visualizing the network, we 193 

illustrate in Figure 1 what we would obtain with a standard approach with in black edges, 194 

while the green edges correspond to the dyads that are estimated to be associated with the new 195 

approach by correcting for imperfect detection. Clearly, the structure and dynamics of the 196 

network are different depending on whether we ignore imperfect detection (black edges only) 197 

or we consider the model-based estimated network (edges of both colors). Second, regarding 198 

network metrics, the only way to estimate degree and betweenness for all occasions when 199 

non-detections occur (Figure 2) is to resort to a CR approach to account for missing values.” 200 

Our CR model requires data on individuals that can be uniquely identifiable. 201 

Identifying individuals can be achieved by using non-invasive marking (such as coat patterns, 202 

body scars, or genetic profiling for mammals; e.g., Cubaynes et al., 2010; Marescot et al., 203 

2018; Santostasi et al., 2016) or invasive marking (such as rings for birds, colouring for 204 

insects or passive integrated transponders for fishes; e.g., Băncilă et al., 2018; Buoro et al., 205 

2010; Lagrange et al., 2014). The model also needs data on interactions or associations. Here, 206 

we rely on the ‘gambit of the group’ method which states that all individuals within a group of 207 

animals observed at a point in time are associated (Farine and Whitehead, 2015). 208 

Our model relies on several assumptions. First, we have considered closed populations 209 

while demographic process might occur in animal populations. The extension of our model to 210 

open populations is feasible (Lebreton et al., 2009) to incorporate survival and dispersal, 211 



 10

therefore allowing to assess the influence of social structure on fitness. Second, we assumed 212 

that association states were correctly assigned while some uncertainty might occur due to 213 

incomplete information. In the SSM framework, incorporating uncertainty in state assignment 214 

is relatively straightforward (Gimenez et al., 2012; Pradel, 2005). Third, we assumed 215 

independence of the association histories to form the SSM likelihood. To account for an 216 

individual effect, random effects can be incorporated in CR models (Choquet et al., 2013; 217 

Choquet and Gimenez, 2012, 2010), which opens a promising avenue towards a general 218 

statistical framework for the analysis of animal social networks (Cross et al., 2012; Van Duijn 219 

et al., 2004). 220 

Overall, we hope our proposal will foster applications of social network analysis to 221 

free-ranging animal population in behavioural ecology to describe social behaviour and social 222 

dynamics, in evolution ecology to explore the fitness consequences of the social positions of 223 

individuals and in epidemiological ecology to determine the implications of network structure 224 

and dynamics in the spread of diseases.  225 

 226 

FIGURES 227 

 228 

Figure 1. Visualisation of the network for the Commerson’s dolphin population, over five 229 

sampling occasions, for the year 2007, showing associations (lines) between individuals 230 

(orange circles). For each edge, we calculated the average number of times the corresponding 231 

dyad was estimated as being associated (x = 1) over the total number of MCMC simulations. 232 

Then, we displayed only the edges for which this number was larger than the 0.90 quantile of 233 

the distribution of x. Black edges are for observed dyads (also corresponding to x = 1 for 234 

simulations) while green edges are for dyads that are estimated to be associated (with 235 
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probability 0.69, 0.39, 0.42, 0.42 and 0.40 for capture occasion 1, 2, 3, 4 and 5 respectively) 236 

but for which one or the two individuals were not detected.  237 

 238 
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 239 

Figure 2. Local properties of the Commerson’s dolphin network. For each individual and for 240 

each of the 5 capture occasions, degree (top panels) and betweeness (bottom panels) are 241 

summarized with the posterior mean (circle), the 50% (thick line) and 95% (thin line) credible 242 

intervals.  243 

 244 

245 
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TABLES 246 

 247 

Table 1. Transition matrices used in the state and observation equations of the state-space CR 

network model. States A and B are for associated and non-associated. Parameters p and ψ are the 

detection and transition probabilities. 

 

a) State matrix  

 Current occasion 

Previous occasion A B 

A ψ AA  1−ψ AA  

B 1−ψ BB  ψ BB  

 

b) Observation matrix P 

 Current occasion 

Current occasion 0 1 2 3 

A 1− pA( ) 1− pA( ) 2pA 1− pA( ) p
A
p

A  0 

B 1− p
B( ) 1− p

B( )  2p
B 1− p

B( )  0 p
B
p

B  

 

 

 248 

 249 

250 
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Table 2. Bias in parameter estimates for the homogeneous scenarios. 251 

scenario p π ψAA ψBB bias p bias π bias ψAA bias ψBB 

1 0.3 0.2 0.1 0.1 0.50 26.49 120.98 58.77 

2 0.8 0.2 0.1 0.1 0.08 9.46 4.37 1.36 

3 0.3 0.7 0.1 0.1 -0.33 -1.23 142.04 22.83 

4 0.8 0.7 0.1 0.1 -0.21 -3.23 8.91 -0.04 

5 0.3 0.2 0.4 0.1 0.07 14.73 27.30 53.03 

6 0.8 0.2 0.4 0.1 -0.04 1.02 -1.65 4.74 

7 0.3 0.7 0.4 0.1 0.60 -10.96 65.19 26.16 

8 0.8 0.7 0.4 0.1 -0.04 -0.37 -8.88 0.79 

9 0.3 0.2 0.9 0.1 0.29 4.46 -23.10 37.30 

10 0.8 0.2 0.9 0.1 0.11 2.29 -5.57 7.26 

11 0.3 0.7 0.9 0.1 -0.25 0.30 -14.44 28.57 

12 0.8 0.7 0.9 0.1 0.07 -0.55 -7.99 3.91 

13 0.3 0.2 0.1 0.4 -0.74 54.58 45.20 24.95 

14 0.8 0.2 0.1 0.4 -0.08 6.23 2.19 4.71 

15 0.3 0.7 0.1 0.4 0.27 -25.83 29.36 7.66 

16 0.8 0.7 0.1 0.4 -0.11 -11.71 3.05 1.72 

17 0.3 0.2 0.4 0.4 0.45 14.96 10.59 21.80 

18 0.8 0.2 0.4 0.4 -0.09 3.22 -1.45 -0.27 

19 0.3 0.7 0.4 0.4 0.64 -13.37 5.67 5.96 

20 0.8 0.7 0.4 0.4 0.02 0.24 -1.44 -0.71 

21 0.3 0.2 0.9 0.4 -0.26 8.35 -17.84 -28.74 

22 0.8 0.2 0.9 0.4 0.01 1.28 -1.62 -1.72 

23 0.3 0.7 0.9 0.4 0.45 -1.59 -10.12 -5.75 

24 0.8 0.7 0.9 0.4 -0.08 -0.52 -2.47 -0.54 

25 0.3 0.2 0.1 0.9 0.94 38.86 21.21 -1.08 

26 0.8 0.2 0.1 0.9 0.08 8.48 2.90 0.87 

27 0.3 0.7 0.1 0.9 0.11 -47.67 10.35 -2.45 

28 0.8 0.7 0.1 0.9 -0.34 2.48 1.29 -0.87 

29 0.3 0.2 0.4 0.9 -0.46 11.66 -4.68 -16.83 

30 0.8 0.2 0.4 0.9 -0.22 2.55 -0.36 -1.68 

31 0.3 0.7 0.4 0.9 -0.27 -6.82 -7.96 -7.75 

32 0.8 0.7 0.4 0.9 0.04 -1.00 -0.86 -1.29 

33 0.3 0.2 0.9 0.9 1.18 3.33 -30.90 -55.94 

34 0.8 0.2 0.9 0.9 0.12 0.47 -1.45 -2.53 

35 0.3 0.7 0.9 0.9 -0.74 -3.30 -20.09 -38.39 

36 0.8 0.7 0.9 0.9 -0.16 -1.19 -0.85 -1.26 
 252 



 15

Table 3. Bias in parameter estimates for the heterogeneous scenarios. 253 

scenario pA pB π ψAA ψBB bias pA bias pB bias π bias ψAA bias ψBB 

1 0.3 0.8 0.2 0.1 0.1 0.59 -0.24 4.67 5.86 5.61 

2 0.3 0.8 0.7 0.1 0.1 0.18 -0.39 -6.01 1.17 12.27 

3 0.3 0.8 0.2 0.4 0.1 -0.16 -0.65 -2.13 -6.94 2.94 

4 0.3 0.8 0.7 0.4 0.1 0.84 -0.49 -25.65 -2.16 4.77 

5 0.3 0.8 0.2 0.9 0.1 -0.02 -2.53 -15.23 -6.76 1.87 

6 0.3 0.8 0.7 0.9 0.1 0.67 -14.33 -131.51 -8.99 8.40 

7 0.3 0.8 0.2 0.1 0.4 -0.11 0.34 2.82 9.96 6.86 

8 0.3 0.8 0.7 0.1 0.4 1.55 0.30 -0.32 2.34 0.53 

9 0.3 0.8 0.2 0.4 0.4 -0.65 -0.69 0.88 -2.29 2.30 

10 0.3 0.8 0.7 0.4 0.4 1.41 -1.75 -3.50 -2.06 7.67 

11 0.3 0.8 0.2 0.9 0.4 0.49 -0.06 2.86 -3.88 -0.25 

12 0.3 0.8 0.7 0.9 0.4 0.81 -4.39 -11.31 -1.57 2.71 

13 0.3 0.8 0.2 0.1 0.9 4.24 -0.21 0.26 27.14 -1.08 

14 0.3 0.8 0.7 0.1 0.9 1.63 -0.22 -0.49 1.94 -2.15 

15 0.3 0.8 0.2 0.4 0.9 7.33 -0.96 -1.02 -1.77 0.34 

16 0.3 0.8 0.7 0.4 0.9 -0.05 -0.38 -1.43 -1.41 -0.78 

17 0.3 0.8 0.2 0.9 0.9 -1.53 -0.24 0.43 -8.22 -0.36 

18 0.3 0.8 0.7 0.9 0.9 0.84 -0.48 0.53 -1.08 -1.45 

19 0.8 0.3 0.2 0.1 0.1 -0.39 -0.01 11.75 4.63 3.82 

20 0.8 0.3 0.7 0.1 0.1 0.03 -0.63 4.72 1.48 7.67 

21 0.8 0.3 0.2 0.4 0.1 0.47 0.73 16.29 3.33 3.73 

22 0.8 0.3 0.7 0.4 0.1 0.52 -1.16 -0.14 1.50 5.51 

23 0.8 0.3 0.2 0.9 0.1 0.00 0.04 17.21 -2.35 2.46 

24 0.8 0.3 0.7 0.9 0.1 -0.13 1.98 -8.68 0.17 4.71 

25 0.8 0.3 0.2 0.1 0.4 -0.94 0.38 2.54 11.96 -26.02 

26 0.8 0.3 0.7 0.1 0.4 -0.79 -0.64 -0.89 1.91 -11.83 

27 0.8 0.3 0.2 0.4 0.4 -0.91 -0.14 5.53 8.95 -3.96 

28 0.8 0.3 0.7 0.4 0.4 -0.52 0.57 -0.87 1.32 -3.13 

29 0.8 0.3 0.2 0.9 0.4 -0.48 1.01 2.13 -3.45 0.13 

30 0.8 0.3 0.7 0.9 0.4 -0.48 0.58 -1.17 0.17 -1.46 

31 0.8 0.3 0.2 0.1 0.9 -30.02 21.00 27.86 112.23 -196.71 

32 0.8 0.3 0.7 0.1 0.9 -1.90 0.23 2.38 1.93 -8.34 

33 0.8 0.3 0.2 0.4 0.9 -9.87 2.22 7.98 27.76 -6.73 

34 0.8 0.3 0.7 0.4 0.9 -1.40 0.28 0.70 1.65 -1.85 

35 0.8 0.3 0.2 0.9 0.9 0.14 -0.29 0.86 -8.69 -1.06 

36 0.8 0.3 0.7 0.9 0.9 0.22 0.16 -0.41 -0.32 -1.45 
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Table 4. Parameters estimates (posterior medians) with 95% credible intervals for the Commerson’s dolphin case study.  1 

  

Parameter Estimate with 95% credible interval 

  

 Occasion 1 Occasion 2 Occasion 3 Occasion 4 Occasion 5 

      

Average path length 1.31 [1.25; 1.38] 1.65 [1.54; 1.79] 1.61 [1.57; 1.66] 1.60 [1.55; 1.65] 1.61 [1.56; 1.66] 

Clustering coefficient 0.68 [0.61; 0.74] 0.36 [0.27; 0.45] 0.42 [0.39; 0.45] 0.39 [0.35; 0.43] 0.40 [0.36; 0.43] 

Individual detection 0.27 [0.26; 0.28] 0.11 [0.10; 0.12] 0.44 [0.42; 0.45] 0.17 [0.16; 0.18] 0.20 [0.19; 0.21] 

  

Staying associated 0.33 [0.17; 0.50] 

Staying non-associated 0.57 [0.48; 0.69] 
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