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Abstract
1.	 Spatial	capture–recapture	(SCR)	is	an	increasingly	popular	method	for	estimating	
ecological	parameters.	SCR	often	relies	on	data	collected	over	relatively	long	sam-
pling	periods.	While	longer	sampling	periods	can	yield	larger	sample	sizes	and	thus	
increase	the	precision	of	estimates,	they	also	increase	the	risk	of	violating	the	clo-
sure	assumption,	thereby	potentially	introducing	bias.	The	sampling	period	charac-
teristics	are	therefore	likely	to	play	an	important	role	in	this	bias-	precision	trade-	off.	
Yet	few	studies	have	studied	this	trade-	off	and	none	has	done	so	for	SCR	models.

2.	 In	this	study,	we	explored	the	influence	of	the	length	and	timing	of	the	sampling	
period	on	the	bias-	precision	trade-	off	of	SCR	population	size	estimators.	Using	a	
continuous	time-	to-	event	approach,	we	simulated	populations	with	a	wide	range	
of	life	histories	and	sampling	periods	before	quantifying	the	bias	and	precision	of	
population	size	estimates	returned	by	SCR	models.

3.	 While	 longer	 sampling	periods	benefit	 the	 study	of	 slow-	living	 species	 (increased	
precision	and	lower	bias),	they	lead	to	pronounced	overestimation	of	population	size	
for	fast-	living	species.	In	addition,	we	show	that	both	bias	and	uncertainty	increase	
when	the	sampling	period	overlaps	the	reproductive	season	of	the	study	species.

4.	 Based	on	our	findings,	we	encourage	investigators	to	carefully	consider	the	life	his-
tory	of	their	study	species	when	contemplating	the	length	and	the	timing	of	the	sam-
pling	period.	We	argue	that	both	spatial	and	non-	spatial	capture–recapture	studies	
can	safely	extend	the	sampling	period	to	increase	precision,	as	long	as	it	is	timed	to	
avoid	peak	recruitment	periods.	The	simulation	framework	we	propose	here	can	be	
used	to	guide	decisions	regarding	the	sampling	period	for	a	specific	situation.

K E Y W O R D S

mortality,	population	dynamics,	recruitment,	spatial	capture–recapture,	time-to-event	
modelling

1  | INTRODUC TION

Spatial	capture–recapture	 (SCR)	models	 (Borchers	&	Efford,	2008;	
Royle	&	Young,	2008)	are	becoming	increasingly	popular	in	ecology.	
One	of	the	strengths	of	SCR	models	is	their	ability	to	yield	spatially	

explicit	estimates	of	abundance,	an	important	metric	for	conserva-
tion	and	management	 (Bischof,	Brøseth,	&	Gimenez,	2016).	At	 the	
core	of	SCR	methods	resides	the	concept	that	individual	detection	
probability	 is	 inherently	 variable	 in	 space	 as	 a	 result	 of	 both	 indi-
vidual	 space	use	 and	 spatial	 configuration	of	 detection	devices	or	
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monitored	 locations	 (Efford,	 2014).	 SCR	 models	 allow	 estimation	
of	the	latent	locations	of	individuals,	usually	defined	by	their	home	
range	 or	 activity	 centre	 (Royle,	 Chandler,	 Sollmann,	 &	 Gardner,	
2013),	in	addition	to	the	individual	latent	states	usually	modelled	in	
non-	spatial	 capture–recapture	 (CR)	 models	 (Gimenez	 et	al.,	 2007)	
(e.g.	 alive/dead	 for	 the	 most	 classic	 Cormack–Jolly–Seber	 model).	
This	 joint	modelling	 of	 individual	 locations	 and	 states	makes	 SCR	
particularly	fit	to	analyse	data	collected	using	non-	invasive	monitor-
ing	methods,	such	as	camera	trapping	(Royle,	2011)	or	non-	invasive	
genetic	sampling	(NGS:	Lukacs	&	Burnham,	2005),	and	explains	why	
investigators	 studying	 wide-	ranging,	 elusive	 or	 rare	 species	 have	
embraced	SCR	methods	(Blanc,	Marboutin,	Gatti,	&	Gimenez,	2013;	
Sollmann	et	al.,	2011).

Despite	 constant	 improvements	 in	 both	 monitoring	 (Harris,	
Thompson,	 Childs,	 &	 Sanderson,	 2010;	 Lampa,	 Henle,	 Klenke,	
Hoehn,	&	Gruber,	2013;	O'Connell,	Nichols,	&	Karanth,	2010;	Roon,	
Waits,	&	Kendall,	2005)	and	analytical	methods	(Muneza	et	al.,	2017;	
Royle,	Fuller,	&	Sutherland,	2017;	Royle	et	al.,	2013),	studying	rare	
and	elusive	species	still	requires	considerable	effort	and	investment	
by	practitioners	to	collect	sufficient	data.	Sparse	data,	that	is,	when	
the	detected	proportion	of	the	population	is	low,	lead	to	imprecise	
estimates	(Otis,	Burnham,	White,	&	Anderson,	1978).	This	is	a	par-
ticularly	salient	issue	for	SCR	analyses,	as	they	require	multiple	de-
tections	of	the	same	individuals	at	different	locations	in	order	to	be	
able	to	estimate	the	location	of	latent	activity	centres.	Lengthening	
the	period	during	which	data	are	collected	(the	sampling period	here-
after)	is	one	common	way	to	increase	the	size	of	the	dataset,	thereby	
increasing	both	the	proportion	of	individuals	detected	and	the	num-
ber	 of	 detections	 per	 individual.	 Occasionally	 in	 SCR	 studies,	 the	
sampling	period	can	encompass	a	substantial	part	of	a	species’	bio-
logical	year	(up	to	39	weeks	in	Després-	Einspenner,	Howe,	Drapeau,	
&	Kühl,	2017	or	even	up	to	376	days	in	Jędrzejewski	et	al.,	2017).

On	 the	 other	 hand,	 extending	 the	 sampling	 period	may	 lead	
to	potential	violations	of	the	population	closure	assumption,	fun-
damental	 to	both	 spatial	 and	non-	spatial	CR	methods	 (Lebreton,	
Burnham,	 Clobert,	 &	 Anderson,	 1992;	 Royle	 et	al.,	 2013).	 This	
assumption	 is	 rarely,	 if	 ever,	met	 in	 practice	 as	 some	 individuals	
may	 die/emigrate	 or	 new	 individuals	 are	 born/immigrate	 during	
the	 sampling	period,	which	 in	 turn,	may	change	both	population	
size	 and	 composition.	 Population	 size	 estimates	 obtained	 under	
these	circumstances	no	longer	reflect	the	state	of	the	population	
at	 a	 given	 point	 in	 time,	 but	 rather	 a	 composite	 estimate	 based	
on	the	cumulative	number	of	individuals	present	during	the	entire	
duration	of	 the	 sampling	period	 (Otis	 et	al.,	 1978).	This	measure	
then	becomes	challenging	to	use	for	researchers	interested	in	the	
biology	of	the	species	under	study	or	for	managers	 interested	in	
population	status.	Most	importantly,	management	or	conservation	
decisions	based	on	flawed	inference	may	miss	their	goal	(e.g.	hunt-
ing	quotas	based	on	such	“cumulative	population	size”	might	lead	
to	overhunting).

Following	this,	we	expect	to	find	an	optimal	sampling	period	that	bal-
ances	bias	and	precision	of	estimates	for	a	given	population	and	monitor-
ing	setting.	Previous	studies	that	investigated	this	long-	known	limitation	

in	the	context	of	classical	CR	methods	failed	to	detect	such	bias-	precision	
trade-	off	and	concluded	instead	that	they	were	very	robust	to	population	
closure	violations,	thus	advocating	for	 longer	sampling	periods	to	maxi-
mize	the	precision	of	estimates	(Hargrove	&	Borland,	1994;	Kendall,	1999;	
O'Brien,	Robert,	&	Tiandry,	2005;	Otis	et	al.,	1978;	Rota,	Fletcher,	Dorazio,	
&	 Betts,	 2009).	 However,	 these	 studies	 only	 explored	 specific	 cases,	
such	as	random	temporary	emigration	(Kendall,	1999),	constant	mortal-
ity	rates	without	recruitment	(O'Brien	et	al.,	2005),	or	stable	populations	
that	is,	when	recruitment	exactly	counter-	balances	mortality	(Hargrove	&	
Borland,	1994),	thus	ignoring	realistic	scenarios	where	unbalanced	entries	
and	departures	into/from	the	population	might	occur	during	sampling.

Similar	to	the	probability	to	detect	an	individual,	the	probability	
for	any	given	 individual	to	 leave	the	population	 (through	mortality	
or	 emigration)	 and	 the	probability	 for	 any	new	 individual	 to	 enter	
the	population	(through	reproduction	or	immigration)	both	increase	
with	time.	Continuous	time-	to-	event	models,	which	model	the	time	
until	an	event	of	interest	occurs	(e.g.	death	of	a	patient,	failure	of	an	
engine;	Klein	&	Moeschberger,	2005),	that	is	the	rate	at	which	this	
event	occurs,	are	well-	suited	to	capture	these	processes.	The	rates	
at	which	individuals	enter	and	depart	from	the	population	determine	
the	extent	to	which	a	given	dataset	violates	the	population	closure	
assumption	 and	 likely	 affect	 the	 potential	 trade-	off	 between	 SCR	
estimators’	 bias	 and	 precision.	We	 therefore	 expect	 the	 effect	 of	
sampling	period	duration	on	population	size	estimates	returned	by	
SCR	models,	as	well	as	classical	CR	models,	to	depend	on	the	 life-	
history	strategy	of	the	species	under	study	(Stearns,	1992).	Finally,	
in	many	taxa,	both	recruitment	and	mortality	vary	throughout	the	
year	(Anderson,	Rhodes,	&	Kator,	1983;	Brockman	&	Schaik,	2005;	
Gauthier,	Pradel,	Menu,	&	Lebreton,	2001).	Hence,	 the	severity	of	
the	population	closure	violations	is	also	expected	to	vary	based	on	
the	 timing	 of	 the	 sampling	 period	 relative	 to	 the	 recruitment	 and	
mortality	schedules	of	the	species	considered.

The	aim	of	 this	 study	was	 to	quantify	 the	consequences	of	vi-
olating	 the	 closure	 assumption	 for	 population	 size	 estimates	 ob-
tained	using	SCR	methods.	Using	simulations,	we	evaluated:	(a)	the	
consequences	of	extending	the	sampling	period	on	population	size	
estimates	for	different	life	histories	and	sampling	intensities,	and	(b)	
the	influence	of	the	timing	of	the	sampling	period	relative	to	peaks	
in	mortality	and	recruitment	under	the	same	life-	history	scenarios.	
With	 this	 study,	 we	 provide	 practitioners	 with	 guidelines	 and	 an	
approach	for	defining	an	adequate	sampling	period	for	SCR	studies	
that	minimizes	bias	caused	by	the	violation	of	the	closure	assump-
tion	whilst	maximizing	the	precision	of	estimates.

2  | MATERIAL S AND METHODS

2.1 | Time- to- event simulations

The	length	and	timing	of	the	sampling	period	are	likely	to	determine	
the	 amount	 of	 information	 in	 the	 dataset	 as	 it	 influences	 the	 de-
tectability	of	individuals	in	the	population	(e.g.	Bischof	et	al.,	2014).	
Both	 the	 probability	 for	 an	 individual	 to	 leave	 the	 population	 via 
death	or	emigration	and	the	probability	to	enter	the	population	via 
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recruitment	 or	 immigration	 (i.e.	 the	 biological	 processes)	 increase	
with	 time.	 In	addition,	 the	probability	 to	detect	an	 individual	given 
that it is alive and present in the population	 (i.e.	 the	 detection	 pro-
cess)	 also	 increases	with	 time.	 In	 other	words,	 the	 probability	 for	
an	 individual	 to	be	detected	and	enter	 the	dataset	 is	 the	 result	of	
a	hierarchical	 time-	to-	event	process	 (Klein	&	Moeschberger,	2005)	
whereby	the	biological	processes	determine	the	time	an	 individual	
was	alive	and/or	present	in	the	population,	which	in	turn	conditions	
its	 detectability	 (Figure	1).	 This	 perspective	 differs	 from	 the	 usual	
way	of	 simulating	CR	datasets,	where	 the	 state	of	 an	 individual	 is	
first	modelled	and	then	a	single	detection	probability	 is	applied	 to	
all	individuals	in	a	particular	state	(Kery	&	Schaub,	2011,	Supporting	
Information	3).	Using	this	set-	up,	both	demographic	and	detection	
processes	 are	 instantaneous	 and	 the	 simulation	 process	 matches	
the	model	structure	exactly.	Such	simulations	are	useful	for	testing	
a	model,	but	their	lack	of	realism	limits	our	ability	to	draw	inferences	
about	the	effect	of	closure	violations	in	real-	life	situations	(but	see	
Bischof	et	al.,	2014	or	Ergon	&	Gardner,	2014	for	a	consideration	of	
time-	dependent	detection	probabilities).

In	an	effort	to	better	capture	the	true	processes	 in	our	simula-
tions,	we	 used	 three	 distinct	 functions:	 (a)	 a	 survival	 function	 S(t) 
describing	the	probability	for	an	 individual	to	survive/not	emigrate	
until	time	t,	(b)	a	reproduction	function	R(t)	describing	the	probability	
for	an	 individual	 to	be	recruited/immigrate	before	time	t,	and	 (c)	a	
detection	function	P(t)	describing	the	probability	for	an	individual	to	
be	detected	before	time	t.	Each	of	these	time-	to-	event	functions	X(t) 
is	associated	with	a	hazard	function	hX(t)	describing	the	potential	for	
the	focal	event	X	to	happen	exactly	at	time	t,	that	is,	the	evolution	
of	the	intensity	of	the	process	over	time	(Choquet,	Garnier,	Awuve,	
&	Besnard,	2017):

2.1.1 | Sampling duration

In	a	first	analysis,	we	considered	that	all	three	processes—survival,	
reproduction	 and	 detection—occur	 at	 a	 constant	 rate	 throughout	

the	year.	Hence,	we	considered	the	different	hazard	rates	hS,	hR and 
hP	 (survival,	reproduction	and	detection	hazard	rates,	respectively)	
to	be	constant	over	time:

The	corresponding	 survival	 function	 is	 then	an	exponential	model	
describing	 the	evolution	of	 the	probability	 for	 an	 individual	 to	die 
after	time	t	(i.e.	survive to	time	t):

However,	for	the	reproduction	and	detection	processes,	we	are	
interested	in	the	probability	to	reproduce	or	be	detected	before	time	
t,	not	the	probability	to	reproduce	or	be	detected	after	time	t.	Hence,	
we	used	the	complementary	functions	(Figure	2b):

It	is	worth	noting	that,	when	λS = 0 and λR	=	0,	all	individuals	sur-
vive	 indefinitely	 (St =	1)	 and	 no	 individual	 reproduces	 (R̄t=0).	 This	
scenario	corresponds	to	a	population	fulfilling	the	closure	assump-
tion	(Figure	2a).

2.1.2 | Sampling timing

In	a	second	analysis,	we	considered	scenarios	where	both	survival	and	
recruitment	hazard	 rates	varied	 throughout	 the	year	 following	a	nor-
mal	distribution.	This	setting	corresponds	to	the	situation	where	most	
mortality	and	reproduction	occur	during	a	limited	period	of	the	year,	as	
it	is	the	case	for	many	animal	populations	(Healy,	2003;	Rowan,	1938):

where	μ,	 the	mean	of	 the	normal	 distribution,	 corresponds	 to	 the	
mid-	point	 of	 the	 survival	 or	 recruitment	 time-	to-	event	 functions,	

(1)hX (t)=−
d
(

X (t)
)

∕dt
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F IGURE  1 Effect	of	sampling	duration	on	detection	probability.	(a)	Biological	process:	four	individual	trajectories	are	shown	(filled	circles	
=	birth,	diamonds	=	death).	Solid	lines	denote	the	time	an	individual	is	alive	and	available	for	detection	during	the	sampling	period	(shaded	
area).	(b)	Detection	process:	Overall	detection	probability	(solid	line)	as	a	function	of	the	time	alive	for	detection	during	the	sampling	period.	
The	times	alive	and	associated	detection	probabilities	(dots)	correspond	to	the	four	individuals	for	which	availability	is	illustrated	in	panel	(a)
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and τ,	the	standard	deviation	of	the	normal	distribution.	Under	this	
parametrization,	95%	of	the	mortality/reproduction	occurs	in	the	in-
terval	[μ	-		1.96*τ; μ + 1.96*τ]	(Figure	2c).

2.2 | SCR modelling

For	 the	 purpose	 of	 our	 study,	 we	 used	 a	 Bayesian	 approach	 and	
constructed	an	SCR	model	with	data	augmentation	to	allow	for	the	
estimation	of	 population	 size	 (Royle	&	Dorazio,	 2012).	Our	model	
consisted	 of	 three	 sub-	models:	 (a)	 the	 spatial	model,	 or	 individual	
point-	process,	which	describes	the	distribution	of	individual	activity	
centres	si.	Here,	we	assumed	individuals	to	be	uniformly	distributed	
across	the	available	habitat	space	H:

(b)	 the	state	model,	which	describes	whether	 individual	 i	 from	the	
augmented	pool	of	 individuals	M	belongs	to	the	population	of	size	
N.	This	population	membership	is	described	by	the	state	variable	zi,	
which	takes	value	1	if	the	individual	is	a	member	of	the	true	popula-
tion	and	0	otherwise:

where	ψ	is	the	probability	for	an	individual	from	the	augmented	pool	
to	belong	to	the	population.	The	population	size	is	then	obtained	by	
summing	over	the	vector	z:

(c)	 the	detection	model,	which	describes	 the	probability	 for	an	 in-
dividual i	to	be	detected	at	a	given	detector	 j.	In	this	characteristic	
feature	of	SCR	models,	the	probability	to	detect	individual	i	at	detec-
tor	j, pij	is	a	function	of	the	distance	dij	between	its	activity	centre	si 
and	 the	 location	of	detector	 j.	Here,	we	used	 the	 commonly	used	
half-	normal	function	(Borchers	&	Efford,	2008):

where	p0	is	the	baseline	detection	probability	and	σ	is	the	scale	pa-
rameter	(Royle	et	al.,	2013).

Finally,	the	detection	data	yij	 is	modelled	as	the	realization	of	a	
Bernoulli	process	conditional	on	both	the	individual	state	zi	and	the	
individual	and	detector-	specific	detection	probability	pij :

2.3 | Simulation set- up

2.3.1 | General population characteristics

We	used	the	following	settings	in	all	simulations:	(a)	square	habitat	
space	of	10˟10	distance	units	with	a	surrounding	buffer	of	2	units,	
(b)	N = 40	individuals	originally	present	in	the	population	at	time	t0,	
(c)	100	detectors	regularly	spaced	across	the	habitat	space	(exclud-
ing	the	buffer	area),	(d)	a	scale	parameter	for	the	detection	function	
σ	=	1	for	all	individuals.

2.3.2 | Sampling duration

To	 account	 for	 the	 possible	 effect	 of	 the	 species’	 life	 history	
on	 the	 consequences	 of	 lengthening	 the	 sampling	 period,	 we	
simulated	 datasets	 following	 four	 scenarios:	 (a)	 a	 closed	 popu-
lation	used	as	 reference	point,	 (b)	a	 long-	lived	species	with	 low	
fecundity	 (e.g.	 African	 elephant	 Loxodonta africana),	 hereafter	
the	slow	species,	(c)	a	species	with	intermediate	survival	and	re-
cruitment	 rates	 (e.g.	 red	 fox	Vulpes vulpes),	 hereafter	 the	 inter-
mediate	species,	and	(d)	a	short-	lived	species	with	high	fecundity	
(e.g.	 Montane	 vole	Microtus montanus),	 hereafter	 the	 fast	 spe-
cies	 (Table	1).	 For	 each	 of	 these	 four	 scenarios,	 we	 generated	
datasets	for	11	different	sampling	period	durations,	tmax,	ranging	
from	5%	to	100%	of	the	species	annual	cycle	(Marra,	Cohen,	Loss,	
Rutter,	&	Tonra,	2015),	that	is,	tmax	=	0.05,	0.1,	0.2,	0.3,	0.4,	0.5,	
0.6,	0.7,	0.8,	0.9	or	1	year(s).	In	addition,	we	considered	different	
levels	of	sampling	efficiency	by	testing	three	different	detection	

(7)si∼Uniform(H)

(8)zi∼Bernoulli(Ψ)

(9)N=
∑M

i=1
zi

(10)pij=p0e
−

d2ij

2�2

(11)Yij∼Bernoulli(pijzi)

F IGURE  2 Survival	S(t),	recruitment	R(t),	and	detection	D(t)	functions	(scale	on	the	left,	solid	lines);	number	of	individuals	available	for	
detection	and	number	of	individuals	detected	(scale	on	the	right,	coloured	polygon)	for	(a)	a	closed	population,	(b)	a	population	with	constant	
mortality	and	recruitment	over	the	course	of	the	year	and	(c)	seasonal	mortality	(peak	in	mortality	occurs	during	month	7)	and	recruitment	
(peak	in	recruitment	occurs	during	month	3).	The	vertical	dashed	lines	represent	the	start	and	end	of	the	sampling	periods
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rates	λP	=	0.1,	0.5	and	1.2.	We	repeated	 the	simulation	process	
100	 times	 for	 each	 parameter	 configuration,	 leading	 to	 13,200	
simulated	datasets.

2.3.3 | Sampling timing

Next,	we	tested	the	effect	of	the	timing	of	the	sampling	period	on	
bias	and	precision	of	SCR	estimates	 for	populations	with	 seasonal	
demographic	 rates.	Here,	we	only	generated	SCR	datasets	 for	 the	
slow,	intermediate	and	fast	species,	as	the	closed	population	has	no	
seasonal	variation	in	demographic	rates	by	definition.	The	timing	of	
the	 sampling	 period	 is	 therefore	 irrelevant	 in	 a	 closed	 population	
situation.	Sampling	duration	was	set	 to	tmax	=	0.5	year	and	we	var-
ied	the	starting	date	of	the	sampling	period	relative	to	the	peaks	of	
the	reproductive	and	mortality	periods	(μ	in	Equation	6).	This	simu-
lation	 study	 comprised	 11	 different	 starting	 dates	 (between	 −0.5	
and	+0.5	years	before	and	after	the	peak	in	mortality)	for	the	three	
life-	history	 scenarios	 with	 100	 repetitions	 each,	 leading	 to	 9900	
simulated	 datasets.	 The	 different	 demographic	 rates	 used	 in	 the	
simulations	are	presented	in	Table	1.

2.3.4 | Simulation procedure

For	 simplicity,	we	 refer	 to	mortality	 and	 reproduction	 only	 in	 the	
following	 section,	 but	 the	 same	 procedure	 holds	 true	 if	 we	 were	
to	consider	emigration	and	 immigration.	The	procedure	 for	gener-
ating	 simulated	 datasets	 was	 as	 follows	 (Figure	3	 and	 Supporting	
Information	1):

1.	 Time	 at	 death	 (TaDi)	 for	 each	 of	 the	 N	 individuals	 present	 in	
the	 population	 at	 t0	 was	 randomly	 generated	 from	 the	 corre-
sponding	 survival	 function	 St	 following	 Equation	3.

2.	 Whether	 and	when	 the	N	 original	 individuals	 reproduced	 (TaRi)	
was	determined	using	the	corresponding	reproduction	function	R̄t 

(Equation	4).	 If	TaRi > tmax,	 the	focal	 individual	produced	no	off-
spring,	otherwise	the	number	of	offspring	(n.off)	with	time	at	birth	
equal	 to	 their	parent's	 time	at	 reproduction	 (TaBn.off = TaRi)	was	
sampled	 from	 a	 Poisson	 distribution	 with	 mean	 fecundity	 F 
(Table	1).

3.	 The	time	at	death	for	each	offspring	produced	(TaDn.off)	was	then	
sampled	from	the	same	survival	function	St	as	for	the	adults.

4.	 Based	on	the	time	at	death,	the	time	an	individual	was	available	
for	detection	(Ti)	was	then	deduced:

-For	individuals	present	a	t0,	Ti	was	set	to	TaDi	or	to	tmax	if	they	
survived	the	entire	sampling	period.

-For	 individuals	 born	 during	 the	 sampling	 period,	 Tn.off corre-
sponded	to	the	difference	between	TaDn.off and TaBn.off	if	they	
died	before	the	end	of	the	sampling	period	or	to	the	difference	
between	tmax and TaBn.off	otherwise.

Individual	baseline	detection	probability	p0i	given	Ti	 (equivalent	
to	P̄it)	was	then	calculated	using	Equation	5.

5.	 Individual	activity	centres	si	were	randomly	generated	following	
Equation	7.

6. pij	was	then	calculated	using	Equation	10.
7.	 The	 individual	 detection	 history	 yij	 was	 generated	 following	
Equation	11.	Finally,	we	augmented	 the	 simulated	dataset	with	
all-zeros	detection	histories	 to	 reach	a	 total	of	M =	three	 times	
the	number	of	individuals	ever	available	for	detection.

In	addition	 to	 this	SCR-	specific	 simulation	 study,	we	also	 imple-
mented	a	similar	simulation	approach	to	check	for	the	influence	of	the	
sampling	period	characteristics	on	population	size	estimates	returned	
by	classical	(non-	spatial)	CR	models	(Supplementary	Material	3).

2.4 | Model fitting

We	fit	SCR	models	 in	JAGS	(Plummer,	2003)	through	R	 (R	Core	
Team,	2017)	 via	package	 jagsUI	 (Kellner,	 2015)	 to	 all	 simulated	

TABLE  1 Demographic	and	detection	rates	used	in	the	different	scenarios	of	the	simulation	study

Parameters Closed population Slow Intermediate Fast

(a)	Sampling	duration

1	–	Sampling	period	duration tmax ϵ	[0;	1] tmax ϵ	[0;	1] tmax ϵ	[0;	1] tmax ϵ	[0;	1]

2	–	Survival	hazard	rate	(λS) 1 0.02 0.43 1.90

3	–	Reproduction	hazard	rate	(λR) 0 1.90 0.51 0.1

4	–	Fecundity 0 1 2 10

5	–	Detection	hazard	rate	(λP) λP ϵ [0.1;	0.5;	1.2] λP ϵ [0.1;	0.5;	1.2] λP ϵ [0.1;	0.5;	1.2] λP ϵ [0.1;	0.5;	1.2]

(b)	Sampling	timing

1	–	Sampling	Period	Duration – tmax	=	0.5 tmax	=	0.5 tmax	=	0.5

2	–	Starting	Date – tstart ϵ	[0;	1] tstart ϵ	[0;	1] tstart ϵ	[0;	1]

3	–	Breeding	season	length	(τR) – 0.5 0.3 0.3

4	–	Breeding	season	peak	(μR) – 0.4 0.3 0.4

5	–	Mortality	season	length	(τS) – 2 0.2 0.3

6	–	Mortality	season	peak	(μS) – 0 0 0
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datasets.	Three	MCMC	chains	were	run	for	5000	iterations	each	
after	 an	 adaptive	 phase	 of	 1000	 iterations	 (including	 burn-	in).	
For	all	analyses,	we	considered	models	to	have	reached	conver-
gence	when	 the	 potential	 scale	 reduction	 value	 Rhat	 <	1.1	 for	
all	parameters	(Gelman	&	Rubin,	1992).	In	addition,	we	checked	
that	the	number	of	iterations	was	sufficient	and	that	the	differ-
ent	 chains	 showed	 good	mixing	 properties	 by	 visually	 inspect-
ing	 the	 trace	 plots	 of	 the	 different	 parameters	 for	 a	 subset	 of	
simulations.

2.5 | Simulations evaluation

To	evaluate	the	performance	of	our	SCR	model	to	recover	the	simulated	
population	size	under	the	different	scenarios	tested,	we	looked	at	two	

frequentist	properties	of	the	Bayesian	estimator.	As	a	measure	of	the	
accuracy	of	 the	SCR	estimator	of	population	size,	we	used	 the	mean	
relative	bias	B̄=

∑100

j=1

N̂J−N

100N
,	where	N̂J	is	the	mode	of	the	posterior	popu-

lation	size	distribution	from	the	jth	simulated	dataset	and	N	is	the	true	
value	of	population	size.	Note	that	we	refer	to	the	number	of	individuals	
at	the	start	of	the	sampling	period	in	each	simulation	(N = 40)	as	the	true	
population	size.	As	a	measure	of	precision,	we	used	the	mean	over	all	
simulations	of	the	posterior	population	size	standard	deviation.

3  | RESULTS

All	13,200	runs	for	the	sampling	duration	simulation	study	reached	
convergence.	Out	of	the	9900	runs	of	the	sampling	timing	simulation	

F IGURE  3 Diagram	of	the	simulation	procedure	for	an	individual	present	at	the	beginning	of	the	sampling	period	and	associated	
offspring.	The	different	simulation	steps	are	described	in	method	section	2.3.4
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study,	 only	 one	did	 not	 reach	 convergence	 (Rhat	 values	>1.6)	 and	
was	therefore	excluded	from	subsequent	analyses.

3.1 | Closed population

When	 the	 closure	 assumption	was	met,	 lengthening	 the	 sampling	
period	increased	both	precision	and	accuracy	of	the	population	size	
estimate	returned	by	the	SCR	model	(Figure	4e,	i).	While	relative	bias	
was	around	100%	for	the	shortest	sampling	periods	(0.05	years),	it	
quickly	 fell	 below	 20%	 for	 sampling	 periods	 over	 0.4	years	 when	
about	 80%	 of	 the	 individuals	 present	 in	 the	 population	 were	 de-
tected	(Figure	4e).	The	associated	standard	deviation	also	decreased	
with	 sampling	duration	 reaching	 an	 asymptote	 at	 approximately	3	
for	sampling	periods	over	0.4	years	(Figure	4i).

3.2 | Slow life history

Similar	to	the	results	obtained	for	the	closed	population,	we	observed	
a	decrease	in	both	relative	bias	and	standard	deviation	as	the	duration	

of	the	sampling	period	increased	(Figure	4f,j).	In	addition,	the	timing	of	
the	sampling	period	did	not	induce	noticeable	additional	bias	or	impre-
cision	 in	 population	 size	 estimates	 (Figure	5d,g).	 Instead,	 population	
size	estimates	displayed	a	high	precision	(standard	deviation	less	than	
3	for	all	sampling	period	starting	dates,	Figure	5g)	and	accuracy	(rela-
tive	bias	below	10%	for	all	starting	dates,	Figure	5d).

3.3 | Intermediate life history

Compared	to	the	slow	life	history	and	closed	population	scenarios,	
both	 the	 number	 of	 samples	 and	 the	 number	 of	 individuals	 de-
tected	showed	a	more	pronounced	rise	with	 increasing	sampling	
duration	 for	 the	 intermediate	species	scenario	 (Figure	4c).	While	
parameter	 precision	 increased	 steadily	 with	 the	 duration	 of	 the	
sampling	period	 (Figure	4k),	 the	 relative	bias	 first	 decreased	be-
fore	 increasing	 again	 for	 sampling	 periods	 longer	 than	 approxi-
mately	0.4	years	(Figure	4g).

In	 the	 case	 of	 seasonal	 peaks	 in	 mortality	 and	 recruitment,	
both	 the	 relative	 bias	 and	 standard	 deviation	 remained	 constant	

F IGURE  4 Overall	number	of	detections	(in	grey,	a,	b,	c	and	d),	number	of	individuals	detected	(in	blue,	a,	b,	c	and	d),	relative	bias	in	
population	size	estimates	(in	red,	e,	f,	g	and	h),	standard	deviation	of	population	size	estimates	(in	red,	i,	j,	k	and	l)	for	increasing	sampling	
duration	(x-	axis)	and	different	life-	history	strategies	(left	to	right	panel).	Solid	lines	represent	mean	values	over	100	repeated	simulations	and	
shaded	areas	represent	the	associated	95%	confidence	interval.	NB:	In	the	top	row,	the	scales	differ	for	the	number	of	detections	(left	side)	
and	the	number	of	individuals	detected	(right	side)
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and	 relatively	 low	 as	 long	 as	 the	 sampling	 period	 did	 not	 overlap	
the	breeding	 season.	The	 relative	bias	 then	 increased	as	 the	 sam-
pling	 period	 progressively	 overlapped	 the	 reproductive	 period	 to	
reach	approximately	40%	after	the	peak	of	the	reproductive	period	
(Figure	5e).	The	associated	standard	deviation	also	increased	as	the	
sampling	period	overlapped	more	and	more	with	the	reproductive	
period	(Figure	5h).

3.4 | Fast life history

For	the	fast	life-	history	strategy,	the	number	of	detected	individuals	
was	already	higher	than	the	original	population	size	after	a	sampling	
period	>0.4	years.	The	total	number	of	detections	also	increased	and	
was	about	2.5	times	higher	than	for	the	slow	life-	history	scenario.	
Mean	standard	deviation	associated	with	population	size	estimates	

F IGURE  5 Overall	number	of	detections	(in	grey,	a,	b	and	c),	number	of	individuals	detected	(in	blue,	a,	b	and	c),	relative	bias	(in	red,	d,	
e	and	f)	and	standard	deviation	of	population	size	estimates	(in	red,	g,	h	and	i)	as	a	function	of	timing	of	the	sampling	period	(x-	axis)	and	
life-	history	strategies	(left	to	right	panel).	The	timing	of	the	sampling	period	is	expressed	relative	to	the	peak	in	mortality	(red	vertical	
dashed	line).	The	green	vertical	dashed	line	represents	the	peak	in	reproduction.	Red	and	green	Gaussian	polygons	represent	mortality	
and	reproduction	hazard	rates	respectively	(g,	h	and	i).	Solid	lines	represent	mean	values	over	100	repeated	simulations	and	shaded	areas	
represent	the	associated	95%	confidence	interval.	NB:	In	the	top	and	bottom	rows,	the	scales	differ	between	the	number	of	detections	or	
standard	deviation	(left	side)	and	the	number	of	individuals	detected	or	hazard	rates	(right	side)	respectively
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decreased	 with	 sampling	 period	 in	 a	 fashion	 similar	 to	 the	 other	
simulation	 scenarios,	 albeit	with	greater	variability	as	 indicated	by	
the	larger	standard	error.	Contrary	to	the	intermediate	scenario,	the	
relative	bias	never	decreased	and	instead	steadily	increased	to	reach	
very	high	levels	(over	150%;	Figure	4h)	as	soon	as	the	sampling	pe-
riod	exceeded	0.1	years.

Similar	to	the	intermediate	scenario,	the	bias	in	population	size	
estimates	was	virtually	null	as	 long	as	 the	sampling	period	did	not	
overlap	the	breeding	season,	before	increasing	to	reach	its	highest	
level	when	the	sampling	period	starting	date	coincided	with	the	peak	
of	the	reproductive	season	(at	0.4	years;	Figure	5f)	before	finally	de-
creasing	again.	The	associated	standard	deviation	followed	a	similar	
pattern	of	increase	and	subsequent	decrease	(Figure	5i).

4  | DISCUSSION

We	found	that	lengthening	the	sampling	period	during	SCR	studies	is	
an	effective	way	to	increase	the	amount	of	information	available	for	
analysis,	thereby	boosting	the	precision	of	population	size	estimates.	
On	the	other	hand,	longer	sampling	periods	can	lead	to	violations	of	
the	population	closure	assumption	and	biased	estimates.	The	shape	
of	 this	 bias-	precision	 trade-	off	 is	 dependent	 on	 the	 life-	history	
speed	and	scheduling	of	the	study	species.

The	gains	 in	sample	size	from	longer	sampling	periods	 improve	
the	precision	of	abundance	estimates	generated	by	SCR	models,	as	
has	 also	 been	 shown	 for	 traditional	 CR	 estimators	 (O'Brien	 et	al.,	
2005;	Otis	et	al.,	1978;	Pollock,	Nichols,	Brownie,	&	Hines,	1990).	
Even	a	modest	gain	in	terms	of	the	number	of	samples	collected	and	
individuals	detected	can	lead	to	a	pronounced	gain	in	the	estimator's	
precision.	We	found,	for	example,	that	doubling	the	sampling	period	
from	0.1	to	0.2	years	brought	along	between	20%	and	55%	increase	
in	the	number	of	individuals	detected	and	between	69%	and	100%	
increase	in	the	overall	number	of	detections	in	our	closed	population	
and	 fast	 life-	history	 scenarios	 respectively.	 The	 subsequent	 boost	
in	the	precision	of	the	population	size	estimator	is	not	trivial;	 it	 in-
creased	by	78%,	76%,	72%	and	10%	for	the	closed,	slow,	intermedi-
ate	and	fast-	living	scenarios	respectively.

In	 addition	 to	 gains	 in	 precision,	we	 also	 found	 that	 increased	
sample	size	can	reduce	bias	associated	with	sparse	SCR	data.	This	
is	consistent	with	previous	findings	for	classical	capture–recapture	
methods	(Chao,	1989,	Supplementary	Material	3).	Specifically,	Chao	
showed	that	the	amount	of	bias	in	CR	population	size	estimators	ob-
tained	using	Bayesian	methods	was	sensitive	to	the	choice	of	priors.	
Akin	to	this,	the	large	overestimation	we	observed	for	shorter	sam-
pling	periods	is	most	likely	the	result	of	our	choice	of	the	augmented	
population	size	M.	When	data	are	sparse,	 it	contains	very	 little	 in-
formation	and	the	resulting	posterior	distribution	of	the	population	
size	estimates	is	mostly	 influenced	by	its	prior	distribution	(here,	a	
flat	prior	between	0	and	M =	three	times	the	total	number	of	individ-
uals	ever	available	for	detection).	More	specifically,	when	data	are	
sparse,	the	distribution	of	the	population	size	bias	is	skewed	towards	
high	values	(Figure	4),	 indicating	that	the	population	size	estimates	

returned	 by	 SCR	 models	 are	 constrained	 by	 the	 upper	 possible	
bound	(i.e.	the	augmented	population	size	M).	Interestingly,	this	pat-
tern	seems	to	be	even	more	pronounced	for	non-	spatial	capture–re-
capture	models	(Supplementary	Material	3).	Our	findings	regarding	
the	 benefits	 of	 longer	 study	 periods	 have	 important	 implications,	
especially	for	rare	and	elusive	species	often	targeted	by	SCR	studies	
(Gray	&	Prum,	2012),	as	their	study	tends	to	be	hampered	by	data	
sparsity	due	to	rarity	and	low	detection	probabilities.	Furthermore,	
these	are	the	species—data	deficient	and	often	threatened—where	
improvements	in	our	ability	to	make	inferences	are	particularly	con-
sequential,	 as	 they	 can	 inform	 sustainable	 management	 and	 con-
servation	 (Blanc	 et	al.,	 2013;	 Gervasi,	 Ciucci,	 Boulanger,	 Randi,	 &	
Boitani,	2012).

The	downside	of	longer	sampling	durations	is	the	increasing	risk	
of	violating	the	population	closure	assumption.	Our	results	suggest	
that	studies	targeting	species	with	slow	life	histories	(or	temporar-
ily	 closed	populations)	 are	 largely	 immune	 to	 the	potential	 biasing	
effect	of	population	closure	violations,	whereas	 long	sampling	pe-
riods	can	lead	to	flawed	inference	in	studies	targeting	species	with	
high	and	 intermediate	 life-	history	speeds.	Our	study	also	 revealed	
that	 the	positive	bias	 induced	by	closure	violation	 is	primarily	due	
to	recruitment.	In	contrast,	previous	studies	exploring	the	effect	of	
closure	violations	on	CR	predictions	focused	almost	exclusively	on	
departures	from	the	population	 (mortality/emigration)	during	sam-
pling.	This	may	explain	 the	existing	notion	 that	CR	methods	were	
relatively	 robust	 to	 closure	 violations	 (Hargrove	&	 Borland,	 1994;	
Kendall,	1999;	O'Brien	et	al.,	2005;	Rota	et	al.,	2009,	but	see	the	dis-
cussion	in	Otis	et	al.,	1978).	In	our	study,	where	both	recruitment	and	
mortality	were	considered,	we	detected	biases	in	population	size	of	
up	to	300%	when	using	year-	long	sampling	periods	to	study	species	
with	fast-	paced	life	histories	(Figure	4h;	Supporting	Information	3).

In	natural	populations,	both	recruitment	and	mortality	often	peak	
during	limited	periods	of	the	year	(such	as	breeding	and	hunting	sea-
sons;	Marra	et	al.,	2015).	The	severity	of	closure	violation	is	therefore	
influenced	not	only	by	the	duration,	but	also	by	the	timing	of	the	sam-
pling	period	relative	to	the	focal	species’	annual	cycle.	Our	simulations	
revealed	that	 the	timing	of	 the	sampling	period	relative	to	the	mor-
tality	period	had	 little	 impact	on	 the	SCR	estimators’	 bias,	 probably	
because,	for	the	length	of	sampling	period	and	mortality	rates	consid-
ered	here,	most	individuals	were	detected	before	they	died	(see	also	
O'Brien	et	al.,	2005).	For	the	same	reason,	the	timing	of	the	sampling	
period	relative	to	the	mortality	period	also	seems	to	have	limited	im-
pact	on	the	SCR	estimators’	precision.	Conversely,	sampling	periods	
that	included	the	peak	in	recruitment	led	to	marked	increases	in	both	
bias	and	 imprecision	of	the	population	size	estimator	 (Figure	5).	The	
increased	bias	is	consistent	with	a	general	loss	in	accuracy	associated	
with	a	misrepresentation	of	the	temporal	scope	of	the	population	size	
estimate	(e.g.	a	snapshot	of	abundance	vs.	the	total	number	of	individ-
uals	alive	at	any	time	during	a	given	interval).	On	the	other	hand,	the	
loss	in	precision	seems	at	first	counterintuitive:	we	would	expect	the	
larger	sample	size	associated	with	more	individuals	available	for	detec-
tion	to	have	the	opposite	effect.	However,	new	individuals	enter	the	
dataset	only	 for	a	short	period	of	 time	 (especially	when	recruitment	
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falls	 into	 the	 tail-	end	of	 the	 sampling	period),	which	might	 increase	
the	 number	 of	 individuals	 detected	 but	 not	 the	 average	 number	 of	
detections	per	individual.	In	fact,	we	found	that	the	average	number	of	
detections	per	individual	during	the	sampling	period	decreases,	as	can	
be	seen	from	the	decrease	in	the	total	number	of	detections	and	con-
comitant	increase	in	the	number	of	individuals	detected	as	the	sam-
pling	period	 increasingly	overlaps	the	recruitment	season	(Figure	5a,	
b	and	c;	Supplementary	Material	3).	The	minor	 increase	 in	 standard	
deviation	of	population	size	estimates	observed	for	sampling	periods	
overlapping	the	peak	in	mortality	likely	originates	from	the	same	phe-
nomenon.	As	more	 individuals	die	during	 the	 sampling	period,	 their	
probability	of	being	detected	multiple	times	declines.	Hence,	the	aver-
age	number	of	detections	per	individual	decreases	with	an	increasing	
overlap	between	the	sampling	period	and	mortality	season.

In	real-	life	situations,	it	may	be	possible	to	account	for	this	type	of	
issue	even	when	the	sampling	period	includes	the	recruitment	season.	
Certain	monitoring	methods—for	example	camera	trapping,	direct	ob-
servations	or	physical	captures—allow	direct	identification	of	new	re-
cruits,	such	as	juvenile	individuals.	These	can	then	either	be	accounted	
for	in	the	analysis,	using	age-	specific	detection	functions	or	excluded	
from	it.	Other	methods	(e.g.	NGS)	may	not	allow	for	the	identification	
of	 new	 juvenile	 recruits	when	 they	enter	 the	population	during	 the	
sampling	period	 (but	 see	Stenglein,	Waits,	Ausband,	Zager,	&	Mack,	
2011;	Woodruff,	Johnson,	&	Waits,	2016).	Also,	other	types	of	new	re-
cruits	(e.g.	immigrating	adults)	may	not	be	distinguishable	from	the	rest	
of	the	population.	Failing	such	distinction,	investigators	should	strive	
to	time	the	sampling	period	to	fall	outside	peak	seasons	of	recruitment	
(Brøseth,	Flagstad,	Wärdig,	Johansson,	&	Ellegren,	2010).

Another	potential	limitation	of	our	study	is	related	to	the	space	
use	of	juvenile	individuals.	In	our	simulations,	we	did	not	account	for	
the	fact	that	juveniles	often	stay	associated	with	their	parents	until	
they	are	weaned.	This	association	might	be	negligible	for	short-	lived	
species	 in	which	 juveniles	become	 independent	quickly,	 but	 could	
be	problematic	for	long-	lived	species	where	parents-	offspring	asso-
ciation	 can	 last	 longer	 (e.g.	 around	1–2	 years	 in	many	 large	mam-
mals;	Bischof	et	al.,	2018).	This	would	then	result	in	violations	of	the	
assumption	of	 independence	between	individuals’	activity	centres.	
However,	 this	 particular	 situation	 is	 probably	 not	 problematic,	 as	
far	as	population	size	inferences	are	concerned,	since	SCR	methods	
have	been	shown	to	be	comparatively	robust	to	the	violation	of	in-
dependent	individual	placement	(López-	Bao	et	al.,	2018).

The	 time-	to-	event	approach	we	employed	here	enabled	capturing	
short-	term	population	dynamics	and	their	repercussions	for	inferences	
drawn	from	realistic,	non-	instantaneous,	sampling	periods.	Investigators	
can	emulate	our	simulation	 framework	 in	order	 to	guide	decisions	 re-
garding	the	 length	and	timing	of	the	sampling	period	for	their	specific	
situation.	Moreover,	this	approach	can	be	easily	adapted	to	incorporate	
greater	realism,	for	example	by	accounting	for	variable	sampling	effort	
over	 time,	 a	 common	 feature	of	many	monitoring	 programs.	This	 can	
be	accomplished	by	allowing	 time	varying	detection	hazard	 rates	 (e.g.	
in	 the	 same	 way	 as	 the	 survival	 and	 reproduction	 hazard	 rates,	 see	
Supporting	 Information	 1).	 Similarly,	 the	 survival	 hazard	 rate	 function	

could	also	be	modified	to	account	for	the	age	of	the	individuals	at	the	
time	they	enter	the	population.	This	would	allow	mimicking	the	typical	
situation	 (especially	 for	 long-	lived	species)	where	 juveniles	have	 lower	
survival	rates	than	individuals	old	enough	to	breed	(Promislow	&	Harvey,	
1990).	Finally,	the	time-	to-	event	approach	presented	here	proved	useful	
to	generate	realistic	data	and	test	the	robustness	of	SCR	and	CR	meth-
ods	to	violations	of	 the	population	closure	assumption,	but	one	could	
also	consider	continuous	time	capture–recapture	models	to	study	such	
continuous	processes.	Despite	a	great	potential	for	application	 in	cap-
ture–recapture	studies,	this	framework	has	not	been	widely	used	so	far	
(but	see	Choquet,	Viallefont,	Rouan,	Gaanoun,	&	Gaillard,	2011	or	more	
recently	Ergon,	Borgan,	Nater,	&	Vindenes,	2018),	and	we	encourage	fur-
ther	studies	to	consider	this	analytical	framework.

5  | CONCLUSION

Facing	 the	need	 for	 large	 sample	 sizes	 and	 the	desire	 to	minimize	

population	closure	violations,	how	should	investigators	design	their	

sampling	 period	 in	 SCR	 studies?	 Using	 a	 time-	to-	event	 approach,	

we	 were	 able	 to	 identify	 the	 bias-	precision	 trade-	off	 inherent	 in	

the	choice	of	the	sampling	period,	which	was	mediated	by	the	life-	

history	characteristics	of	the	species	under	study.	We	therefore	en-

courage	researchers/wildlife	managers	to	pay	particular	attention	to	

the	biology	of	their	study	species	when	designing	sampling	proto-

cols.	Our	 results	 show	that	 lengthening	 the	data	collection	period	

is	an	effective	way	to	increase	the	number	of	detections,	which	can	

then	lead	to	substantial	improvements	in	the	precision	of	estimates	

and	 in	 some	 cases	make	meaningful	 analyses	 possible	 in	 the	 first	

place.	Violations	of	the	population	closure	assumption	arising	from	

longer	 sampling	 durations	 have	 negligible	 consequences	 for	 long-	

lived	species	at	the	slow	end	of	the	slow-fast	life-	history	continuum.	

This	 is	an	 important	and	reassuring	finding,	as	these	are	often	the	

species	with	 the	 greatest	 need	 for	 conservation	 and	 thus	 reliable	

information	 about	 population	 status.	 Although	 closure	 violations	

have	more	pronounced	consequences	for	SCR	inference	for	species	

with	fast-	paced	life	histories,	investigators	can	often	mitigate	these	

by	using	sampling	durations	that	balance	precision	and	bias,	and	by	

avoiding	periods	of	peak	recruitment	during	sampling.	Based	on	the	

patterns	we	observed	in	this	study,	we	argue	that	a	general	rule	of	

thumb	should	be	to	extend	the	sampling	period	as	much	as	practi-

cally/economically	feasible,	while	avoiding	sampling	during	recruit-

ment	bouts.
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