
HAL Id: hal-02329868
https://hal.science/hal-02329868

Submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Population closure and the bias-precision trade-off in
spatial capture–recapture

Pierre Dupont, Cyril Milleret, Olivier Gimenez, Richard Bischof

To cite this version:
Pierre Dupont, Cyril Milleret, Olivier Gimenez, Richard Bischof. Population closure and the bias-
precision trade-off in spatial capture–recapture. Methods in Ecology and Evolution, 2019, 10 (5),
pp.661-672. �10.1111/2041-210X.13158�. �hal-02329868�

https://hal.science/hal-02329868
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Methods Ecol Evol. 2019;10:661–672.	 ﻿� wileyonlinelibrary.com/journal/mee3  |  661

 

Received: 3 July 2018  |  Accepted: 4 January 2019
DOI: 10.1111/2041-210X.13158

R E S E A R C H  A R T I C L E

Population closure and the bias-precision trade-off in spatial 
capture–recapture

Pierre Dupont1  |   Cyril Milleret1  |   Olivier Gimenez2  |   Richard Bischof1

1Faculty of Environmental Sciences and 
Natural Resource Management, Norwegian 
University of Life Sciences, Ås, Norway
2CEFE, CNRS, University Montpellier, 
University Paul Valéry Montpellier 
3, EPHE, IRD, Montpellier, France

Correspondence
Pierre Dupont
Email: pierre.dup@live.fr

Funding information
Miljødirektoratet; Naturvårdsverket

Handling Editor: Marie Auger-Méthé

Abstract
1.	 Spatial capture–recapture (SCR) is an increasingly popular method for estimating 
ecological parameters. SCR often relies on data collected over relatively long sam-
pling periods. While longer sampling periods can yield larger sample sizes and thus 
increase the precision of estimates, they also increase the risk of violating the clo-
sure assumption, thereby potentially introducing bias. The sampling period charac-
teristics are therefore likely to play an important role in this bias-precision trade-off. 
Yet few studies have studied this trade-off and none has done so for SCR models.

2.	 In this study, we explored the influence of the length and timing of the sampling 
period on the bias-precision trade-off of SCR population size estimators. Using a 
continuous time-to-event approach, we simulated populations with a wide range 
of life histories and sampling periods before quantifying the bias and precision of 
population size estimates returned by SCR models.

3.	 While longer sampling periods benefit the study of slow-living species (increased 
precision and lower bias), they lead to pronounced overestimation of population size 
for fast-living species. In addition, we show that both bias and uncertainty increase 
when the sampling period overlaps the reproductive season of the study species.

4.	 Based on our findings, we encourage investigators to carefully consider the life his-
tory of their study species when contemplating the length and the timing of the sam-
pling period. We argue that both spatial and non-spatial capture–recapture studies 
can safely extend the sampling period to increase precision, as long as it is timed to 
avoid peak recruitment periods. The simulation framework we propose here can be 
used to guide decisions regarding the sampling period for a specific situation.

K E Y W O R D S

mortality, population dynamics, recruitment, spatial capture–recapture, time-to-event 
modelling

1  | INTRODUC TION

Spatial capture–recapture (SCR) models (Borchers & Efford, 2008; 
Royle & Young, 2008) are becoming increasingly popular in ecology. 
One of the strengths of SCR models is their ability to yield spatially 

explicit estimates of abundance, an important metric for conserva-
tion and management (Bischof, Brøseth, & Gimenez, 2016). At the 
core of SCR methods resides the concept that individual detection 
probability is inherently variable in space as a result of both indi-
vidual space use and spatial configuration of detection devices or 
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monitored locations (Efford, 2014). SCR models allow estimation 
of the latent locations of individuals, usually defined by their home 
range or activity centre (Royle, Chandler, Sollmann, & Gardner, 
2013), in addition to the individual latent states usually modelled in 
non-spatial capture–recapture (CR) models (Gimenez et al., 2007) 
(e.g. alive/dead for the most classic Cormack–Jolly–Seber model). 
This joint modelling of individual locations and states makes SCR 
particularly fit to analyse data collected using non-invasive monitor-
ing methods, such as camera trapping (Royle, 2011) or non-invasive 
genetic sampling (NGS: Lukacs & Burnham, 2005), and explains why 
investigators studying wide-ranging, elusive or rare species have 
embraced SCR methods (Blanc, Marboutin, Gatti, & Gimenez, 2013; 
Sollmann et al., 2011).

Despite constant improvements in both monitoring (Harris, 
Thompson, Childs, & Sanderson, 2010; Lampa, Henle, Klenke, 
Hoehn, & Gruber, 2013; O'Connell, Nichols, & Karanth, 2010; Roon, 
Waits, & Kendall, 2005) and analytical methods (Muneza et al., 2017; 
Royle, Fuller, & Sutherland, 2017; Royle et al., 2013), studying rare 
and elusive species still requires considerable effort and investment 
by practitioners to collect sufficient data. Sparse data, that is, when 
the detected proportion of the population is low, lead to imprecise 
estimates (Otis, Burnham, White, & Anderson, 1978). This is a par-
ticularly salient issue for SCR analyses, as they require multiple de-
tections of the same individuals at different locations in order to be 
able to estimate the location of latent activity centres. Lengthening 
the period during which data are collected (the sampling period here-
after) is one common way to increase the size of the dataset, thereby 
increasing both the proportion of individuals detected and the num-
ber of detections per individual. Occasionally in SCR studies, the 
sampling period can encompass a substantial part of a species’ bio-
logical year (up to 39 weeks in Després-Einspenner, Howe, Drapeau, 
& Kühl, 2017 or even up to 376 days in Jędrzejewski et al., 2017).

On the other hand, extending the sampling period may lead 
to potential violations of the population closure assumption, fun-
damental to both spatial and non-spatial CR methods (Lebreton, 
Burnham, Clobert, & Anderson, 1992; Royle et al., 2013). This 
assumption is rarely, if ever, met in practice as some individuals 
may die/emigrate or new individuals are born/immigrate during 
the sampling period, which in turn, may change both population 
size and composition. Population size estimates obtained under 
these circumstances no longer reflect the state of the population 
at a given point in time, but rather a composite estimate based 
on the cumulative number of individuals present during the entire 
duration of the sampling period (Otis et al., 1978). This measure 
then becomes challenging to use for researchers interested in the 
biology of the species under study or for managers interested in 
population status. Most importantly, management or conservation 
decisions based on flawed inference may miss their goal (e.g. hunt-
ing quotas based on such “cumulative population size” might lead 
to overhunting).

Following this, we expect to find an optimal sampling period that bal-
ances bias and precision of estimates for a given population and monitor-
ing setting. Previous studies that investigated this long-known limitation 

in the context of classical CR methods failed to detect such bias-precision 
trade-off and concluded instead that they were very robust to population 
closure violations, thus advocating for longer sampling periods to maxi-
mize the precision of estimates (Hargrove & Borland, 1994; Kendall, 1999; 
O'Brien, Robert, & Tiandry, 2005; Otis et al., 1978; Rota, Fletcher, Dorazio, 
& Betts, 2009). However, these studies only explored specific cases, 
such as random temporary emigration (Kendall, 1999), constant mortal-
ity rates without recruitment (O'Brien et al., 2005), or stable populations 
that is, when recruitment exactly counter-balances mortality (Hargrove & 
Borland, 1994), thus ignoring realistic scenarios where unbalanced entries 
and departures into/from the population might occur during sampling.

Similar to the probability to detect an individual, the probability 
for any given individual to leave the population (through mortality 
or emigration) and the probability for any new individual to enter 
the population (through reproduction or immigration) both increase 
with time. Continuous time-to-event models, which model the time 
until an event of interest occurs (e.g. death of a patient, failure of an 
engine; Klein & Moeschberger, 2005), that is the rate at which this 
event occurs, are well-suited to capture these processes. The rates 
at which individuals enter and depart from the population determine 
the extent to which a given dataset violates the population closure 
assumption and likely affect the potential trade-off between SCR 
estimators’ bias and precision. We therefore expect the effect of 
sampling period duration on population size estimates returned by 
SCR models, as well as classical CR models, to depend on the life-
history strategy of the species under study (Stearns, 1992). Finally, 
in many taxa, both recruitment and mortality vary throughout the 
year (Anderson, Rhodes, & Kator, 1983; Brockman & Schaik, 2005; 
Gauthier, Pradel, Menu, & Lebreton, 2001). Hence, the severity of 
the population closure violations is also expected to vary based on 
the timing of the sampling period relative to the recruitment and 
mortality schedules of the species considered.

The aim of this study was to quantify the consequences of vi-
olating the closure assumption for population size estimates ob-
tained using SCR methods. Using simulations, we evaluated: (a) the 
consequences of extending the sampling period on population size 
estimates for different life histories and sampling intensities, and (b) 
the influence of the timing of the sampling period relative to peaks 
in mortality and recruitment under the same life-history scenarios. 
With this study, we provide practitioners with guidelines and an 
approach for defining an adequate sampling period for SCR studies 
that minimizes bias caused by the violation of the closure assump-
tion whilst maximizing the precision of estimates.

2  | MATERIAL S AND METHODS

2.1 | Time-to-event simulations

The length and timing of the sampling period are likely to determine 
the amount of information in the dataset as it influences the de-
tectability of individuals in the population (e.g. Bischof et al., 2014). 
Both the probability for an individual to leave the population via 
death or emigration and the probability to enter the population via 
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recruitment or immigration (i.e. the biological processes) increase 
with time. In addition, the probability to detect an individual given 
that it is alive and present in the population (i.e. the detection pro-
cess) also increases with time. In other words, the probability for 
an individual to be detected and enter the dataset is the result of 
a hierarchical time-to-event process (Klein & Moeschberger, 2005) 
whereby the biological processes determine the time an individual 
was alive and/or present in the population, which in turn conditions 
its detectability (Figure 1). This perspective differs from the usual 
way of simulating CR datasets, where the state of an individual is 
first modelled and then a single detection probability is applied to 
all individuals in a particular state (Kery & Schaub, 2011, Supporting 
Information 3). Using this set-up, both demographic and detection 
processes are instantaneous and the simulation process matches 
the model structure exactly. Such simulations are useful for testing 
a model, but their lack of realism limits our ability to draw inferences 
about the effect of closure violations in real-life situations (but see 
Bischof et al., 2014 or Ergon & Gardner, 2014 for a consideration of 
time-dependent detection probabilities).

In an effort to better capture the true processes in our simula-
tions, we used three distinct functions: (a) a survival function S(t) 
describing the probability for an individual to survive/not emigrate 
until time t, (b) a reproduction function R(t) describing the probability 
for an individual to be recruited/immigrate before time t, and (c) a 
detection function P(t) describing the probability for an individual to 
be detected before time t. Each of these time-to-event functions X(t) 
is associated with a hazard function hX(t) describing the potential for 
the focal event X to happen exactly at time t, that is, the evolution 
of the intensity of the process over time (Choquet, Garnier, Awuve, 
& Besnard, 2017):

2.1.1 | Sampling duration

In a first analysis, we considered that all three processes—survival, 
reproduction and detection—occur at a constant rate throughout 

the year. Hence, we considered the different hazard rates hS, hR and 
hP (survival, reproduction and detection hazard rates, respectively) 
to be constant over time:

The corresponding survival function is then an exponential model 
describing the evolution of the probability for an individual to die 
after time t (i.e. survive to time t):

However, for the reproduction and detection processes, we are 
interested in the probability to reproduce or be detected before time 
t, not the probability to reproduce or be detected after time t. Hence, 
we used the complementary functions (Figure 2b):

It is worth noting that, when λS = 0 and λR = 0, all individuals sur-
vive indefinitely (St = 1) and no individual reproduces (R̄t=0). This 
scenario corresponds to a population fulfilling the closure assump-
tion (Figure 2a).

2.1.2 | Sampling timing

In a second analysis, we considered scenarios where both survival and 
recruitment hazard rates varied throughout the year following a nor-
mal distribution. This setting corresponds to the situation where most 
mortality and reproduction occur during a limited period of the year, as 
it is the case for many animal populations (Healy, 2003; Rowan, 1938):

where μ, the mean of the normal distribution, corresponds to the 
mid-point of the survival or recruitment time-to-event functions, 
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F IGURE  1 Effect of sampling duration on detection probability. (a) Biological process: four individual trajectories are shown (filled circles 
= birth, diamonds = death). Solid lines denote the time an individual is alive and available for detection during the sampling period (shaded 
area). (b) Detection process: Overall detection probability (solid line) as a function of the time alive for detection during the sampling period. 
The times alive and associated detection probabilities (dots) correspond to the four individuals for which availability is illustrated in panel (a)
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and τ, the standard deviation of the normal distribution. Under this 
parametrization, 95% of the mortality/reproduction occurs in the in-
terval [μ - 1.96*τ; μ + 1.96*τ] (Figure 2c).

2.2 | SCR modelling

For the purpose of our study, we used a Bayesian approach and 
constructed an SCR model with data augmentation to allow for the 
estimation of population size (Royle & Dorazio, 2012). Our model 
consisted of three sub-models: (a) the spatial model, or individual 
point-process, which describes the distribution of individual activity 
centres si. Here, we assumed individuals to be uniformly distributed 
across the available habitat space H:

(b) the state model, which describes whether individual i from the 
augmented pool of individuals M belongs to the population of size 
N. This population membership is described by the state variable zi, 
which takes value 1 if the individual is a member of the true popula-
tion and 0 otherwise:

where ψ is the probability for an individual from the augmented pool 
to belong to the population. The population size is then obtained by 
summing over the vector z:

(c) the detection model, which describes the probability for an in-
dividual i to be detected at a given detector j. In this characteristic 
feature of SCR models, the probability to detect individual i at detec-
tor j, pij is a function of the distance dij between its activity centre si 
and the location of detector j. Here, we used the commonly used 
half-normal function (Borchers & Efford, 2008):

where p0 is the baseline detection probability and σ is the scale pa-
rameter (Royle et al., 2013).

Finally, the detection data yij is modelled as the realization of a 
Bernoulli process conditional on both the individual state zi and the 
individual and detector-specific detection probability pij :

2.3 | Simulation set-up

2.3.1 | General population characteristics

We used the following settings in all simulations: (a) square habitat 
space of 10˟10 distance units with a surrounding buffer of 2 units, 
(b) N = 40 individuals originally present in the population at time t0, 
(c) 100 detectors regularly spaced across the habitat space (exclud-
ing the buffer area), (d) a scale parameter for the detection function 
σ = 1 for all individuals.

2.3.2 | Sampling duration

To account for the possible effect of the species’ life history 
on the consequences of lengthening the sampling period, we 
simulated datasets following four scenarios: (a) a closed popu-
lation used as reference point, (b) a long-lived species with low 
fecundity (e.g. African elephant Loxodonta africana), hereafter 
the slow species, (c) a species with intermediate survival and re-
cruitment rates (e.g. red fox Vulpes vulpes), hereafter the inter-
mediate species, and (d) a short-lived species with high fecundity 
(e.g. Montane vole Microtus montanus), hereafter the fast spe-
cies (Table 1). For each of these four scenarios, we generated 
datasets for 11 different sampling period durations, tmax, ranging 
from 5% to 100% of the species annual cycle (Marra, Cohen, Loss, 
Rutter, & Tonra, 2015), that is, tmax = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 or 1 year(s). In addition, we considered different 
levels of sampling efficiency by testing three different detection 

(7)si∼Uniform(H)

(8)zi∼Bernoulli(Ψ)

(9)N=
∑M

i=1
zi

(10)pij=p0e
−

d2ij

2�2

(11)Yij∼Bernoulli(pijzi)

F IGURE  2 Survival S(t), recruitment R(t), and detection D(t) functions (scale on the left, solid lines); number of individuals available for 
detection and number of individuals detected (scale on the right, coloured polygon) for (a) a closed population, (b) a population with constant 
mortality and recruitment over the course of the year and (c) seasonal mortality (peak in mortality occurs during month 7) and recruitment 
(peak in recruitment occurs during month 3). The vertical dashed lines represent the start and end of the sampling periods
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rates λP = 0.1, 0.5 and 1.2. We repeated the simulation process 
100 times for each parameter configuration, leading to 13,200 
simulated datasets.

2.3.3 | Sampling timing

Next, we tested the effect of the timing of the sampling period on 
bias and precision of SCR estimates for populations with seasonal 
demographic rates. Here, we only generated SCR datasets for the 
slow, intermediate and fast species, as the closed population has no 
seasonal variation in demographic rates by definition. The timing of 
the sampling period is therefore irrelevant in a closed population 
situation. Sampling duration was set to tmax = 0.5 year and we var-
ied the starting date of the sampling period relative to the peaks of 
the reproductive and mortality periods (μ in Equation 6). This simu-
lation study comprised 11 different starting dates (between −0.5 
and +0.5 years before and after the peak in mortality) for the three 
life-history scenarios with 100 repetitions each, leading to 9900 
simulated datasets. The different demographic rates used in the 
simulations are presented in Table 1.

2.3.4 | Simulation procedure

For simplicity, we refer to mortality and reproduction only in the 
following section, but the same procedure holds true if we were 
to consider emigration and immigration. The procedure for gener-
ating simulated datasets was as follows (Figure 3 and Supporting 
Information 1):

1.	 Time at death (TaDi) for each of the N individuals present in 
the population at t0 was randomly generated from the corre-
sponding survival function St following Equation 3.

2.	 Whether and when the N original individuals reproduced (TaRi) 
was determined using the corresponding reproduction function R̄t 

(Equation 4). If TaRi > tmax, the focal individual produced no off-
spring, otherwise the number of offspring (n.off) with time at birth 
equal to their parent's time at reproduction (TaBn.off = TaRi) was 
sampled from a Poisson distribution with mean fecundity F 
(Table 1).

3.	 The time at death for each offspring produced (TaDn.off) was then 
sampled from the same survival function St as for the adults.

4.	 Based on the time at death, the time an individual was available 
for detection (Ti) was then deduced:

-For individuals present a t0, Ti was set to TaDi or to tmax if they 
survived the entire sampling period.

-For individuals born during the sampling period, Tn.off corre-
sponded to the difference between TaDn.off and TaBn.off if they 
died before the end of the sampling period or to the difference 
between tmax and TaBn.off otherwise.

Individual baseline detection probability p0i given Ti (equivalent 
to P̄it) was then calculated using Equation 5.

5.	 Individual activity centres si were randomly generated following 
Equation 7.

6.	 pij was then calculated using Equation 10.
7.	 The individual detection history yij was generated following 
Equation 11. Finally, we augmented the simulated dataset with 
all-zeros detection histories to reach a total of M = three times 
the number of individuals ever available for detection.

In addition to this SCR-specific simulation study, we also imple-
mented a similar simulation approach to check for the influence of the 
sampling period characteristics on population size estimates returned 
by classical (non-spatial) CR models (Supplementary Material 3).

2.4 | Model fitting

We fit SCR models in JAGS (Plummer, 2003) through R (R Core 
Team, 2017) via package jagsUI (Kellner, 2015) to all simulated 

TABLE  1 Demographic and detection rates used in the different scenarios of the simulation study

Parameters Closed population Slow Intermediate Fast

(a) Sampling duration

1 – Sampling period duration tmax ϵ [0; 1] tmax ϵ [0; 1] tmax ϵ [0; 1] tmax ϵ [0; 1]

2 – Survival hazard rate (λS) 1 0.02 0.43 1.90

3 – Reproduction hazard rate (λR) 0 1.90 0.51 0.1

4 – Fecundity 0 1 2 10

5 – Detection hazard rate (λP) λP ϵ [0.1; 0.5; 1.2] λP ϵ [0.1; 0.5; 1.2] λP ϵ [0.1; 0.5; 1.2] λP ϵ [0.1; 0.5; 1.2]

(b) Sampling timing

1 – Sampling Period Duration – tmax = 0.5 tmax = 0.5 tmax = 0.5

2 – Starting Date – tstart ϵ [0; 1] tstart ϵ [0; 1] tstart ϵ [0; 1]

3 – Breeding season length (τR) – 0.5 0.3 0.3

4 – Breeding season peak (μR) – 0.4 0.3 0.4

5 – Mortality season length (τS) – 2 0.2 0.3

6 – Mortality season peak (μS) – 0 0 0
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datasets. Three MCMC chains were run for 5000 iterations each 
after an adaptive phase of 1000 iterations (including burn-in). 
For all analyses, we considered models to have reached conver-
gence when the potential scale reduction value Rhat < 1.1 for 
all parameters (Gelman & Rubin, 1992). In addition, we checked 
that the number of iterations was sufficient and that the differ-
ent chains showed good mixing properties by visually inspect-
ing the trace plots of the different parameters for a subset of 
simulations.

2.5 | Simulations evaluation

To evaluate the performance of our SCR model to recover the simulated 
population size under the different scenarios tested, we looked at two 

frequentist properties of the Bayesian estimator. As a measure of the 
accuracy of the SCR estimator of population size, we used the mean 
relative bias B̄=

∑100

j=1

N̂J−N

100N
, where N̂J is the mode of the posterior popu-

lation size distribution from the jth simulated dataset and N is the true 
value of population size. Note that we refer to the number of individuals 
at the start of the sampling period in each simulation (N = 40) as the true 
population size. As a measure of precision, we used the mean over all 
simulations of the posterior population size standard deviation.

3  | RESULTS

All 13,200 runs for the sampling duration simulation study reached 
convergence. Out of the 9900 runs of the sampling timing simulation 

F IGURE  3 Diagram of the simulation procedure for an individual present at the beginning of the sampling period and associated 
offspring. The different simulation steps are described in method section 2.3.4
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study, only one did not reach convergence (Rhat values >1.6) and 
was therefore excluded from subsequent analyses.

3.1 | Closed population

When the closure assumption was met, lengthening the sampling 
period increased both precision and accuracy of the population size 
estimate returned by the SCR model (Figure 4e, i). While relative bias 
was around 100% for the shortest sampling periods (0.05 years), it 
quickly fell below 20% for sampling periods over 0.4 years when 
about 80% of the individuals present in the population were de-
tected (Figure 4e). The associated standard deviation also decreased 
with sampling duration reaching an asymptote at approximately 3 
for sampling periods over 0.4 years (Figure 4i).

3.2 | Slow life history

Similar to the results obtained for the closed population, we observed 
a decrease in both relative bias and standard deviation as the duration 

of the sampling period increased (Figure 4f,j). In addition, the timing of 
the sampling period did not induce noticeable additional bias or impre-
cision in population size estimates (Figure 5d,g). Instead, population 
size estimates displayed a high precision (standard deviation less than 
3 for all sampling period starting dates, Figure 5g) and accuracy (rela-
tive bias below 10% for all starting dates, Figure 5d).

3.3 | Intermediate life history

Compared to the slow life history and closed population scenarios, 
both the number of samples and the number of individuals de-
tected showed a more pronounced rise with increasing sampling 
duration for the intermediate species scenario (Figure 4c). While 
parameter precision increased steadily with the duration of the 
sampling period (Figure 4k), the relative bias first decreased be-
fore increasing again for sampling periods longer than approxi-
mately 0.4 years (Figure 4g).

In the case of seasonal peaks in mortality and recruitment, 
both the relative bias and standard deviation remained constant 

F IGURE  4 Overall number of detections (in grey, a, b, c and d), number of individuals detected (in blue, a, b, c and d), relative bias in 
population size estimates (in red, e, f, g and h), standard deviation of population size estimates (in red, i, j, k and l) for increasing sampling 
duration (x-axis) and different life-history strategies (left to right panel). Solid lines represent mean values over 100 repeated simulations and 
shaded areas represent the associated 95% confidence interval. NB: In the top row, the scales differ for the number of detections (left side) 
and the number of individuals detected (right side)
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and relatively low as long as the sampling period did not overlap 
the breeding season. The relative bias then increased as the sam-
pling period progressively overlapped the reproductive period to 
reach approximately 40% after the peak of the reproductive period 
(Figure 5e). The associated standard deviation also increased as the 
sampling period overlapped more and more with the reproductive 
period (Figure 5h).

3.4 | Fast life history

For the fast life-history strategy, the number of detected individuals 
was already higher than the original population size after a sampling 
period >0.4 years. The total number of detections also increased and 
was about 2.5 times higher than for the slow life-history scenario. 
Mean standard deviation associated with population size estimates 

F IGURE  5 Overall number of detections (in grey, a, b and c), number of individuals detected (in blue, a, b and c), relative bias (in red, d, 
e and f) and standard deviation of population size estimates (in red, g, h and i) as a function of timing of the sampling period (x-axis) and 
life-history strategies (left to right panel). The timing of the sampling period is expressed relative to the peak in mortality (red vertical 
dashed line). The green vertical dashed line represents the peak in reproduction. Red and green Gaussian polygons represent mortality 
and reproduction hazard rates respectively (g, h and i). Solid lines represent mean values over 100 repeated simulations and shaded areas 
represent the associated 95% confidence interval. NB: In the top and bottom rows, the scales differ between the number of detections or 
standard deviation (left side) and the number of individuals detected or hazard rates (right side) respectively
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decreased with sampling period in a fashion similar to the other 
simulation scenarios, albeit with greater variability as indicated by 
the larger standard error. Contrary to the intermediate scenario, the 
relative bias never decreased and instead steadily increased to reach 
very high levels (over 150%; Figure 4h) as soon as the sampling pe-
riod exceeded 0.1 years.

Similar to the intermediate scenario, the bias in population size 
estimates was virtually null as long as the sampling period did not 
overlap the breeding season, before increasing to reach its highest 
level when the sampling period starting date coincided with the peak 
of the reproductive season (at 0.4 years; Figure 5f) before finally de-
creasing again. The associated standard deviation followed a similar 
pattern of increase and subsequent decrease (Figure 5i).

4  | DISCUSSION

We found that lengthening the sampling period during SCR studies is 
an effective way to increase the amount of information available for 
analysis, thereby boosting the precision of population size estimates. 
On the other hand, longer sampling periods can lead to violations of 
the population closure assumption and biased estimates. The shape 
of this bias-precision trade-off is dependent on the life-history 
speed and scheduling of the study species.

The gains in sample size from longer sampling periods improve 
the precision of abundance estimates generated by SCR models, as 
has also been shown for traditional CR estimators (O'Brien et al., 
2005; Otis et al., 1978; Pollock, Nichols, Brownie, & Hines, 1990). 
Even a modest gain in terms of the number of samples collected and 
individuals detected can lead to a pronounced gain in the estimator's 
precision. We found, for example, that doubling the sampling period 
from 0.1 to 0.2 years brought along between 20% and 55% increase 
in the number of individuals detected and between 69% and 100% 
increase in the overall number of detections in our closed population 
and fast life-history scenarios respectively. The subsequent boost 
in the precision of the population size estimator is not trivial; it in-
creased by 78%, 76%, 72% and 10% for the closed, slow, intermedi-
ate and fast-living scenarios respectively.

In addition to gains in precision, we also found that increased 
sample size can reduce bias associated with sparse SCR data. This 
is consistent with previous findings for classical capture–recapture 
methods (Chao, 1989, Supplementary Material 3). Specifically, Chao 
showed that the amount of bias in CR population size estimators ob-
tained using Bayesian methods was sensitive to the choice of priors. 
Akin to this, the large overestimation we observed for shorter sam-
pling periods is most likely the result of our choice of the augmented 
population size M. When data are sparse, it contains very little in-
formation and the resulting posterior distribution of the population 
size estimates is mostly influenced by its prior distribution (here, a 
flat prior between 0 and M = three times the total number of individ-
uals ever available for detection). More specifically, when data are 
sparse, the distribution of the population size bias is skewed towards 
high values (Figure 4), indicating that the population size estimates 

returned by SCR models are constrained by the upper possible 
bound (i.e. the augmented population size M). Interestingly, this pat-
tern seems to be even more pronounced for non-spatial capture–re-
capture models (Supplementary Material 3). Our findings regarding 
the benefits of longer study periods have important implications, 
especially for rare and elusive species often targeted by SCR studies 
(Gray & Prum, 2012), as their study tends to be hampered by data 
sparsity due to rarity and low detection probabilities. Furthermore, 
these are the species—data deficient and often threatened—where 
improvements in our ability to make inferences are particularly con-
sequential, as they can inform sustainable management and con-
servation (Blanc et al., 2013; Gervasi, Ciucci, Boulanger, Randi, & 
Boitani, 2012).

The downside of longer sampling durations is the increasing risk 
of violating the population closure assumption. Our results suggest 
that studies targeting species with slow life histories (or temporar-
ily closed populations) are largely immune to the potential biasing 
effect of population closure violations, whereas long sampling pe-
riods can lead to flawed inference in studies targeting species with 
high and intermediate life-history speeds. Our study also revealed 
that the positive bias induced by closure violation is primarily due 
to recruitment. In contrast, previous studies exploring the effect of 
closure violations on CR predictions focused almost exclusively on 
departures from the population (mortality/emigration) during sam-
pling. This may explain the existing notion that CR methods were 
relatively robust to closure violations (Hargrove & Borland, 1994; 
Kendall, 1999; O'Brien et al., 2005; Rota et al., 2009, but see the dis-
cussion in Otis et al., 1978). In our study, where both recruitment and 
mortality were considered, we detected biases in population size of 
up to 300% when using year-long sampling periods to study species 
with fast-paced life histories (Figure 4h; Supporting Information 3).

In natural populations, both recruitment and mortality often peak 
during limited periods of the year (such as breeding and hunting sea-
sons; Marra et al., 2015). The severity of closure violation is therefore 
influenced not only by the duration, but also by the timing of the sam-
pling period relative to the focal species’ annual cycle. Our simulations 
revealed that the timing of the sampling period relative to the mor-
tality period had little impact on the SCR estimators’ bias, probably 
because, for the length of sampling period and mortality rates consid-
ered here, most individuals were detected before they died (see also 
O'Brien et al., 2005). For the same reason, the timing of the sampling 
period relative to the mortality period also seems to have limited im-
pact on the SCR estimators’ precision. Conversely, sampling periods 
that included the peak in recruitment led to marked increases in both 
bias and imprecision of the population size estimator (Figure 5). The 
increased bias is consistent with a general loss in accuracy associated 
with a misrepresentation of the temporal scope of the population size 
estimate (e.g. a snapshot of abundance vs. the total number of individ-
uals alive at any time during a given interval). On the other hand, the 
loss in precision seems at first counterintuitive: we would expect the 
larger sample size associated with more individuals available for detec-
tion to have the opposite effect. However, new individuals enter the 
dataset only for a short period of time (especially when recruitment 
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falls into the tail-end of the sampling period), which might increase 
the number of individuals detected but not the average number of 
detections per individual. In fact, we found that the average number of 
detections per individual during the sampling period decreases, as can 
be seen from the decrease in the total number of detections and con-
comitant increase in the number of individuals detected as the sam-
pling period increasingly overlaps the recruitment season (Figure 5a, 
b and c; Supplementary Material 3). The minor increase in standard 
deviation of population size estimates observed for sampling periods 
overlapping the peak in mortality likely originates from the same phe-
nomenon. As more individuals die during the sampling period, their 
probability of being detected multiple times declines. Hence, the aver-
age number of detections per individual decreases with an increasing 
overlap between the sampling period and mortality season.

In real-life situations, it may be possible to account for this type of 
issue even when the sampling period includes the recruitment season. 
Certain monitoring methods—for example camera trapping, direct ob-
servations or physical captures—allow direct identification of new re-
cruits, such as juvenile individuals. These can then either be accounted 
for in the analysis, using age-specific detection functions or excluded 
from it. Other methods (e.g. NGS) may not allow for the identification 
of new juvenile recruits when they enter the population during the 
sampling period (but see Stenglein, Waits, Ausband, Zager, & Mack, 
2011; Woodruff, Johnson, & Waits, 2016). Also, other types of new re-
cruits (e.g. immigrating adults) may not be distinguishable from the rest 
of the population. Failing such distinction, investigators should strive 
to time the sampling period to fall outside peak seasons of recruitment 
(Brøseth, Flagstad, Wärdig, Johansson, & Ellegren, 2010).

Another potential limitation of our study is related to the space 
use of juvenile individuals. In our simulations, we did not account for 
the fact that juveniles often stay associated with their parents until 
they are weaned. This association might be negligible for short-lived 
species in which juveniles become independent quickly, but could 
be problematic for long-lived species where parents-offspring asso-
ciation can last longer (e.g. around 1–2 years in many large mam-
mals; Bischof et al., 2018). This would then result in violations of the 
assumption of independence between individuals’ activity centres. 
However, this particular situation is probably not problematic, as 
far as population size inferences are concerned, since SCR methods 
have been shown to be comparatively robust to the violation of in-
dependent individual placement (López-Bao et al., 2018).

The time-to-event approach we employed here enabled capturing 
short-term population dynamics and their repercussions for inferences 
drawn from realistic, non-instantaneous, sampling periods. Investigators 
can emulate our simulation framework in order to guide decisions re-
garding the length and timing of the sampling period for their specific 
situation. Moreover, this approach can be easily adapted to incorporate 
greater realism, for example by accounting for variable sampling effort 
over time, a common feature of many monitoring programs. This can 
be accomplished by allowing time varying detection hazard rates (e.g. 
in the same way as the survival and reproduction hazard rates, see 
Supporting Information 1). Similarly, the survival hazard rate function 

could also be modified to account for the age of the individuals at the 
time they enter the population. This would allow mimicking the typical 
situation (especially for long-lived species) where juveniles have lower 
survival rates than individuals old enough to breed (Promislow & Harvey, 
1990). Finally, the time-to-event approach presented here proved useful 
to generate realistic data and test the robustness of SCR and CR meth-
ods to violations of the population closure assumption, but one could 
also consider continuous time capture–recapture models to study such 
continuous processes. Despite a great potential for application in cap-
ture–recapture studies, this framework has not been widely used so far 
(but see Choquet, Viallefont, Rouan, Gaanoun, & Gaillard, 2011 or more 
recently Ergon, Borgan, Nater, & Vindenes, 2018), and we encourage fur-
ther studies to consider this analytical framework.

5  | CONCLUSION

Facing the need for large sample sizes and the desire to minimize 

population closure violations, how should investigators design their 

sampling period in SCR studies? Using a time-to-event approach, 

we were able to identify the bias-precision trade-off inherent in 

the choice of the sampling period, which was mediated by the life-

history characteristics of the species under study. We therefore en-

courage researchers/wildlife managers to pay particular attention to 

the biology of their study species when designing sampling proto-

cols. Our results show that lengthening the data collection period 

is an effective way to increase the number of detections, which can 

then lead to substantial improvements in the precision of estimates 

and in some cases make meaningful analyses possible in the first 

place. Violations of the population closure assumption arising from 

longer sampling durations have negligible consequences for long-

lived species at the slow end of the slow-fast life-history continuum. 

This is an important and reassuring finding, as these are often the 

species with the greatest need for conservation and thus reliable 

information about population status. Although closure violations 

have more pronounced consequences for SCR inference for species 

with fast-paced life histories, investigators can often mitigate these 

by using sampling durations that balance precision and bias, and by 

avoiding periods of peak recruitment during sampling. Based on the 

patterns we observed in this study, we argue that a general rule of 

thumb should be to extend the sampling period as much as practi-

cally/economically feasible, while avoiding sampling during recruit-

ment bouts.
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