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Abstract

Inferring interactions between populations of different species is a challenging statistical

endeavour, which requires a large amount of data. There is therefore some incentive to combine

all available sources of data into a single analysis to do so. In demography and single-population

studies, Integrated Population Models combine population counts, capture-recapture and re-

production data to fit matrix population models. Here, we extend this approach to the com-

munity level in a stage-structured predator-prey context. We develop Integrated Community

Models (ICMs), implemented in a Bayesian framework, to fit multispecies nonlinear matrix

models to multiple data sources. We assessed the value of the different sources of data using

simulations of ICMs under different scenarios contrasting data availability. We found that

combining all data types (capture-recapture, counts, and reproduction) allows the estimation

of both demographic and interaction parameters, unlike count-only data which typically gen-

erate high bias and low precision in interaction parameter estimates for short time series.

Moreover, reproduction surveys informed the estimation of interactions particularly well when

compared to capture-recapture programs, and have the advantage of being less costly. Overall,

ICMs offer an accurate representation of stage structure in community dynamics, and foster

the development of efficient observational study designs to monitor communities in the field.
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1 Introduction

Although matrix population models (MPMs) are well developed for single-species, they have re-

ceived limited attention when it comes to modelling the intricate dynamics of interacting species.

Nonlinear matrix population models (Cushing, 1988; Neubert & Caswell, 2000), which admit a

standard MPM formulation at low densities, are density-dependent models with nonlinearities

possibly incorporating interactions between classes (e.g., stages or species) as functions of the

abundances of these classes (Hassell & Comins, 1976; Travis et al., 1980; Cushing, 1988; Dennis

et al., 1995). However, outside the celebrated study of the floor beetle dynamics (Dennis et al.,

1995), nonlinear MPMs have been little used to estimate interactions between species or reproduce

their joint dynamics.

Nonlinear MPMs could, however, contribute greatly to ecology. Strongly fluctuating dynamics

are currently believed to be as often driven by stage structure than by predator-prey interactions,

with possible interactions between both mechanisms (Murdoch et al., 2002; de Roos & Persson,

2013). Fitting nonlinear MPMs to data would allow ecologists to better understand the rela-

tive share and potential interactions of those mechanisms in generating population fluctuations

(Barraquand et al., 2017). Another leading ecological question is how do many species coexist

in spite of seemingly similar ecological requirements: nonlinear MPMs allow one to distinguish

competition between several life-stages (Fujiwara et al., 2011), hence paving the way for a bet-

ter understanding of coexistence than unstructured models (e.g., there could be much stronger

intraspecific density-dependence at the seedling stage and yet similar intra- vs. inter-specific com-

petition at the adult stage, Chu & Adler, 2015). Stage structure may also affect the strength of

trophic cascades and has been proposed to be one of the main developments needed in community-

level models (Miller & Rudolf, 2011). Given all this potential, there is reason to reflect on the

relative paucity of stage-structured (or age-structured) community-level models fitted to data (but

see Adler & HilleRisLambers 2008; Chu & Adler 2015 in plants). There is a literature on stage-

structured consumer-resource studies in continuous-time (de Roos & Persson, 2013), yet it is largely

theoretical.

The scarcity of empirically-parameterized, multi-species and nonlinear MPMs may partly be

due to their increased dimensionality. Indeed, a system with interactions between S species and

L stages per species requires estimation of (S × L)2 interaction parameters; this may be why

unstructured statistical models for interaction between species have so far been preferred (Ives

et al., 2003), at least when a single type of data is used (e.g., time series of counts, Dennis et al.

1995). Although nonlinear MPMs have many parameters, because of their internal age-structure,

they also have advantages over unstructured discrete-time models currently fitted to data (i.e.,

discrete-time Lokta-Volterra or log-linear autoregressive modelling; Ives et al. 2008; Mutshinda

et al. 2009; Hampton et al. 2013). Indeed, the survival rates expressed in MPMs are well estimated

by capture-recapture techniques (Caswell, 2001; Lebreton et al., 2009). This opens new avenues to



fit nonlinear matrix models for multiple species, by considering other types of data than just counts

of species, such as data on survival and development rates, as well as reproduction. One approach

to incorporate such demographic datasets, used in plant community dynamics, is to fit separate

models for reproduction and survival components of the demography (Adler & HilleRisLambers,

2008; Chu & Adler, 2015), and then simulate the community-level model thus created, to evaluate

its prediction of the counts and spatial structure. While this approach is sound, it does not take

full advantage of opportunities to combine vital rate data with counts, which might be problematic

for small datasets.

Capture-recapture and reproduction data can be combined advantageously with counts within

the Integrated Population Modelling framework (Besbeas et al., 2002), which uses MPMs as its core

for integrating over several datasets through products of likelihoods. This framework has recently

been extended to density-dependent MPMs (Abadi et al., 2012). To the best of our knowledge,

there has been only one comprehensive attempt to move integrated modelling from the population

to the community level while including species interactions (i.e., density-dependent links from

species j density to species i vital rates), that of Péron & Koons (2012). Other multi-species IPMs

have been recently published, but they do not model interactions (e.g., Lahoz-Monfort et al., 2017)

or include interactions, but model the demography of one species only (e.g., Saunders et al., 2018).

Although Péron & Koons (2012) did provide a proof of concept for community-level integrated

modelling, their focus was on estimating parameters in a real two-species duck community in

order to understand species coexistence, not performing a general assessment of the relevance of

integrated community models (ICMs). The value of the different sources of data and combining

them into ICMs has therefore not yet been evaluated, which is what we attempt here. To do this,

we start by developing a theoretical model, which we then simulate under different scenarios, to

find out which combination of data sources allows the model to be identifiable in practice. Our

model also differs from Péron & Koons (2012) in that it models predator-prey interactions rather

than competition or parasitism, thus occupying a new and complementary niche in the vast space

of (under-developed) density-dependent MPMs. We used the literature on nonlinear matrix models

(Cushing, 1988; Neubert & Caswell, 2000; Wikan, 2001; Fujiwara et al., 2011) as an inspiration for

model development, and we therefore produced a model that is not only statistically-friendly, but

also amenable to theoretical explorations (i.e., it is permanent sensu Kon et al. 2004; Benäım &

Schreiber 2009, for a large swath of parameter space).

In the following, we first formulate a nonlinear matrix model to represent predator-prey in-

teractions between two species, inspired by earlier work on stage-structured density-dependent

matrix models. Our model therefore connects to Neubert & Caswell (2000) (single-species density-

dependent models) as well as Dennis et al. (1995), who modelled cannibalism within a single

species. We then bring nonlinear matrix models into a statistical framework combining multiple

data sources instead of only counts.



Our work has two main ramifications for population and community ecology. From a theoretical

standpoint, we pave the way for a theory of predator-prey interactions based on demography

rather than biomass flow. This takes into account not only direct effects of predation, but also

indirect effects that have been neglected for a long time (Preisser et al., 2005). From a more

empirical perspective, we weight the information brought by the different sources of data that

can be collected in the field, which has major implications for study design: when initiating a

community-level survey, should one prioritize capture-recapture, reproduction or count data?

2 Models

The two-stage predator-prey model studied here belongs to the class of models obeying the life-

cycle graph shown in Fig. 1, whereby adult predators negatively affect juvenile prey survival and

any increase in juvenile prey density positively impacts predator fecundity.

Predators are denoted by the symbol P and prey by V (as in ‘victim’). We chose to model an

interaction where the predation by adult consumers affects the juvenile stage of the prey, as this is

common in the systems we have in mind (birds and mammals, for which count, reproduction and

capture-recapture data are readily available). Our ‘target system’ could feature a mammal or bird

top predator eating ground-breeding bird chicks (as often do canids or birds of prey, Valkama et al.

2005) or a carnivorous mammal eating preferentially juvenile ungulates (e.g., 3 carnivores out of

4 in Gervasi et al., 2012). This adult predator - juvenile prey interaction setting promotes rather

mild fluctuations in numbers for the parameters that we considered (as opposed to say, predation

on adults without a refuge, generating a full-blown limit predator-prey cycle, e.g. Turchin &

Hanski 1997). This setting is all the more relevant to test our ICM framework that interactions

between predators and prey will be harder to detect from time series alone in the absence of large

oscillations. Time series techniques for mechanistic predator-prey models perform well for cyclic or

chaotic dynamics (e.g., Turchin & Ellner, 2000), but it is not quite clear that model identification

is always possible for milder dynamics from counts only.

It must be mentioned, however, that for other parameters than those considered here (we tuned

them to slow life-histories of birds and mammals), density-dependent models can and do produce

cycles, resonances, and chaos (Neubert & Caswell, 2000; Greenman & Benton, 2004). This is

especially likely for very large maximal fecundities (see Discussion and Appendix A), which may

impact the estimation process.

For simplicity, we set the maturation rates of juvenile prey (γV ) and predator (γP ) to 1, so

that juveniles of the year mature at the end of one time period to adulthood. Note that if the

maturation time is larger than a year, the use of a different time unit (e.g., 3 years) may allow one

to use this model parameterization even though γP = γV = 1 (aggregating yearly reproduction

into larger time intervals may be more or less appropriate depending on the speed of life histories).

Other models with γ < 1 could be generalized to a stochastic ICM, but are somewhat more complex



to simulate and fit (see Discussion and Appendix E).
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Figure 1: Life cycle graph with added interspecific interactions. Plain lines describe transitions
within the prey or the predator population, while dashed lines describe which parameters
(pointed by the arrowhead) are affected by which density (origin of the arrow). In our main
model, juvenile prey affects the predator reproduction and predator density affects juvenile prey
survival (logical for bird/mammal predators eating bird/mammal youngs). The dotted line
represent a model variant where predation would also affect adult prey survival. In all the models
fitted in this paper, γP = γV = 1.

In the following, we first describe the baseline nonlinear, stage- and species-structured ma-

trix population model that forms the (deterministic) backbone of our work. Then, we introduce

stochasticity, due to individual discreteness, and formulate the Integrated Community Model that

will be fitted to the data.

2.1 Nonlinear matrix model with predator-prey and stage structure

The baseline predator-prey model that we consider can be expressed as

nt+1 = A(nt)nt (1)

for the abundances of the two species and the two stages per species, with

A(nt) =



0 1
2fV

(
nAV (t)

)
φJV
(
nAP (t)

)
0 0

φAV φAV 0 0

0 0 0 1
2fP

(
nJV (t)

)
φJP
(
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the population projection matrix and the population abundance vector

nt =



nJV (t)

nAV (t)

nJP (t)

nAP (t)


This model is a pre-breeding model, which assumes that population census is taken right before

reproduction (Cooch et al., 2003). We assume that all adults, and only adults, are able to reproduce

and can do so every year.

We use the following notations:

• nJV , nAV , nJP , nAP are the abundances of juvenile prey, adult prey, juvenile predators and adult

predators, respectively.

• fV , fP are the number of prey juveniles (respectively predator juveniles) produced by a prey

adult (resp. predator), during one time unit.

• φJV , φAV , φJP and φAP are the fractions of the juvenile prey, adult prey, juvenile predator and

adult predator surviving between t and t+ 1.

The model encapsulates the following ecological relationships:

• Prey reproduction (fV ) decreases with the number of adult prey individuals

• Juvenile prey survival (φJV ) decreases with adult predator density

• Predator juvenile survival (φJP ) decreases with adult predator density

• Predator reproduction (fP ) increases with juvenile prey numbers

These relationships are modelled with the following functions:

• φJP (n) = 1/ (1 + exp(−(α1 + α2n)))

• φJV (n) = 1/ (1 + exp(−(α3 + α4n)))

• fP (n) = exp (α5 + α6n)

• fV (n) = exp (α7 + α8n)

The exponential function for fecundity (log link function) is classical for IPM modelling (Schaub

& Abadi, 2011) and maintains a much-needed connection to theoretical work on such density-

dependent models (Neubert & Caswell, 2000). Although a sigmoid-shaped survival rate makes

empirical sense, this choice was motivated by statistical estimation purposes. Identical choices of

functional forms have been made by Péron & Koons (2012).



For the parameter values that we consider (Table 5), representing mammal or bird demogra-

phies, the deterministic model produces a stable fixed point (Appendix A). The intraspecific

density-dependent feedbacks have been included so as to produce a relatively stable model with

minimal complexity. By stable, we mean here that the model converges over time either towards a

stable fixed point or a stable ‘manifold’ (some attractor being a k-point cycle, an invariant loop, or

a strange attractor; see e.g., Caswell 2001, chapter 16), where trajectories are bounded when time

tends to infinity. Only considering interspecific density-dependent links, by contrast, would lead

instead to an unstable model, reminiscent of the behaviour of the Nicholson-Bailey model (also

in discrete-time and without any intrinsic regulation between prey species; Kot 2001, chapter 11).

In other words, without intra-specific density-dependence, the model trajectories would eventually

‘blow-up’ and head towards zero or infinity (Appendix A): simulating from the fitted model, for

instance, would become meaningless and interaction estimates would be hard to interpret.

A stable fixed point in a multispecies model is usually a scenario where the low amount of

fluctuations in the time series generates in turn little information in the count data alone. This is

therefore a parameter scenario that is both realistic for the study system we have in mind (birds

and mammals with slow dynamics) and relevant to incorporate capture-recapture and reproduction

together with count data. Cases where the deterministic age-structured model itself produces a

limit cycle, an invariant loop, or strange attractor (Neubert & Caswell, 2000) are left for further

work.

That said, one should keep in mind that all forms of stochasticity, including demographic

stochasticity, do interact with the deterministic skeleton of the model, which has been especially well

shown in predator-prey models (Nisbet & Gurney, 1976; McKane & Newman, 2005). Therefore,

a stable fixed point in the deterministic model does not guarantee that the dynamical behaviour

of a stochastic model will consist only of small fluctuations around the fixed point. Although this

seemed to be the case for the first parameter set that we considered (see below), the second showed

more variability, with some oscillations when simulated for long times (Appendix A).

2.2 Stochastic Integrated Community Model

Here, we first highlight the population-level predator-prey model with added demographic stochas-

ticity, which produces discrete-valued counts. We then add the statistical part of the capture-

recapture and reproduction submodels that require some individual-based definitions, and are

overlayed on top of the stochastic MPM. It is the general combination of the dynamic process

model with the count model, the capture-recapture model, and the reproduction model that makes

the Integrated Community Model (ICM). The ICM was both simulated and fitted by Monte Carlo

Markov Chain (MCMC) methods in JAGS (Plummer et al., 2003). The computer code is provided

at https://github.com/oliviergimenez/predator_prey_icm.

https://github.com/oliviergimenez/predator_prey_icm


2.2.1 Stochastic multispecies nonlinear model

Now we consider a discrete-valued state vector nt. At each time step, adult predators survive with

probability φAP , together with juveniles of the previous year (pre-breeding census, eq. 1), so that

nAP (t+ 1)|nt ∼ Binomial
(
φAP , n

A
P (t) + nJP (t)

)
(2)

which is just a Binomial sampling of eq. 1. The expected mean number of juveniles produced by

an adult at t+ 1, mP (t+ 1), combines adult fecundity fP and newborn survival through the year

with probability φJP , both of which are function of nt, so that mP (t+ 1) = 1
2fP

(
nJV (t)

)
φJP
(
nAP (t)

)
(see eq. 1). The number of juveniles is then updated as

nJP (t+ 1)|nt ∼ Poisson
(
mP (t+ 1)nAP (t)

)
(3)

The equations are similar for prey counts

nAV (t+ 1)|nt ∼ Binomial
(
φAV , n

A
V (t) + nJV (t)

)
(4)

with mV (t+ 1) = 1
2fV

(
nAV (t)

)
φJV
(
nAP (t)

)
(see eq. 1). The number of juveniles at t+ 1 is then

nJV (t+ 1)|nt ∼ Poisson
(
mV (t+ 1)nAV (t)

)
. (5)

This ends the mechanistic (dynamic process model) part of the stochastic ICM.

2.2.2 Statistical part of the ICM

The ICM combines data from counts, capture-recapture, and reproduction, which implies a statis-

tical model for each.

The model for counts assumes that juveniles and adults are aggregated (not distinguishable).

We overimpose an additional observation error (customary in population ecology), which leads to

the equation:

yP (t)|nt ∼ N
(
nJP (t) + nAP (t), σ2

y

)
(6)

The equation for the prey is obtained by symmetry. In practice, this observation error is set to a

very small value (Table 5) because of issues with unknown count observation error (see Discussion).

The capture-recapture model is a standard Cormack-Jolly-Seber model with two age classes

(see e.g., Lebreton et al., 1992; Kéry & Schaub, 2011, for a detailed exposition). The model for

fecundity (also called productivity in bird studies) is a Poisson regression: the total number of

newborns counted in year t follows a Poisson distribution with rate R× f where R is the number

of surveyed broods and f the fecundity. This assumes that each mother produces a Poisson

distributed number of offspring, so that any sum of reproductive output over a number of mothers



is also Poisson distributed.

Each model was fitted using two MCMC chains, 10000 iterations for burn-in and 20000 addi-

tional time steps to ensure convergence in the baseline scenario.

All priors were taken as vague (flat) or weakly informative (e.g., standard Gaussian), in order

to provide an estimation setting not too dissimilar to frequentist approaches (our goal here was to

develop ICMs, not to favor any inferential framework for hierarchical models), and to be able to

assess easily a first aspect of identifiability: a relatively flat prior allows one to check graphically if

there is overlap between prior and posterior, which is a main proxy for identifiability in a Bayesian

context (Gimenez et al., 2009). More specifically, all a priori probabilities of capture and constant

probabilities were taken as Unif(0, 1). We used priors αi ∼ N (0, 1). That being said, in extensions

of this model for which the combination of data sources still led to substantial bias in estimates,

we also considered more informative priors (see Discussion).

3 Simulation study

In order to show the potential benefits of combining data into Integrated Community Models, we

fitted ICMs in four contrasted scenarios of data availability. We constructed those to mimic what

is observed in the field, where count data are usually more available (Schaub & Abadi, 2011) even

though less informative of vital rates directly (Zipkin & Saunders, 2018). There is also often more

demographic information on longer-lived, large predators than on their prey, an asymmetry in data

availability which we incorporated here, although we did not try to reproduce the observational

data design of any species pair in particular.

Our data scenarios are as follows:

1. All data available for both predator and prey (Table 1)

2. Only counts available for both species (Table 2)

3. Reproduction missing for prey (Table 3)

4. Capture-recapture missing for prey (Table 4)

The scenario 1 helps to verify that the statistical model is working properly when all the information

is available.

Table 1: Scenario 1 - All data types available for both species

Data type
Species

Predator Prey

Reproduction × ×
Capture-recapture × ×

Counts × ×



Table 2: Scenario 2 - Only counts, for both species

Data type
Species

Predator Prey

Reproduction
Capture-recapture

Counts × ×

Scenario 2 is then helpful to pinpoint identifiability issues whenever only counts are available.

Table 3: Scenario 3 - All on predator, counts for both, and capture-recapture for prey

Data type
Species

Predator Prey

Reproduction ×
Capture-recapture × ×

Counts × ×

In scenario 3, predators are assumed to be easier to monitor, both species undergo capture-

recapture, whilst prey reproduction is unknown.

Table 4: Scenario 4 - All on predator, counts for both, and reproduction data for prey

Data type
Species

Predator Prey

Reproduction × ×
Capture-recapture ×

Counts × ×

In scenario 4, predators are assumed to be easier to monitor, whilst prey capture-recapture data

are not possible to obtain. Comparison of the last two scenarios will be useful to assess the value

of a costly capture-recapture program for prey monitoring. The four scenarios are crossed with

two population monitoring durations, T = 10 years and T = 30 years (assuming the time unit is a

year). We assumed that 100 juvenile individuals are marked each year for T = 10, and 20 juvenile

individuals are marked each year for T = 30, for both species. Therefore, T = 30 is not merely

‘more data’ but a different observational design. The capture-recapture study design implicitly

assumes that it is easier to mark the predator, because they are less numerous than prey and the

numbers of juveniles marked therefore represent a higher fraction of the predator population. The

annual number of surveyed broods in set to 20 for the predator and 50 for the prey, hence, for

both species, fecundity is sampled only for a fraction of the population. Table 5 describes all other

models parameters that have been used for simulation.

For scenarios 2 and 4, the fitted models are without capture-recapture (in scenario 4, only for

the prey): we kept a probability of capture in the code but it has nearly equal priors and posteriors

and cannot affect other estimates (it only enters the capture-recapture submodel, which is absent).



Table 5: Model parameters with their values. For interpretation, note that αi parameters are
within exponential functions. For instance, α5 = 0 corresponds to a minimum fecundity of
exp(0) = 1.

Parameter Value Interpretation
α1 0.5 juvenile predator survival – intercept
α2 -0.01 juvenile predator survival – slope
α3 0.5 juvenile prey survival – intercept
α4 -0.025 juvenile prey survival – slope
α5 0 predator fecundity – intercept
α6 0.004 predator fecundity – slope
α7 2 prey fecundity – intercept
α8 -0.005 prey fecundity – slope
p 0.7 capture probability
φAP 0.7 constant adult predator survival
φAV 0.6 constant adult prey survival
σy 0.001 observation error (negligible)
nAP 20 initial number of adult predators
nJP 20 initial number of juvenile predators
nAV 100 initial number of adult prey
nJV 100 initial number of juvenile prey

4 Results

A typical simulation of the population counts (for one model run), together with their estimates

under the fitted ICM (scenario 1) is presented in Fig. 2. We see that the predator and prey fitted

trajectories match well the simulated trajectories. This is in fact true in all scenarios (not shown),

and probably attributable to the high dimensionality of ICMs. During model fitting, the algorithm

always finds a combination of vital rates that at least match the count trajectories. However,

reproducing the shape of density-dependent relationships is a much harder task, as we show below.

In the scenario 1, the statistical fit does also reproduce well the four density-dependent vital

rates (eq. 1, Fig. 3 show one typical statistical fit). This is true for most simulations in scenario

1. However, in the scenario 2, the fitted model could not reproduce density-dependencies in many

cases. This bad match between simulated and fitted parameters in scenario 2 is made explicit by

the examination of the bias and precision in αi estimates (Fig. 4). Note that Fig. 4 does not present

Bayesian credible intervals, though these exist as well (and we have examined them). In Fig. 4, we

summarize the information provided by each of the 100 simulations by keeping the posterior mean

of the parameter αi, which we denote α̂i. Presenting α̂i for many simulations allows us to study

the properties of this estimator of αi in a similar manner to a frequentist study of the estimator.

Bias is given by E(α̂i)− αi and precision by the dispersion (variance) of α̂i.

We see that the count-only scenario 2 generates large bias and low precision, in particular

for interaction parameters (even indices for αi, i = 2, 4, 6, 8). Both scenarios 3 and 4 generate

relatively good performances of the estimators for most αi. Interestingly, scenario 4 has almost

identical performance to scenario 1 (almost the same precision, Fig. 4, and similar bias), which

means that prey fecundity data is in fact of more value than prey capture-recapture data, at least

for the parameters considered here.
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Figure 2: Time series of abundance (sum of both juvenile and adult stages) for predator (A) and
prey (B)

To be thorough, we have considered our second parameter set with stronger predator-prey

coupling (α5 = 0.5, α6 = 0.01, α7 = 1.5) and it shows similar results (Fig. B.1 in Appendix B). The

slight systematic bias that exists for α5 in data scenarios 1, 3 and 4 vanishes for this other parameter

set. This new parameter set also confirms the fact that scenario 4 is almost indistinguishable from

scenario 1. The same figure for the simulated T = 30 years observational study is presented in

Appendix B (Fig. B.2). Combining data types still improves model performances: scenario 2 has

the least precise estimates for most parameters. However, for T = 30, we observe less precise

interaction estimates for scenarios 1, 3 and 4 (α2, α4) or with a little more bias (α6, α8) than

for T = 10. The benefits of capture-recapture and fecundity data for the T = 30 setting, with a

longer study but a less intense capture effort, are a little lower than for T = 10. This is logical and

can be interpreted as a presence of proportionally more information in the counts for T = 30. The

scenario 4 still brings low bias and estimates of similar quality to scenario 1, which confirms the

good behaviour of this observational design for a different capture effort and time series length.

5 Discussion

Building on integrated population modelling, and combining it with nonlinear multispecies matrix

models, we have developed a predator-prey Integrated Community Model (ICM). The density-
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Figure 3: Density-dependencies for juvenile survival rates (A, predator and B, prey) as well as
fecundities (C, predator and D, prey). Blue: simulated relationships, green: fitted relationships.

dependent relationships in the ICM were designed to allow the model to persist for extended

periods of time - this implied to not only consider density-dependent vital rates linking different

species, but also density-dependencies within the same species. This resulted in four density-

dependencies (Fig. 3). The model was structured and parameterized to correspond to a stage-

structured predator-prey system composed of relatively large birds and/or mammals.

Using simulations of the ICM under contrasted data availability scenarios, we found that for

a moderate study duration (10 years), the information contained within counts may be enough to

reproduce the time series but not the density-dependencies. Inference about interactions therefore

requires either longer time series (e.g. > 30 years or much more, which are often not available to

practitioners) or a combination with other data types. The combination of all data types yielded

estimates of vital rates and interaction parameters (density-dependent slope parameters) that had

low bias and good precision, especially when compared to count-only estimates.

Although our results are promising, and definitely show that combining data sources can be

worthwhile to estimate species joint dynamics, much remains to be done. We sketch below several
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Figure 4: Bias and precision of αi parameters, for i ∈ [|1 : 8|]. In each of the eights panels, four
data scenarios (S 1 to 4) are considered. For each parameter and scenario, the thin bar represents
a 95% confidence interval for α̂i; this interval is computed over 100 simulations, and thus
quantifies the precision of the estimator. The wider bar is bounded by the 25% and 75%
quantiles. The light blue dot represents the mean value E(α̂i) over 100 simulations; its distance
to the true simulated parameter (red line) therefore quantifies estimator bias. Whenever the red
line falls within the thin black bar, the CI contains the true parameter value so that the
estimation is acceptable, otherwise it can be very poor (as in the count-only scenario 2).

areas for further research.

5.1 Identifiability of the predator-prey ICM

We have shown that using all data types allowed estimating parameters with less bias and more

precision. Weak identifiability sensu Gimenez et al. (2009) seemed approximately satisfied. An

additional question is whether there are some redundant parameters in the model (Cole & McCrea,

2016). This issue can be explored to some degree using pairwise joint posterior plots (Appendix C,

see Cole & McCrea 2016 for other ideas on how to pinpoint identifiability). Pair posterior den-

sities show that parameters are (pairwise) uncorrelated unless they belong to the same density-

dependency function. For instance, we see that α1 and α2 correlate negatively in the posterior

distributions (Appendix C).

These negative correlations between the two parameters of a single density-dependency are



a likely consequence of the parameterization of the model: the overall shape of the density-

dependence curves can still remain unchanged using several parameter combinations. Whilst cor-

relation between parameters, as well as ridges in the likelihood or joint posterior distribution, are

in many cases worrying, we show here that in this context, negative correlation in the posteriors

for parameters of the same density-dependent curve is good rather than poor statistical behaviour:

the correlation produces more precise estimated density-dependent relationships (Appendix C).

This could be explained by re-parameterizing φPV = 1/ (1 + exp(−(α3 + α4n))) = 1/ (1 + exp(−γ(n− n∗)),

n∗ being the equilibrium population size. We obtain α3 = −γn∗ and α4 = γ, which produces a

negative correlation. Assuming that γ is estimated less precisely than n∗, we obtain the result. A

similar argument for negative correlations in the posteriors can be made for the fecundity param-

eters: if fP (n) = exp(α5 + α6n), then an increase of δ in α5 will produce a decrease of nδ if fP is

to stay approximately at the same value.

5.2 Refining the ICM

5.2.1 Saturating functional forms for density-dependencies

In the current model, we consider a potentially unlimited increase in the predator fecundity (accel-

erating relationship). For the range of parameter values that we considered, this poses no problem

because both prey and predator densities stay within reasonable bounds, but if the model is fitted

or simulated in other contexts, this could become problematic: a surge in prey abundance would

then allow for completely unrealistic predator fecundities. An avenue for improvement is therefore

to implement a saturating predator fecundity, i.e. fP (nJV ) = α5(1− exp(−α6n
J
V )). So far, all our

attempts to do this ended with some notable bias on α6 (Appendix D), with the model estimating

a flat rather than decelerating predator fecundity. Clearly more work in that area is needed.

5.2.2 Observation error on the counts

In this article, our fitted models did not include observation error on the counts. We actually

planned to do so, and our computer code allows this observation error to be implemented, but

we found out through preliminary model fits that an unknown information error seems to induce

major identifiability issues. The trajectories of predator and prey counts can still be reproduced

when a poorly estimated observation error is present, but the density-dependent functions cannot.

In other words, the model then produces good in-sample forecasts, but for the wrong reasons. All

αi values are estimated with strong bias in this case, including when all data types are used.

Our model belong to the general family of state-space models or SSMs (Newman et al., 2014)

and as such, suffers from the same difficulties in implementing unknown observation errors in such

models. Indeed, several modelling studies have reported that unknown observation errors in SSMs,

in absence of multiple samples per time step (see in this case Dennis et al., 2010), can be quite

problematic. Without prior information, observation error variances are often poorly identified,



which then creates bias in other estimates (Knape, 2008; Lebreton & Gimenez, 2013; Auger-Méthé

et al., 2016; Certain et al., 2018). Such biases are likely to be even stronger if the dynamics contains

large fluctuations, especially chaotic ones, and more refined model fitting techniques may have to

be employed (Wood, 2010; Hartig & Dormann, 2013).

Unless the observation error on the counts is known to some degree (e.g., because counts are

estimated by a method reporting that error such as distance sampling) and can be specified as an

informative prior, given the already high complexity of ICMs, we suggest to neglect it. However, if

some degree of replication within a time step is available, it may be possible to estimate it (Dennis

et al., 2010). We note in passing that although assuming an observation error on the counts is

customary in population ecology – and we have followed this modelling tradition here – there is no

special reason to think that counting animals is more subject to error than resighting or fecundity

estimation (e.g., this may be true for ringed birds but not necessarily for mammals identified by

fur patterns). Decision of including observation error on counts or not in a hierarchical model will

therefore be best made on a case-by-case basis.

5.2.3 Model structure

We have considered for now a pre-breeding census MPM for the ICM. However, we have also

written out a post-breeding census version of the nonlinear matrix model, with a juvenile stage

duration of potentially multiple years (Appendix E). Comparison of the timing of censuses and

events implied by the two versions of the model (pre- versus post-breeding, e.g., Cooch et al. 2003)

has revealed that only minor differences in interpretation are involved. This may be partly because

our model, where vital rates are related to densities by nonlinear phenomenological functions, does

not rely on explicit biomass conversion of prey into predators, i.e., litteral conversion of killed

prey into newborn predators. Zhou et al. (2013) suggested that such discrete-time systems with

biomass conversion might be more stable because of the ordering of events, assuming that predation

occurs before reproduction. However, even though event ordering (reproduction vs survival) can

affect stability in these models, census timing may not: Weide et al. (2018) show that, for models

with explicit biomass conversion, census timing only imply minor quantitative differences in model

outputs. For difference equations, major qualitative differences only occur between models that

assume biomass conversion to happen before reproduction (more stable) or after (more oscillating),

as shown by Weide et al. (2018).

A post-breeding census model brings our framework closer to a multi-species version of the

density-dependent models of Neubert & Caswell (2000). This formulation, which we use for on-

going theoretical work, was more internally consistent (Appendix E) but also more difficult to

adapt directly in the IPM framework, which we adapted from previous equations and existing

computer code for pre-breeding census models (Abadi et al., 2012). On empirical grounds, both

pre-breeding and post-breeding model can make sense depending on the timing of the census. If



there are only two classes, juveniles and adults, in both the pre- and post-breeding census ver-

sion, the corresponding individual-based community model can be described by a sequences of

stochastic events involving only Poisson and Binomial distributions (Appendix E), Binomial for

death rates and Poisson for recruitment. There is a good mapping between the ICM and the

fully explicit stochastic IBM because the binomial sampling of a Poisson-distributed count still

follows a Poisson distribution, and the binomial sampling of a Binomial-distributed count is still

a Binomial distribution. However, real recruitment distributions might have added variance (e.g.,

Zero-Inflated Poisson or Negative Binomial) and these may be considered in future ICM work.

It is possible to extend the formulation of our model, so that juveniles are able to stay several

years within the juvenile class (Appendix E). This may be a useful first step to model a longer-

lived juvenile stage (i.e., more than a year). Indeed, using more than two classes requires to use

multinomial distributions for transitions (Watkins, 2000) which amounts to specify the community-

level IBM as a multi-type, density-dependent branching process (Haccou et al. 2005, instead of using

Poisson and Binomial random variates as in section 2.2.1). This adds considerable complexity to

the stochastic model and is left for further work.

Another layer of complexity that we have not tackled here is spatial structure. The spatial

structure itself can contain information about interactions - although power can be an issue with

spatial-only data (Rajala et al., 2018), spatio-temporal data could be of great use in helping to

identify interactions. If only count data are spatial, counts might become increasingly important in

identifying the model, potentially changing some of the results that we show here. Tredennick et al.

(2017) show for instance that demographic data might not be needed to predict spatiotemporal,

quadrat-level plant community dynamics. With that in mind, it is also important to realize that

for many birds and mammals, count data are usually scarce and the spatial scales at which a count

value can be defined can be very large, so that spatial replication in count data might be very

hard to achieve. In some cases, it might even be easier to obtain spatially-dependent survival or

recruitment data, since those can be individual-based (Chandler & Clark, 2014).

5.2.4 More intricate or challenging dynamics

We have considered thus far that the predator-prey system exhibited a fixed point equilibrium (a

consequence of slow bird and mammal life histories and predation on juveniles only), with added

noise due to demographic stochasticity (section 2.2.1). There is therefore only a moderate ‘signal’ in

the counts themselves. Changing parameters could allow for cycles or chaos to develop (Neubert &

Caswell, 2000; Wikan, 2001), which could then provide more signal and make the count information

more relevant, at least for long time series. Both Neubert & Caswell (2000) and Wikan (2001) have

shown that these dynamics tend to occur for large fecundities: different systems than birds and

mammals, involving for example fishes or plants might therefore have much wilder fluctuations. We

confirm this for our model in Appendix A. However, a more fluctuating model can also be tricky to



estimate because there can be multiple causation of oscillations (e.g., interactions of stochasticity

and age structure, Greenman & Benton, 2004; Barraquand et al., 2017). It is therefore unclear

what changing completely the range of parameters in this model – e.g., considering much faster

life histories – would do to the quality of parameter estimates in the ICM.

Aside from changing parameters, one neat way to produce wilder dynamics would be to allow

for predation on adults – this can be done phenomenologically rather than mechanistically by

simply having an adult prey survival rate that depends on predator (adult) density. Other options

are proposed by Zhou et al. (2013) and Weide et al. (2018). This would allow for predator-prey

cycles (we have seen this in explorations of the nonlinear matrix model), but we note that we would

need to change the time-frames of simulation considered (e.g., 30 to 100 years) in order to see well

these long-period cycles. Such time-frames may be useful to model long-term ecological studies for

which there is an historical time series of counts (say, 100 years) at the end of which we perform

capture-recapture and fecundity estimation (during say, 10 or 20 years). This fits relatively well

the data that could be obtained on lynx and hare (Krebs et al., 2018).

Another worthy exploration would be interaction estimates when there are actually no true

linkages between the species’ population dynamics (i.e., no interaction at all, not even unmodelled

indirect interactions). In the present article, we asked how different data combinations may or

may not allow the model to recover interactions that are known to be present. This fits well

predator-prey pairs for which there is prior knowledge about potential impacts of predators on

their prey, which is clearly the situation we placed ourselves in. However, for less well-understood

ecological configurations, there is always a risk of error in assessing who interacts with whom, and

the question of what the ICM would infer if two species have in fact independent dynamics may

be paramount. We think that such cases would be especially relevant when predator diet is poorly

known or in a competition context, as it can be difficult to evaluate whether or not two species

truly share a similar niche.

5.3 Suggestions for empirical surveys aiming at parameterizing multi-

species models

We would like to finally conclude on what data should be collected in the field, if the aim is

to parameterize multi-species and stage-structured dynamic models. Our results show first that

longer time frames are not necessarily best (assuming that there is a trade-off between study

duration and capture effort per year), especially for vertebrates. This is because 30 years of counts

alone contain limited information to parameterize high-dimensional models (Barraquand & Nielsen,

2018), and capture-recapture and reproduction data add much needed independent information on

parameters. Moreover, for the parameter values that we considered, tuned to birds and mammals, a

prey fecundity survey brought more precision to interaction and vital rate estimates than a capture-

recapture survey. Top predators are usually well-studied, notably due to conservation concerns,



but their more abundant prey could be difficult/costly to follow through capture-recapture and be

simply counted. Our results suggests that a prey fecundity survey adds much value, probably at a

small fraction of the cost of a capture-recapture program.

In a Bayesian framework, a priori knowledge on some of those parameters can also be gained

from the MPM databases (Salguero-Gómez et al., 2016), which will be especially important for

poorly studied species. Which parameter(s) should be set with prior information will then depend

on a trade-off between the degree of phylogenetic conservatism of the parameter (Che-Castaldo

et al., 2018) and the ease which with the information can be collected in the field. Adult survival is

a good target (costly to infer, probably fairly conserved between related species), and the analyses

that we performed could be attempted again using a mixture of real data and database-derived a

priori information.
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Benäım, M. & Schreiber, S. (2009). Persistence of structured populations in random environments.

Theoretical Population Biology, 76, 19–34.

Besbeas, P., Freeman, S.N., Morgan, B.J. & Catchpole, E.A. (2002). Integrating mark–recapture–

recovery and census data to estimate animal abundance and demographic parameters. Biomet-

rics, 58, 540–547.

Caswell, H. (2001). Matrix populations models. Sinauer Associates Inc, Sunderland, MA.

Certain, G., Barraquand, F. & G̊ardmark, A. (2018). How do MAR(1) models cope with hidden

nonlinearities in ecological dynamics? Methods in Ecology and Evolution, 9, 1975–1995.

Chandler, R.B. & Clark, J.D. (2014). Spatially explicit integrated population models. Methods in

Ecology and Evolution, 5, 1351–1360.

Che-Castaldo, J., Che-Castaldo, C. & Neel, M.C. (2018). Predictability of demographic rates based

on phylogeny and biological similarity. Conservation Biology.

Chu, C. & Adler, P.B. (2015). Large niche differences emerge at the recruitment stage to stabilize

grassland coexistence. Ecological Monographs, 85, 373–392.

Cole, D.J. & McCrea, R.S. (2016). Parameter redundancy in discrete state-space and integrated

models. Biometrical Journal, 58, 1071–1090.

Cooch, E.G., Gauthier, G. & Rockwell, R.F. (2003). Apparent differences in stochastic growth

rates based on timing of census: a cautionary note. Ecological Modelling, 159, 133–143.

Cushing, J. (1988). Nonlinear matrix models and population dynamics. Natural Resource Modeling,

2, 539–580.

Dennis, B., Desharnais, R.A., Cushing, J. & Costantino, R. (1995). Nonlinear demographic dy-

namics: mathematical models, statistical methods, and biological experiments. Ecological Mono-

graphs, 65, 261–282.

Dennis, B., Ponciano, J.M. & Taper, M.L. (2010). Replicated sampling increases efficiency in

monitoring biological populations. Ecology, 91, 610–620.

Fujiwara, M., Pfeiffer, G., Boggess, M., Day, S. & Walton, J. (2011). Coexistence of competing

stage-structured populations. Scientific Reports, 1, 107.



Gervasi, V., Nilsen, E.B., Sand, H., Panzacchi, M., Rauset, G.R., Pedersen, H.C., Kindberg, J.,

Wabakken, P., Zimmermann, B., Odden, J. et al. (2012). Predicting the potential demographic

impact of predators on their prey: a comparative analysis of two carnivore–ungulate systems in

scandinavia. Journal of Animal Ecology, 81, 443–454.

Gimenez, O., Morgan, B.J. & Brooks, S.P. (2009). Weak identifiability in models for mark-

recapture-recovery data. In: Modeling demographic processes in marked populations. Springer,

pp. 1055–1067.

Greenman, J. & Benton, T. (2004). Large amplification in stage-structured models: Arnol’d

tongues revisited. Journal of Mathematical Biology, 48, 647–671.

Haccou, P., Jagers, P. & Vatutin, V.A. (2005). Branching processes: variation, growth, and ex-

tinction of populations. 5. Cambridge university press.

Hampton, S.E., Holmes, E.E., Scheef, L.P., Scheuerell, M.D., Katz, S.L., Pendleton, D.E. & Ward,

E.J. (2013). Quantifying effects of abiotic and biotic drivers on community dynamics with

multivariate autoregressive (MAR) models. Ecology, 94, 2663–2669.

Hartig, F. & Dormann, C.F. (2013). Does model-free forecasting really outperform the true model?

Proceedings of the National Academy of Sciences, 110, E3975–E3975.

Hassell, M. & Comins, H. (1976). Discrete time models for two-species competition. Theoretical

Population Biology, 9, 202–221.

Ives, A., Dennis, B., Cottingham, K. & Carpenter, S. (2003). Estimating community stability and

ecological interactions from time-series data. Ecological Monographs, 73, 301–330.
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Appendices

A Trajectories of deterministic and stochastic versions of the nonlinear

MPM

We present in Fig. A.1 simulations showing the convergence of the model to a fixed point for our

first parameter set (Table 5 in main text) and second parameter set (with changed parameters

α5 = 0.5, α6 = 0.01, α7 = 1.5, see also Appendix B). Demographic stochasticity does generate

more or less fluctuations around this fixed point though (Fig. A.1(b) and (d)).
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(a) Parameter set 1, deterministic model
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(b) Parameter set 1, stochastic model
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(c) Parameter set 2, deterministic model
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(d) Parameter set 2, stochastic model

Figure A.1: Comparison of deterministic and stochastic model trajectories for two parameter
sets. Black squares, juvenile prey; Red filled circles, adult prey; Green triangles, juvenile
predator; Blue filled circles, adult predator.

The stability of this model (in the Lyapunov sense, cf. Kot (2001) for example) is lost when

intra-specific density-dependencies are removed (Fig. A.2), where trajectories show diverging os-

cillations.
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Figure A.2: Diverging oscillations of the model with interspecific interactions but without
intraspecific interactions.

We now present different dynamics obtained by increasing maximal fecundity to exp(5) for

parameter set 1 and exp(4.5) for parameter 2 in Fig A.3. The model produces oscillations (likely

invariant loops or chaos, more detailed investigations would be needed to distinguish between

those). For a mathematical investigation of similar dynamics see for instance Wikan (2001).

The stochastic versions are also oscillating (Fig. A.3(b)), unless the high predator-prey coupling

generates extinction when combined to the demographic stochasticity (small prey numbers and

sampling create extinction, Fig. A.3 (d)).
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(a) Parameter set 1, deterministic model
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(b) Parameter set 1, stochastic model
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(c) Parameter set 2, deterministic model
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(d) Parameter set 2, stochastic model

Figure A.3: Comparison of deterministic and stochastic model trajectories for two parameter
sets, with increased fecundities.



B Additional estimates of alpha parameters

Results for the second parameter set

The second parameter set that we considered differed from the first by the following: α5 = 0.5, α6 =

0.01, α7 = 1.5, which generated a stronger predator-prey coupling.
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Figure B.1: Bias and precision of αi parameters, for i ∈ [|1 : 8|]. In each of the eights panels, four
data scenarios (S 1 to 4) are considered. For each parameter and scenario, the thin bar represents
a 95% confidence interval for α̂i; this interval is computed over 100 simulations, and thus
quantifies the precision of the estimator. The wider bar is bounded by the 25% and 75%
quantiles. The light blue dot represents the mean value E(α̂i) over 100 simulations; its distance
to the true simulated parameter (red line) therefore quantifies estimator bias.



Results for the T = 30 years observational design
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Figure B.2: Bias and precision of αi parameters, for i ∈ [|1 : 8|]. In each of the eights panels, four
data scenarios (S 1 to 4) are considered. For each parameter and scenario, the thin bar represents
a 95% confidence interval for α̂i; this interval is computed over 100 simulations, and thus
quantifies the precision of the estimator. The wider bar is bounded by the 25% and 75%
quantiles. The light blue dot represents the mean value E(α̂i) over 100 simulations; its distance
to the true simulated parameter (red line) therefore quantifies estimator bias.



C Identifiability diagnostics

The following plots describe the joint posterior distribution for pairs of parameters (based on two

MCMC chains). Considerable linkage between the parameters that belong to the same density-

dependent relationship are visible, these manifest as an elongated ellipsoid instead of a circle-shaped

joint posterior for the pair. We present these diagnostic plots for T = 10 (Fig. C.1, scenario 1;

Fig. C.2, scenario 2) and T = 30 (Fig. C.3, scenario 1; Fig. C.4, scenario 2).

For T = 10, we have good convergence (Gelman and Rubin’s R < 1.1); for T = 30, convergence

and chain mixing are less good, which generates some bimodality on these posterior graphs.

Figure C.1: Pair posterior distribution for αi parameters (T = 10, scenario 1).



Figure C.2: Pair posterior distribution for αi parameters (T = 10, scenario 2).



Figure C.3: Pair posterior distribution for αi parameters (T = 30, scenario 1).



Figure C.4: Pair posterior distribution for αi parameters (T = 30, scenario 2).

The persistent correlation in the posterior distribution of (α1, α2), (α3, α4), etc., for scenario

1 can be shown to have very little detrimental effect on the shape of the curves (Fig. C.5). The

correlation between parameters even contributes to increase the precision of the curve, since ran-

domizing (shuffling both vectors for α3 and α4 independently) decreases the precision of the curve

(Fig. C.6). In Fig. C.6, the inflection point of the curve is in fact less marked than in Fig. C.5 that

incorporates the correlation in the joint posterior.



Figure C.5: Prey juvenile survival curve including the correlation between α3 and α4. The plot
has been constructed by using all the (α3, α4) values of the joint posterior distribution. The
shading indicates the most probable values.



Figure C.6: Prey juvenile survival curve without the correlation between α3 and α4. The plot has
been constructed by shuffling independently α3 and α4 values. The shading indicates the most
probable values.



D Nonlinear predator fecundity

We considered both a saturating negative exponential function (Fig. D.1, fP (nJV ) = α5(1 −

exp(−α6n
J
V ))) and a Michaelis-Menten function (Fig. D.2, fP (nJV ) =

anJ
V

b+nJ
V

). More informative

priors improved the fit for other relationships (Figs. D.3,D.3) but did not correct the problem of

‘flat’ estimation of predator fecundity.
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Figure D.1: Saturating negative exponential predator fecundity Density-dependencies for
juvenile survival rates (A, predator and B, prey) as well as fecundities (C, predator and D, prey).
Blue: simulated relationships, green: fitted relationships.
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Figure D.2: Saturating Michaelis-Menten predator fecundity Density-dependencies for
juvenile survival rates (A, predator and B, prey) as well as fecundities (C, predator and D, prey).
Blue: simulated relationships, green: fitted relationships.
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Figure D.3: Saturating negative exponential predator fecundity and more informative
priors Density-dependencies for juvenile survival rates (A, predator and B, prey) as well as
fecundities (C, predator and D, prey). Blue: simulated relationships, green: fitted relationships.
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Figure D.4: Saturating Michaelis-Menten predator fecundity and more informative
priors Density-dependencies for juvenile survival rates (A, predator and B, prey) as well as
fecundities (C, predator and D, prey). Blue: simulated relationships, green: fitted relationships.



E Pre- and post-breeding census model for γ < 1

E.1 Pre- and post-breeding matrix model for γ < 1

The general equation of our nonlinear matrix model is

nt+1 = A(nt)nt (7)

for the counts of the two species and two stages per species, with

A(nt) =



(1− γV )φJV (nAP (t)) 1
2fV (nAV (t)) 0 0

γV φ
J
V (nAP (t)) φAV 0 0

0 0 (1− γP )φJP (nAP (t)) 1
2fP (nJV (t))

0 0 γPφ
J
P (nAP (t)) φAP


in the post-breeding case (similar to Neubert & Caswell 2000) and in the pre-breeding case (this

article),

A(nt) =



(1− γV )φJV (nAP (t)) 1
2fV (nAV (t))φJV (nAP (t)) 0 0

γV φ
A
V φAV 0 0

0 0 (1− γP )φJP (nAP (t)) 1
2fP (nJV (t))φJP (nAP (t))

0 0 γPφ
A
P φAP


All other notations are similar to the main text. These two formulations with different census

dates lead, interestingly, to slightly different versions of the corresponding stochastic individual-

based model (IBM). We provide below a full derivation for the IBM.

E.2 Order of events in the Stochastic IBM

All events can be ordered on a time arrow by introducing an intermediate time t′ between t and

t + 1 (see also Cooch et al. 2003; Weide et al. 2018). We consider first the post-breeding census

scenario.

Post-breeding census We assume that before census, reproduction occurs at some time t′

reasonably close to t + 1. At time t starts the survival phase, for both stages. We will derive the

IBM for the prey population dynamics.

t t
′ t+ 1

survival transition

We have the update equation for juvenile prey population size at time t+ 1,

nJV (t+ 1)|nt = Bt+1 +XJV
t+1



where XJV
t+1 is the number of juveniles born in the previous time period that survive up to t + 1.

It therefore includes all the juveniles from the previous time period that

1. have survived (survival happens first)

2. have not transitioned to adulthood (transition happens second).

Because t′ is very close to t+ 1 (post-breeding census), we can neglect the survival fraction of

juveniles of the year so that Bt+1 = Bt′ and

Bt′ ∼ P
(

1

2
fV (nAV (t))

)

On the other hand, we have the number of individuals staying juveniles after t′

XJV
t+1 ∼ B

(
XJV

t′ , 1− γV
)

and finally the number of survivors from nJV (t)

XJV
t′
∼ B

(
nJV (t), φJV (nAP (t))

)
so that

XJV
t+1 ∼ B

(
nJV (t), (1− γV )φJV (nAP (t))

)
This follows from the fact that if X|Y ∼ B(Y, p) and Y ∼ B(n, q) then X ∼ B(n, pq).

Let us denote XAV
t+1 the individuals that have matured to adulthood between t′ and t+ 1, then

XAV
t+1 = nJV (t) − XJV

t′
, as we substract from the previous population size of juveniles individuals

that have not maturated 1.

The number of adults at the next iteration is then obtained as

nAV (t+ 1)|nt = ZAV
t+1 +XAV

t+1

where ZAV
t+1 ∼ B

(
nAV (t), φAV

)
. The prey part of the stochastic IBM is now fully specified.

Similar arguments follow for the predator compartment. The time ordering in this model

means that from the prey point of view, predation happens on juveniles born in the previous year

(if γ = 1, these would be between a few months and a little more than a year old). Predation

occurs continuously during the (long) survival phase. Birth is always, in such discrete-time models,

a pulse event (i.e., occurring at once or almost) at a given time t′.

For the predator population dynamics, predator reproduction – which happens at t′ as well –

1This important step is modelled simply using a Binomial distribution because we have two stages; with more
stages, it would require a Multinomial distribution, see Watkins (2000) for details



is driven by the abundance of the juvenile at the beginning of the survival process starting at t.

Predator reproduction is therefore very much influenced by the prey individuals born last year.

The prey and predator parts of the model are therefore consistent.

Pre-breeding census Now we consider a pre-breeding census for which the time arrow is slightly

differently organised, with birth at t′ right after census at t.

t t
′ t+ 1

transition survival

As in the previous derivation, we consider that the juvenile population size at time t + 1 is

given by the following update equation

nJV (t+ 1)|nt = Bt+1 +XJV
t+1

This translates the fact that juveniles are composed of both newborns and surviving juveniles that

did not mature between t and t+ 1. The difference now, for the pre-breeding census, is that there

is a long period during which the juveniles of the year need to survive so that Bt+1 6= Bt′ . In fact,

Bt+1 ∼ B
(
Bt′ , φ

J
V (nAP (t)

)
with a production of chicks at t′

Bt′ ∼ P
(

1

2
fV (nAV (t))

)
This leads to a marginal distribution of Bt+1

Bt+1 ∼ P
(

1

2
fV (nAV (t))φJV (nAP (t))

)
Indeed, if X|Y ∼ B(Y, p) and Y ∼ P(λ), then X ∼ P(pλ). Here, predation – modelled through

the predator-dependence of juvenile survival – occurs as well on juveniles of the year 2, so eggs or

young chicks. The surviving juveniles from the previous year are given by

XJV
t+1 ∼ B

(
XJV

t′ , φJV (nAP (t))
)

themselves picked from the individuals that did not mature

XJV
t′ ∼ B

(
nJV (t), 1− γV

)
so that

XJV
t+1 ∼ B

(
XJV

t′ , (1− γV )φJV (nAP (t))
)

2assuming that the year is defined by the change in year t of course, which may be equivalent to start it around
January with breeding occuring early in the spring



For the adults,

nAV (t+ 1)|nt = ZAV
t+1 +XAV

t+1

with surviving old adults ZAV
t+1 ∼ B

(
nAV (t), φAV

)
and new adults

XAV
t+1 ∼ B

(
XAV

t′ , φAV
)

This is because right after t′, XAV
t′ is the number of the individuals entering the adult compart-

ment. The transitioning adults are obtained with the equation XAV
t′ = nJV (t) −XJV

t′ as they are

picked from the pool of previous juveniles. This eventually leads to (after a few simplifications)

XAV
t+1 ∼ B

(
nJV (t), γV φ

A
V

)
.

Similar arguments can be brought up for the predator. Because only the predator reproduction

rate is affected by prey density at t in the predator submodel, and predator reproduction occurs

right at t′, predators are assumed to depend for reproduction on prey individuals born in the pre-

vious time step.

Ecological consequences of the modelling assumptions

• From the predator reproduction perspective, both post- and pre-breeding models are similar,

and predator depend for reproduction on individuals largely born the year before

• From the prey perspective, the post-breeding model assumes that older juvenile individuals

(born the year before) suffer predation, whilst the pre-breeding model assumes that all prey,

including newborns, suffer predation.

• The post-breeding model may therefore be a little more internally consistent (only the “older”

juveniles affect predator reproduction and predator only affect “older” juvenile survival, not

newborns). However, the pre-breeding model, where predator reproduction only depends on

individuals born in the previous year, but predation also impacts newborns, is not unrealistic

as well: predators that reproduce on large juvenile individuals can also eat eggs or very young

chicks for their basic sustenance.
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