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Abstract Using the forced oscillation method and the ultrasonic transmission method, we measure the
elastic moduli of a clay‐bearing Thüringen sandstone under dry and water‐saturated conditions in a broad
frequency band at [0.004–10, 106] Hz for different differential pressures up to 30MPa. Under water‐saturated
condition, clear dispersion and attenuation for Young's modulus, Poisson's ratio, and Bulk modulus are
observed at seismic frequencies, except for shear modulus. The measured dispersion and attenuation are
mainly attributed to the drained/undrained transition, which considers the experimentally undrained
boundary condition. Gassmann's predictions are consistent with the measured undrained bulk moduli but
not with the shear moduli. Clear shear weakening is observed, and this water‐softening effect is stronger at
seismic frequencies than at ultrasonic frequencies where stiffening effect related to squirt flow may mask
real shear weakening. The reduction in surface free energy due to chemical interaction between pore fluid
and rock frame, which is not taken into account by Gassmann's theory, is the main reason for the departure
from Gassmann's predictions, especially for this rock containing a large number of clay minerals.

1. Introduction

Seismic surveys and well logging are two primary methods to explore and characterize hydrocarbon reser-
voirs (Ellis & Singer, 2007; Sheriff & Geldart, 1995) or aquifers (Adelinet et al., 2018). In order to improve
our understanding of fluid distribution and pressure variation in reservoirs during oil production, time‐lapse
seismic monitoring has been utilized (Kasahara & Hasada, 2016; Lumley, 2001). A key to reducing risk and
uncertainty for these procedures has always been effectively and quantitatively relating the physical proper-
ties of reservoir rocks to their geophysical signatures, which is known as rock physics analysis (Avseth et al.,
2010; Mavko et al., 2009).

The goal of rock physics is to develop models that enable us to understand the interaction of lithology and
fluid as a function of rock type, fluid content, and reservoir quality. Several theoretical models currently exist
for the description of the poroelastic or viscoelastic behavior of rocks. However, Gassmann's theory is the
most widely used rock physics theory because of its important role in fluid substitution (Smith et al.,
2003). Gassmann's equations are written as (Gassmann, 1951)

Ku ¼ Kd þ
1−

Kd

Km

� �2

ϕ
Kf

þ 1−ϕ
Km

−
Kd

K2
m

;

Gu ¼ Gd

(1)

where Kd, Ku, Kf, and Km are the dry, undrained, fluid, and mineral matrix bulk moduli, respectively. Gd and
Gu are the dry and undrained shear moduli, respectively. The ϕ is the rock's porosity.

The derivation and application of Gassmann's equations assume that the rock is isotropic and homogeneous,
that the frequency is sufficiently lowwhere fluid pressure is equalized in the undrained system (no pore fluid
movement across rock boundaries), and that there is no chemical interaction between rock frame and pore
fluid (Berryman, 1999; Gassmann, 1951). Comparisons between experimental results at ultrasonic frequen-
cies and theoretical predictions by Gassmann's theory for compressional and shear velocities are usually
performed (Assefa et al., 2003; Bhuiyan & Holt, 2016; Domenico, 1977; Han et al., 1986; Japsen et al.,
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2002; Wang et al., 1991). Most research observed that Gassmann's predicted saturated compressional
velocities underestimated the measured ultrasonic velocities (Vo‐Thanh, 1995; Wang, 2000). More
recently, Regnet et al. (2015) used the discrepancy between Gassmann's predictions and ultrasonic
measurements to identify samples with microcracks. Indeed, Gassmann's theory assumes pore pressure
equilibration through all the pores at the representative element volume scale, and the measurements at
high ultrasonic frequencies may not meet this assumption, especially for rocks containing microcracks
(Adelinet et al., 2011). Saturated rocks are known to be dispersive (Müller et al., 2010). Thus, when
comparing Gassmann's predictions with laboratory ultrasonic measurements, the effect of frequency on
elastic moduli needs to be considered. That is why several laboratory facilities with a low‐frequency
measurement range have been developed during the past 40 years (Best et al., 2007; Fortin et al., 2014;
Jackson, 2000; Jackson et al., 2011; Jackson & Paterson, 1993; Madonna & Tisato, 2013; McCarthy et al.,
2011; Mikhaltsevitch et al., 2014; Murphy, 1985; Nakagawa et al., 2013; Peselnick & Liu, 1987; Saltiel
et al., 2017; Spencer, 1981; Subramaniyan et al., 2014; Szewczyk et al., 2016; Tisato & Madonna, 2012;
Wang et al., 2012; Yin et al., 2017). Murphy (1985) conducted laboratory measurements on granites
using the resonant bar method at sonic frequency supplemented with the ultrasonic method and found
that Gassmann's predictions worked better for low sonic frequency measurements. Batzle et al. (2006)
discussed the influence of fluid viscosity on the elastic moduli of sandstones based on forced oscillation
measurements in the seismic frequency range below 100 Hz. Their water‐saturated results could be
generally explained by Gassmann's equations, but they also pointed out that the nature of the fluid
might influence the shear modulus by varying the fluid‐solid interaction. Pimienta et al. (2015a,
2015b), Pimienta, Borgomano, et al. (2016), and Pimienta, Fortin, and Guéguen (2016) conducted a
series of low‐frequency measurements to study the frequency dependence for the bulk modulus,
Young's modulus, and Poisson’ ratio of fully saturated Fontainebleau sandstones. They found two
transitions: (i) a first transition called the drained/undrained transition, which was related to rock
properties and the experimental boundary conditions, and (ii) a second transition due to squirt flow.
The drained/undrained transition of bulk modulus dispersion and related attenuation could be
generally modeled by a one‐dimensional (1‐D) poroelastic model considering the existence of dead
volumes (Pimienta, Borgomano, et al., 2016). This model was reduced to Gassmann's theory under zero
dead volume condition.

Furthermore, various ultrasonic results have shown that shear modulus does not always remain constant
after fluid saturation as predicted by Gassmann's theory (Baechle et al., 2009; Green & Wang, 1994; Vialle
& Vanorio, 2011). The variation of shear modulus for a fluid‐saturated rock, either a net increase (strength-
ening) or a net decrease (weakening), has been attributed to the combined effect of several factors, such as
fluid‐solid interaction, clay degradation or expansion, and viscous coupling (Cadoret, 1993; Diethart‐Jauk &
Gegenhuber, 2018; Khazanehdari & Sothcott, 2003; Tutuncu & Sharma, 1992). Data about the fluid satura-
tion effect on shear modulus are comparatively rare at seismic frequencies. Adam et al. (2006) explored the
sensitivity of shear modulus to fluids by measuring nine different carbonate samples under dry condition
and butane and brine saturation in the seismic frequency range. They found clear shear weakening at seis-
mic frequencies for some carbonates and general consistency between dry shear modulus and saturated
shear modulus at ultrasonic frequencies. Mikhaltsevitch et al. (2016a) discussed the influence of fluid type
on the elastic moduli of a limestone under n‐decane and water saturation. Their data displayed that the mea-
sured bulk modulus was consistent with Gassmann's theory. However, the shear modulus decreased only
under water saturation and remained unchanged under n‐decane saturation. That indicated that water
might play an important role in shear weakening.

In general, the reason for the failure of Gassmann's predictions is the violation of Gassmann's assumptions
including pore pressure equilibrium at the representative element volume scale and no chemical interaction
between pore fluid and rock frame. The low‐frequency facilities are able to evaluate the effect of frequency
on elastic moduli. Furthermore, they can operate at a very low frequency range, which may lead to closely
matching Gassmann's assumption of pore pressure equilibration for a given rock with respect to the ultra-
sonic transmission method.

To better check Gassmann's theory and especially the assumption of fluid insensitive shear modulus, that is,
Gu = Gd, a clay‐bearing Thüringen sandstone is tested over a broad frequency range of [0.004–10, 106] Hz
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under different differential pressures. The frequency effect on elastic moduli of the fluid‐saturated rock,
especially on shear modulus, is discussed.

2. Measurement System

The system we used is a new triaxial cell equipped with a maneuverable axial piston at École Normale
Supérieure of Paris (Borgomano, 2018). This system is similar to the one used by Adelinet et al. (2010),
David et al. (2013), Pimienta et al. (2015a, 2015b), and Pimienta, Fortin, and Guéguen (2016). Its schematic
diagram is shown in Figure 1. It combines the forced oscillation method and the ultrasonic transmission
method and allows for measurements under confining pressures up to 300 MPa and deviatoric stress up
to 1,000 MPa (Fortin et al., 2007; Pimienta et al., 2017). With an outer rubber jacket around sample's lateral
surface, contamination with confining oil is avoided and pore pressure can be independently controlled by
two pore pressure pumps connecting with the upstream and downstream pipelines.

The forced oscillation method includes two different oscillation modes: hydrostatic oscillation and axial
oscillation. Regardless of which mode is utilized, the method measures stress oscillation and the resulting
sample's strain oscillation to deduce the dynamic elastic moduli and corresponding attenuation of the rock
sample. Sample's strains are obtained from four pairs of axial and radial strain gauges (FCB‐6‐350‐11, Tokyo
Sokki TML) glued equidistantly around the sample's surface at midheight. The axial and radial strain gauges
of 6‐mm length are parallel and normal to the sample's central axis, respectively. To measure the axial stress
applied to the sample, four axial strain gauges are installed on the aluminum endplate on which the sample
is placed. It should be emphasized that subsequent signal analysis uses the mean signal of the four strain
gauges in one direction in order to compensate for the possible effect of load disalignment and rock hetero-
geneity (Takei et al., 2011). Thus, the exerted stress for each mode is obtained either by recording the con-
fining stress from the pressure sensor inside the cell for hydrostatic oscillation or by deducing the axial
stress from the deformation of the aluminum endplate for axial oscillation. Furthermore, the magnitude
of the stress oscillation is calibrated so that the strain is in the order of 10−6 for each mode. Therefore, the
analysis of rock deformation can be accomplished by using linear elastic mechanics (Winkler et al., 1979).
If a rock is assumed homogeneous and isotropic, its stiffness tensor is characterized by only two independent
elastic moduli, which can be easily calculated based on the exerted stress and obtained strain.

Two oscillation modes depend on the position of the axial piston and the type of vibration exciter. When the
axial piston is disengaged, onemode, hydrostatic oscillation, is applied at frequencies from 0.004 up to 1.1 Hz
by the confining pump, which exerts a controlled sinusoidal confining stress on the whole sample to acquire

the bulk modulus Khydro and corresponding attenuation Q−1
Khydro

(Pimienta et al., 2015a),

Khydro ¼ ΔPc

εvol
and Q−1

Khydro
¼ tan φΔPc

−φεvol

� �
; (2)

where ΔPc is the oscillating confining stress around the mean confining stress. εvol ≈ εaxial + 2εradial is the
volumetric strain, which approximates to the sum of the sample's axial strain εaxial and twice the sample's
radial strain εradial under pure hydrostatic oscillation.φΔPc

andφεvol are the phase angles of the oscillating con-
fining stress and volumetric strain, respectively.

By comparison, when the axial piston is engaged, the other mode, axial oscillation, is implemented by the
piezoelectric oscillator (P‐056.20P, PI Ceramic GmbH) at frequencies from 0.1 to 10 Hz. The column com-
posed of the sample and the aluminum endplate is equally loaded by the axial stress σaxial along the column's
central axis, so the stress is assumed uniform through the sample and the aluminum endplate, and thus, the

Young's modulus E, Poisson's ratio ν, and corresponding attenuations Q−1
E and Q−1

ν can be calculated using
(Batzle et al., 2006; Madonna & Tisato, 2013; Pimienta et al., 2015b; Pimienta, Fortin, & Guéguen, 2016),

E ¼ σsample

εaxial
¼ σal

εaxial
¼ Ealεal

εaxial
and ν ¼ −

εradial
εaxial

Q−1
E ¼ tan φεal−φεaxial

� �
and Q−1

ν ¼ tan φεradial−φεaxial

� �
;

(3)

where the axial stress loaded on the sample σsample is equal to the axial stress on the aluminum endplate
σal = Ealεal, which can be calculated from the acquired strain εal of the aluminum endplate with its known
Young's modulus Eal. φεal is the phase angle of the axial strain of the aluminum endplate. φεaxial and φεradial are

10.1029/2018JB016241Journal of Geophysical Research: Solid Earth

YIN ET AL. 1256



the phase angles of the axial and radial strain of the sample, respectively. The other elastic properties can be
deduced from the combination of the obtained stress and strain (Batzle et al., 2006; Birch, 1961; Borgomano
et al., 2017),

K ¼ σal
3 εaxial þ 2εradialð Þ and G ¼ σal

2 εaxial−εradialð Þ
Q−1
K ¼ tan φεal−φεaxialþ2εradial

� �
and Q−1

G ¼ tan φεal−φεaxial−εradial

� �
;

(4)

where K andQ−1
K are the bulk modulus and corresponding attenuation, respectively. G andQ−1

G are the shear
modulus and corresponding attenuation, respectively. φεaxialþ2εradial and φεaxial−εradial are the phase angles of the
combined strains εaxial + 2εradial and εaxial − εradial, respectively. A typical processing method, fast Fourier
transform, is used to derive the amplitudes and phase angles of the recorded or combined signals for each
frequency (Batzle et al., 2006; Madonna & Tisato, 2013; Mikhaltsevitch et al., 2014).

In addition, fluid pressure P*
f is also recorded by pressure sensors in the fluid pipelines near both ends of the

sample during oscillation. Due to the existence of a dead volume (the limited volume of fluid pipelines

Figure 1. Schematic diagram of the measurement system (Borgomano, 2018).
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connected to the sample) when the valves of the pipelines are closed, fluid pressure built up outside the sam-
ple may adjust and fluid exchange will happen at sample's boundaries. Thus, the sample is in an experimen-
tally undrained condition but not in a purely undrained condition, at which no fluid moves in or out of the
sample. A pseudo‐Skempton coefficient B* for hydrostatic oscillation and a pseudoconsolidation coefficient
γ* for axial oscillation are defined to be the ratios of the induced fluid pressure measured in the dead volume
to the change in applied stress (Pimienta et al., 2015a, 2015b),

ΔP*
f

σii=3
¼

B* ¼ ΔP*
f

ΔPc
for hydrostatic oscillation

3γ* ¼ ΔP*
f

σaxial=3
for axial oscillation

8>>><
>>>:

; (5)

whereΔP*
f is the oscillating fluid pressure around the mean fluid pressure. The equivalent volumetric stress

σii/3 can be expressed as ΔPc for hydrostatic oscillation and σaxial/3 for axial oscillation (Borgomano et al.,
2017). Normally, B* = 3γ*.

The ultrasonic transmission method is used to measure compressional velocity Vp and shear velocity Vs of
rock samples at high frequencies. The central frequencies for the compressional and shear wave ultrasonic
transducers are 1 and 0.5 MHz, respectively. The errors for the measured Vp and Vs are less than 2% and 5%,
respectively (Fortin et al., 2007), originating from the uncertainties in sample's length and the determination
of the first arrival time of compressional and shear waves. The bulk modulus Khigh, shear modulus Ghigh,
Young's modulus Ehigh, and Poisson's ratio νhigh can be calculated by

Khigh ¼ ρ V2
P−

4
3
V2

S

� �
and Ghigh ¼ ρV2

S

Ehigh ¼ 9KhighGhigh

3Khigh þ Ghigh
and νhigh ¼ 3Khigh−2Ghigh

2 3Khigh þ Ghigh
� �; (6)

where ρ = ρdry + ϕρf is the density of the fluid‐saturated sample. ρdry and ρf are the densities of the dry sam-
ple and the saturating fluid, respectively.

Overall, by combining the forced oscillation method and the ultrasonic transmission method, the measure-
ment system at ENS is competent to measure the dispersion and attenuation of rocks saturated with various
pore fluids over a broad frequency range.

3. Sample Description

A clay‐bearing sandstone from the Thüringen Basin in Germany is investigated. The variation of rock's phy-
sical properties due to water vapor sorption under environmental exposure conditions has been studied pre-
viously (Tiennot et al., 2017). Even though velocity measurements reveal that the rock is transversally
isotropic due to natural orientation of clay, the largest difference of compressional velocities in different
directions is less than 3%; thus, the rock will be considered homogeneous and isotropic in this research
(Tiennot et al., 2017).

The cylindrical sample is 8.04 cm in length and 4 cm in diameter. The flat and smooth ends of the sample are
rectified to be parallel by polishing with a tolerance of 1 μm. Connected porosity derived frommercury injec-
tion test is 13%. The thin section in Figure 2 shows that our Thüringen sandstone is mainly composed of
quartz with subordinate feldspars. Furthermore, feldspars are largely degraded due to weathering
(Parsons, 2012; Van Der Plas, 2011). This is further confirmed by clay mineral identification with the X‐
ray diffraction analysis, detecting muscovite, illite, and kaolinite, especially mixed‐layered chlorite‐smectite
and illite‐smectite minerals. The mineral composition obtained from X‐ray diffraction is shown in Table 1.
The observation of the thin section also makes it possible to quantify all the clay phases lining the grains,
representing about 20% of the rock in Figure 2.

Detailed mineral topographical and elemental information is revealed by the field emission scanning elec-
tron microscopy analysis. A clusters of regularly interstratified chlorite‐smectite platelets are observed in
the center of Figure 3a. These well‐developed phases form webby coatings, which are widely distributed
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partly surrounding the rock matrix. Illite is in the form of very thin rods
shown in Figure 3b. The netted webs formed by illite are covering the
surface of sand grains and bridging between the grains shown in Figure 3b.

4. Measurement Protocol

In order to investigate the effect of fluid on the elastic moduli over a broad
frequency range, the Thüringen sandstone is measured sequentially
under dry and water‐saturated conditions at different differential pres-
sures. The physical properties of the two pore fluids are shown in
Table 2.

Measurements on the dry sample are first conducted. Once the prepared
sample is mounted in the cell, an initial load/unload cycle is performed.
The sample is loaded at a constant stress rate of 0.2 MPa/min to a fixed
confining pressure of Pc = 30 MPa, held stable for 1 hr, and followed by
an unloading at the same stress rate to Pc = 5 MPa. After this cycle,
ultrasonic transmission measurements are conducted to obtain the
high‐frequency velocities. Then, hydrostatic oscillation at frequency

fhydro = [0.004, 1.1] Hz and axial oscillation at frequency faxial = [0.1, 10] Hz are subsequently carried
out. It should be noted that under axial oscillation, a differential stress of 0.5 MPa is exerted by the axial
piston to ensure a good contact between the piezoelectric oscillator and the sample. The ultrasonic and
forced oscillation measurements are carried out for each confining pressure from 5 up to 30 MPa with steps
of 5 MPa.

Then the sample is measured under water saturation. The frequencies and differential pressures of the ultra-
sonic and forced oscillation measurements are identical to that for the dry condition. An additional perme-
ability measurement based on Darcy's law is performed prior to each set of ultrasonic or forced oscillation
measurements. Since the pressure difference between the downstream and upstream pressures for each per-
meability measurement is 0.2 MPa, pore pressure tends to be uniform throughout the connected pores in the
sample after the permeability tests involving fluid flow through the whole sample. In order to guarantee pore
pressure equilibration, the downstream and upstream pressures will set to the same value and remain
unchanged for 30 min. In general, monitoring permeability after changing confining pressure not only
reduces uneven pore pressure distribution in the porous sample but also enables us to calculate the charac-
teristic frequency of the drained/undrained transition (Pimienta, Borgomano, et al., 2016).

In the case of fluid‐saturated samples, dead volume should be considered (Pimienta, Borgomano, et al.,
2016). Indeed, elastic moduli of the samples will depend on dead volume in the drained/undrained transi-
tion. Thus, the valves, which control dead volume, are kept open for permeability measurements and con-
fining pressure regulations and are closed during oscillation measurements. A constant large dead volume
Vdead around ~50 ml is chosen to approach the drained state for the water‐saturated sample. In other words,
the fluid mass in the enclosed area composed of the pore space and the dead volume keeps constant for all
the forced oscillation measurements.

5. Results
5.1. Ultrasonic Results and Permeability

Under dry and water‐saturated conditions, the nonlinear variation of ultrasonic compressional velocity VP

with differential pressure Pdif = Pc− Pf is shown in Figure 4a. VP increases
with differential pressure, but the slope of velocity‐pressure curve
decreases with differential pressure. Above Pdif = 15 MPa, VP gradually
exhibits a linear relation with differential pressure. The variation of ultra-
sonic shear velocity VS as a function of differential pressure is similar to
that of VP. However, the values of VP and VS under dry and water‐
saturated conditions are different. After fluid substitution to water satura-
tion, VP increases almost by the same amount for each differential

Figure 2. Thin section of the Thüringen sandstone in natural light (from
Tiennot, 2017).

Table 1
Mineral Composition of the Thüringen Sandstone

Mineral Percentage

Quartz xquartz = 55%
Feldspar xfeldspar = 25%
Clay xclay = 20%
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pressure, while on the contrary, VS decreases by about 100 m/s with respect to the value for the dry sample at
the same differential pressure.

Figure 4b shows the measured permeability for the Thüringen sample under water saturation. The initial
permeability κ is 0.04 × 10−15 m2 and decreases slightly with increasing differential pressure.

5.2. Hydrostatic Oscillation Results

The bulk modulus and corresponding attenuation under hydrostatic oscillations are shown in Figure 5. The
error bars for the bulk modulus are computed based on the uncertainty analysis procedure elaborated by
Borgomano et al. (2017). The bulk modulus derived from the ultrasonic velocities based on equation (6) is
also shown in Figure 5 for comparison.

For dry measurements at each differential pressure (Figures 5a and 5b), the bulk modulus measured under
hydrostatic oscillation exhibits almost no frequency dependence and is generally consistent with the value
derived from the ultrasonic velocities. The corresponding attenuation is below 0.03. The effect of differential
pressure on bulk modulus is clear. The bulk modulus of the dry sample increases from ~9 GPa at the lowest
differential pressure Pdif = 5 MPa to ~15 GPa at the highest differential pressure Pdif = 30 MPa due to the
closure of preexisting cracks.

Under water‐saturated condition (Figures 5c and 5d), dispersion of the bulk modulus is quite obvious from
0.004 to 1.1 Hz. The bulk modulus increases continuously with increasing frequency. For Pdif = 30 MPa, the
bulk modulus at 1 Hz almost reaches the value at 106 Hz derived from the ultrasonic velocities. The evolu-
tion of the bulk modulus is consistent with the bell‐shaped curve of the corresponding attenuation.
Furthermore, the dispersion and attenuation are decreased by increasing differential pressure.

5.3. Axial Oscillation Results

The direct measured elastic moduli obtained by axial oscillation along with those derived from ultrasonic
velocities are presented in Figure 6 as the function of apparent frequency f* = f × η/η0, where f is the testing
frequency, η is the viscosity of saturating fluid, and η0 is the viscosity of water used as the reference fluid.
Accounting for fluid viscosity, apparent frequency enables us to effectively broaden the frequency range.

Young's modulus E (Figure 6a) and Poisson's ratio ν (Figure 6c) for the dry measurements increase with
increasing differential pressure. In the frequency range of axial oscillations, both elastic moduli show slight

frequency dependence. The corresponding attenuation Q−1
E (Figure 6b)

and Q−1
ν (Figure 6d) are close to 0.

For the water‐saturated sample, both Young's modulus E (Figure 6a) and
Poisson's ratio ν (Figure 6c) increase with increasing frequency for most of
the differential pressures, although ν shows some fluctuation and seems
to slightly decrease with frequency for differential pressures at 10 and

Figure 3. Field emission scanning electron microscopy images of the Thüringen sandstone showing the main grains and
clusters of clays (from Tiennot, 2017). (a) A large number of flakes in the lower right are chlorite‐smectite. The large
prismaticmineral at the top of the photo is albite feldspar. The blockymineral in the lower left is quartz. (b) Elongated rods
of the pore‐lining illite covered by oxide particles.

Table 2
Physical Properties of Pore Fluids

Fluid type
Density
(kg/m3)

Bulk modulus
(GPa) Viscosity (10−3 Pa·s)

Air 1.17 10−4 10−2

Tap water 1,000 2.25 1
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15MPa. There is some frequency dependence of the corresponding attenuation in Figures 6b and 6d, and the
peaks of attenuation can be seen around 0.1 Hz in agreement with the results obtained on the attenuation of

bulk modulus Q−1
K in Figure 5d. Furthermore, the attenuations Q−1

E (Figure 6b) and Q−1
ν (Figure 6d) are

decreased by increasing differential pressure.

The measurements reveals sharp transitions of E (Figure 6a) and ν (Figure 6c) when changing from dry to
water saturation conditions. For any given differential pressure, E decreases by about 5 GPa, while ν
increases by close to 0.2.

5.4. Uncertainty Analysis

To assess the uncertainty for hydrostatic oscillation, we follow Borgomano et al.'s (2017) procedure using sta-
tistical analysis of a set of measurements. For bulk modulus Khydro with uncertainty u(Khydro), the relative
uncertainty is u(Khydro)/Khydro. Based on equation (2), the relative uncertainty in bulk modulus is given by

Figure 4. (a) Ultrasonic velocities and (b) permeability changing with differential pressure.

Figure 5. Bulk modulus and corresponding attenuation of hydrostatic oscillation and ultrasonic results for the sample
under (a and b) dry and (c and d) water‐saturated conditions at different differential pressures.
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Figure 6. Axial oscillation and ultrasonic results for the sample under dry and water‐saturated conditions at different
differential pressures: (a) Young's modulus E and (b) corresponding attenuation Q−1

E , and (c) Poisson's ratio ν and
(d) corresponding attenuation Q−1

ν .
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u Khydro
� �
Khydro

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u ΔPcð Þ
ΔPc

� �2

þ u εvolð Þ
εvol

� �2
s

; (7)

where u(ΔPc) and u(εvol) are the uncertainties in the oscillating confining stress ΔPc and the volumetric
strain εvol, respectively.

The resolution of the pressure sensor inside the cell for hydrostatic oscillation is u(ΔPc) = 0.001 MPa. The
magnitude of the oscillating confining stress is set to be ΔPc = 0.2 MPa. Thus, the relative uncertainties in
the oscillating confining stress is u(ΔPc)/ΔPc = 0.5%. Eight strain gauges composed of four pairs of axial
and radial strain gauges are used to obtain the volumetric strain. For the dry sample at differential pressure
Pdif = 5 MPa and frequency f = 0.1 Hz, the mean of eight strains is εvol = 2.36 μm/m, and the estimated stan-
dard deviation is s(εvol) = 0.258 μm/m. The standard uncertainty, u(εvol), of the mean of the n= 8 readings is

calculated from u εvolð Þ ¼ s εvolð Þ= ffiffiffi
n

p ¼ 0:091 μm=m. This gives a relative uncertainty in the strain u(εvol)/
εvol = 3.9%. Finally, the standard uncertainty in bulk modulus for hydrostatic oscillation can be derived from
equation (7) and is equal to 3.9%, which corresponds to the standard deviation in bulk modulus
s(Khydro) = 0.33 GPa. The relative uncertainties in bulk modulus for other differential pressures and frequen-
cies have close magnitude.

Following a similar routine, the relative uncertainties in Young's modulus u(E)/E and Poisson's ratio u(ν)/ν
for axial oscillation are given by

u Eð Þ
E

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u εalð Þ
εal

� �2

þ u εaxialð Þ
εaxial

� �2
s

u νð Þ
ν

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u εaxialð Þ
εaxial

� �2

þ u εradialð Þ
εradial

� �2
s

;

(8)

where three different strains, εal, εaxial, and εradial, are each determined by four strain gauges. The relative
uncertainties u(E)/E and u(ν)/ν are found to be 9.5% and 5.8%, respectively. The resulting standard deviation
in Young's modulus s(E) and Poisson's ratio s(ν) are s(E) = 1.9 GPa and s(ν) = 0.006, respectively.
Propagating these uncertainties in the calculation gives the standard deviation in Bulk modulus
s(K) = 1.6 GPa and Shear modulus s(G) = 0.8 GPa.

Comparison of the uncertainty analysis from hydrostatic and axial oscillation shows that the uncertainties
depend on the number of strain gauges. The more strain gauges we use, the better the estimate will be.

6. Discussion
6.1. Ultrasonic Measurements

The nonlinear variation of ultrasonic compressional and shear velocities is mainly related to the closure of
microcracks (Fortin et al., 2005; Guéguen & Boutéca, 2004; Walsh, 1965). In response to increasing differen-
tial pressure, the microcracks with various aspect ratios may gradually close. Fluid injection causes an
increase in the stiffness of rock. Hence, the compressional velocity under water saturation is higher than that
at dry state. In addition, the deduced shear moduli based on equation (6) are shown in Figure 7. The decrease
of shear modulus after water saturation is quite obvious. Note that the difference between shear moduli
under dry and water‐saturated conditions decreases slightly with increasing differential pressure. In the fol-
lowing sections, this shear weakening effect will be discussed in detail in conjunction with the data of oscil-
lation measurements at low frequencies.

6.2. Hydrostatic Oscillation Measurements

Dispersion refers to the variation of wave propagation with frequency. It is often accompanied by the decay of
wave amplitude with distance, namely, attenuation. The quantitative relationship between the dispersion
and corresponding attenuation satisfies the causality principle expressed by the Kramers‐Kronig relationship
(Mikhaltsevitch et al., 2016b; O'Donnell et al., 1981). Dispersion and attenuation for fluid‐saturated rocks
arise from wave‐induced fluid flow in pores at different length scales (Biot, 1956a, 1956b; Gurevich et al.,
2010; Johnson, 2001; Müller et al., 2010; Pride et al., 2004; White, 1975). For samples under full saturation,
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two transitions with regard to three independent elastic regimes may be
observed within a broad frequency band, which are drained/undrained
transition for fluid diffusion and undrained/unrelaxed transition for squirt
flow. Two apparent critical frequencies corresponding to the two transi-
tions are found to be (Cleary, 1978; O'Connell & Budiansky, 1977)

f *1 ¼
4κKd

η0L
2 and f *2 ¼

ξc
3Km

η0
; (9)

where L is the sample's length and ξc is the critical crack aspect ratio.
Although the estimated apparent critical frequency is approximate, it
can generally represent the frequency at which the dispersion and
attenuation are maximum.

At differential pressure Pdif = 5 MPa, Kd is 8.6 GPa for the dry sample
(Figure 5a) and permeability κ is 0.04 × 10−15 m2 (Figure 4b). The sample's
length is L = 0.0804 m, and the reference fluid viscosity is η0 = 10−3 Pa ⋅ s.
This leads to a critical frequency f *1≈0:2 Hz from equation (9). The pre-

dicted f *1 agrees with the measured critical frequency shown in Figure 5.
Thus, it is reasonable to conclude that the drained/undrained transition

is observed for critical frequency f *1≈0:2 Hz. In addition, the critical crack aspect ratio ξc for the squirt flow
can be approximately determined by ξc ≈ Pclose/Em = 3.4 × 10−4, where Pclose is the closure pressure for
cracks and Em is the Young's modulus for the mixed mineral matrix (Walsh, 1965). Thus, the critical fre-

quency f *2 for the relaxation of local pore pressure gradients is about 1.3 kHz. However, there are no data
in the apparent frequency range between 100 and 106 Hz. The observed difference between bulk moduli
at 100 and 106 Hz is likely to be related to a transition from undrained to unrelaxed regimes.

For drained/undrained transition, a 1‐D poroelastic model is proposed by solving the diffusion equation for
the perturbation in pore pressure Pf(z, t) along the z axis at any time t (Pimienta, Borgomano, et al., 2016),

∂Pf

∂t
−

κ
ηSS

∂2Pf

∂z2
¼ B

∂Pc

∂t
; (10)

where κ is the permeability and η is the fluid viscosity. Ss = α/(BKd) is the rock storage coefficient, which
depends on the bulk modulus Kd, Biot's coefficient α, and Skempton's coefficient B. α and B are two poroe-
lastic coefficients associated with rock's intrinsic elastic moduli and can be expressed as α = (Km − Kd)/Km

and B = (Ku − Kd)/(αKu) (Detournay & Cheng, 2014).

The specific solution for the experimentally undrained boundary condition with a constant dead volume can
be calculated:

Pf z; tð Þ ¼ BΔPce
iωt 1−

cosh a L
2−z
� �� �

b sinh a L
2

� �þ cosh a L
2

� �
( )

; (11)

witha ¼ 1þ ið Þ ffiffiffiffiffiffiffiffiffiffiffiffi
ω=2D

p
andb ¼ 1−ið ÞASs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D= ωS2

� �q
, whereD= κ/(ηSs) is the fluid hydraulic diffusivity. A

is the cross‐sectional area of the sample. S is the storage capacity of the dead volume, given by S = Vdead/Kf,
where Vdead is the dead volume. The global average pore pressure can be easily calculated by integrating the
local pore pressure Pf(z, t) along the length L of the sample, given by 1

L ∫
L

0Pf z; tð Þdz.
With the known confining and pore pressures, the local volumetric strain εvol is defined by εvol z; tð Þ ¼ K−1

d

Pc tð Þ−αPf z; tð Þ� �
. Thus, the local bulk modulus and corresponding attenuation can be calculated,

Kmodel zð Þ ¼ − Pc tð Þj j= εvol z; tð Þj j;
Q−1
Kmodel

zð Þ ¼ tan φ1− φ2ð Þ (12)

where the amplitude (|Pc(t)|) and phase angles (φ1 and φ2) are extracted from the confining and pore pres-
sures based on fast Fourier transform. Similarly, the global elastic moduli can also be obtained by using

Figure 7. Shear modulus under dry and water‐saturated conditions derived
from ultrasonic shear velocities and corresponding density.
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the global average pore pressure. Furthermore, assuming that the measured fluid pressure in the fluid
pipeline is equal to the value at the sample end, then the pseudo‐Skempton's coefficient B* can be
estimated by setting z = 0, given by B*

model ¼ Pf 0; tð Þ=Pc tð Þ. It should be noted that when dead volume is
very large, that is, Vdead approaches infinity, the solution of equation (11) is reduced to the results
calculated at the drained boundary condition. Whereas if dead volume reduces to 0 for the undrained
condition, pore pressure is found to be independent of frequency and position, which is given by
Pf(t) = BPc(t).

The ratio of the induced fluid pressure to the change in applied stress is called the pseudo‐Skempton's coef-
ficient B* for hydrostatic oscillation or the pseudoconsolidation coefficient γ* for axial oscillation. As shown
in Figure 8, B* agrees well with 3γ* for each differential pressure. This consistency for the two oscillation
methods suggests the validity and reliability of the experimental data. The ratio (B* or γ*) is defined following
the example of the definition of Skempton's coefficient B and still expresses the change of pore pressure by
the exerted stress on the rock sample. The only difference is the value of dead volume. In Figure 8, the com-
parison between the estimated and measured ratios fits considerably well for both hydrostatic and axial
oscillation. The higher value of the ratio in the low‐frequency range around 0.01 Hz indicates the stronger
induced pore pressure and the more fluid flux at the boundaries of the sample. If dead volume is unlimited
and equilibration time is long enough, the pore pressure gradients will be 0 even though fluid flow exists.
Thus, the exerted stress will be fully distributed on the skeleton of the sample, just like the case at the pure
drained condition. But with a limited dead volume in the experimentally undrained condition, the pore pres-
sure gradient cannot fully equilibrate so that the fluid has to partially undertake some of the exerted stress,
which may result in the enhancement of the stiffness of the sample. As frequency increases, the ratio gradu-
ally decreases until close to 0 in the high‐frequency range around 10 Hz. The result indicates that little or
even no fluid flows out of the sample, so the sample is now at a pure undrained condition. The change of
the ratio as a function of frequency in Figure 8 is a typical drained/undrained transition. In addition, the
ratio in Figure 8 is suppressed by the increasing differential pressure. The sample becomes hard to compress
as most of the microcracks close with differential pressure increase. Thus, less fluid flows out of the sample
for higher differential pressure, leading to a small value of the ratio.

The estimated bulkmodulusKmodel and corresponding attenuationQ
−1
Kmodel

at Pdif = 5 and 30MPa for the local

solution at the center of the sample and the global solution average over the sample's length are plotted in
Figure 9 as the function of apparent frequency f*. The local (dash‐dotted line) and global (dashed line) esti-
mated results converge at both the low‐ and high‐frequency limit but diverge in the drained/undrained tran-
sition range. The model generally fits with the measured data confirming that the transition is caused by the
global flow from the drained to the undrained condition.

At the lowest frequency, due to the limited dead volume in the experiment, the bulk modulus for the water
saturation case is higher than the measured dry (drained) bulk modulus Kd. This is well predicted by the
model. As frequency increases, the trend of dispersion is just somewhere in between the local and global esti-
mations. This can be attributed to the simplicity of the 1‐D model and the extreme approximation of the

Figure 8. Comparison between predicted and measured ratio fluid pressure over applied stress. Pseudo‐Skempton's coef-
ficient B* for hydrostatic oscillation (solid line with cross markers) and pseudoconsolidation coefficient 3γ* for axial
oscillation (solid line with square markers) are measured under water saturation at different differential pressures. The
estimated ratio by the 1‐D poroelastic model is plotted in dash‐dotted line.
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strain gauge length as a central point or the sample's length. Furthermore, it should be noted that Kmodel at
the highest frequency is not affected by dead volume and is always consistent with the undrained bulk
modulus Ku calculated by Gassmann's equations. A satisfactory agreement between the estimated and
measured bulk moduli is observed in Figure 9 around 100 Hz. Finally, the value of the bulk modulus
Khigh derived from the ultrasonic velocities at f = 106 Hz is still higher than the value of the bulk modulus
at f = 1 Hz. This difference is likely to result from squirt flow.

As for the attenuation, the bell‐shaped curve of the estimated attenuationQ−1
Kmodel

is consistent with the mea-

sured data. The estimated critical frequency f1* agrees well with the frequency corresponding to the peak of
the measured attenuation, which is ~0.1 Hz.

6.3. Axial Oscillation Measurements

Figure 10 shows the derived elastic moduli and corresponding attenuation based on axial oscillation and
ultrasonic results. If the sample is purely homogeneous and isotropic, bulk modulus and attenuation mea-
sured by the two oscillation methods should be the same. We observe that the general trends of bulk mod-
ulus deduced from hydrostatic oscillation (Figure 9a) and axial oscillation (Figure 10a) with apparent
frequency and differential pressure are similar. However, the hydrostatic measurements show higher bulk
moduli than the axial measurements at higher differential pressures. The possible reason for this discre-
pancy may be the heterogeneity and anisotropy of the sample. In addition, more importantly, highly consis-
tent results are obtained for the attenuation of bulk modulus from the two oscillation methods. That means
that the dispersion and attenuation for the axial oscillation are also due to the drained/undrained transition,
which is the same as for the hydrostatic oscillation.

As Gassmann's theory can be successfully used to estimate the undrained bulk modulus for this rock under
water saturation, we expect the shear modulus to remain constant after fluid substitution as predicted by
Gassmann's theory. However, the comparison of shear moduli under dry and water‐saturated conditions in
Figure 10c shows a clear shear weakening. For each condition, the shear modulus shows almost no

Figure 9. Comparison between the measured data and the local (dash‐dotted line) and global (dashed line) estimated
results by the 1‐D poroelastic model for (a) the bulk modulus and (b) corresponding attenuation.

10.1029/2018JB016241Journal of Geophysical Research: Solid Earth

YIN ET AL. 1266



Figure 10. The derived elastic moduli and corresponding attenuation of the sample under dry and water‐saturated
conditions as a function of apparent frequency for axial oscillation and ultrasonic results: (a) bulk modulus K and
(b) corresponding attenuation Q−1

K , and (c) shear modulus G and (d) corresponding attenuation Q−1
G .
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frequency dependence within the uncertainty of our measurements,
which is consistent with the corresponding attenuation. That is to say,
the shear weakening does not lead to any dissipation.

6.4. Shear Weakening Effect

Previous studies have shown that a reduction in shear modulus may arise
from two main mechanisms: surface free energy variation related to che-
mical reaction between fluid and solid phases (Clark et al., 1980;
Khazanehdari & Sothcott, 2003; Murphy et al., 1984, 1986; Pimienta
et al., 2014) and mechanical changes of rock skeleton and pore structure
due to pressurized pore pressure (Christensen & Wang, 1985; Paterson
& Wong, 2005).

Work by Johnson et al. (1971), Michalske and Freiman (1983), and
Sedlmeier et al. (2008) illustrates that water as a polar fluid can effectively
weaken rocks. Compared with nonpolar fluid, surface energy may be lar-
gely reduced in contact with water. Water molecules can bond to the solid
surface of minerals, so part of the solid‐solid bonds will be replaced by the
hydrogen bonding network, thereby reducing the activation energy and
lowering the cohesion of grain contacts (Michalske & Freiman, 1983).

The grain contact adhesion hysteresis model provided by Tutuncu and Sharma (1992) and Bui and Tutuncu
(2015) shows that Hamaker constant has a large influence on the fluid‐rock interaction and deformation.
The reduction of Hamaker constant due to water saturation will decrease the attractive forces acting on
the surface and thus increase the equilibrium separation distance between particles and decrease the surface
energy (Tutuncu, Podio, Gregory, & Sharma, 1998; Tutuncu, Podio, & Sharma, 1998).

Khazanehdari and Sothcott (2003) emphasized that surface energy is strongly dependent on pore surface
area. Figure 11 shows the difference of saturated shear modulus and dry shear modulus dG = Gsat − Gdry

at the measured frequency of 1 Hz. The sample at lowest differential pressure has the strongest shear weak-
ening around 4 GPa. This nonlinear change of dGwith differential pressure can also be explained by the clo-
sure of microcracks as the variation of velocities with pressure. The increasing differential pressure starts to
close the pores with small aspect ratio and thus decreases the surface area of rock in contact with water and
increase the grain compaction. The corresponding increase of the surface energy will eventually decrease the
weakening effect.

The shear modulus of the saturated sample is reduced by 42.7% with respect to that of the dry sample at the
lowest differential pressure. The effect of fluid‐solid interaction on shear weakening is relatively high in con-
trast with former ultrasonic studies (Han et al., 1986; Khazanehdari & Sothcott, 2003). As far as we know,
only the results of low‐frequency measurements on carbonate samples by Adams et al. (2006) have shown
such a large amount of softening of shear modulus. The common ground between these two experiments
noticing a large shear weakening is that the measurements are conducted in the seismic frequency range.
Although dispersion can in some cases mask the real shear weakening at ultrasonic frequencies, the satu-
rated shear modulus at seismic frequencies in our study is not influenced by the stiffening effect related to
dispersion. That is why the shear weakening is more obvious for the measurements in the low‐
frequency range.

Furthermore, considering a high fraction of clay for the water‐saturated Thüringen sample, it is reasonable
to assume that clay minerals have a strong effect on the overall rock response for shear behavior. The layers
in clay minerals are composed of two basic units: tetrahedral silicate sheet (T) and octahedral hydroxide
sheet (O). Depending on the formation of mineral sheets packaged into the layer, the positive exchangeable
interlayer cations may be needed to achieve charge balance between layers. Thus, the layered structural clay
is formed from a pile of layers interspaced with the soft interlayers. Sayers and den Boer (2016) studied the
elastic anisotropy of clay minerals and illustrated that the shear modulus for clay minerals can have consid-
erably small value. The porous clay minerals, especially chlorite‐smectite and illite‐smectite, provide a large
surface area of pore network available for efficient fluid‐clay interaction. Ultrasonic measurements in sand-
stones reported by Tosaya (1982) and Han et al. (1986) suggest that shear modulus of clay minerals can be

Figure 11. The difference between the dry and water‐saturated shear mod-
uli at 1 Hz as a function of differential pressure for the Thüringen sandstone.
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significantly reduced by water adsorption. The absorption of water will form one, two, or three layers of
interlayer water molecules depending on the type of clay. The corresponding basal layer spacing (the spacing
of a layer and an interlayer) will thus increase causing the reduction in shear modulus of clay minerals from
the dry state (Sayers & den Boer, 2016). Then, the overall shear modulus of the rock would show
this softening.

To determine the amount of reduction in shear modulus of the mixed clay minerals due to water softening,
we use a simple model by combining the Reuss model and the effective media model to estimate the shear
moduli of the mixed clay minerals under dry and water‐saturated states.

From the field emission scanning electron microscopy images in Figure 3, the main grain minerals (quartz
and feldspar) are coated with different clay minerals. Thus, we assume that the bulk modulus Km and shear
modulus Gm of the mixed mineral matrix can be estimated from the Reuss average (Reuss, 1929),

1
Km

¼ xquartz
Kquartz

þ xfeldspar
K feldspar

þ xclay
Kclay

1
Gm

¼ xquartz
Gquartz

þ xfeldspar
Gfeldspar

þ xclay
Gclay

;

(13)

where xquartz, xfeldspar, and xclay are the volume fractions of quartz, feldspar, andmixed clay minerals, respec-
tively. These values are presented in Table 1. The quartz properties are Kquartz = 37 GPa and
Gquartz = 44 GPa. The feldspar properties are Kfeldspar = 37.5 GPa and Gfeldspar = 15 GPa. Since the sample's
bulkmodulus at the pore pressure equilibration state remains unchanged after water saturation in Figure 9a,
we further assume that the constant bulk modulus of the clay minerals is Kclay = 25 GPa based on the labora-
tory measurements by Castagna et al. (1985) and Han et al. (1986). Thus, the only unknown is the shear
modulus Gclay of the mixed clay minerals.

Under the pore pressure equilibrium case, the effective shear modulusGeff for an effective mediumwith only
equant pores is given by (Mavko et al., 2009)

Gm

Geff
¼ 1þ ϕ

15 1−νmð Þ
7−5νm

; (14)

where νm ¼ 3Km−2Gm
2 3KmþGmð Þ is the Poisson's ratio of the mixed mineral matrix. In fact, Geff is a function of Km and

Gm through νm. It can be taken as the shear modulus of the sample at the highest differential pressure
30 MPa, where all the microcracks are assumed to be closed. Under the seismic frequency range where pore
pressure reaches equilibration in Figure 10c, Geff decreases from 10.9 GPa under dry state to 8.8 GPa under
water saturation. Then Gclay can be obtained by solving the simultaneous equations, which combine equa-
tions (13) and (14). Thus, the values are found to be Gclay_dry = 4.49 GPa under dry condition and
Gclay_water = 3.2 GPa under water condition. The shear modulus of mixed clay minerals decreased by
28.7% due to water softening effect.

Finally, the damage of grain cement and contacts by the pressurized pore fluid may not be the reason for the
observed shear weakening because pore pressure is only 3 MPa for all the measurements. Thus, the weak-
ening effect in this water‐saturated sample is believed to be mainly caused by the reduction of surface free
energy due to fluid‐solid interaction.

7. Conclusion

The experimental measurements on a clay‐bearing Thüringen sandstone were conducted to better under-
stand Gassmann's theory for fluid substitution. The elastic properties of the sample under dry and water
saturation were measured in a broad frequency range by the forced oscillation method combined with the
ultrasonic transmission method.

The elastic moduli of the dry sample show no frequency dependence. However, the dispersion and attenua-
tion can be clearly observed for the water‐saturated sample, which confirms that the underlying mechanism
for the frequency dependence of elastic moduli is mainly due to the fluid inside the pore space of the sample.
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For the sample under water saturation, themeasured bulkmodulus for hydrostatic oscillation increases with
frequency in the seismic frequency band. The corresponding attenuation correlates well with the dispersion.
The estimated data by the 1‐D poroelastic model accounting for the experimental boundary conditions
match well with the measured results, implying that the low‐frequency dispersion and attenuation are
induced by the transition from the drained to the undrained regimes. These results also indicate that the
effect of limited dead volume on bulk modulus needs to be considered.

The undrained bulk modulus estimated by Gassmann's theory is consistent with the measured data.
However, there is a clear shear weakening effect for axial oscillation, which violates the constant shear mod-
ulus assumption derived from Gassmann's prediction. The reduction of surface energy due to fluid‐solid
interaction is assumed to be the main cause for the shear weakening at seismic frequencies. The presence
of many clay minerals with a large surface area is the likely cause of the shear weakening. The decrease
of shear modulus at ultrasonic frequencies is smaller than that observed at seismic frequencies. This is
mainly related to the stiffening effect of dispersion and very likely due to squirt flow. The application of
Gassmann's theory on clay‐rich reservoirs may consequently cause errors in seismic inversion, amplitude‐
versus‐offset, or time‐lapse seismic analysis.
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