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Genome sequencing of pathogens is becoming ubiquitous in microbiology, and automated 
diagnostics will soon appear. The genome sequence archives, already growing exponentially, 
are currently not searchable for arbitrary sequence. Such an ability would unlock this 
resource for science and could underpin global real-time genomic epidemiology and 
surveillance.   
 
We combine knowledge about bacterial genetic variation with ideas used in web-search, to 
build a DNA search engine for microbial data that can grow incrementally. We index the 
complete corpus of bacterial and viral whole genome sequence data as of December 2016 
(447,833 genomes, 176 Terabytes), using four orders of magnitude less storage than previous 
methods, making the global archive for the first time accessible to search, and scaling to 
millions of genomes. We demonstrate its usefulness with three applications: ultra-fast search 
for resistance genes MCR1-3, host-range determination for 2827 plasmids, and quantification 
of the rise of antibiotic resistance prevalence in the archives. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
Whole genome sequencing (WGS) offers unparalleled resolution for problems as diverse as 
contact tracing, mapping the spread of drug resistance, identifying zoonoses, and 
investigating the underlying biology of infectious diseases. Sequence data is deposited in the 
global sequence archives (European Nucleotide Archive (ENA), Sequence Read Archive 
(SRA)) which are doubling every two years, and we expect this to accelerate as affordable 
WGS-based diagnostic tests become a reality1-6. However, it is currently impossible to search 
the archives for datasets with specific mutations (single nucleotide polymorphisms (SNPs)), 
genes or mobile elements. The ability to combine these atomic queries would be 
transformative for global management of infectious disease, allowing instant access to 
datasets within any specified genetic distance (e.g. “has anyone in the world seen something 
within 20 SNPs of this strain before?), or with given drug resistance mutations, genes or 
plasmids.  
 
In the 1990s, when most species had at most one reference genome and within-species 
variation was less of a focus, BLAST7 and its successors8,9 revolutionized bioinformatics by 
providing online DNA alignment of queries against large databases of reference genomes. 
However, assemblies constitute only 17% of archived bacterial data (110,898 assemblies 
versus 554,680 raw read datasets in the European Nucleotide Archive (ENA) as of October 
2017) and generally only a fraction of those are indexed for BLAST search. Indeed, although 
high quality reference genomes of clonal (i.e. containing one genome) samples are the gold 
standard, these are unachievable with short read data 10-12, and bad references discard or 
confound data which may be of interest. More fundamentally, many sequence datasets 
contain populations rather than clonal isolates. Haploid assembly is fundamentally not the 
right summary for such data. As the archives continue to scale-up, it becomes critical to be 
able to rapidly filter down to small datasets for careful analysis. The core requirement is 
therefore to be able to search heterogeneous historical and modern data, whether assembled 
or not, for presence of arbitrary sequence. In this study, we combine computational 
techniques previously used in web-search, with knowledge of bacterial population genetics, 
to develop a data structure, the Bitsliced Genomic Signature Index (BIGSI), that solves this 
problem.  
 
The first scalable search engine for raw sequence was developed in 2016, the Sequence 
Bloom Tree (SBT)13, a k-mer (fixed-length DNA word) index, developed to enable detection 
of specific transcripts in RNA-seq data. This opened up a new field of “experiment 
discovery” – allowing users to search archives for useful experiments to study further. 
However, SBT and its recent successors14-16  shared with previous similar methods (Cortex, 
vari, McCortex)17-19  a scaling dependence on the total number of k-mers in the union of 
datasets indexed. For species where there is considerable k-mer sharing between datasets 
(e.g. human), this works well, and further efficiencies can be gained by leveraging patterns of 
sharing between datasets20. However, bacteria are fundamentally different: even within a 
species there can be enormous diversity due to horizontal transfer of DNA (Supplementary 
Figure 1), and we show this diversity renders previous methods unable to scale. We remove 
this limitation with the use of BIGSI to index the entire bacterial and viral content of the 
ENA as of December 2016 (447833 datasets; 170 Tbytes of data), using four orders of 



magnitude less storage than previous methods (a schematic outline of these and related 
methods is shown in Figure 1). This is the first time the archives have been made accessible 
to search, and we make a version publicly available at http://bigsi.io. We demonstrate 
applications to basic biology and surveillance: ultra-fast search for the colistin resistance 
genes MCR1-3, mapping host ranges of 2827 plasmids, and plotting the changing prevalence 
of antibiotic resistance mutations and genes in the archives. 
 
 

 
Figure 1:  Schematic outline of common sequence matching methods. a) Mapping of sequence reads to a reference 
genome from the same species, thus assuming relatively low divergence; requirement to map millions of reads in 
acceptable time and return an alignment and mapping score. Common tools: bwa and bowtie. b) BLAST: Compare a query 
string with a database of reference genomes (here RefSeq genomes surrounded by dotted box) covering huge phylogenetic 
range. BLAST takes k-mers from the query, and for each creates a “neighbourhood” of k-mers within a fixed edit distance, 
and searches for these in the reference genome database. Alignment is only done by extending from these hits. BLAST 
works for both nucleotide and protein searches and can find both close and remote homology matches. c) MASH stores a 
tiny fingerprint of each reference in the database (here RefSeq). Querying with an assembly, the fingerprint of the 
assembly is compared with those of RefSeq to find closest reference. d) Sequence Bloom Tree: first scalable method to 
search through raw unassembled readsets, by indexing the k-mers within and then compressing the index. Designed for 
human data, used to find which RNA-seq datasets contain a given transcript. e) BIGSI (this study): Designed to search the 
complete global corpus of raw sequence data for bacteria and viruses (RefSeq shown within dotted box for sense of scale). 
This entails different speed/compression trade-offs as the indexed data is far less self-similar than single species data, 
showing imprint of billions of years of mutation and horizontal gene transfer. Both SBT and BIGSI sacrifice the ability to 
detect remote homology to enable scalability. 
 
 
 
High accuracy queries with a lossy compressed DNA index 
 
We developed a data structure suitable for storing bacterial genomic data, the bitsliced 
genomic signature index (BIGSI). We use the generic term “dataset” to refer to either 
assembled genomes or unassembled sequence read-files from clonal or non-clonal samples. 
BIGSI combines a k-mer index with constraints on sequence queries, described below. A 
bloom filter is a data structure21 which stores data (here, k-mers) in a bit-vector (array of 
zeroes and ones) and answers set-membership queries  (“is this k-mer contained in the set?”) 
probabilistically. The false negative rate is zero, and the false positive rate is controlled by 2 
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parameters (size of bit-vector and the number of (hash) functions used to generate the binary 
encoding, see Figure 2), creating a trade-off between false-positive rate and compression. We 
describe how we set the bloom filter parameters below. The BIGSI encodes data as a matrix 
where each column is a bloom filter of the k-mers in a dataset. Figure 2 shows schematics of 
how data is processed and stored, and details are in Methods. Note that incorporating a new 
dataset simply requires a new column is added, without needing to rebuild the index. Since 
appending a new column to a BIGSI requires modifying every key in the index this is an 
expensive operation. As a result, our approach is to batch new inserts, building a new BIGSI 
per batch, and merging these together. Our implementation supports both disk-based and in-
memory stores; all measurements reported are from the disk-based store. Although we use 
this as a k-mer index, it can be viewed as a probabilistic coloured de Bruijn graph17,22.  
 
We note that the Bloom filter parameters and the k-mer size cannot be modified dynamically, 
so the maximum number of k-mers in any dataset much be set in advance. A simple 
workaround (not applied in this study) when storing genomes of very different sizes or 
metagenomic data would be to use an array of BIGSIs , “sharding” across dataset size 
(choosing which BIGSI to store a dataset in, based on the number of k-mers), and parallelise 
queries (see Methods). For a comparison of functionality supported by BIGSI compared with 
other tools, see Methods. 
 
 

 
 

Figure 2: BIGSI encoding compared with naïve approach. a) BIGSI step 1: each input dataset (could be raw sequence data 
(FASTQ format) or assembly) is converted to a non-redundant list of k-mers (with an optional denoising step to remove 
sequencing errors, detailed in Methods). A fixed set of 𝜼 hash functions (𝒉𝟏, 𝒉𝟐,…) is applied to each k-mer (𝜼 =3 in this 
figure), giving a tuple of positions which are all be set to 1 in a bit-vector (a Bloom Filter). b) BIGSI step 2. Each dataset is 
stored as a fixed length bloom filter, as a column in a rectangular matrix. To query the BIGSI for k-mer AAT, the 𝜼 hash 
functions are applied to the query k-mer, returning 𝜼 rows to be checked (namely 3,7,5 here). All columns (datasets) 
that have 1 in all of those 𝜼 rows contain the query k-mer: these rows that are checked are called “bitslices”. A hash, 
mapping from row index to corresponding bit-array is stored to allow fast, i.e. O(1), access to each row when needed. 



Adding a new dataset requires just adding a new column. c) Naïve encoding for contrast. A complete list of all k-mers in 
all datasets form the rows of a large matrix, and columns are datasets. For any given k-mer, entries are set to one for 
datasets containing that k-mer. When a new dataset is added, the matrix grows vertically (new k-mers added) and 
horizontally (new column for new dataset). 

To genotype a sequence, we query the index for all the k-mers within it. Exact matching 
requires all k-mers be present (threshold T=100%), and can be implemented as a fast AND 
operation on bit-vectors. Inexact matching, primarily used for long alleles, requires the 
presence of some proportion (T<100%) of k-mers be present, and is slower.  
The relationship between proportion of k-mers present (“k-mer identity”) and the more 
traditional sequence identity used by BLAST, is non-linear but monotonic. For example, if 
the k-mer size is 31, each SNP difference causes a window of 31 absent k-mers. Therefore k-
mer identity drops more rapidly than sequence identity, and BIGSI is only appropriate for 
finding matches which are relatively similar (e.g for k=31, matches with sequence identity 
above 80% (as shown in Supplementary Figure 2)). BIGSI is fundamentally designed for 
situations needing an exact or moderately close match, or where combinatorial searching is 
feasible (e.g. querying all sequences 2 SNP differences from a given allele, or all single 
amino acid changes in a gene). Datasets containing remote matches for a gene could only be 
sought via searches for subsequences (seeds). 
 
Although BIGSI does not do an alignment, an approximation to a mega-BLAST alignment 
score can be inferred from the presence/absence pattern of k-mers in the query (details in 
Methods). We show in Supplementary Figure 3 the strong correlation (r=0.998) between 
Mega-BLAST score and BIGSI score for 100 E. coli AMR genes using a BIGSI of RefSeq-
bacteria (release 81). 
 
To search for a single nucleotide polymorphism (SNP), we create a sequence for each allele, 
with k-mer -1 bases on either side. By requiring multiple k-mers in the sequence be present, 
we reduce the false positive rate for SNP allele detection exponentially. Indexing at a smaller 
k-mer (31) than our minimum query length (61) enables both compression and a low error 
rate. The theoretical false discovery rate for an SNP allele from a probe (flanks plus allele) of 
length (2k-1) with bloom filter parameters is 10-35 per column (see methods) - well below the 
expected error rate from the underlying sequence data.  
 
We measured query speed by first building a BIGSI of 3,480 datasets of Mycobacterium 
tuberculosis obtained from23, and genotyping 68,269 SNPs. Searching all datasets for these 
SNPs took just under 90 minutes on a single CPU core - an effective genotyping rate of 
above 46,000 genotypes per second. 
 
We validated SNP genotyping accuracy using a subset of 100 of the M. tuberculosis datasets 
for which we had high quality SNP calls using samtools24 (see Methods). The concordance 
between methods was 99.997% with a total of only 286/682,690 discrepancies. We measured 
accuracy of longer allele detection by searching (with T=70% match) for a catalogue of E. 
coli Multi Locus Sequence Type (MLST) alleles and choosing the best scored allele for each 
gene. We then compared calls on a set of 954 datasets with the MLST allele calls from a 
high-quality caller: SRST225. Where both methods made a call (6483/6678 alleles), there was 
99.9% agreement; otherwise SRST2 failed (n=167), or BIGSI failed to find an allele version 
above T=70% (n=28).  
 
 
 



 
Benchmarking and scaling. 
 
We benchmarked the empirical scaling properties of BIGSI against the Sequence Bloom Tree 
(SBT)13 and the Split Sequence Bloom Tree14 (SSBT) on a dataset of 10,000 random 
microbial sequence datasets from the ENA, comparing build and query times, and peak 
storage requirements on 21 increasing subsets ranging from 100 to the complete 10,000 
samples. For each subset, we built a BIGSI, and both SBT and SSBT each using two different 
parameter settings: one optimized for speed (recommended by the authors in Lemma 1, and 
subsequent text, of Solomon et al13 and the SBT/SSBT user manual - termed SBT-fast/SSBT-
fast), and another optimized for compression (SBT-small/SSBT-small). See methods for 
further details. For database sizes >= 2000, peak storage requirements of SBT-fast and 
SSBT-fast exceeded our available disk space (1Tb; by comparison the total storage required 
for the input data was 403Gb; see methods). 
 
We queried the resulting indexes for 2157 antimicrobial resistance genes with a mean length 
of 937bp and total query length 2,021,655bp. SBT-fast, SBT-small, SSBT-fast, SSBT-small 
and BIGSI returned near-identical hits from the exact match search, with only 1 difference 
across all queries (measured on N=1000 database size). With the inexact search, concordance 
was >99% with the differences likely due to the different construction of the underlying 
bloom filters between the methods. 
 
Inexact (T=40%) query times vs. peak storage requirements for the various methods can be 
seen in Figure 3; BIGSI maintains good query performance in small space for all input data 
sizes, whereas (since they need to build an uncompressed tree of bloom filters before 
compressing it) both SBT and SSBT require trading storage requirements for performance. 
SSBT-fast and SBT-fast have query time comparable to or better than BIGSI but require 
orders of magnitudes more storage to build the uncompressed tree. SBT-small and SSBT-
small have slower query performance than BIGSI using near equivalent storage due to 
saturation of internal bloom filters within the sequence bloom tree, a result of the total 
number of unique k-mers being significantly larger than the number of unique k-mers in any 
individual dataset. As mentioned above, SBT-fast and SSBT-fast construction failed for 
databases >=2000 due to excessive disk requirements, but we could nevertheless calculate a 
lower bound for the peak disk-use for database sizes >=2000; query times were extrapolated 
linearly (these points are shown as triangles on Figure 3; details of lower bound in Methods). 
A similar picture is seen for exact queries (T=100%, see Supplementary Figure 4); exact 
match searches with BIGSI are up to 2-3X faster than inexact queries as they can be found by 
taking the bit-wise AND of the k-mer lookups and do not require “unpacking” the bit-vectors. 
 
 
 



 
  
Figure 3: Query time for 2157 antimicrobial resistance genes with T=40% vs. peak disk size when searching databases of 
sizes from 10–10,000 microbial datasets. Both axes are on a log scale; diameter of dot represents the number of 
datasets indexed – thus to compare two methods it is necessary to compare dots of the same size. The ideal method 
would produce dots towards the bottom-left. For the same database size, SBT-small and SSBT-small are slower than 
BIGSI, as expected due to internal node saturation. Where construction was possible, for the same database size, SBT-
fast and SSBT-fast have faster or comparable query times as BIGSI, but require significantly larger disk space to build due 
to the large number of total k-mers in the database. For database sizes greater than 1000, we were unable to build the 
SBT-fast/SSBT-fast as their uncompressed disk usage exceeded available space; triangles signify estimated values based 
a calculated lower bound for disk use (as k-mer content is known), and extrapolated query times (see below and 
Methods).  

 
 
There were approximately 4.4 × 10, unique k-mers in the union of all 10,000 datasets, 
almost 1000 times more than in a typical individual dataset. This would require ~11TB of 
storage to build SBT-fast, 350X more space than is required by BIGSI.  By contrast, querying 
SBT-small took 83X longer and SSBT-small 568X longer than a BIGSI of the same database 
size. SSBT-small was nearly 7X slower than SBT-small, perhaps due to the lower proportion 
of shared k-mers between datasets. Even for this small benchmark, constructing unsaturated 



(i.e. fast) SBTs and SSBTs for larger numbers of datasets quickly becomes prohibitive in 
storage requirements; we address scaling further below.  Query times for SBT/SSBT-slow 
were unacceptable for this benchmark, and so we exclude them as candidates for storing the 
ENA/SRA, which is 50X bigger. 
 
To ensure our SBT settings were fair, we also benchmarked BIGSI and SBT on the same 
human RNA-seq dataset used in 13,14,16, using the prebuilt SBT index provided by the authors. 
We measured the query time of 1000 RNA transcripts randomly selected from the 214,294 
known transcripts (reported in 13). BIGSI has faster query time than SBT and takes smaller 
space for these datasets (360s and 144Gb for BIGSI, and 2221s and 200Gb for SBT 
(T=70%); full results including for exact search in Supplementary Table 1). However, we 
expect that, without additional improvement to BIGSI, both SSBT and Mantis will perform 
better on human genomic data, as they can take advantage of the higher levels of similarity 
between human genomes.  
 
Finally, we simulated the scaling of storage requirements required to construct SBT-fast, and 
BIGSI for data sizes up to 1 million genomes in two regimes: firstly, for genomes with high 
proportions of k-mer-sharing (e.g. human), and secondly to species with lower proportions of 
k-mer-sharing (e.g., most bacteria) - see Methods for details, and Supplementary Figure 5). 
BIGSI scales linearly with the number of datasets, performing identically in both cases. In the 
low-k-mer sharing regime (which is our focus) an unsaturated SBT/SSBT would require 4 
orders of magnitude more storage than BIGSI to construct (tens of Pb rather than 3 Tb). 
 
 
Indexing all bacterial and viral WGS data  
 
We set out to construct a BIGSI from all bacterial and viral WGS data-sets in the ENA 
“pathogens endpoint” (which contains all bacteria, all viruses and some eukaryote parasites, 
totaling 469,654 datasets). After excluding the eukaryotic genomes on the basis of size (see 
Methods), we were left with 447,833 datasets. The entire index required 1.5TB of storage, 
<1% of the original data size (170 TBytes) and contained more than 60 billion unique k-mers. 
Data download took 6 weeks, constructing bloom filters on the fly. Combining the bloom 
filters afterwards took approximately 2 days (See Methods). We estimate that the 
intermediate storage required to build an SBT-fast/SSBT-fast of the same data using 
recommended bloom filter size equal to the number of unique k-mers in the collection, would 
have been >6.7PB. 
 
We base a number of large-scale analyses below on this index, which we refer to as the all-
microbial-index. In order to make statements about which genus certain mobile elements or 
alleles are found in we estimated the species and abundances present in each dataset that went 
into the all-microbial-index using the Bayesian abundance estimator Bracken26 which parses 
output from the read-classifier Kraken27 (see Methods). We found over 90% of the datasets 
were from just 20 genera, and 65% were from the top 5 most common bacterial genera 
(Salmonella, Streptococcus, Staphylococcus, Escherischia and Mycobacterium); counts for 
the most prevalent bacterial genera are shown in Supplementary Figure 6. 
 
 
 
Application 1: ultrafast gene search 
 



As a practical example, we searched for exact matches of the colistin resistance genes MCR-
1/2/3, subject of intense scrutiny over the last 2 years28-32 across all 447,833 datasets in the 
all-microbial-index. Searching for all 3 genes took 1.73 s seconds in total, scanning 10x more 
genomes than previous publications. MCR-2 was not present, but we found MCR-1 in 169 
datasets of 3 species (E. coli, S. enterica, E. aerogenes) and MCR-3 in 34 datasets (E. coli, S. 
enterica, K. pneumoniae) (see Supplementary Data 1).  
 
 
Application 2: estimating the host-range of plasmids and conjugative systems 
 
We took 2827 plasmids from the ENA (see Methods, and Supplementary Data 2) and ran an 
inexact (T=40%) search for these in the all-microbial-index. We filtered these for hits with 
T>90% for downstream analysis. The total length of query sequence was 227 Mbp, and the 
query took 2120 CPU hours (11 days real time) on a single server using 8 cores and 1.5 Gb 
RAM per process. The search returned 665,619 hits with 121,758 unique accessions across 
258 genera. Since contamination could confound observations of a plasmid in a genus, we 
excluded from this analysis (Application 2) all datasets containing evidence of more than one 
genus at abundance above 0.1%. Only 41% (=184652) of datasets and 62% of search hits 
passed this filter. 
 

 
 
 
Figure 4: 37 plasmid sequences found at least 5 times in more than one genus in the all-microbial-index. The heatmap 
shows the frequency of each plasmid within each genus. The plasmids/genera were hierarchically clustered using the 
UPGMA algorithm and euclidean distance metric. The plasmid at the left (AF012911) with extremely wide 
phylogenetic distribution is a known cloning vector. The large amount of sharing between Escherischia, Salmonella 
and Shigella is consistent with known promiscuity within Enterobacteriaceae  

We often identified plasmids shared by closely related genera, notably among Escherichia, 
Shigella and Salmonella, and among Enterococcus, Streptococcus and Staphylococcus. We 
found 37 plasmids present in at least five datasets of at least two genera (Figure 4, 
Supplementary Data 2 & 3); and 5 in multiple orders and families. The plasmid pETHIS-1 



(entry: AF012911) was found in 5 phyla, 10 taxonomic classes, and 17 genera. This plasmid 
is used as an expression vector and its identification in so many species serves as a positive 
control, confirming that BIGSI can spot similar plasmids across the database. Of more 
biological interest, the Tn916 conjugative transposon encoding tetracycline resistance that 
was first found in Enterococcus faecium and known to have broad host range33 (entry: 
U09422) was found in Streptococcus (n=3951), Staphylococcus (n=1212), Enterococcus 
(n=43), Clostridioides (n=29), Listeria (n=19) and Erysipelothrix (n=11).  
 
 
Sampling biases in the ENA prevent inference about prevalence, but they do allow us to ask 
if plasmids bearing antibiotic resistance (ABR) genes are more widely phylogenetically 
distributed than those bearing none. We defined “phylogenetic spread” of a plasmid as the 
median of the pairwise distances along the tree (incorporating branch lengths) between all 
pairs of genera in which the plasmid is seen (we used a large subunit rRNA tree). Figure 5 
shows the distributions for plasmids bearing at least 3 ABR genes (abbrev. 3ABR, purple), 
and those bearing none (abbrev. zero-ABR, peach). We test whether 3ABR plasmids are 
more widely distributed across the phylogeny than zero-ABR plasmids by comparing the 
95% quantile of these two distributions, and find that they are (95% quantiles: 1.11 and 1.99 
for zero-ABR and 3-ABR respectively), and test for significance using a permutation test 
(p=0.0024, 1 million replicates, see Supplementary Figure 7). Given the underlying data, we 
would want to replicate this with wider sampling of the phylogeny to be confident of this 
result beyond the Enterobacteriaceae.  
 

 
Figure 5: Comparison of phylogenetic spread (median of pairwise distances between all pairs of genera in which a 
plasmid is seen) of plasmids containing at least 3 antibiotic resistance genes (n=98, purple) with those bearing none 
(n=665, peach) – histograms are normalized to allow comparison (probability densities). Distance measured on the 
large subunit rRNA tree from SILVA. Units of phylogenetic spread are substitutions per site; it is possible to have a 
distance>1 since it is measured up to the common ancestor and back down again. 
 
 
 
 
The distribution of different versions of the machinery (relaxase (MOB) and type IV 
secretion system (T4SS)) for conjugative transfer of DNA between bacteria have previously 
been analysed in 1124 genomes34 using sensitive, but slow, protein profiles searches. We 
extended this analysis to the whole ENA, searching (exact match) the all-microbial-index for 
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previously identified MOB and T4SS types. Of the 184,652 datasets, 36030 (19.5%) had a 
putative conjugative system (i.e. exact matches to at least one MOB type and T4SS) - 
consistent with the previous estimate of 18%. This proportion varied by phylum, from 0.5% 
in Spirochaetes to 31.7% in Firmicutes (see Supplementary Table 2). Supplementary Figure 
8 shows the distribution of MOB types in each phylum. At a finer scale these observations 
provide valuable information on the potential spread of antibiotic resistance genes. For 
example, focusing on datasets with MOBT we observe genetic flux between Staphylococcus 
and Streptococcus, but not with Salmonella, and using this information facilitates the 
assessment of the risk of spreading between taxa. This flux does not need to strictly follow 
phylogenetic lines. For example, we observed MOBQ in Salmonella and Streptococcus but 
not Staphylococcus, indicating a different probability of cross-genus (and cross-phylum) 
transfer by conjugation (data in Supplementary Data 4). 
 
 
Application 3: growth of antibiotic resistance prevalence in the archives 
 
We downloaded all 2157 sequences associated with antibiotic resistance from the CARD 
database (v1.1.7)35 searched for these in the all-microbial-index with thresholds of 100% and 
70%. An exact search for a gene on average took 1.1s and returned 438 hits. In total this 
resulted in 944,862 hits in 193,582 unique accessions across 250 genera (Full results in 
Supplementary Data 5). An inexact search (T=70%) on average took 34.4s and returned 5320 
hits. We show in Figure 6a the growing count of ABR genes in the archives, split by year of 
upload to the SRA/ENA. Restricting to Staphylococcus, we find (Figure 6b) the proportion of 
datasets containing mecA gene (causing methicillin resistance) dropping from a high of 70% 
in 2013 to 40% in 2016, during which period all the tet and aac genes also drop in 
prevalence. By contrast, we show in Figure 6c that for Klebsiella essentially all resistance 
genes have gone up in archive prevalence.  
 
 



  
 
Figure 6: a) counts of samples in the all-microbial index containing a range of ABR genes; each gene treated independently, 
so a single dataset containing both CTX-M and OXA for example, will be counted twice b) Year-by-year frequency (defined 
by date of public availability) in Staphylococci (dominated by S. aureus) of mecA, and all tet and aac genes, which encode 
resistance to methicillin, tetracycline and aminoglycosides respectively. Archive-prevalence dropping for all since 2013. c) 
Year-by-year frequency in Klebsiella of various ABR genes; increase in prevalence since 2014 may be due to increased 
Extended Spectrum Beta-Lactamase surveillance and sampling of KPC resistant Klebsiella globally. d) Year-by-year 
breakdown of M. tuberculosis datasets, classified by genotypes as resistant (R), pan-susceptible (S), multiple drug resistant 
(MDR), extensively drug resistant (XDR) as follows. All datasets were genotyped for variants from the resistance catalog 
from23, then classified as resistant or susceptible to 12 antibiotics based on their genotype. Datasets were classed as MDR 
(multi-drug resistant) if resistant to isoniazid and rifampicin, as XDR (extensively drug-resistant) if MDR and also resistant 
to a fluoroquinolone, and any of capreomycin, kanamycin and amikacin, and as Resistant if resistant to any antibiotic but not 
MDR or XDR, and susceptible otherwise. 



 
 
In M. tuberculosis, resistance is driven primarily by mutations affecting amino acids in 
protein coding genes 1,36. Genotyping all datasets in the all-microbial-index simultaneously 
(of which 30,226 were M. tuberculosis) for the 206 resistance mutations from Walker et al. 23 
took 103 minutes on a single-core, around 10,000x faster than typing each dataset 
individually with the fast resistance prediction software, Mykrobe predictor1. The results 
show (Figure 6d) a rise in prevalence in the archive of MDR-TB since 2011. The contents of 
the ENA reflect the sampling biases of academic studies, and do not reflect unbiased global 
sampling. Indeed, the latest WHO estimates for 201637, put MDR prevalence at 6.6% 
(compare: 18.9% in 2016 in Figure 6b).  
 
 
 
Discussion 
 
There is an urgent need for a global infrastructure for surveillance and management of 
infectious disease - microbes know no borders, and evolve faster than we modify our 
responses38,39. Vital analytic and visualization tools for SNP-based analyses are being 
developed in response to emerging viral outbreaks40, but the problems of scalability have not 
been addressed. We foresee a world where millions of bacterial and viral samples have been 
sequenced and shared, some from very controlled and high quality clinical and public-health 
sources providing high-value metadata (e.g. the open Genome Trakr database of food-borne 
pathogens in the USA), and others of varying provenance. A scalable online sequence search 
facility would be critical to this endeavor. It would provide data not just for urgent outbreaks, 
but also for monitoring global strain, plasmid and resistance prevalence in humans, animals 
and the environment. Filtering by metadata content and by provenance would be vital. We 
have demonstrated the core operations needed for such a search tool, on a scale never before 
achieved, indexing the entire bacterial and viral WGS content of the global DNA archive. 
Since new datasets can be rapidly appended to the index, the ability to grow incrementally as 
new datasets are sequenced is guaranteed. Finally, the method is ready for a future where 
finished reference genomes become routine, as the index works equally for both raw data and 
assemblies. 
 
 
 
BIGSI was designed with SNP/indel genotyping and allele search queries in mind, allowing 
the user to zoom in on datasets worthy of detailed study, as well as enabling global 
monitoring (e.g. of antimicrobial resistance). However, there are limitations. First, as with the 
SBT, it is a k-mer index and is therefore as lossy as all de Bruijn methods – reconstruction of 
stored genomes is impossible and repeat regions can not be resolved. Secondly, BIGSI does 
not store coverage information – this rules out queries where copy number is important, such 
as detecting azithromycin resistance in Neisseria gonorrhea where the level of resistance is 
mediated by the number of rRNA genes containing a particular SNP. Third, although BIGSI 
can be considered a coloured de Bruijn graph, it is optimized for search (genotyping), not 
traversal of the graph. Although one could in theory search for remote homologs using exact 
matching of short seeds followed by graph traversal, this would take more software 
development to handle false positive edges. Fourth, BIGSI does not support very short 
queries, or very low complexity queries where the number of unique k-mers is low, as these 
result in a high false discovery rate. Fifth, BIGSI currently only supports nucleotide k-mers. 



In fact this is not a fundamental limitation - an extension to amino acid search would be 
straightforward, as the bloom filters are completely agnostic to what they are storing. Finally, 
BIGSI is optimized for very diverse datasets, where the combined unique k-mer count is 
much higher than that of any individual sample (e.g. the entire microbial ENA/SRA). Where 
this is not true (e.g. indexing very similar samples) we expect SSBT or Mantis are likely to be 
the better choice as they take better advantage of compression from sample similarity.   
 
 
Searching the DNA archive is one example of a “document retrieval” problem, a subject 
which has been intensely studied and successfully implemented at massive scale by internet 
search engines. Our “search terms” are k-mers from SNPs/alleles, and our “web-pages” are 
raw read datasets or assemblies. Similar approaches to ours (also using bitsliced signatures) 
have been used for text search41,42, but were largely abandoned after Zobel et al showed in 
1998 that an alternative method (inverted indexes) performed better for natural language43. 
One notable exception in 2017 was the Microsoft Bing search engine44, which also revives 
them. For our use case, where each new bacterial dataset brings new variation, bitsliced 
signatures provide much better scaling than inverted indexes. Web and (microbial) DNA 
search have different dimensionality, as the language of bacterial genomes is vastly more 
complex than English. Our dataset was only 106 documents but contained 1010 unique words, 
and this would continue to increase with more data, whereas Google indexes 1012 documents 
containing (we estimate) 108 words with a much more slowly growing lexicon. As a result, 
we expect fruitful future interactions between the genomic and document retrieval 
communities. 
 
In the future we envisage, as sequencing-based diagnostics take-off, with data volumes 
growing and the user-base expanding to clinical and public health practitioners, there will be 
a huge need for sequence search across the global corpus of microbial DNA. A combination 
of MASH, and both nucleotide and protein BIGSI would be extremely powerful.  We are 
currently investigating implementing the BIGSI as a live service at the EMBL-EBI, updated 
as data is added to the ENA.  We believe our approach, and improvements that will surely 
follow, will put our shared DNA store at everyone’s fingertips.  
 
 
Online Methods 
 
BIGSI construction and querying 
BIGSI indexes a set of N (number of datasets) bloom filters by position in the bloom filter. 
Each bloom filter must be constructed with the same parameters (m,	𝜂), where m is the bloom 
filter’s length in bits and 𝜂 is the number of hash functions applied to each k-mer. The same 
hash functions must also be used to construct each bloom filter. To construct a BIGSI, the N 
bloom filters are column-wise concatenate into a matrix. The row index and row bit-vectors 
are then inserted into a hash table or key-value store as key-value pairs so that row lookups 
can be done in O(1) time. This set of key-value pairs can be stored on disk, in memory or 
distributed across several machines and is indexed via a hash index (a b-tree would be an 
alternative option). To insert a new bloom filter we simply append it as a column to the 
existing bitmatrix. To query the BIGSI for a k-mer we hash the k-mer 𝜂 times, look up the 
resulting keys in the key-value store, and take the bit-wise AND of the resulting bit-vectors 
(See Figure 1). 
 
Parameter choices 



The choice of BIGSI parameters (m,	𝜂), depends on: the maximum number of k-mers 
expected in any dataset (𝐾012), the number of datasets (N) expected, the smallest number of 
unique k-mers in a query sequence (𝐿045) to be supported, the k-mer size (k) and the 
maximum number of acceptable false discoveries per query (𝑞012). The expected number of 
false discoveries (V) for any query can be calculated as 𝑞 = 𝐸[𝑉] = 𝑁𝑝? where p is the false 
positive rate of the bloom filter and 𝐿 is the number of unique k-mers in the query, assuming 
independence of the k-mers and bloom filters. Parameters m and 𝜂 determine false positive 
rate for a bloom filter with 𝐾012 elements – if there are fewer elements, then the false 
positive rate will be lower. We assume below that all bloom filters have the maximum 
number of unique k-mers inserted to give an upper bound on error rate. However, the 
independence assumption mentioned above is strictly speaking false for real data archives 
(such as the ENA/SRA) which have biased distribution of datasets across the phylogeny. If 
there is an enrichment of datasets from some genus, then those columns (bloom filters) will 
be more similar, and conditional on a false positive in one column, the probability of a false 
positive in the similar columns will be elevated.  
 
To keep q below a chosen threshold 𝑞 < 𝑞012 for a given N and k, p must be chosen to 
satisfy q for the smallest number of unique k-mers in a query 𝐿045: 

𝑝	?BCD =
𝑞012
𝑁 . 

Therefore, the desired bloom filter false positive rate	is 
 

𝑝 = EFBGH
I
J

K
LBCD. 

	 
 
Since, for a given number of inserted k-mers (n), and desired false positive rate (p), optimal 
bloom filter parameters can be determined by the following formula45 
 

𝑚 = −
𝑛𝑙𝑛(𝑝)
ln(2)U , 

𝜂 = −
𝑙𝑛(𝑝)
𝑙𝑛(2), 

 
 
which becomes: 
 
𝑚 = −VBGHW5(FBGH/I)

ℒBCDW5(UZ)
, 

 
𝜂 = W5(FBGH/I)

ℒBCDW5(U)
. 

 
 
For example, given 

𝑁 = 10[; 𝐾012 = 10]; 𝐿045 = 50𝑏𝑝; 𝑘 = 31; 𝑞012 = 10b[ 
 
the resulting expected number of false positives per k-mer-lookup per bloom filter (p), would 
be: 
 



𝑝	 = 	 E
𝑞012
𝑁 J

c
?BCD =

1

10
d
e
= 0.2511… 

 
Solving the above equations gives: 
 

𝑚 = 28,755,176; 𝜂 = 2 
 
Finally we note that any path through the de Bruijn graph which was not in the original 
genome will be classified as present by BIGSI (as all the k-mers are present), creating a false 
positive which is not considered in the above modelling. This can only happen if a query 
includes k-mers repeated in a genome. 
 
BIGSI parameters for all-microbial-index 
We assume initially that a bacterial dataset contains at most 10 million k-mers since bacterial 
genomes are generally under 6 Mb in length, leaving 4 million k-mers available for some 
sequencing errors which escape de-noising, and plasmid variation. Unless otherwise specified 
we use BIGSI parameters m=25,000,000, 𝜂 = 3 for all analyses. For these parameters, the 
upper bound on number of false discoveries, 𝑞012	for an SNP allele from a probe (flanks 
plus allele) of length (𝐿045 =2k-1=61) is 10-9 (if 𝐾012 = 10], 𝑁 = 10[). 
 
 
 
BIGSI implementation 
An open source implementation of BIGSI can be found at 
https://github.com/phelimb/BIGSI. BIGSI v0.2.0 supports both disk-based indexing via 
Berkeley-DB, or rocksDB. It can be extended to in-memory (via python dictionaries), and 
distributed in-memory (via redis (https://redis.io)) key-value stores. The benchmarking uses 
the rocksDB key-value store and v0.2.0, and the all-microbial BIGSI uses Berkeley-DB and 
version v0.1.7.  
 
 
Comparison with other tools 
 
There are a wide range of tools for sequence matching and alignment, so we provide here a 
table outlining some of the more popular, and how what they do is (dis)similar to BIGSI. 
 
 
Table 1: Comparison of DNA-search tools 

Tool Query Target/Database Use Examples 
Kraken Read Taxonomy of 

reference 
genomes 

Find lowest 
place on 
taxonomy 
which could 
emit that read. 

Estimating 
species content 
of a 
metagenomic 
dataset 

bwa read Reference 
genome 

Map and align Map reads to a 
reference of the 
same species 

MASH Reference Set of reference Find closest Guess species 



genome or raw 
read dataset 

genomes and/or 
raw read 
datasets 

reference 
genome or 
sample.  
Cannot do 
sequence 
search 

of a reference, 
or find a similar 
sample to your 
query. 

BLAST Sequence 
(DNA or 
Amino-acid) 

Set of reference 
genomes 

Alignment, 
find homology 

What species is 
this read from? 
Which 
references have 
a homolog of 
MCR-1? 

BIGSI DNA sequence Set of raw read 
datasets and/or 
references 
and/or 
assemblies 

Find exact 
match, or 
inexact match 
sharing some 
proportion of 
k-mers. 
Optimised for 
collections 
with low k-mer 
similarity 
between 
samples (e.g. 
all microbes) 
 

MLST-type the 
SRA. 
How many 
times has 
MCR1 been 
seen? 
Which species 
has this plasmid 
been seen in? 
Which samples 
have this SNP? 

SBT,SSBT,mantis DNA sequence Set of raw read 
datasets 

As for BIGSI 
but optimised 
for collections 
with high k-
mer similarity 
between 
samples. (e.g. 
collection of 
human WGS) 

Which datasets 
have this 
transcript 

 
 
 
Software and public instance 
We have made a public instance of our index of the ENA available at http://bigsi.io, where 
the user can paste sequence and search. This instance uses the redis in-RAM implementation 
and is hosted by CLIMB (http://www.climb.ac.uk/) on a 3Tb RAM server.  The code for 
BIGSI is open source (MIT license) and available at https://github.com/phelimb/BIGSI.  
 
 
Scoring of BIGSI queries 
BIGSI search hits can optional be scored using an approximation to the ungapped alignment 
scoring scheme used by megaBLAST. To do this, we take the presence/absence vector for a 
query of 𝐿 k-mers. From this, we estimate the approximate number of mismatches of the 
query from the hit by counting the number of zeroes in contiguous runs of length greater than 



1, and dividing by the k-mer size. From these estimated mismatches and matches we 
calculate a score for an ungapped alignment, with p-values calculated using the same scheme 
as BLAST. By default the costs are -2 for a mismatch and +1 for matched position.  
 
Benchmarking query time and storage requirements of BIGSI, SBT, and SSBT 
We randomly chose 10,000 microbial cleaned de Bruijn graphs from the all-microbial-index 
accessions and we then further randomly sub-sampled these into collections of 10, 100, 200, 
300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 
10000 datasets. A BIGSI of each set of datasets was built with parameters (m = 2.5 × 10];𝜂 
= 3). A SBT and SSBT were built for each set of datasets with 𝜂 = 1 and bloom filter size 
(m) equal to the count of the total number of k-mers in the collections of graphs, as 
recommend in the text following Lemma 1 of  Solomon et al13, called “SBT-fast” and 
“SSBT-fast” respectively. Redis hyperloglog was used to count the unique k-mers in the set 
of cleaned graphs for each increment. A SBT and a SSBT were built for each dataset with m 
= 2.5 × 10];𝜂 = 3 (the same bloom filter parameters as BIGSI), called “SBT-small” and 
“SSBT-small”.  
 
Construction and query time analyses were run on an Amazon Web Service i3.8xlarge 
instance with 32vCPUs, 224 GiB of memory and 4 x 1.9 TB non-volatile SSD-backed 
instance storage. SBT-fast construction exceeded 1TB for 2000 datasets, the practical limit 
we set, and as a result SBT-fast was not built for increments above 1,000 datasets.   
 
The search time comparison was run with ‘bt query‘ and ‘bigsi search –seqfile $f‘, using k-
mer thresholds 40% and 100%. A full table of results can be found in Supplementary Data 6. 
 
Simulation of storage requirements for a BIGSI for N datasets is given by: 
 

𝐵𝐼𝐺𝑆𝐼mnop1qr[𝑏𝑦𝑡𝑒𝑠] =
𝑚𝑁
8  

 
Although it is possible to append to an SBT incrementally, as new microbial datasets will 
keep adding new k-mers, this will lead to saturation of the root-level bloom filter in the SBT, 
and a collapse in query performance. This can be avoided by reconstructing the SBT, 
ensuring the bloom filters are large enough to support the full set of k-mers. This was borne 
out by our benchmarking. In simulating scaling to a million genomes, we therefore focussed 
on SBT-fast rather than SBT-small. As the best case for a binary tree with N leaves is 2N-1 
nodes, we estimate: 

𝑆𝐵𝑇mnop1qr[𝑏𝑦𝑡𝑒𝑠] =
(2𝑁−1)𝑁x

8  
where 𝑁x is the total number of k-mers in the combined set of datasets and also equal to the 
size of the bloom filter required. This is a lower bound for the peak storage use. See 
Supplementary Data 6, for the close correspondence between this theoretical estimate and the 
empirical measurement in our benchmark datasets. As a result, we can calculate lower 
bounds for the peak disk usage for SBT/SSBT; when the explosion of disk usage made 
construction of indexes for the benchmark datasets with size>1000 datasets, we used this 
lower bound to plot (suitably labelled) extrapolated datapoints. 
 
No benchmarking against Mantis 
 



We attempted to benchmark against Mantis but despite assistance from the authors we were 
unable to resolve a number of issues: large numbers of false positive hits on some data, and a 
bug causing segmentation faults when trying to build more than 3000 datasets. We 
reluctantly excluded mantis from our benchmarking due to limitations of time. 
 
As currently implemented, the Mantis data structure does not support incremental insertion, 
as it needs up-front the full set of k-mers and for each k-mer, the list of datasets containing it 
(“colour class”, stored as a bit-vector). There is currently an intermediate stage where the 
uncompressed colour-class matrix is held in RAM, scaling quadratically in number of 
datasets. 
 
 
Benchmarking query time and storage requirements of BIGSI on RNA-seq data 
De Bruijn graphs (k=31) were constructed and cleaned from the downloaded RNA-seq fastq 
files listed in13. A BIGSI was built with bloom filter parameters 𝑚 = 4000000000; 	𝜂 = 1  by 
chunking into 1,600 batches, building in parallel and then combining into a final index. The 
SBT and the 214,294 transcripts were provided by the authors (personal correspondence). 
1,000 transcripts were randomly selected from the full set and queried with ‘bt query‘ and 
‘bigsi search –seqfile $f‘ respectively. 
 
Using an array of BIGSI to support variable dataset size 
A limitation of BIGSI is that 𝐾012, the maximum number of k-mers per dataset, must be set 
in advance. One way to extend BIGSI to datasets with varying k-mer cardinality is to build a 
nested structure of multiple BIGSIs with different 𝐾012, e.g. 𝐾012 = 10e, 10[, 10], 𝑒𝑡𝑐 …, 
and insert each sequence into the appropriate level by k-mer counting before insertion.  
 
Genotyping accuracy measurement on TB 
Conservative SNP calls were made using Cortex17 (independent workflow, k=31) on 3480 
Mycobacterium tuberculosis datasets from Walker et al23. Singleton variants were discarded, 
and a de-duplicated list of 68,695 SNPs was constructed. We generated “probe sets” 
consisting of a reference and alternate alleles of these variants from the NC_000962.3 
reference. An index of the 3,480 datasets was built and 100 random datasets were genotyped 
at the 68,695 sites as follows: Each allele of the probe-set is searched for in the BIGSI 
resulting in Boolean presence/absence of each allele. This requires querying for multiple 
probes for each variant. If only a reference allele is present the genotype is returned as 0/0, if 
only an alternate allele 1/1, if both 0/1 and if neither -/-. We compared the concordance of 
genotypes of the 100 random datasets with those generated with the samtools pipeline from 
Walker et al23, excluding filtered positions. As described in the main text, the concordance 
between methods was 99.997% with a total of 286/682,690 discrepancies.  The majority of 
these discrepancies (203/286) were mixed (heterozygous) calls from BIGSI; samtools had 
been run with a haploid model it did not make any mixed calls, so we expect some of these 
were correct. 
 
 
Indexing of ENA snapshot 
The fastqs from accessions listed in Supplementary Data 7 were downloaded via ENA’s 
Globus FTP and included all WGS bacteria and viruses, but also eukaryotic parasites with 
larger genomes, which we did not intend to index. We removed the eukaryotic genomes 
implicitly, by setting thresholds to exclude datasets with too many k-mers for a 5Mb 



genome.  De Bruijn graphs (k=31) were constructed and cleaned from the downloaded fastq 
files using mccortex19 v0.0.3-539-g22e27b7.  
 
mccortex31 build -t 1 -m 7G -k 31 -s "DATASET_ID" -1 “FASTQ_FILES” 
mccortex31 clean -m 7GB -B 2 -U -T 
 
De Bruijn graph error cleaning and tip trimming were performed using mccortex. Bloom 
filters were built using the k-mers from the cleaned graphs with parameters (m = 
2.5 × 10];𝜂 = 3, 𝐾012 = 10]) with BIGSI v0.2 as follows: 
 
cbg init –k 31 –m 25000000 –h 3 
cbg bloom –c “CLEANED_GRAPH_FILE” 
 
Of the full set of datasets, 4.6% (21,822/ 469,654) fastq files failed to produce a resulting 
bloom filter. Of these 21,822: 7,799 exceed the maximum number of k-mers allowed after 
error cleaning (namely 107) and 14,023 exceeded the maximum number of k-mers allowed in 
the raw dataset (namely ~7x109).   
 
The unique k-mers in the union of the cleaned graphs were counted using the redis (v3.2.6) 
hyperloglog (https://redis.io/commands#hyperloglog) approximate cardinality counter. In the 
union of all cleaned graphs there were 6.05 × 10cz ± 5 × 10] k-mers. We estimate this 
number would have been at least an order of magnitude higher without the denoising step 
where mccortex removed sequencing errors.  
  
 
 
 
Species identification 
The proportion of species in each dataset was determined using Kraken27 and Bracken26. 
Kraken v0.10.5 was run on the k-mers from each cleaned de Bruijn graph using the 
minikraken 20141208 database. The resulting taxonomy labels assigned by Kraken were then 
analysed by Bracken vfd88a06a to estimate the proportion of k-mers originating from each 
species present in a dataset. Bracken failed to report species abundance for 12,889 datasets. 
The taxonomic data for the remaining 434,944 datasets is reported in Supplementary Data 6.  
  
 
Plasmid search and exclusion of contaminated datasets 
2,826 plasmid sequences were taken from the ENA plasmid pages 
(www.ebi.ac.uk/genomes/plasmid.html; December 2016) (See Supplementary Data 2) and 
downloaded from the ENA. We then queried the all-microbial-index for these sequences with 
a proportion of k-mers threshold of 40% (T=40%) present and filtered for hits with T >= 90% 
for downstream analysis. Queries were run with 1 GB cachesize (memory) per process and 
parallelised across 8 vCPUs.  
 
In order to determine distribution of plasmids across taxa, while avoiding ENA/SRA 
metadata errors, we filtered these hits for datasets which (were bacteria and) had no 
secondary genus above 0.1% frequency. This criterion was chosen to avoid multi copy 
plasmids from contaminating species establishing false positive hits within a non-host genus. 
41% (184652/447,833) of accessions and 62% (415,181/668,720) of search hits passed this 



filter. We then filtered for all plasmids which had been seen at least 5 times each in more than 
one genus and had less than 99% of their observations in the most frequent genus. We found 
37 plasmids across 13 genera matched these criteria. By simulating mixtures of S. enterica 
and E. coli at relative abundances of 0.0001, 0.001, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 
we found we could observe the minority species above 2% frequency (the limit of detection 
was not lower because we had applied Kraken after error-cleaning of de Bruijn graphs). All 
37 plasmids reported had at least one observation at a copy number of 5 (which, since we 
could detect contaminants at 2% frequency, would correspond to a copy number of above 
250 if it came from a contaminant) and 16/37 had an observation at 2000x copy number. 
 
Phylogenetic spread of plasmids 
We excluded contaminated samples as above, and plasmids with no hits in the all-microbial-
index. We used the APE R package to calculate a cophenetic distance matrix between all 
genera in the Silva large subunit ribosomal RNA tree (release s123_LSU, https://www.arb-
silva.de/projects/living-tree/). For all plasmids, we took the N genera in which they were 
found and calculated the N-choose-2 distances between these using the above matrix, and 
took the median (mean showed same result).  
 
Conjugative system search 
MOB (MOB_B, MOB_C, MOB_CQ, MOB_F, MOB_H, MOB_P,MOB_T, MOB_V) and 
T4SS sequences (VirB4_TRaU, VirD4_TcpA) as defined in Guglielmini et al 34 and 
Supplementary Data 8 in the all-microbial-index with T=100%. Full search results are 
available in Supplementary Data 9. Results were filtered for bacteria and contamination 
following the same method as described in “Plasmid search”. Accessions with at least one 
MOB and T4SS were said to contain a putative conjugative system. BIGSI does not return 
copy number, or location on chromosome or plasmid, so it was not possible to determine if 
the genes were co-located on a chromosome or on a plasmid.  
 
MCR-1,2,3 
We searched for MCR-1, MCR-2, MCR-3 in the all-microbial-index using k-mer percent 
threshold T=100%. See Supplementary Data 1 for sequences and results. 
 
Searching for ABR genes in the ENA 
We downloaded all 2157 sequences associated with antimicrobial resistance from the CARD 
database (v1.1.7)35. We searched for these in the all-microbial-index with thresholds of 100% 
and 70%, using a 1 Gb cache size, and 8 CPUs. A full table of the search results can be found 
in Supplementary Data 5. 
  
Searching for M. tuberculosis variants in the ENA 
We searched the all-microbial-index for the variants from the catalogue described in 23 by 
generating “probe sets” consisting of a reference and alternate alleles of these variants from 
the NC_000962.3 reference and searching for these alleles. If only a reference allele is 
present the genotype is returned as 0/0, if only an alternate allele 1/1, if both 0/1 and if 
neither -/-. From the resulting genotypes we classified each of the datasets as resistant or 
susceptible to 12 antibiotics following the model described in23. The date when this data was 
first available to the public was extracted from its ENA metadata. Datasets were classed as 
MDR (multi-drug resistant) if resistant to isoniazid and rifampicin, as XDR (extensively 
drug-resistant) if MDR and also resistant to a fluoroquinolone, and any of capreomycin, 
kanamycin and amikacin, and as Resistant if resistant to any antibiotic but not MDR or XDR, 
and susceptible otherwise. 
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