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Abstract 15 

Experimental evolution of microbes has allowed evolutionary biologists to examine adaptive 16 

processes in real time, generating novel insights into fundamental laws of evolution. Much 17 

less appreciated is the potential of this approach to advance the understanding of microbial 18 

cells and molecular processes in complement of traditional molecular genetics. The tracking 19 

of mutations underlying phenotypic changes offers the opportunity for detailed molecular 20 

analyses of novel phenotypes. This provides a breadth of information on diverse biological 21 

systems and may retrace key past events of natural history. Here, we highlight how the field 22 

has advanced our understanding of gene regulation, antibiotic resistance and host-23 

microbiome interactions to exemplify how experimental evolution can be employed to 24 

provide new light on microbial systems. 25 

  26 
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Highlights 27 

- Experimental evolution (EE) can complement traditional molecular genetic studies on 28 

microbial systems. 29 

- The diversity of EE approaches enabled progresses in many fields of microbiology, 30 

including molecular mechanisms of gene regulation, antibiotic resistance, and host-31 

microbiome interactions. 32 

- Under specific conditions, EE can parallel the evolution of natural systems. 33 

- EE offers exciting perspectives to discover the function of new genes and probe 34 

evolution within communities. 35 

 36 

 37 

Glossary 38 

Bow-tie network: architecture of a signalling network where one (or a few) core central 39 

regulator is controlled by multiple proteins (input signal) and controls multiple targets 40 

(output).  41 

Collateral susceptibility: resistance to one antibiotic increases sensitivity to another. 42 

Cross-resistance: resistance to one antibiotic increases resistance to another. 43 

Experimental evolution: propagation of living organisms in a controlled environment – the 44 

laboratory or the field - for several generations (typically, from tens to thousands) allowing 45 

to witness the action of natural selection and to investigate evolutionary processes 46 

Functional promiscuity: the ability of a protein to perform a secondary activity, often 47 

mediated by the inability to distinguish between target molecular substrates (metabolite, 48 

DNA, RNA, protein) that have a similar structure. 49 

Fruiting body: multicellular, aggregative structures formed by myxobacteria during nutrient 50 

starvation and that contain spores resistant to heat, desiccation or freezing. 51 

Mutators: bacteria with unusually high mutation rates, often as a result of loss of DNA repair 52 

genes or expression of error-prone DNA polymerases.  53 

Noise in gene expression: stochastic variations in gene expression level over time and 54 

between isogenic cells growing in a homogeneous environment. 55 

Pervasive transcription: describes the fact that large portions of genomes are transcribed, 56 

including intergenic regions. 57 
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sRNA: small non-coding RNA with regulatory function 58 

Sub-MIC concentrations: conditions where bacterial growth is not completely stopped by 59 

antibiotics.  60 

 61 

Outstanding questions: 62 

- Can we exploit mutations found in EE to characterise genes of unknown function?  63 

- Can EE enlighten mechanisms slowing down the evolution of resistances?  64 

- Can the EE of microbial communities bring new insights into their functional 65 

characteristics?  66 

- Can we use within-host EE to identify host factors (and other environmental factors) 67 

shaping bacterial evolutionary trajectories during infection? 68 

- Can EE reproduce the emergence of major intracellular symbiotic associations (such 69 

as mitochondria in eukaryotic cells, plastids in the green lineage, association between 70 

fungi and land plants, obligate endosymbionts of insects)? 71 

 72 

Experimental evolution: beyond evolutionary biology 73 

Artificial breeding of plants and animals played a key role in the maturation of Darwin’s theory 74 

of evolution by natural selection, but also in the rise of modern human societies (from 75 

agriculture to recreational breeding of plants and pets). Non-professional evolutionary 76 

biologists performing (sometimes unwittingly) evolution experiments have successfully 77 

improved the yield of many biological processes. In contrast, although some evolutionary 78 

biologists contemporary of Darwin turned to experimental evolution (EE; see Glossary), the 79 

influence of this approach in the development of evolutionary biology only came to 80 

prominence in the last few decades [1]. Applied to microbes with short generation times in 81 

various conditions (Box 1), EE generated unique biological material (Fig. 1) that was used to 82 

probe the evolutionary dynamics of microbial phenotypes [2, 3], to decipher the genetic bases 83 

of adaptation [4] and to optimize microbial traits for industrial use [5].  84 

 85 

In spite of these successes, many biologists remain unaware or unconvinced of the relevance 86 

of EE approaches to their research programs. Typical criticisms of EE include the artificial 87 

nature of the experimental setups or their simplicity in terms of biotic and abiotic interactions 88 
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[6]. However, this is also true for many excellent lines of research in molecular biology, which 89 

depend on the construction of simplified and well-controlled setups. In this article, we argue 90 

that experimental evolution has matured into a rich field with a varied set of tools that can 91 

help microbiologists to unravel molecular processes underlying adaptive phenotypes. This is 92 

independent of the relevance of experimental evolution to reproduce natural adaptive 93 

processes, since laboratory phenotypes can be interesting on their own. For example, 94 

improving growth rate, yield and recombinant protein production in the laboratory has 95 

obvious biotechnological interest [7]. Contemporary microbes can also be used to experiment 96 

on the ecological conditions and evolutionary patterns that might have accompanied the 97 

evolution of multicellularity millions of years ago [8]. Here, instead of aiming at providing an 98 

exhaustive overview of the field (for which we refer the interested reader to recent reviews 99 

[2-4, 7-12]), we use a few selected examples on gene regulation, antibiotic resistance and 100 

host-microbiome interactions to illustrate how EE contributes to understand fundamental 101 

aspects of molecular biology and helps manipulating natural ecosystems. As the natural 102 

inclination of most biologists is to understand if the phenotypes observed in laboratory-103 

evolved mutants are relevant to understand natural processes, we present examples of 104 

discrepancies (Box 2), but also increasing evidence of meaningful parallels (Box 3), between 105 

EE and natural evolutionary processes. While this review focuses on bacteria, concepts 106 

discussed here are also relevant to other organisms, especially viruses or unicellular 107 

eukaryotes. 108 

 109 

Gene regulation 110 

 111 

A major challenge for modern biology has been to map and understand the logics of gene 112 

regulatory networks (GRNs). Outstanding enigmas in molecular biology tackled by EE include 113 

how the interactions of transcription factors (TF) with DNA arise and evolve, why they are so 114 

hard to identify correctly, and how they form complex networks [13].  115 

 116 

The co-option or modulation of bacterial regulatory responses provide a multitude of 117 

opportunities for adaptation to new environmental challenges. Indeed, most adaptive 118 

mutations in EE are found in regulatory regions or in regulatory genes [4]. Detailed molecular 119 

analyses of the associated transcriptional rewiring can reveal new components from signalling 120 
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networks, new connections between known regulatory components and new cross-talk 121 

between signalling and metabolic pathways. These trends emerged from some of the very 122 

early studies in experimental evolution [14, 15]. A prominent example includes the evolution 123 

of a new lactose fermentation system in Escherichia coli, via mutations in the egbA β-124 

galactosidase and its regulator [16]. More recently, EE has uncovered a novel sRNA regulating 125 

Myxococcus xanthus fruiting body development. M. xanthus responds to nutrient starvation 126 

by generating fruiting bodies containing stress-resistant spores. This behaviour was lost during 127 

EE in nutrient-rich liquid medium, but was subsequently re-evolved in alternating cycles of 128 

starvation and non-starvation [17]. The point mutation responsible for the re-evolution of 129 

fruiting-body formation was found in a previously un-annotated intergenic region, leading to 130 

the discovery of the novel sRNA controlling this developmental pathway [18]. Another study 131 

established a link between pyrimidine metabolism and the Gac/Rsm signalling pathway, a 132 

major determinant of lifestyle switch in Pseudomonas spp. [19] that controls the production 133 

of extracellular capsules in Pseudomonas fluorescens. Evolution of P. fluorescens under 134 

fluctuating environments gave rise to a strain that produces a sub-population of capsulated 135 

cells [20]. This phenotype is underpinned by a mutation that decreases pyrimidine 136 

biosynthesis [21] and increases ribosome production [22]. That both increased ribosome 137 

levels and functional Gac/Rsm signalling are required for heterogeneous capsule production 138 

shows that central metabolism (pyrimidine biosynthesis) can alter the output of a two-139 

component signalling system [22]. 140 

 141 

The plasticity of regulatory regions and transcription factors observed in EE can be recruited 142 

to understand fundamental properties of transcriptional control. Low affinity TF-DNA 143 

interactions appear to play a critical role in the evolution of GRNs. Yona et al. [23] replaced 144 

the lac promoter with random DNA sequences of the same size in E. coli and observed that 145 

bacterial growth in the presence of lactose rapidly led to the evolution of functional 146 

promoters. A single mutation in synthetic promoters was sufficient to induce substantial 147 

expression in most cases (Fig. 2A). The rapid de novo evolution of promoters and the 148 

functional promiscuity of transcription factors may explain the intriguing pervasive 149 

transcription observed in bacterial genomes [24]. It may also explain the evolutionary 150 

plasticity of gene expression in bacteria, since an initially weak binding of a TF on a regulatory 151 

region can be reinforced by mutations in the DNA-binding domain. This was observed during 152 
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the re-evolution of motility in P. fluorescens following the deletion of the master regulator of 153 

flagellar synthesis fleQ [25]. Under selection for motility, flagellin expression was restored 154 

within 96h in a two-step process involving (i) the increased phosphorylation (and thus, 155 

activation level) of a nitrogen-related transcriptional regulator with weak (promiscuous) 156 

activity on flagellar genes and (ii) a switch-of-function mutation that re-directed 157 

transcriptional activity of this regulator from nitrogen uptake to flagellar genes. The plasticity 158 

of regulatory interactions can also be associated with noise in gene expression, which has 159 

attracted interest in the recent years because it can contribute to phenotypic variability in 160 

clonal populations [26]. Wolf et al. [27] showed that libraries of random promoters evolved to 161 

produce GFP at high or intermediate expression levels had lower average noise than natural 162 

E. coli promoters. This suggests that noise is a selected trait in nature. When the average 163 

production of a protein is not optimal in a given environment, a broad (i.e. noisy) distribution 164 

of gene expression levels increases the likelihood that some cells of the population express an 165 

appropriate amount of this protein. Mathematical modelling suggests that noise can act as a 166 

primitive form of gene regulation and pave the way towards more precise regulation [27]. 167 

Altogether, these studies illustrate that what may appear to be ‘non-optimality’ in 168 

transcriptional regulation – functional promiscuity and noise – actually drives the evolution of 169 

GRNs. 170 

 171 

EE enables to directly probe systems-level properties of GRNs in an evolutionary context. 172 

Witnessing how GRNs are gradually built by evolutionary tinkering (rather than by optimized 173 

design) is key to understand their complex architecture and emergent properties, such as 174 

robustness, resilience or evolvability [28]. In many cases, transcriptional changes induced by 175 

genetic or environmental perturbations are reverted during the early steps of adaptation by 176 

adaptive mutations in global regulators that restore cellular homeostasis [29-32]. These 177 

results support the idea that transcriptional stability is essential for optimal fitness and can be 178 

restored by minimal genetic modifications in global regulators, thus highlighting the resilience 179 

of GRNs. However, the topology of GRNs architecture can also benefit bacterial evolvability. 180 

Studying the evolution of the bow-tie network controlling flagellar production in E. coli, Ni et 181 

al. [33] found that motility in a porous environment (the trait under selection in their 182 

experiment) can increase via mutations in multiple target genes. Yet, all adaptive mutations 183 

commonly modified the activity of a core sigma-factor checkpoint controlling flagellar gene 184 
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expression. By allowing multiple mutations in independent genes to target the same central 185 

regulator of motility, the bow-tie architecture provides evolutionary flexibility for the fine-186 

tuning of bacterial behaviours. These examples show that EE is a powerful tool to analyse 187 

evolutionary properties of GRNs. 188 

 189 

 190 

Antibiotic resistance 191 

The emergence of antibiotic resistant bacteria is a remarkable example of human-induced 192 

evolutionary process. Resistant bacteria emerge systematically within a few years of the 193 

introduction of every novel antibiotic. The consequences are dramatic: 700,000 deaths per 194 

year, estimated to increase to over 10 million in the incoming decades (https://amr-195 

review.org/Publications). EE is particularly well-suited to decipher the mechanisms of 196 

acquisition of antibiotic resistance given the timescale and intensity of selection in this 197 

process. This has produced unexpected novel lines of research. For example, very early studies 198 

on the EE of antibiotic resistance kick-started the study of microbial mutagenesis by 199 

identifying the first E. coli mutators [34]. The simplicity of tracking resistant bacteria, the 200 

societal relevance of the topic, and its implications to molecular genetics and physiology have 201 

stimulated research on the mechanisms of acquisition of resistance, on multiple resistance, 202 

and on the compensation of the fitness costs of resistance.  203 

 204 

Most resistances studied from clinical isolates are strong, because of the obvious medical 205 

interest of such cases. EE provides complementary information about resistance in controlled 206 

setups where pathways to resistance can be tracked, selection forces tuned, and physiological 207 

states controlled for. Notably, EE revealed the important role of low (below the minimum 208 

inhibitory concentration; MIC) antibiotic concentrations on the evolution of resistance. These 209 

concentrations can be encountered in many types of environments and do not result in cell 210 

death, but provide sufficient pressure for the selection of resistant variants and even the 211 

evolution of novel mechanisms of resistance [35]. They also accelerate the acquisition of 212 

resistance by selecting for mutators [36], and increasing the rates of horizontal gene transfer 213 

[37]. Lindsey et al. [38] evolved hundreds of populations of E. coli under variable rates of 214 

increase in concentration of rifampicin. By assessing fitness of genetically engineered 215 

combinations of mutations from isolates evolved under low rates of environmental change, 216 
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they could show that certain genotypes were evolutionarily inaccessible to evolution under 217 

rapid environmental changes. Wistrand-Yuen et al. [39] then showed that Salmonella enterica 218 

exposed to sub-MIC levels of streptomycin evolved high-level resistance via mechanisms 219 

different from those observed under above-MIC conditions. Sub-MIC resistance evolved 220 

through small-effect mutations that combined to confer high-level resistance.  221 

 222 

Antibiotics stimulate a set of core responses in bacterial physiology [40], which contributes to 223 

explain why resistance to one antibiotic can change the cell's susceptibility to others [41]. 224 

Several recent studies detailed the network of cross-resistance and collateral susceptibility 225 

resulting from EE of resistance to each of a large range of antibiotics [42-44]. Evolution 226 

involving cross-resistance and collateral sensitivity is frequently convergent in E. coli, meaning 227 

that one can predict to a reasonable extent the antibiotic resistance phenotypes from the 228 

genome sequences of the laboratory-evolved lines [45]. Treatments based on alternating 229 

drugs with compatible collateral sensitivity profiles could thus be more efficient and lead to 230 

slower development of resistances (Fig. 2B; [44]). Several of these studies observed that 231 

populations adapted to resist to aminoglycosides show systematically lower fitness in the 232 

presence of other types of antibiotics. In molecular terms, this could be the consequence of 233 

selection for alterations in the inner membrane potential reducing the uptake of 234 

aminoglycoside-related antibiotics, which would simultaneously lower the activity of efflux 235 

pumps using proton-motive force [42]. Interestingly, the comparison of interaction networks 236 

evolving in conditions of weak and high antibiotic concentration revealed that the strength of 237 

selection shapes the acquisition of resistance: cross-resistance tends to be stronger under 238 

higher antibiotic concentrations [46]. The stochasticity of evolutionary trajectories leading to 239 

resistance to one antibiotic can influence the occurrence of collateral sensitivity [47], calling 240 

for a careful assessment of the robustness of this phenomenon when wanting to exploit it in 241 

a clinical setting. Together with the studies on the effect of sub-MIC conditions, this suggests 242 

that the path towards resistance, involving exposure to high or low antibiotic concentrations, 243 

will shape the network of collateral effects of antibiotics.  244 

 245 

The many evolution experiments detailing the mutational landscape of antibiotic resistance 246 

have systematically revealed rapid partial compensatory evolution of the initial fitness costs 247 

of resistance [48-50]. Compensation facilitates the spread and fixation of antibiotic resistant 248 
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lineages. For example, rifampicin resistance in Mycobacterium tuberculosis is costly in 249 

laboratory-derived mutants, but multidrug-resistant clinical strains often show no fitness 250 

defects [51], because of compensatory mutations [52]. The study of mutants arising in E. coli 251 

in the presence of fluoroquinolones showed that compensation of fitness cost associated to 252 

antibiotic resistance can lead to bacteria that are as fit as the wild-type susceptible bacteria in 253 

the absence of antibiotics [53]. Prolonged colonization of chickens with fluoroquinolone-254 

resistant Campylobacter jejuni, a somewhat less controlled evolution experiment, revealed 255 

that resistant bacteria were also fitter pathogens [54]. Genes that simultaneously increase 256 

virulence and resistance may actually be quite common. They were observed in several other 257 

pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii and Vibrio cholerae 258 

[55]. Even costly resistance mutations can coexist with other genotypes for hundreds of 259 

generations when their high adaptive potential counteracts their initial cost [56]. This means 260 

that a multi-step process of slow accumulation of mutations conferring resistance and cost 261 

compensation, as expected under sub-MIC conditions, can result in bacteria that are both 262 

resistant and fit. This process is strongly dependent on the genetic context of the mutations 263 

(epistasis) [57-60]. For example, a comparison of streptomycin and rifampicin double-resistant 264 

E. coli with single-resistant clones obtained though EE showed that low-fitness double-265 

resistant bacteria compensate their cost faster than single-resistant strains thanks to the 266 

acquisition of compensatory mutations with larger effects [61]. Surprisingly, some mutations 267 

only compensate for double resistance, being neutral or deleterious in single-resistant 268 

backgrounds. This means that multiple resistances may not rapidly go away with pauses in the 269 

use of the corresponding antibiotics.  270 

 271 

Host-microbe interactions 272 

Plants and animals are persistently inhabited by microbes, whose contribution in host health, 273 

nutrition and development is increasingly recognized [62, 63]. Elucidating the functional 274 

mechanisms and evolutionary potential of host-microbiome interactions is crucial to 275 

manipulate this ecosystem and improve host health. 276 

 277 

Most bacterial pathogens have the remarkable ability to alternate between external 278 

environments and specialized host niches. Rapid and coordinated shifts in metabolism, 279 

physiology, and virulence factor production in response to environmental changes are 280 
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orchestrated by multilayered and highly complex circuitries that are very difficult to decipher 281 

[64]. Adaptation to new hosts, which is generally very rapid in laboratory conditions [65], has 282 

the potential to reveal new components of virulence pathways. This was recently highlighted 283 

in an evolution experiment aiming at adapting the plant pathogen Ralstonia solanacearum to 284 

different host plants [66]. Beneficial mutations improving in planta colonization mainly 285 

occurred in a gene, which was named efpR (for enhanced fitness in plants). The efpR gene was 286 

shown to encode a transcriptional regulator acting as both a central player of the 287 

R. solanacearum virulence network and a global catabolic repressor down-regulating the 288 

expression of multiple metabolic pathways [67]. Experimental adaptation of R. solanacearum 289 

to a non-host legume further identified other components of the efpR pathway [68]. Although 290 

the genetic bases of virulence in R. solanacearum had been amply dissected [69], this pathway 291 

had not been previously identified, illustrating how EE coupled with genome resequencing 292 

allows identifying novel molecular players of biological functions. 293 

 294 

Many ecological transitions towards pathogenic or mutualistic symbiosis include an initial 295 

acquisition by horizontal gene transfer (HGT) of mobile genetic elements (MGE) that can 296 

provide complex novel traits in a single event of transfer [70, 71]. Profound changes in lifestyle 297 

may require the remodeling of the metabolic and signaling networks in the recipient genome, 298 

a process that may take hundreds to millions of years in natura [72]. The study of this process 299 

by the analysis of extant microorganisms can be complemented by EE to pinpoint specific 300 

molecular mechanisms that ensure the full expression of acquired traits. This is illustrated by 301 

the study of nitrogen-fixing legume symbionts (rhizobia), which evolved through the 302 

acquisition of a set of essential symbiotic genes [73]. An experiment was designed to evolve a 303 

plant pathogenic bacterium (R. solanacearum) into a legume symbiont under plant (Mimosa) 304 

selection pressure. (Fig. 2C). This experiment showed that control mechanisms developed by 305 

the host progressively shape bacteria via the multistep selection of compatible bacterial traits 306 

[74]. The gradual activation and improvement of the first symbiotic properties, i.e. the 307 

induction of root nodules where bacteria fix nitrogen and the infection of these nodules, 308 

occurred via the inactivation of the R. solanacearum pathogenic type III secretion system and 309 

via regulatory rewiring [75-77], demonstrating the requirement of post-HGT modifications to 310 

achieve symbiosis in the case of horizontal transfer between distantly related bacteria. Upon 311 

experimentally replaying rhizobia evolution, a genetic mechanism was discovered to 312 
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accelerate symbiotic evolution [78]. Evolved R. solanacearum underwent a transient 313 

hypermutagenesis stage that occurred at every inoculation cycle before the cells entered the 314 

plant. Investigating the role of imuABC error-prone DNA polymerases present on the 315 

transferred symbiotic plasmid provided evidence that this mutagenesis cassette is expressed 316 

in stress conditions (outside the host plant), thus increasing genetic diversity and offering 317 

more phenotypic diversity to plant selection. imuABC cassettes were found on c.a. 50% of the 318 

symbiotic plasmids supporting the hypothesis that this hypermutagenesis mechanism has 319 

facilitated the evolution of new rhizobia in natura. After 400 generations, mutualistic nitrogen 320 

fixation was not achieved, possibly because time was too short. Yet another evolution 321 

experiment performed with the natural symbiont of Mimosa (Cupriavidus taiwanensis) 322 

showed that, thanks to host sanctions occurring at the post-infection level, rare nitrogen-fixing 323 

symbionts (that may arise via mutation during evolution) progressively invade a population 324 

dominated by non-fixing bacteria, with a probability that depends on ecological factors [79]. 325 

This provided a better understanding of the spread of the mutualistic trait during natural 326 

evolution [73]. 327 

 328 

Plant and animal microbiomes are composed of complex and dynamic bacterial consortia 329 

whose interspecific interactions have implications for the host [80]. The importance of 330 

bacterial antagonism for the evolution of infection was demonstrated in a tri-partite 331 

interaction between Caenorhabditis elegans and two bacterial pathogens. In a first EE, King et 332 

al. [81] showed that mildly pathogenic bacteria (Enterococcus faecalis) living in worms rapidly 333 

evolved increased competitiveness against a more virulent pathogen (Staphylococcus aureus). 334 

This reduced the mortality caused by S. aureus infections. The mechanistic basis for protection 335 

was an increased production by E. faecalis of antimicrobial reactive oxygen species directly 336 

affecting pathogen growth. Although this broad-spectrum defense mechanism was not novel, 337 

it showed that microbes living within a host can become mutualists in response to infection 338 

by other pathogens. A subsequent EE showed that microbe-microbe interactions within hosts 339 

can drive the evolution of pathogens. To limit E. faecalis colonization, which exploits the costly 340 

siderophores of S. aureus, the latter evolved to produce less siderophores [82]. Since 341 

siderophore production contributes to virulence by improving pathogen growth in iron-342 

limited hosts, its diminution leads to less virulent clones. Hence, bacterial antagonistic 343 
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interactions can modulate the production of virulence factors, and consequently influence 344 

how the microbiome impacts the host. 345 

 346 

Concluding remarks and future perspectives 347 

EE has already provided a wealth of information on the molecular events (see [83] for 348 

additional examples) and the conditions driving phenotypic adaptation in a number of model 349 

biological systems. We expect that many more discoveries will follow. For practical purposes, 350 

characterisation of adaptive mutations has usually focused on known genes and pathways. A 351 

large number of adaptive mutations found in genes of unknown function remains to be 352 

analysed, representing a challenging untapped reservoir of new discoveries. The development 353 

of cross-experiments databases (such as the recent ALEdb [84]) may help identifying 354 

promising candidate genes to initiate such studies. Moreover, the introduction of novel non-355 

model bacteria allows EE to tackle different biological questions, e.g. studying the evolution 356 

and functioning of microbial communities (see Outstanding Questions). EE can also provide 357 

an alternative to genetic screens for organisms that are not genetically amenable.  358 

EE can be used to study mechanisms of evolution, and their underlying molecular biology, 359 

independently of the events that actually took place in the natural history of the species. Yet, 360 

it would be of remarkable interest to use EE as a tool to test hypothesis about evolution in 361 

nature, especially in cases where the study of natural populations only provides limited 362 

insights into ancient processes. EE is not necessarily relevant in this context because of its 363 

simplified setups, and numerous reports revealed differences between EE and natural 364 

processes (Box 2). Nevertheless, there is a growing number of reported parallels between 365 

natural and EE, especially in studies where the latter tried to match more closely the 366 

conditions of natural evolution (Box 3). The extent to which EE studies can mirror the natural 367 

evolution of bacterial traits is likely to be a fertile area for future research.  368 

On the technological side, recent genome editing technologies, including CRISPR-Cas or ‘deep 369 

mutational scanning’, tremendously accelerate the exploration of genotype-phenotype 370 

landscapes [10]. Moreover, new cultivation procedures (particularly those based on 371 

micro/millifluidics [85, 86]) will allow large scale, automated evolution experiments, and their 372 

genetic analysis can be facilitated by DNA barcoding [10]. With continuously decreasing 373 

sequencing cost, the EE field is therefore ripe for appropriation by molecular microbiologists 374 

coming with imaginative selective regimes, original microbial strains or communities, and 375 
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novel biological questions. More generally, the adoption of EE by a wider community of 376 

microbiologists could accelerate the march towards the much-needed synthesis of molecular 377 

and evolutionary approaches [87-89]. 378 

 379 

 380 

Box 1: The many faces of experimental evolution 381 

Experimental evolution can be performed under a wide range of experimental settings 382 

adapted to the biological question of interest. Details on the design of these studies were 383 

reviewed elsewhere [3, 90]. As an attempt to classify the most common EE practices, one can 384 

distinguish levels of complexity along two criteria: environmental conditions and starting 385 

biological material (Fig. 1).  386 

Starting biological material: Wild-type bacterial strains are commonly used to start evolution 387 

experiments. Although in theory any cultivable strain can be used, most works focus on fast-388 

growing genetically tractable model bacteria. Other studies employ modify-and-evolve 389 

approaches where genetic engineering is used to delete [32], introduce a trait [23, 27, 75] or 390 

modify a gene or the whole genome [91, 92], and is followed by EE to understand how the 391 

system evolves. These approaches profit enormously from the recent developments in 392 

synthetic biology and CRISPR-based technologies. Comparative evolution studies are typically 393 

performed by evolving several independent lines from the same ancestor in parallel, but can 394 

also involve different strains/species exposed to the same conditions [93]. Complexity in 395 

starting material can be increased by putting together different bacterial species [94, 95], or 396 

complex communities [96]. In these cases, experimentalists can follow either the evolution of 397 

one of the organisms or the co-evolution of multiple organisms. 398 

Environmental complexity: Following the trends set by the long-term evolution experiment 399 

(LTEE), most microbial evolution experiments are performed in very simple growth conditions, 400 

e.g. in shaken Erlenmeyer flasks [97] or in chemostats [98], with a variety of volumes, time 401 

delay and volume of transfer between subsequent cycles (flasks) or dilution rates 402 

(chemostats). A number of studies used more complex environments. Spatially structured 403 

environments are generated in static liquid cultures (creating an oxygen gradient [99]), on 404 

solid supports within liquid medium [100] or on solid surfaces (agar plates [25]). In this case, 405 

micro-organisms deplete resources locally, leading to differences between patches. Growth 406 

on solid media or in liquid meta-populations also helps manipulating genetic assortment 407 
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between neighbouring cells, a condition often used to explore the evolution of social 408 

behaviours [101-103]. The strength of selective pressures can be adjusted during the 409 

experiment by varying antibiotic concentrations in a continuous culture [58], creating 410 

chemical gradients in agar plates [104], or by varying conditions between successive growth 411 

cycles [20, 43]. Finally, some studies mimic natural conditions more closely by employing more 412 

complex settings, such as eukaryotic hosts, to study the evolution of mutualists or pathogens 413 

[66, 77, 81, 105-107].  414 

 415 

Box 2: Divergences between EE and natural evolution.  416 

Many EE studies identified patterns of molecular evolution with large excesses of non-417 

synonymous adaptive mutations, whereas natural populations systematically show a 418 

predominance of synonymous substitutions caused by purifying selection on protein 419 

sequences [108]. This may result from the joint effects of the simple continuous unidirectional 420 

selective pressures applied in many EE together with the use of conditions free from most 421 

other constraints that bacteria endure in natural environments. The same reasons may explain 422 

why core genes tend to accumulate few substitutions in natural populations, but evolve faster 423 

in the LTEE [109]. The contrast between evolutionary patterns is particularly striking for the 424 

RNA polymerase gene rpoB that often accumulates adaptive mutations in in vitro EE 425 

experiments but is extremely conserved in natural evolution [4]. Interestingly, a recent E. coli 426 

EE study in the mouse gut, a more natural environment, showed lower rates of evolution and 427 

no mutations in rpoB [110]. Similar discrepancies were found by a study where P. aeruginosa 428 

adaptation to the airways of cystic fibrosis patients during over 200,000 generations resulted 429 

in limited genetic diversification. In contrast with in vitro EE, the in vivo process revealed an 430 

initial period of adaptive mutations followed by a period with the more usual pattern of 431 

dominance of purifying selection [111]. Another reason for the excess of non-synonymous 432 

adaptive mutations in EE is the lack of sexual exchanges with distant strains or species in most 433 

EE setups. This prevents the income of adaptive changes by horizontal gene transfer and 434 

results in adaptive mutations touching key processes that are highly conserved in nature. For 435 

example, many traits are lost in EE because they are costly in simplified setups, but they are 436 

under selection – and thus conserved – in nature [112]. A striking example of this contrast is 437 

given by the frequent evolution of mutators during phage-bacteria co-evolution in simple 438 
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experiments, which was not observed in complex environments closer to natural conditions 439 

[113, 114].  440 

 441 

Box 3: Parallels between EE and natural evolution. 442 

The use of more complex setups in EE has found interesting parallels with analogous processes 443 

in natural history. For example, diversification of M. xanthus during EE led to genetic diversity 444 

close to those identified in natural populations sampled from small parcels in the soil [115]. 445 

EE of Burkholderia cenocepacia in biofilms revealed a wealth of mutations associated with its 446 

adaptation and diversification of which four broad classes were also found in clinical isolates 447 

of Burkholderia dolosa and P. aeruginosa cystic fibrosis patients, suggesting a parallelism 448 

between adaptation to the biofilm lifestyle and lung colonization [100]. A recent study aimed 449 

at comparing directly the patterns of evolution of resistance to colistin in P. aeruginosa using 450 

both laboratory EE and the analysis of four clinical isolates from a single cystic fibrosis patient 451 

(sampled within a period of three months) [60]. This revealed a complex, multistep adaptation 452 

process requiring epistatic mutations in several loci where parallels between the natural and 453 

experimental processes could be identified: all resistant mutants were mutators and the 454 

evolution of resistance occurred through mutations in prmB, part of the PrmAB two-455 

component system. This shows that processes at comparable time scales requiring a relatively 456 

straightforward adaptation process can reveal significant parallels. Another study combining 457 

detailed phenotypic characterization and mathematical modelling showed that high 458 

mutational supply, influenced by population and bottleneck sizes, was a key parameter 459 

favoring parallelism between laboratory and natural evolution of ciprofloxacin resistance in E. 460 

coli [116]. 461 

More complex adaptation processes were investigated by evolving three clones of 462 

Lactococcus lactis from a plant isolate to the dairy niche [117]. Gene expression differences 463 

between the parental and the dairy strain were maximal at an operon encoding an ABC 464 

transporter that was 350 times more expressed in the dairy strain. Interestingly this operon 465 

was also expressed at higher level in two of the three adapted strains. An even more radical 466 

EE, leading to a change in lifestyle from a plant pathogen to a rhizobial mutualist upon 467 

acquisition of a large plasmid carrying the symbiosis genes and after a few hundreds of 468 

generations (see Main Text), also showed striking parallels to the natural process that took 469 
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place over more than 10 million years [118]. In spite of the radically different time-span of the 470 

evolutionary processes and degree of achievement of the symbioses, adaptation was 471 

accompanied in both cases by an overall pattern of purifying selection. Both natural and 472 

experimental processes showed very little signal of adaptation in the fast-evolving symbiotic 473 

plasmid, whereas many adaptive mutations took place in the genetic background of the 474 

bacteria, including mutations that led to the co-option of the same quorum-sensing system in 475 

both processes. These works show that EE reveals significant parallels to natural history when 476 

it mimics key conditions of the natural processes.  477 

 478 

 479 

Figure legends: 480 

 481 

Fig. 1: Experimental evolution: a source of biological material available for phenotypic and 482 

genotypic analysis.  483 

Traditionally, only extant or very recent populations resulting from millions of years of natural 484 

evolution are available for analysis. EE allows the analysis of all steps of adaptation during 485 

years of accelerated evolution in controlled conditions, thanks to frozen fossil records.  486 

Recently, the intensive genomic sampling of variants in natural populations provides data that 487 

can be compared with that of EE. Points represent available naturally- or experimentally-488 

evolved bacterial clones/populations.  489 

 490 

Fig. 2. Selected evolution experiments having contributed to advances in gene regulation 491 

(A), antibiotic resistance (B) and host-microbe interactions (C). 492 

A. Evolution of promoters [23]. Left: The lac promoter was replaced by random sequences in 493 

E. coli. Bacteria were evolved by serial dilutions in 0.05% glycerol (utilized by the strain) and 494 

0.2% lactose (originally not utilized). Right: Following laboratory selection, ~60% of promoters 495 

having acquired a single mutation (black star) exhibit on average 50% of the wild-type (WT) 496 

activity. 497 
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B. Evolution of collateral sensitivity and its use to design new therapeutic strategies [44]. Left: 498 

Bacteria selected to resist a given antibiotic (X) reproducibly display an increased (cross-499 

resistance), unchanged or decreased (collateral sensitivity) resistance to other antibiotics 500 

(e.g., A) compared to their WT ancestor. Right: Patterns of collateral sensitivity can be 501 

exploited by cycling antibiotic treatments that accelerate eradication of bacterial pathogens. 502 

CFU: colony forming units. 503 

 C. Evolution of new legume symbionts [77, 78]. The symbiosis plasmid of Cupriavidus 504 

taiwanensis was introduced into Ralstonia solanacearum, generating a non-nodulating proto-505 

rhizobium (Nod-) that was further evolved using serial cycles of co-culture with Mimosa 506 

pudica, the natural host of C. taiwanensis. The symbiosis plasmid possesses the essential nod 507 

and nif/fix genes required for nodulation and nitrogen fixation. In addition, it contains imuABC 508 

genes encoding stress-responsive error-prone DNA polymerases that transiently elevated the 509 

mutation rate of bacteria growing in the rhizosphere. In only 16 cycles (c.a. 400 generations) 510 

the ancestral proto-rhizobium, which was only able to induce root hair curling (Hac+) allowing 511 

the formation of infection sites, successively acquired the capacity to enter the root and form 512 

nodules (Nod+), extracellularly infect nodules (E-Inf+), intracellularly invade nodules (I-Inf+) and 513 

massively invade nodule cells (I-Inf++), via genome remodeling. Stars symbolize mutations. 514 

Bacteria are represented in blue in nodules. Adapted from references [74, 78]. 515 

 516 

Fig. 1 for Box 1: Experimental settings in EE  517 

Examples of experiments using biological material or environments exhibiting increasing 518 

levels of complexity. 519 
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Highlights 

- Experimental evolution (EE) can complement traditional molecular genetic studies on 

microbial systems. 

- The diversity of EE approaches enabled progresses in many fields of microbiology, 

including molecular mechanisms of gene regulation, antibiotic resistance, and host-

microbiome interactions. 

- Under specific conditions, EE can parallel the evolution of natural systems. 

- EE offers exciting perspectives to discover the function of new genes and probe 

evolution within communities. 

 

Highlights (revised)



Outstanding questions: 

- Can we exploit mutations found in EE to characterise genes of unknown function?  

- Can EE enlighten mechanisms slowing down the evolution of resistances?  

- Can the EE of microbial communities bring new insights into their functional 

characteristics?  

- Can we use within-host EE to identify host factors (and other environmental factors) 

shaping bacterial evolutionary trajectories during infection? 

- Can EE reproduce the emergence of major intracellular symbiotic associations (such 

as mitochondria in eukaryotic cells, plastids in the green lineage, association between 

fungi and land plants, obligate endosymbionts of insects)? 

 

Outstanding questions (revised)


