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At low tide, intertidal mudflat biofilms cover laggsurfaces and are mainly
responsible for the high productivity of these marareas. In the European
Atlantic coast, such biofilms are mainly composdddmtoms, especially
Navicula phyllepta bacteria, and microbial extracellular polymeric
substances (EPS). To better understand interactomesirring between
microorganisms, we first axenizedN\a phylleptaculture with a new and
simple protocol. Colloidal and bound EPS secretedlibtom cells during
the exponential growth and the stationary phases wleen harvested, and
we tested their effects on the in vitro formatidnbfilms by three marine
bacteria. The latter had been isolated from a HreAtantic intertidal
mudflat and were previously selected for their s¢ran vitro biofilm-
forming ability. They belong to thdélavobacterium Roseobacter and
ShewanellageneraNavicula phylleptebound EPS synthesized during the
stationary phase specifically inhibited the biofilflormation by the
Flavobacteriumsp. strain, whereas they stimulated biofilm depelent by
the two other strains. The EPS acted in all casesd the first stages of
the biofilm establishment. Saccharidic moleculesrewdound to be
responsible for these activities. This is the fiport on marine bacterial
antibiofilm saccharides of microalgal origin. Thigork points out the
complexity of the benthic natural biofilms with sjpfec microalgae/bacteria
interactions and underlines the possibility to agenic diatoms as a source
of bioactive compounds.
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Introduction
AQ2

Intertidal mudflats are among the most productieine areas (Admiraal et
al. 1984), and they may provide up to 50 % of then@ry production of
estuaries, in particular due to the formation obfoisynthetic biofilms at their
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surface (Underwood and Kronkamp 1999). By providhglter and food,
mudflats especially serve as pantry and nurserynfomy animal species of
commercial interest, including fishes (Beck etz001).

One of the peculiarities of intertidal mudflat hiafs lies in their transient
character. During daily tidal emersion periods oaaphic motile microalgae
(microphytobenthos) move upward through the sedirt@the surface to
access the light they need for photosynthesis (@loeg et al. 2004). When
microalgae and heterotrophic prokaryotes assoaeiatiee surface, they secrete
a matrix of mucilaginous extracellular polymeridstances (EPS) and form a
biofilm surrounding the sediment particles (Decli®@; Consalvey et al.
2004). During immersion and night, microalgae migr@aownward into
deeper sediment layers (Consalvey et al. 2004),gfdhe biofilm biomass is
resuspended into the water column, and the temporafilm disappears
(Colijn 1982; Serddio et al. 1997).

This transient biofilm is thus mainly composed otmalgae (Admiraal et al.
1984 ; Underwood and Kronkamp 1999), prokaryotesr{lydoacteria) (van
Duyl et al. 2000), and a variety of EPS (Underwaod Paterson 2003)
constituting complex assemblages of polysaccharipiedeins, glycoproteins,
uronic acids, lipids, and many other compounds @swdod et al. 2004;
Pierre et al. 2012). The EPS matrix is believetimit sediment desiccation
by maintaining high pore water content, to stakilkzdiment layers, and to
protect microorganisms against exogenous stres$esifing and Wingender
2010; Orvain et al. 2014). Motile epipelic diatosecrete into the
surrounding sediment 30 to 60 % of photoassimilagathon as EPS
(Underwood et al. 1995; Middelburg et al. 2000 ; ®naind Underwood
2000). In European intertidal mudflats, epipeliatdms dominate the
microphytobenthic community, representing up to?®6f the biomass (de
Jonge and Colijn 1994 ; Méléder et al. 2005). InEnench Atlantic coast,
the dominant species Mavicula phylleptaHaubois et al. 2005). Whereas
bacteria are also very abundant, with generalecHIls per mL of sediment
(Pascal et al. 2009), their diversity and activaynain largely
uncharacterized (Gontang et al. 2007). The badtesrmmunities depend on
the depth of sediment layers, and Gammaproteobacteght be highly
predominant (almost 90 %) in surface layers (Urakatval. 2000).

Within mudflat biofilms, multiple interactions su@s synergy, competition,
or defense occur between microalgae and prokaryatdsough these
interactions are recognized as essential to thgeloichemistry of marine
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ecosystems (Amin et al. 2012), their study is leditThere is a strong
correlation between diatom and bacterial abundaasimen 1991 ; van
Duyl et al. 1999; Hamels et al. 2001). The presearideacteria closely
associated to diatom cells (referred to as “saéélbacteria by Schéfer et al.
2002) seems essential for some diatom strainseio dptimal growth in
nature as well as in laboratory cultures (Brucketeal. 2008, 2011 ; Amin et
al. 2012). Diatom cell aggregation is also enhanndtie presence of
bacteria (Bruckner et al. 2008; Lubarsky et al. @0Gardes et al. 2011).
Bruckner et al. (2008) and Windler et al. (2015¢wad that bacteria can
stimulate diatom biofilm formation, as biofilm foation was directly induced
by the cell-free spent medium of bacteria, makirglification of the diatom
metabolism most likely. It has been shown thatddwon photosynthetically
assimilated by diatoms is transferred into bacteriw hours, indicating a
rapid use of labile carbon sources, likely incligllEBPS (Middelburg et al.
2000; Goto et al. 2001 ; Cook et al. 2007; Bellingeal. 2009). To remain
within the “phycosphere” where their growth is stiated by algal EPS (Bell
and Mitchell 1972), bacteria often need to attacthe surface of diatom
cells. Mechanisms underlying attachment remainearclbut they likely
involve extracellular molecules such as polysaadearand/or proteins that
are also released by bacteria themselves (Amih &042). EPS are thus
crucial intermediaries between bacteria and diatdtosvever, interactions
between diatoms and bacteria are not always bealkivmany diatoms have
defense mechanisms against unwanted and/or alglzadéeria (Amin et al.
2012). They secrete fatty acids, esters, and psbtwnated aldehydes that
can act as antibacterial compounds and influened#cterial community
structure (Lebeau and Robert 2003; Ribalet et @082. However, some
diatom-associated bacteria were shown to be resisiebioactive
polyunsaturated aldehydes, suggesting that sadldtteria may have
developed resistance to toxic molecules releasatlidipms (Ribalet et al.
2008). To our knowledge, nothing is known abouteffect of molecules
excreted by diatoms in their immediate surroundioigshe bacterial biofilm
formation.

We previously selected three bacterial strains fmotertidal mudflat biofilms
of the French Atlantic coast that were able tochit different surfaces and
build biofilms with specific 3D structures (Doglet al. 2015). These strains
are appropriate models for deciphering the coldromaof surfaces and the
interactions between microorganisms in marine i@ Such knowledge is
essential to the better understanding of biofoulufgch causes various and
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costly damages to maritime human activities andigtides. Here, we
investigated the specific effects of diatom orgdBiRS on the formation of
bacterial biofilms. AN. phylleptaisolate was selected since this species is
one of the most abundant in temperate intertidadffats. To avoid the
presence of EPS secreted by satellite bacteriaxewrized\. phylleptaprior
to examine the effects of different EPS fractionstloe bacterial models.

Materials and methods
Diatom and bacterial strain isolation and culture

Benthic diatom Navicula phyllepteKitzing (Culture Collection Yerseke,
CCY9804) cells were grown in batch cultures at €0r sterile artificial F/2
seawater medium (Tropic Marin salt, Guillard andHey 1962) with a light
intensity of 75umol photons m~ - and a 16-h light/8-h dark photayeri
(white fluorescent tubes, L58W/840, Osram, Germabyatom cultures were
started with a concentration of Qug chlorophylla (Chl a) mL_1 using a Chl
a spectrophotometric quantification (Jeffrey and iney 1975). Specific
growth ratesp (day l), were calculated from regression of the ratu
logarithm of the Chh (mg mL_l) during their exponential growth phase.
During its growth N. phylleptaforms a biofilm in the flask bottom that can
be visually observed.

Benthic bacteria We used strainBlavobacteriumsp. 112003,Roseobacter
sp. IV3009, anddhewanellasp. IV3014. They were isolated from the
intertidal temperate mudflat biofilm of the Maresr®léron Bay (French
Atlantic coast) and selected for their ability torh biofilms on different
surfaces, under static and dynamic conditions (Diogfhal. 2015). Strains
were conserved as frozen stocks with 25 % glycatrel80 °C. For all tests,
the bacteria were grown at 22 °C in Zobell brotino(Rad pastone 4 g_ﬁ ;
Bio-Rad yeast extract 1 g_ll_ ; sea salts Sigma 3(_)1QJ dupplemented with
agar (12 g L* Biokar) for solid medium.

Axenization of N. phyllepta

Different axenization strategies were investigatammbining mechanical cell
separation and antibiotic treatments (Fig. 1 arul€ld ). Based on
Shishlyannikov et al. (2011), two pretreatmentshef diatom suspensions
were tested and compared with a non-pretreatedadifitig. 1, “Physico-
chemical pretreatments”). The suspensions, pretdeaith or without Triton
X-100, were filtered through a om polycarbonate membrane (Millipore,
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USA) put on a Whatman membrane by using a manliedtion unit
(Sartorius, Germany). Diatom cells were then washi¢hl artificial seawater
and transferred to F/2 medium. Different antibistialone or in combination
(Table 1), were added to the pretreated or therobatispensions, and diatom
cells were grown as described above, with soft istgpét regular time
intervals (Fig. 1, “Antibiotic treatments”). Thenfal concentrations of the
tested antibiotics are described in Table 1. Diatelts were then harvested
by filtration, rapidly washed with culture mediuamd resuspended in F/2
medium. The degree of axenization of diatom cedjpgnsions was then
iImmediately checked by (i) bacterial counting waghifluorescence
microscopy after 4-diamidino-2-phenylindole (DAPI) staining and (ii)
counting the number of colony forming units (CFU-tawable bacteria) after
plating diatom cell suspensions on Zobell agar.(Rig“Checking”). For the
microscope counting, diatom cell samples were fixetbrmaldehyde (final
concentration 2 %) and diluted in di-sodium pyrogbloate 10 mM with

0.1 % of Tween 80 in order to enhance detachmebaoferia from the
diatoms (Lavergne et al. 2014). After incubation30 min at 4 °C, samples
were stained with DAPI (1 mg_ﬁ ) for 15 min and éiled through a 0.g2m
polycarbonate membrane (Nuclepore Track-Etch Mendra/hatman
Schleicher & Schuell, USA). The membranes were rtedion a glass slide in
a non-fluorescent oil drop, and bacterial cellsemavunted with an
epifluorescence microscope (Leica DMRB, mercurastéight,

magnification x1000, filter UV A Leica) on an avgeaof five fields of
0.0415 mr% each.

Fig. 1

Key steps of the axenization protocol of thNe phyllepta diatom culture.
Protocol finally selectedbpld arrowg
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Table 1
Antibiotics tested alone or in combination for tAgenization of theN. phyllepta
cultures
oL e . . -1
Antibiotics Solvent(s) (%/%) Final concentration (pg mL )
Ap Ethanol/water (50/50) 100
Tc Ethanol/water (50/50) 50
Sm Water 100
Km Water 50
Km + Sm Water 100/100

Ap ampicillin, Tc tetracycline Smstreptomycin Km kanamycin Cip ciprofloxacin,

[pm imipenem
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Antibiotics Solvent(s) (%o/%) Final concentration (pg mL_l)
Ap + Sm Ethanol/water (25/75) 100/100
Ap + Tc + Km Ethanol/water (25/75) 100/50/30

Ap + Tc+ Sm + Km  Ethanol/water (25/75) 100/50/100/30
Cip Water 5
Ipm Water 98

Ap ampicillin, Tc tetracycline SmstreptomycinKm kanamycin Cip ciprofloxacin,
I[pm imipenem

Extraction of EPS from axenic cultures of N. phyllepta

The detailed protocol was adapted from Takahasal.€2009) and is
summarized in Fig. 2. The axemt phylleptasuspension was cultured
during 6 days (p , middle of the exponential E?dséﬁug Chla mL_l) and
12 days (R, , stationary phase, 1 gtChlamL ) in order to collect the
colloidal and bound EPS..D andp samples were degéd to harvest the
supernatants containing the colloidal EPS fractimextract EPS bound to
the diatom cells, the pellets were resuspendeddmiedium containing
activated cation exchange resin (Dowex Marathonaf:, I$igma-Aldrich,
USA) and left under gentle shaking. After centrdtign, both colloidal and
bound EPS fractions were filtered (Millipore PVDRdrs, USA) and
lyophilized. The dried fractions were resuspended mL ultra-pure water.
The salt excess was removed by dialysis (moleausoff of 2000 Da,
Spectrum Labs, USA) against ultra-pure water, aR& Eamples were then
stored at —80 °C until further use.

Fig. 2
Protocol for the extraction of EPS from axeNicphylleptacultures
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S0 ml in each Erlen Meyer flask (3 veplicates )

L J

Culture it batch at 20°C for 6 and | 2 days
Light intensity of 75 ymol photens m= s, Léh light and & h dak

{ Axenic Navicule phyllepie suspension (F'2 medium, 0.3 pg Chl @ ml ) ]

Growth conditions

h 4
Cenmifugation (4000 2, 10 min ot 4°C)

¥
¥ ¥

Feller Supernatant: collofdal fraction

L ]
Resuspension in 20 ml F2 medium

+ petivated cation exchange resin (Dowes, 1g)

3

Soft shaking (1 h, 4°C)

L 4

Centifugation (4000 g, 10 min at 4°C)

¥
Supernatant: bound Fraction

¥ v
Filtering through FYDF filters (0,22 pm pore siac)
¥
Concentration 20-fold by lyophilization and desalting by dialysis ( 1000 D)

¥
Stenlization by filtration (PVDF filters, 0.22 um pore size)
Stornge ot - B*C

Extraction protocol

Antibacterial assay

Antibacterial (i.e., bactericidal or bacteriostatactivity of EPS was tested by
using the agar well diffusion assay previously diéscl by Sablé et al.
(2000). Sterile glass rings (4-mm inside diametexde placed on solid
nutrient plates (15 mL of Zobell agar inoculatedhalO of the target
bacteria) and filled with 3QL of the EPS 20x samples to be tested. The
plates were incubated at 22 °C for 48 h to allost&aal growth and EPS
diffusion. The presence of a halo around the gtgiader indicates an
inhibition of bacterial growth if the halo is cle@vithout cell growth) or
eventually a stimulation if the halo is denser thfa@ remaining plate (with
cell growth).

Effect of the diatom EPS on bacterial biofilm formation

Microtiter plate assay: static conditions According to Pitts et al.
(2003), the EPS fractions were mixed to bactemugpgnsions during the
adhesion step. After overnight growth (Zobell brathaking at 150 rpm,
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22 °C) and harvesting by centrifugation (7890 10 min), bacteria were
resuspended in artificial seawater (for the coftoolin EPS 20x fractions to
a final optical density at 600 nm (QE, ) of 0.25.10¢ resulting
suspensions (fo CFUmL ), 150 was then loaded per well of a 96-well
microtiter plate (MICROTEST 96, Falcon, USA). Afteibacterial attachment
step of 2 h at 22 °C, the wells were gently wastiede times with artificial
seawater, and 150 Zobell medium were added to each well. After
incubation at 22 °C for 24 h, the bacterial bioBlmere washed three times
with artificial seawater, stained with a 0.8 % ¢aysiiolet solution for

20 min, and rinsed with ultra-pure water until thash liquid was clear (10
times on average). Crystal violet was then elutedchfattached bacteria with
96 % ethanol (15QL well_l), and the absorbance was measured with t& pla
reader at 595 nm (FLUOstar Omega, BMG Labtech, @eyinto quantify the
biofilms.

Flow cell assay: dynamic conditions Bacterial biofilms were grown on
glass slides in continuous culture three-chanmasV tells (channel
dimensions 1 by 4 by 40 mm, Technical Universitypaihmark Systems
Biology, Denmark) as described by Pamp et al. (3068w cells were
inoculated with 24-h old bacterial cultures diluiadartificial seawater (for
the control) or in EPS 20x fractions to a final g3pof 0.1. Bacteria were
allowed to attach to the glass slide during 2 BzatC without medium flow.
Channels were washed to remove non-attached battgapplying a flow of
artificial seawater for 15 min at a rate of 2 m_l_l hand biofilm growth was
allowed for 24 h at 22 °C under a constant rowr(th_l) of Zobell medium.
The biofilms were then stained withub1 Syto 61 Red and observed by
confocal laser scanning microscopy (CLSM) usingCsISP2 system (Leica
Microsystems, Germany). The biofilm stacks wereyze with the
COMSTAT software (developed in MATLAB, Heydorn dt 2000) to
estimate the maximal and the average thicknesselsgs well as the
biovolume (im° um °) of each biofilm.

Biochemical assays and characterization of the diatom
active EPS fraction

Proteins assays were carried out with a bicinchioranid protein assay kit
(Sigma-Aldrich, USA), using bovine serum albuminaastandard (Smith et al.
1985). The sugar content was determined usinghleag-sulfuric acid
assay, using glucose as standard (Dubois et ab)19% elucidate the
biochemical nature of the active component(s) atain EPS 20x fractions,
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different treatments were performed to digest pnstelipids, nucleic acids,
and saccharides. Proteinase K or Pronase E wasl ada@efinal concentration
of 1 mg ml__l , and the reaction was incubated fordk B7 °C. Lipase acrylic
resin form was used at a final concentration of@mll_l, and the reaction
was incubated for 48 h under shaking at 37 °C. RN&O0Oug mL ) or
RNaseA (25ug mL_l) was added for 12 h at 37 °C. NglO was used to
hydrolyze saccharides by cleaving the C—C bondsbgnakidizing the carbon
of vicinal hydroxyl groups (Mack et al. 1996; Beoda et al. 2011). We
improved the classical treatment (20 mM NalO , iratidn for 12 h at 37 °C)
by adding a neutralization step of NglO with etmgeylycol (1:100) (Babor
et al. 1973) for 2 h at 37 °C followed by a finahlgsis step (1000 Da). Each
treated EPS fraction was mixed to bacterial suspamduring the adhesion
step, and a microtiter plate assay was performgaeasously described.

Statistical analyses

All values presented in the “Results” part are dlierage of three
independent experiments. In order to analyze diffees between a sample
and the corresponding control, Studentiests were performed. ANOVA tests
gave the same results.

Results

Axenization of the N. phyllepta diatom from associated
bacteria

The uni-algalN. phylleptacultures were non-axenic, and the initial
suspension (0.8g Chla mL_l) contained in average about610 bacteria_lmL
(Table 2). In order to test the effect of EPS sfieally secreted by.
phylleptaand to avoid interference with EPS synthesizethleybacteria
associated with diatom cells, it was crucial to sgenbacteria present in these
cultures. Different antibiotic treatments as wallmetreatments potentially
increasing the effectiveness of antibiotics weentimvestigated (Fig. 1).
While the detergent treatment associated with ilbation reduced the
bacterial load by 40 % (Table 2), it consideraldfe@ted the viability of the
diatom cells (Chhkin cultures decreased by more than 50 %) andlhiya

of N. phylleptato form a biofilm (visual observation of a browayeér of
diatom cells in the flask bottom). The filtrationtinout detergent treatment
reduced the bacterial contamination by up to 26T&ble 2) without affecting
viability and culture aspect of diatoms. This peatment was therefore
chosen. After validation of this step, differentiarotics (ampicillin [Ap],
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ciprofloxacin [Cip], imipenem [Ipm], kanamycin [Kmtreptomycin [Sm],
and tetracycline [Tc]) were tested, alone or in boration. The treatments
including Ap, Tc, or Ipm were quickly discarded owgito the modification of
the visual aspect (i.e., pigmentation), the abiictyorm a biofilm, and the
growth rate of the diatom cultures. The resultsaoted with the most
promising antibiotics are shown in Table 2. Cip &md treatments reduced
the bacterial contamination by 94 % according torascope counting and by
60 and 73 % according to agar medium plating, respdy. Km treatment
also reduced significantly the bacterial contamuoratin particular the
bacteria growing on agar medium. Neverthelessstiongest effect was
exerted by the Km + Sm mix which completely remobedterial
contamination.

Table 2

Enumeration of bacteria associated withphylleptabefore and after physico-chemical
and antibiotic treatments

Microscope coqqting Counting by plating on agar

(bacteriamL ) medium (CFU mL ")

suspl)r(]elﬂzlioarllg\f\lllithout 1.1x 160 +1.4x 19 1.9x 16 +3.1x 1H
treatment
1.6 x 10+ 3.1 x1¢"

Physico-chemical pretreatment
Filtering 85x 108 + 16 1.4x o +2.7x40
Detergent + filttering 6.8 x 0 + 1.3 x40 1.1 x°10 +2.4 %10
Antibiotic treatment after filteriny
Cip 65x 10 +1.1x 10 75x f0 +7.8x3%0
Sm 6.2x 10 £6.1x 10 5.1x 10 +40
Km 51x1¢ +1.1x1d 40x 0 7
Km + Sm No bacterium detected No bacterium detected

Cip ciprofloxacin,SmstreptomycinKm kanamycin

@Antibiotics not toxic forN. phyllept.

To summarize the selected protocol of axenizatilba,algal suspension was
first filtered, treated with Km and Sm for 18 haagfiltered, and transferred
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in new culture mediuT. The growth rate of the ohai axenic diatom
cultures was-1.2 day , similar to untreated diatom cultures (daial
shown).

Effects of the N. phyllepta EPS fractions on bacterial
biofilm formation

In order to observe biological effects, phylleptaEPS were concentrated.
Based on the EPS protein and saccharide conte@t®s aoncentration was
chosen, to reach concentrations slightly highen tvhat was observed in the
intertidal mudflats wher#l. phylleptais the major diatom (Pierre et al.
2012).

Antibacterial assays, performed with the agar wédflision techniques, did
not exhibit any clear halo characteristic of inkidnm of bacterial growth.
These experiments then showed that no EPS fracttonsdiatom cultures
had a bactericidal or bacteriostatic activity agaihe three tested marine
bacterial strainskElavobacteriumsp. 112003,Roseobactesp. V3009, and
Shewanellasp. IV3014. Moreover, no stimulation of the ba@kegrowth
(halo denser than the remaining plate) was obseax@and the deposit of
EPS fractions.

We then examined whether EPS fractions affectefillmidormation. In static
conditions (on polystyrene surface, microtiter plassay, quantification of
biofilms by spectrophotometry), the;D colloidal amaund EPS fractions
(Fig. 3a), as well as the;,D colloidal EPS fract{ing. 3b), did not show
any significant activity on bacterial biofilm fortman. On the contrary, the
D,, bound EPS fraction showed significant effeiCcompared with the not
treated control biofilms, the biofilms treated withis EPS fraction were
reduced by more than 40 % felavobacteriunmsp. 112003 { = -13.63;

p < 0.01) and were increased by more than 30 9Rtmmeobactesp. V3009

(t = 6.97;p < 0.05) andShewanellasp. IV3014 (= 11.99,p < 0.01) (Fig.

3b). In a second set of experiments, the activitthe D;, bound EPS
fraction on bacterial biofilm formation was furthested by growing the
biofilms under dynamic conditions (on glass surfdlmv cell assay,
observation of biofilms by confocal laser scanmmgroscopy). The main aim
of this set of experiments was to confirm EPS éffexbtained under static
conditions. The antibiofilm activity againBtavobacteriumsp. 112003 was
also observed in the second conditions. Comparddtive untreated sample,
the treated biofilm was very thin: =76 % of the\mlume ¢ = -6.82,
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p < 0.01), -47 % of the average thicknesss ¢5.89,p < 0.01), and -60 % of
the maximal thickness of the biofilmh£ -13.20,p < 0.001), and it lost its
mushroom-like 3D structures (Fig. 4a). Under dyraoanditions, the
Roseobactesp. IV3009 biofilm seemed to be still stimulatexpared with
the untreated sample, but this positive effect pf Bound EPS was not
significant anymoret(= 1.41,p = 0.24 for the biovolumd,= 1.78,p = 0.25
for the maximum thickness, ang 2.28,p = 0.09 for the average thickness)
(Fig. 4b). However, the stimulating effect of D boUEPS was maintained
for Shewanellasp. IV3014 (Fig. 4c)Aan increased biovolume (+40 %, with
t = 3.59,p < 0.05) and increased average thickness (+43 %,twi 4.64,

p < 0.01) and maximal thickness (+37 %, with 3.62,p < 0.05) were
observed, without modification of the hairy arckitee compared with the
control biofilm. The results obtained under statind dynamic conditions
were thus consistent féiavobacteriumsp. 112003 andshewanellasp.
IV3014.

Fig. 3

Effect of EPS fractions from axenit. phylleptacultures on bacterial biofilm
formation in static conditionsFlavobacteriumsp. 112003, Roseobactersp.
V3009, andShewanellasp. V3014 were mixed during the adhesion step in
microplates with the EPS fractions collected aft¢Dg) or 12 (O, ) days of the
N. phylleptagrowth. Biofilms were stained with crystal viokd quantified by
measuring absorbance at 595 by EPS fractions and D, EPS fractions.
Untreated control: bacterial biofilm without anyatbm EPS fraction. The data
represent mean values = SD of three replicatesh Eeemated biofilm was
compared with the corresponding untreated controfilim. *p < 0.05 or
**p < 0.01, significant differences, only observed hwiD;, bound EPS
fractions )
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Fig. 4

Effect of EPS bound fraction,p)  from axemc phylleptacultures on bacterial
biofilm formation in dynamic conditions. BiofilmsfoFlavobacterium sp.
12003 (@), Roseobactersp. V3009, ) and Shewanellasp. V3014 ¢). 3D
images of the biofilms t¢p and side viewy are shown on theright
(bars= 67.3um) and the corresponding COMSTAT analysis outputhmieft.
Untreated control biofilm: bacterial biofilm withbwliatom EPS fraction. The
data represent mean values £+ SD of three replicates
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Biochemical characterization of the N. phyllepta active
EPS fraction

The carbohydrate and protein contents of all ER&tilons were quantified
(Table 3), in order to compare the active and inadtractions. It is
noticeable that carbohydrate and protein quantitiee® higher in D, than in
D¢ fractions. The measure of the chlorophyll contefthe cultures allowed
us to evaluate the number of diatoms and then aavghat the quantities of
carbohydrates and proteins per cell were highéhenD,, fractions than in
the Dy fraction. Moreover, the carbohydrate conteas higher than the
protein content in all fractions, and the activactron (D, bound EPS) was
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the most concentrated in sugakavicula phyllepteD,, bound EPS fraction
was further analyzed. It was submitted to differgaatments to gain
information on the chemical nature of the putaigeéive compounds (Fig. 5).
Neither proteases nor lipase nor nuclease treagnsgnificantly affected the
activity of the O, bound EPS fraction. Only the Naltteatment
significantly reduced the antibiofilm activity dfi¢ D,, bound EPS fraction,
by 90 % ¢ = 18.53,p < 0.001), againgtlavobacteriumsp. 112003, and totally
prevented the stimulating activity Roseobactesp. V3009 { = -13.8,

p < 0.001) andshewanellasp. IV3014 (= -39.5,p < 0.001). NalQ very
efficiently hydrolyzes saccharides by oxidizing tebons bearing vicinal
hydroxyl groups and cleaving the C—C bonds (Mac&lefl996; Jiang et al.
2011). These results indicated that the active camgs of the [, bound
EPS fraction were saccharidic molecules.

Table 3

Determination of protein and carbohydrate contemitgshe N. phyllepta EPS 20x
fractions and estimation of these contents per diatom cell

D, EPS fractions D,, EPS fractions
Colloidal Bound Colloidal Bound
Proteins (mg [!) 36.3+29 459+23 1140+87 151.0+54
Proteins (mg cellt ) 62x16 7.9x1d 1.8 x10 2.4 %10
Carbohydrates (mg1® ) 45.0+3.5 198.0+9.1 178.0+6.9 690.0+ 2.4
Carbohydrates (mg cefi ) 7.7 x 10 3.4 x°10 2.9 x10 1.1 310

Fig. 5

Effect of various treatments on the activity of thephylleptaD,, bound EPS.
The inhibiting or stimulating effects of th¢. phylleptaD,, bound EPS were
determined using the microtiter plate assay. Bidilwere stained with crystal
violet and quantified by measuring absorbance &tr5@. The “100 %" values
on the Y-axis are given to the biofilms grown without EP&ction aA).
Samples + untreated EPS fractibBJ correspond to reference values of the
inhibiting or stimulating effects of thd. phylleptaEPS on the bacterial biofilm
formation. The data represent mean values + Srektreplicates. The effect
of each treated EPS fractioc-C to hH) was compared with the effect of the
untreated EPS fractioisB). Highly significant differences were observedlyon
between not treateN. phylleptaD,, bound EPS and EPS treated with NalO .
These differences are indicated by *¥ € 0.001) on theupper partof the
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figure. T values are —18.53, 13.8, and 39.5 Faivobacteriumsp. 112003 4),
Roseobactesp. V3009 b), andShewanellasp. V3014 ¢), respectively
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Discussion

Successful strategy to remove the satellite bacteria from the N.
phyllepta cultures Axenization of diatom cultures by the removal of

bacteria was essential to ascertain that the dduaigve compounds were
iIndeed produced by. phylleptaand not by its associated bacteria.
Depending on the diatom strain and its growth fdime, axenization protocol
can be very different (Bruckner and Kroth 2009 )péarticular, benthic
diatoms are often difficult to axenize becausehef mucilage that surrounds
the cells (Bruckner and Kroth 2009). Moreover, mdimgtoms in co-culture
with bacteria grow denser and faster than theinexeounterparts (Bruckner
et al. 2008). We achieved to axenize the intertigadthic diatoniN.
phyllepta without changing its main biological propertiesifect, growth,
and biofilm formation), thanks to a combinationamttibiotics (kanamycin +
streptomycin) used after a filtering step. Thisniccordance with Bruckner
and Kroth (2009) who noticed that for most frestexdtenthic diatoms,
physical separations and antibiotic treatments bavee combined to fully
remove associated bacteria. They succeeded in negweatellite bacteria
from some diatom strains with a combination of géhin G, streptomycin,
and chloramphenicol without affecting their biolcgi properties in cultures.

18 sur 31 30/08/2016 11:4



e.Proofin http://eproofing.springer.com/journals/printpag®.pioken=nuGKxB4.

However, this combination could not be used in cage since
chloramphenicol inhibits the growth dfavicula(Khandeparker et al. 2014).
Recently, Windler et al. (2012) described a sinmgletocol for freshwater
benthic diatom axenization including treatmenthod tultures with the
antibiotic imipenem. Here, the imipenem treatmesmiggated a disturbance of
N. phylleptabiofilm formation. To optimize our axenization rhetl, diatom
cells were treated during the latency phase ofjtb@th curve, during which
the bacterial load is low. This approach allowedaisvercome problems due
to the excretion of protective substances (sudBRS) by bacteria and
diatoms during the growth phase (Flemming and Whdge 2010; Orvain et
al. 2014). Additionally, resuspending the cellssbyaking at regular intervals
enhanced the efficiency of the method by disturlihrgdiatom-bacterium
biofilm formation and thus by decreasing the pratectoward antibiotics.

EPS produced by N. phyllepta exhibit activity on bacterial biofilm
formation The main objective of our work was to investigtte effects of

the EPS produced by axenic diatbimphylleptaon the ability of three
benthic bacterial models to form a biofilm. We wedkintentionally with a
concentration of EPS slightly higher than in theimmment such as
intertidal mudflats in order to better highlighbbagical activities. The
examined bacterial strains reacted to one or sen@i@cules secreted by.
phyllepta suggesting that a direct diatom-bacterium contas not required,
as reported before (Windler et al. 201Bavicula phylleptgroduced the
active molecule(s) when cultivated separately flaateria, which means that
the synthesis and the secretion of these moleeudes not induced by
bacterial presence and/or activity. In our expentakconditions, the
secretome part dfl. phylleptaactive on the early stages of bacterial biofilm
formation was the bound EPS fraction harvestedngduttie stationary phase
of diatom growth. Its main begotten effects wejea(strong inhibition (more
than 40 %) of the biofilm formation dflavobacteriumsp. 112003 under both
static and dynamic conditions and (ii) a stimulataf the biofilm formation,
again under both conditions f&hewanellasp. V3014 (up to 40 %) and only
under static conditions fdRoseobactesp. IV3009. The results first depend
on the bacterial strains and, to a lesser extenthe experimental approach.
In our case, it is likely that the difference iretburface properties between
static (polystyrene) and dynamic (glass) conditioray influence early stages
of surface colonization and subsequent biofilm fation of the bacterial
strains (Dang and Lovell 2000; Jones et al. 200& ¢t al. 2008). It was
therefore essential to investigate different candi of growth and/or biofilm
formation to confirm (or not) the significance &t positive or the negative
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effect of the bound EPS fraction on the bacteriafilm.

The active N. phyllepta compounds are bound EPS carbohydrates
The biochemical characterization of the active ib&RS fraction

demonstrated that the inhibiting/stimulating adtivcan be assigned to
saccharidic compounds, which were very abundatiteractive fraction. In
fact, the carbohydrate concentration in both boamd colloidal algal EPS
fractions was approximately 4-fold higher during stationary phase (B )
than during the exponential growth phasg (D ). This accordance with
Underwood and Paterson (2003) who described tlatdhcentrations of
extracellular carbohydrates in the medium signifitbaincreased during the
transition from exponential growth to stationaryaph for benthic diatoms,
includingNaviculaspecies, when grown in batch culture. Additiondiye
amount of proteins was lower (up to 4.6-fold lessdound EPS) compared
with the amount of carbohydrates, which is in agreet with previous reports
on Naviculastrains (Staats et al. 1999; Underwood and Pate?603;
Scholz 2014). EPS (colloidal and bound fractiondjaxted directly from
mudflat microphytobenthic biofilms also predomingrdonsisted of
polysaccharides, and only small quantities of pnstevere present
(Underwood and Paterson 2003; Pierre et al. 2012).

Potential mode of action of the N. phyllepta EPS on the bacterial
biofilm formation In the phycosphere model of Bell and Mitchell (29,7

bacterial growth and metabolic activity were progeb$o be stimulated by
microalgal extracellular substances. Algal organibstances are generally
considered as energy and carbon sources for ba¢Bilinger et al. 2009),
and EPS might favor bacterial metabolism by supgyutrients (Middelburg
et al. 2000; Goto et al. 2001; Cook et al. 2007ljiBger et al. 2009).
Although no stimulation of bacterial growth has hedserved in solid
culture medium, the biofilm formation &hewanellasp. V3014 and
Roseobactesp. IV3009 was enhanced By phylleptaEPS. Indeed, failing to
directly act on cell multiplication, microalgal pslaccharide could act as
signaling molecules that modulate the expressiogeaks involved in biofilm
lifestyle of recipient bacteria (Rendueles et 112). Diatom EPS are also
assumed to facilitate cell attachment to a suréakto protect cells against
desiccation and different environmental stress érsky et al. 2010; Orvain
et al. 2014), thus enhancing the development ad@ated bacteria biofilms.

In our work,N. phylleptapolysaccharides showed also a powerful biofilm
inhibition activity onFlavobacteriumsp. 112003, without any antibacterial
activity, which leads to ascribe tiNe phylleptapolysaccharide activity as
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specifically antibiofilm. Several studies identdiantibiofilm molecules from
bacteria, and exopolysaccharides were specificilbwn (i) to interfere with
bacterial adherence to surfaces and biofilm foroma{Malle et al. 2006 ; Jiang
et al. 2011), (ii) to modulate expression of gefsesh as curli genes) related
to biofilm formation in bacteria (Kim et al. 200®endueles et al. 2013), or
(iii) to disrupt established biofilms (Qin et al0@9; Jiang et al. 2011).
However, very few polysaccharides from microalgasesdescribed as
negatively impacting bacteria or other microorganactivities, and none of
them were studied in the marine context. They gnealysaccharides isolated
from theChlorella (green microalga) an8lpirulina (cyanobacterium)
inhibiting the binding oHelicobacter pylorito gastric mucin in vitro (Loke

et al. 2007) and (ii) a sulfated polysaccharide edimaviculan and isolated
from Navicula directadisplaying antiviral activities against herpes slex

and influenza A viruses (Lee et al. 2006). Receritlyas been shown that
changes in the composition of carbohydrates pradlbyethe diatom
Asterionellopsis glacialiseduced bacterial abundance (da Silva et al. 2016)

As regards to the physico-chemical aspect of biofdrmation, the
stimulating or inhibiting effect of microalgal ER‘&n also be due to
modifications of the substratum (abiotic surfaced/ar of the bacterial cell
surface (Grossart et al. 2006; Rendueles et al3 pBtudies utilizing
culture supernatants or purified polysaccharidesuaface coating provide
further evidence that microbial polysaccharides ifiyoithe wettability and the
charge of abiotic surfaces and hence affect thexation of bacteria with the
substratum (Valle et al. 2006 ; Rendueles et al.120Additionally,
polysaccharides are suspected to change the phpsogzerties of
gram-negative and gram-positive bacteria cell dasuch as the cell surface
hydrophobicity (Sayem et al. 2011). These propsréie essential during the
adhesion phase of biofilm formation and the furitievelopment of
microcolonies (O'Toole et al. 2000).

Interest for the diatoms to modulate the formation of bacterial
biofilms and potential biotechnological applications Our experiments

with axenic diatom secretomes and different benblaicterial biofilm models
clearly demonstrate that specific interactions leetwalgae and bacteria are
instrumental for bacterial biofilm formation. Spkcialgae-bacteria
interactions have largely been neglected so faabeipresumably as
Important as, for instance, nutrient supply andigrgin controlling the
development of microphytobenthic biofilms (Grossatral. 2006). In our
work, it is striking that the active diatom bounB & fraction showed two
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opposite effects on bacterial biofilm formationpdading on the strains. One
can hypothesize th&t. phylleptawould favor some satellite bacteria for its
own (or reciprocal) benefit and, conversely, woinkdibit attachment of
others, useless or detrimental to diatom cells (Aatial. 2012). Bound EPS
might be closely involved into the formation of tetracellular matrix of the
microphytobenthic biofilm, facilitate attachmenttbe cell to a surface, and
also improve cell-cell interactions between baetamd diatoms (Lubarsky et
al. 2010; Pierre et al. 2012). It strongly sugg¢sesexistence of complex
physico-chemical interactions between microorgasigmmatural biofilms,
especially in our model, i.e., the transitory blimfforming at the surface of
sediment of intertidal mudflats during daily emersi These interactions
could allow a process of selection/adaptation tangfng environmental
conditions, and populations able to co-exist oexploit algal/bacterial
species would be promoted, as it has been showestoaries (Haynes et al.
2007).

The study of marine biofilms raises a growing ietgr especially for human
activities, and marine diatoms are considered tagciitve sources of new
active compounds for biotechnological applicati¢fs et al. 2015).
Flavobacteriumspecies are important pathogens in aquacultutmget
(Duchaud et al. 2007) and have been detected umsindl, domestic, and
medical environment biofilms (Basson et al. 2008 that framework, it is of
particular interest to identify a diatom secretaimat strongly inhibits the
biofilm formation by aFlavobacteriumstrain. On the contrarghewanellasp.
IV3014 andRoseobactesp. 1IV3009, whose biofilm formation is positively
impacted byN. phylleptasecretome, belong to genera known to be dominant
among the pioneers in marine environments (Saléh €013). It is crucial to
understand the first steps of marine biofilm fonmatin order to efficiently
prevent biofouling or conversely to stimulate bliwfiformation, which
Improves for instance larval settlement and metamosis of farmed oysters
(Yu et al. 2010). Therefore, the molecules of khehylleptaEPS bound
fraction responsible foshewanellasp. IV3014 oRoseobactesp. V3009
andFlavobacteriumsp. 112003 biofilm stimulation and inhibition,
respectively, need to be identified.
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