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LEARNING SPECKLE SUPPRESSION IN SAR IMAGES WITHOUT GROUND TRUTH:
APPLICATION TO SENTINEL-1 TIME-SERIES

Alexandre Boulch, Pauline Trouvé, Elise Koeniguer, Fabrice Janez, Bertrand Le Saux

DTIS, ONERA, University Paris Saclay, F-91123 Palaiseau, France

ABSTRACT

This paper proposes a method of denoising SAR images,
using a deep learning method, which takes advantage of the
abundance of data to learn on large stacks of images of the
same scene. The approach is based on the use of convolu-
tional networks, used as auto-encoders. Learning is led on a
large pile of images acquired on the same area, and assumes
that the images of this stack differ only by the speckle noise.
Several pairs of images are chosen randomly in the stack, and
the network tries to predict the slave image from the mas-
ter image. In this prediction, the network can not predict the
noise because of its random nature. Also the application of
this network to a new image fulfills the speckle filtering func-
tion. Results are given on Sentinel 1 images. They show that
this approach is qualitatively competitive with literature.

Index Terms— SAR, speckle filtering, deep learning

1. INTRODUCTION

Since radar imaging systems are coherent, radar images are
corrupted by ”speckle” noise and thus look visually very
noisy. Denoising Synthetic Aperture Radar images is a com-
mon pre-processing and has been the object of several works.
However most of existing methods rely either on a strong sta-
tistical modeling of the SAR signal, or on machine learning
requiring a non-noisy ground truth or objective image, which
is not always available. Moreover, the specificity of this data
still makes this type of work marginal.

Whether in computer vision or radar remote sensing liter-
ature, we can generally discriminate the same categories of al-
gorithms. The methods the most used and easy to implement
are based on the observation of the local neighborhood of the
pixel. This is the case with local mean or median, bilateral fil-
tering [1] or the σ filter [2] and its SAR counterpart for multi-
plicative noise [3]. Another family of approaches searches for
similar patches and operates a weighted sum of these patches
to reduce the noise. It is the case for NL-means [4] varia-
tion for SAR data NL-SAR [5]. In BM3D [6], the authors
group similar patches and denoise globally at group level. An
extension to SAR, SAR-BM3D, is proposed in [7] by taking
into account the multiplicative aspect of radar noise. Finally,
more recent approaches tackle the denoising problem using

machine learning tools, particularly deep convolutional neu-
ral networks. It is a very active field, among the papers we
can quote the convolutional version of BM3D [8] or the net-
work of [9] which only uses seven dilated convolutions and
reaches very high performances. However, this type of meth-
ods makes assumptions about the noise model and has never
been tested to our knowledge on SAR images. Moreover, it
does not benefit from the redundancy of time series.

Today, SAR image series as Sentinel 1 become easily ac-
cessible. The amount of temporal acquisitions on a same site
is a benefit to consider to improve quality of images. In this
paper we investigate the gain of denoising approaches for
multitemporal SAR images, in particular for change detec-
tion.

Our contribution is two-fold. First, we present a denoising
method, based on the deep neural networks [9] trained with-
out ground truth, but only using data redundancy of time se-
ries of SAR images. We also introduce a local histogram loss
that improves visual performances of our networks, and com-
pare our results with alternative methods. Second, we show
that change detection algorithms can benefit from speckle fil-
tering.

The paper is organized as follows: section 2 presents the
denoising method and the training process and section 3 ex-
poses the results of speckle removing on single image denois-
ing and change detection.

2. AUTOENCODED DENOISER

Let X be an observed image, and X∗ be the objective image,
for any noise model. We also suppose that:

X = f(X∗,Σ) (1)

where f is a noise model function, and Σ is the noise compo-
nent, supposedly independent from X∗. Our goal is to create
a transfer function Φ such that Φ(X) ≈ X∗. This Φ func-
tion is learned using our neural network. Please note that one
strength of our approach is that we never use an explicit ex-
pression of the noise model.

In the following paragraph, we illustrate the method with
additive noise (X = X∗ + Σ) and multiplicative noise (X =
X∗ ∗ Σ).



Unsupervised denoising. The usual approach to denoise by
machine learning is, given an image without noise (the objec-
tive), add noise to create the noisy image and try to revert
the process by a supervised machine learning method. In this
study, we do not have access to X∗, so supervised machine
learning techniques cannot be directly applied. To circumvent
this issue, one could use supervised learning by predicting the
a temporal mean over the area, but that would require a large
stack, i.e large temporal horizon and changes between an im-
age and the target may not be considered as inexistent (e.g.
for vegetation). Instead we exploit the small revisit time of
Sentinel-1. Given two acquisitions X1 and X2, for additive
and multiplicative noise model:

X1 =X∗
1 +Σ1andX2 =X∗

2 +Σ2 =X∗
1 +(X∗

2 −X∗
1 )+Σ2

(2)

X1 =X∗
1 ∗Σ1 and X2 =X∗
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∗
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where (X∗
2 − X∗

1 ) (resp. (X∗
2/X

∗
1 )) is the structural change

image, representing the changes between X1 and X2 not re-
lated to noise.

First, given the small revisit time of a Sentinel-1 time se-
ries, we suppose the change are small between two consecu-
tive dates: (X∗

2 −X∗
1 ) = 0 (resp. X∗

2/X
∗
1 = 1).

Second, considering the two noise vectors Σ1 and Σ2 are
independent realizations of the noise process, a statistical es-
timator aiming at predicting X2 given X1 cannot do better
than predict X∗

2 . Following these assumptions, we train our
estimator to predict X2 given X1.

Histogram loss. The loss criterion is the objective function
of the optimization process for the previously described net-
work. It should reach a minimum value when predicted values
and objective values are similar.

`2 and `1 losses are widely used for regression task. How-
ever these losses deal with pixels independently without tak-
ing into account the local arrangement of the pixel values, i.e.
if `i losses are first order penalization (value penalization), we
would like a second order penalization (local order penaliza-
tion).

Given a pixel x ∈ X and its neighborhood Nx, the his-
togram Hk(Nx) (with k bins) is a good representation of the
local distribution around x. Our is simply defined by a `2 dis-
tance on the histograms vector. The gradients for back prop-
agation is the differentiation of the previous distance.

Due to the very wide value range, the histograms are com-
puted without scales (first bin at min value, last bin at max
value). To retrieve the missing location information (value
information at x), we define our loss as a weighted sum of `1
(for location) and histogram loss (for local arrangement):

L(Φ(X), X∗)=(1−λ)‖X−X∗‖1+λ‖H(X)−H(X∗)‖2 (4)

Inference and training processes. The input of the net-
work is normalized (mean and standard deviation are memo-

rized to restore the original dynamics). In order to scale up to
large images, we do not feed the network with the whole im-
age but patches. To prevent border effect, we use sub-images
with an overlap of half the patch size. The result Y is then
convoluted with a mask M (linear ramp with zero value at
border):

Y = (Φ(X) . σ(I) + Ī) ∗M (5)

where X is the input of the network, I the original input
image and, Ī the mean of I and σ(I) its standard deviation,
and ∗ denotes the convolution.

To train the network, given a stack of registered Sentinel-
1, we generate on the fly patch pairs by randomly picking
sub-images in one image and the time-ordered next or previ-
ous one with the same polarization. We also randomly flip or
transpose the image for data augmentation.

3. EXPERIMENTS

Data and networks. A Sentinel-1 stack composed of 64
images with both VH and VV polarization has been trained
in a unsupervised fashion. The footprint is around Saclay at
the South of Paris, images were acquired between 2015 and
2017. Results will be presented both on Saclay for the auto
encoder and on another stack centered on Valencia. For the
experiments we use the network from [9] (referred in the fol-
lowing as DCNN for Dilated Convolutional Neural Network)
trained in a residual fashion. It does not operate a dimen-
sion reduction and use only seven convolutions, resulting in
a lightweight network. Results will also be compared with
another deep approach, Unet [10], and two classical temporal
approaches based on patches but without training, BM3D and
SAR-BM3D.

Denoising. Figure 1 presents different results obtained on
a detail of the training set (a) and the temporal mean over
all the training set (b). Except for the BM3D (c) and SAR-
BM3D (d), the dynamic is the same on each image, black
(resp. white) is set to the 2nd percentile (resp. 98th percentile)
of the original image. The DCNN network has been trained
with different loss functions: `2, `1 and Histogram loss (λ =
0.9, 3 bins in histograms and a radius of 3 for neighborhood).

Compared to the original image, applying our network
improves greatly the visual aspect of the images. The DCNN
performs well with `1 (g) and Histogram loss (h). `2 loss (e)
leads to more blurry images. The same method applied with a
different architecture, Unet [10], trained with `1 loss performs
worse than DCNN (f). The network succeeds in removing the
noise while keeping the bright pixels corresponding to reflec-
tors such as human structures. The histogram loss on DCNN
removes greatly the bright halo around scatterers, sometimes
hallucinating very dark pixel around the bright point.



(a) Original image. (b) Temporal mean.

(c) BM3D with 10 as std. (d) SAR-BM3D.

(e) Unet, `2 loss. (f) Unet, `1 loss.

(g) Dilated CNN, `1 loss. (h) Dilated CNN, Histo. loss.

Fig. 1. Detail of Saclay stack original and processed with
DCNN, different loss functions and other alternative ap-
proaches.

For comparison with existing methods, we have also run
BM3D and SAR-BM3D on the same image. The standard
deviation parameter of BM3D has been set to 10 and the in-
put is the log image because it has given better results. In
both cases, the result is noisier than ours. This can partly
be explained by the differences between the Sentinel-1 and
the data they were developed for: optical data (BM3D) and
higher resolution SAR, e.g. TerraSAR-X (SAR-BM3D).

Figure 2 presents the results on Valencia, a scene not part
of the autoencoding set (red and blue channels for VV and
green channel for VH). Most of the noise has been removed,
e.g. around the harbor. However, dense urban areas tend to
be smoothed. In our opinion, this is the result of three phe-
nomena. First, the training set is not representative: it does
not contain dense urban area and has no variability in acquisi-

(a) Original image. (b) DCNN, Histo. loss.

Fig. 2. Detail of Valencia original (left) and denoised (right).

tion parameter such as incidence angle. Second, it only con-
tains one scene, the network may have over-fitted. Finally, the
training set is in SLC geometry while Valencia scene is GRD
geometry. Still the approach proved robust to various changes
in the scene.

Multi-temporal data processing Speckle filtering can also
be considered to improve the performance of change detec-
tion or activity detection in time series. Also, we considered
the impact of the DCNN filtering process for two classic sce-
narios: bi-date change detection and activity detection on the
entire stack.

For the first case, we consider the first and the last image
of the stack, we compute a RGB color composition, and also
the ratio C of equation (6). For the second case, we com-
pute the temporal coefficient of variation γ, calculated on the
whole stack, equation (7), where µ and σ are the temporal
mean of the backscattered amplitude, and standard deviation.

C = min(
X1

X2
,
X2

X1
) (6) γ =

σ

µ
(7)

The different results are presented in figure 3, both with-
out and with filtering, on an area of Saclay that contains
mostly cultivated fields.

Regarding the change detection between two images, the
colored composition clearly shows the effects of smoothing
on the various cultivated crops. The ratio criterion is much
more contrasted after the filtering than before, revealing more
easily changes.

The statistics of the coefficient of variation are completely
modified by the filtering. It is known that for a classical
speckle distribution such as Nakagami law, this coefficient
is constant and depends only on the Equivalent Number of
Looks. Indeed, without filtering, we find that its statistical
distribution is uni-modal all over the image. It is therefore
difficult to extract the changes. With filtering, the distribu-
tion of this coefficient becomes bimodal: it is then much eas-
ier to extract changes by thresholding, mainly the fields. In
any case, removing the noise greatly helps the interpretation,
particularly for changes on natural areas such as agricultural
areas. Finally, figure 3(d) shows the change map after thresh-
olding using simple mean / standard deviation for raw data



and Otsu’s method [11] for the bimodal filtered product.

(a) Red: I1, Cyan: I2 (b) Ratio Criterion C

(c) γ (d) Change map.

Each thumbnail contains both a result without filtering on the top
and with filtering on the bottom. (a) Image Pair composition. Red:
I1, cyan: I2, (b) Ratio Criterion between I1 and I2, (c) Temporal

Coefficient of Variation on N images, (d) Threshold on (c).

Fig. 3. Detail of Saclay products.

4. CONCLUSION

An original method to learn a denoising convolutional neural
network has been presented. The network is trained in an au-
toencoder fashion by trying to predict another image of the
same temporal stack. The network fails to predict the random
noise of the objective image, producing a denoised version of
the input image. It is therefore envisaged to extend the train-
ing set from one time series to multiple in different places (ur-
ban, agricultural, mountains . . . ) and acquisition conditions
(incidence, sensors) to improve robustness and generality of
the approach. We also plan to test simulated data allowing us
to provide quantitative results.
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