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Following the recent determination of the Al3AuIr structure, a new ternary

phase has been identified in the Al–Au–Ir phase diagram. It has a chemical

composition Al9(Au;Ir)4 with an apparently low gold content. Its crystal

structure has been determined with single-crystal X-ray diffraction. The new

compound crystallizes in the tetragonal crystal system and has been successfully

solved in space group I41/acd (Pearson symbol tI104) with lattice parameters a =

8.6339 (2) and c = 21.8874 (7) Å. Atomic environments are described as well as

similarities with the BGa8Ir4 compound.

1. Introduction

The Al–Ir system has several intermetallic compounds in the

Al-rich part of the phase diagram: Al9Ir2, Al45Ir13, Al28Ir9,

Al2.75Ir and AlIr (Okamoto, 2009). The crystal structures of

the compounds in this system can be of great complexity.

Indeed, the Al45Ir13 and Al28Ir9 compounds crystallize in their

own structure type, both containing 236 atoms in their

respective unit cell. The Al–Au system also includes several

intermetallic compounds across the whole range of the phase

diagram: Al2Au, AlAu, AlAu2, Al3Au8 and AlAu4 (Okamoto,

1991). The crystal structures of these compounds are simpler

than those from the Al–Ir system with the exception of the

Al3Au8 phase which has 132 atoms in the unit cell (In3Yb8

structure type).

Unlike the two Al–Ir and Al–Au systems, Au and Ir are not

miscible and do not form any intermetallic compound.

According to Dubois & Belin-Ferré (2011), structurally

complex metallic alloys (CMAs) are likely to be found in

ternary systems like Al–Au–Ir in which two transition

elements are immiscible. CMAs are of great interest as they

exhibit unique properties that differ from those of their main

constituents or structurally simpler compounds. Recently,

investigation of the Al–Au–Ir system has revealed the exis-

tence of the Al3AuIr compound (Kadok et al., 2015). This

compound is of the Ni2Al3 structure type and exhibits a split

Al atomic position originating from the mixed occupancy of

another Au/Ir atomic position. Ab initio calculations suggested

a Hume–Rothery stabilization mechanism for this Al3AuIr

compound. The present report follows the exploration of the

Al–Au–Ir system and introduces the new Al9(Au;Ir)4

compound. The crystal structure of this new ternary phase has

been determined with single-crystal X-ray diffraction and will

be presented and discussed.
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2. Experimental details

A sample weighing 0.3 g with a nominal composition of

Al69Au3Ir28 was first prepared by arc melting under 50 kPa of

argon from materials of high purity. The sample was inverted

and remelted several times to ensure homogeneity. A mass

loss of about 2% occurred due to the known evaporation of Al

during the synthesis. The resulting ingot was deposited in a

capped alumina crucible, sealed in an evacuated quartz tube

filled with 70 KPa of an He 90%/H2 10% gas and annealed at

1173 K for 336 h. Characterization of the phases has been

carried out using powder X-ray diffraction (PXRD) on a D8

Advance Bruker diffractometer using Cu K�1 radiation (� =

1.54056 Å). Single-crystal X-ray diffraction (SC-XRD) data

were collected on a Bruker Kappa APEX-II diffractometer

equipped with a mirror monochromator and a Mo K�
microfocus source (I�S, � = 0.71073 Å). The APEX2 program

package (Bruker, 2004) was used for the cell refinements and

data reductions. The crystal structure was solved using direct

methods and refined with the SHELXL-2013 program (Shel-

drick, 2008). Semi-empirical absorption correction (SADABS;

Krause et al., 2015) was applied to the data. The sample was

also mechanically polished to a maximum grain size of 0.25 mm

and micrographs were obtained with scanning electron

microscopy (SEM) in a Philips XL30S-FEG. Local chemical

compositions were obtained in SEM with energy-dispersive

X-ray spectroscopy (EDS) and with wavelength-dispersive

X-ray spectroscopy (WDS) on a Jeol 8530-F electron

microprobe.

3. Results and discussion

3.1. General observations

The PXRD pattern of the sample after the heat treatment is

presented in Fig. 1. This pattern can be partially indexed with

diffraction peaks from the two known AlIr and Al3AuIr

compounds. The remaining reflections cannot be attributed to

any other known Al–Ir or Al–Au binary compound, hence

suggesting the stabilization of a new ternary phase. The

presence of three phases could be confirmed with SEM

analysis. Fig. 2 shows a SEM micrograph of a section of the

sample taken in back-scattered electron (BSE) mode. Two

phases in two different shades of grey can be identified on this

picture. Black areas are pores in the sample.

From EDS analysis, the light grey and dark grey phases

correspond, respectively, to the Al3AuIr compound and to a

ternary Al–Au–Ir composition with a low gold content. As

determined by SEM analysis, the latter is the dominant phase
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Figure 2
A scanning electron micrograph of the polished sample obtained in BSE
mode. The light grey phase corresponds to Al3AuIr and the dark grey one
to the new ternary compound. Black areas are pores.

Table 1
Experimental details for Al9(Au;Ir)4.

Crystal data
Chemical formula Al72Au2.5Ir29.5

Mr 8104.88
Crystal system, space group Tetragonal I41/acd
Temperature (K) 296
a, c (Å) 8.6339 (2), 21.8874 (7)
V (Å3) 1631.58 (9)
Z 1
Radiation type Mo K�
� (mm�1) 66.45
Crystal size (mm) 0.05 � 0.05 � 0.01

Data collection
Diffractometer Bruker APEX-II QUAZAR CCD
Absorption correction Multi-scan†
Tmin, Tmax 0.274, 0.749
No. of measured, independent and

observed [I > 2�(I)] reflections
44 132, 1629, 1177

Rint 0.064
(sin �/�)max (Å�1) 0.983

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.017, 0.043, 1.13
No. of reflections 1629
No. of parameters 35

w = 1/[�2(Fo
2) + (0.0139P)2

+ 16.567P] where P =
(Fo

2 + 2Fc
2)/3

��max, ��min (e Å�3) 4.05, �1.85

† SADABS 2014/5 (Krause et al., 2015).

Figure 1
PXRD pattern of the annealed sample obtained with Cu K�1 radiation
(� = 1.54056 Å). Aside from the known AlIr and Al3AuIr phases, the
remaining peaks correspond to the new ternary compound.



in agreement with the relatively intense unknown diffraction

peaks found in the PXRD patterns. The presence of the AlIr

compound could also be confirmed in another area of the

sample. WDS has been carried out in several regions of the

sample containing the new ternary phase in order to obtain a

precise chemical composition. The measurements (200 points)

lead to an average composition of Al68.5(2)Au2.4(2)Ir29.1(2).

3.2. Crystal structure analysis

A single crystal suitable for data collection was obtained by

crushing the sample that provided the material for SEM

analysis. Evaluation of the data set reveals a tetragonal unit

cell with parameters a = 8.6339 and c = 21.8874 (7) Å.

Because of the very similar scattering factors of Au and Ir,

these atoms could not be differentiated when solving SC-XRD

data and thus were considered only as Ir atoms. The crystal

structure was successfully solved by direct methods in the

tetragonal space group I41/acd with 104 atoms in the unit cell.

The reliability factors of this structure model are R1(all) =

2.5% and wR2(all) = 4.32%. From the chemical composition of

Al68.5Au2.4Ir29.1 given by WDS and considering the 104 atoms

per unit cell given by the structure model, an average of 2.5 Au

atoms is expected within the unit cell of this compound. This is

consistent with a statistical distribution of the

Au atoms on the Ir atomic positions, a

feature expected for transition metals (TM)

having a difference of only two electrons. A

similar case of statistical distribution of Au/Ir

atoms on the same atomic position was found

in the Al3AuIr crystal structure (Kadok et al.,

2015). Thus, the crystal structure of the new

ternary phase has been refined considering

that the TM sites were occupied with a mixed

Au/Ir content. The occupancy ratio has been

fixed to the value given by the WDS

composition, i.e. considering 2.5 Au atoms

among the 104 atoms of the unit cell which

leads to a Au/Ir occupancy ratio of 0.08/0.92.

Reliability factors did not significantly

change after this refinement compared with

the model considering only Al and Ir atoms.

As given in the crystallographic data infor-

mation in Table 1, the final chemical formula for this new

compound is Al9AuxIr4�x, x = 5
16. Considering the mixed Au/Ir

occupancy at certain atomic positions, the composition of this

new compound is referred to as Al9(Au;Ir)4. However, during

the exploration of the Al–Au–Ir system, this new compound

could not be found with a gold content much higher than

2.5%, hence suggesting a narrow homogeneity range.

The atomic positions and isotropic displacement para-

meters are listed in Table 2 and anisotropic displacement

parameters in Table 3. In the structure of Al9(Au;Ir)4, the

heavy atoms of Au and Ir are distributed in two 16-fold atomic

positions. These two positions are each coordinated with a 9-

Al polyhedron, both constituted of four Al1, four Al2 and one

Al3 atoms. They can both be described by comparable capped

quadratic prisms, one being slightly distorted compared with

the other one. A representation of these atomic environments

is depicted in Fig. 3 and a whole unit cell is shown in Fig. 4.

The isomorphic structure is found for the BGa8Ir4

compound (Kluenter & Jung, 1995). Compared with the

Al9(Au;Ir)4 compound reported here, the Ir atoms in BGa8Ir4

are located at the 16d and 16f atomic positions (here Au1/Ir1

and Au2/Ir2, respectively), the Ga atoms at the two 32g

positions (here Al1 and Al2) and the B atoms at the 8b

positions (here Al3). As for the Ir—B bonds in BGa8Ir4, Au1/

Ir1—Al3 and Au2/Ir2—Al3 are the shortest bonds in

Al9(Au;Ir)4 (see Table 4). The similarity between these two

crystal structures is not too surprising since B, Al and Ga

belong to the same column of the periodic table. It is known

that, within a given ternary system, substituting a TM or a

metalloid element by an element of the same column of the

periodic table can lead sometimes to an isomorphic structure

(Tsai et al., 1988).

The Al9(Au;Ir)4 compound reported here has a very low Au

content, i.e. close to a binary Al–Ir compound. However, there

are no similarities found with other crystal structures present

in the Al–Ir system, although atomic positions of TM in

Al9(Au;Ir)4 are shared by both Au and Ir, having a difference

of two electrons. The requirement of partial substitution of Ir
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Table 2
Fractional atomic coordinates and equivalent isotropic displacement parameters for
Al9(Au;Ir)4.

Atom Site x y z Ueq (Å2) Occupancy

Au1/Ir1 16d 0 1
4 0.01467 (2) 0.00316 (4) 0.08/0.92

Au2/Ir2 16f 0.19858 (2) 0.44858 (2) 1
8 0.00368 (3) 0.08/0.92

Al1 32g 0.04687 (12) 0.03071 (12) 0.31109 (4) 0.0063 (2) 1
Al2 32g 0.27779 (12) 0.19958 (12) 0.19068 (5) 0.0068 (2) 1
Al3 8b 0 1

4
1
8 0.0060 (3) 1

Figure 3
Coordination polyhedra around the Au1/Ir1 (left) and Au2/Ir2 (right)
positions, having a twofold symmetry along the c and a axes, respectively.

Table 3
Anisotropic atomic displacement parameters (Å2) for Al9(Au;Ir)4.

Atom U11 U22 U33 U12 U13 U23

Au1/Ir1 0.00365 (14) 0.00361 (13) 0.00224 (5) 0.00039 (3) 0 0
Au2/Ir2 0.00358 (4) U11 0.00390 (5) 0.00009 (3) 0 0
Al1 0.0084 (4) 0.0049 (4) 0.0057 (4) 0.0003 (3) 0.0004 (3) 0.0012 (3)
Al2 0.0049 (4) 0.0091 (4) 0.0064 (4) 0.0003 (3) �0.0010 (3) �0.0015 (3)
Al3 0.0080 (4) U11 0.0020 (6) �0.0043 (5) 0 0



by Au to stabilize this new structure may either have an

electronic or an entropic origin. A Hume–Rothery-type

stabilization mechanism is indeed frequently observed in Al–

TM compounds in which a Fermi sphere–Brillouin zone

interaction plays a key role to lower the total energy of the

system. In this case, the Hume–Rothery condition 2kF = Khkl

must be satisfied for some strong Bragg planes (Massalski &

Mizutani, 1978; Trambly de Laissardière et al., 2005). The

Fermi vector can be estimated within a free electron model

approximation and assuming an electron valence of +3 and +1

for Al and Au, respectively. A negative valence of �1.6 is

attributed to Ir by Raynor (1949) while a more recent

approach developed by Mizutani & Sato (2017) gives a value

of +1.6. It leads to 2kF = 2.88 Å�1 or 2kF = 3.35 Å�1, respec-

tively. These values are close to K040 (2.91 Å�1) and K228

(3.09 Å�1) in the former case and close to K224 (3.45 Å�1) in

the latter case, all of these Bragg planes producing strong

reflections. This suggests that the Hume–Rothery condition

may be satisfied. However, the average number of valence

electrons per atom is only weakly modified by the Au/Ir

substitution (only 2.5 Au atoms per unit cell) and the Fermi

wavevector is not significantly affected (it changes by only a

few 10�2 Å�1). Therefore the requirement for partial Ir/Au

substitution is probably not of electronic origin but rather

entropic.

A comparable situation is found in the Al–Si–Ir system.

Ongoing work is revealing the existence of a new ternary

compound where Si atoms are statistically distributed among

the Al atomic positions (Kadok et al., 2019). The latter also has

a low content of Si, an element which has one electron more

than Al. Further details concerning the stability of such a

compound will be given in an upcoming report.

4. Conclusion

Al9(Au;Ir)4 is the latest ternary compound reported for the

Al–Au–Ir system. Just as for Al3AuIr, the atomic structure

shows a statistical distribution of the Au and Ir atoms on the

same atomic positions. This phenomenon is likely to arise from

the close chemistry between these two elements which differ

by only two in the number of electrons they possess. With 104

atoms in a tetragonal crystal system, the Al9(Au;Ir)4

compound is isostructural to BGa8Ir4, with well-defined

atomic clusters of Al surrounding TM atoms. The exploration

of the Al-rich side of the Al–Au–Ir system will be pursued to

unveil possible additional ternary compounds.
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Dubois, J.-M. & Belin-Ferré, E. (2011). Editors. Complex Metallic

Alloys: Fundamentals and Applications. Weinheim, Germany:
Wiley-VCH Verlag GmbH & Co.

Kadok, J. (2019). In preparation.
Kadok, J., de Weerd, M.-C., Boulet, P., Gaudry, E., Grin, Y., Fournée,

V. & Ledieu, J. (2015). Inorg. Chem. 54, 7898–7905.
Kluenter, W. & Jung, W. (1995). Z. Anorg. Allg. Chem. 621, 197–200.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.

Appl. Cryst. 48, 3–10.
Massalski, T. & Mizutani, U. (1978). Prog. Mater. Sci. 22, 151–262.
Mizutani, U. & Sato, H. (2017). Crystals, 7, 9.
Okamoto, H. (1991). J. Phase Equilib. 12, 114–115.
Okamoto, H. (2009). J. Phase Equilib. Diffus. 30, 206–207.
Raynor, G. V. (1949). Prog. Met. Phys. 1, 1–76.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Trambly de Laissardière, G., Nguyen-Manh, D. & Mayou, D. (2005).

Prog. Mater. Sci. 50, 679–788.
Tsai, A., Inoue, A. & Masumoto, T. (1988). Jpn. J. Appl. Phys. 27,

L1587–L1590.

research papers

52 Joris Kadok et al. � A new ternary compound with the BGa8Ir4 structure type Acta Cryst. (2019). B75, 49–52

Figure 4
Distribution of the Al polyhedra built around the Au1/Ir1 (left) and Au2/
Ir2 (right) atomic positions in the unit cell of the Al9(Au;Ir)4 compound
reported here. Au1/Ir1 polyhedra are connected by sharing Al3 positions
along the c axis and Al1–Al1 or Al2–Al2 edges in the (ab) plane. Au2/Ir2
polyhedra are only connected in the (ab) plane by sharing Al3 positions
or Al1–Al2 edges.

Table 4
Main interatomic distances for Au1/Ir1 and Au2/Ir2 atoms in Al9(Au;Ir)4.

Atoms Distance (Å)

Au1/Ir1—2Al1 2.5491 (10)
Au1/Ir1—2Al1 2.6589 (10)
Au1/Ir1—2Al2 2.5481 (10)
Au1/Ir1—2Al2 2.6262 (10)
Au1/Ir1—1Al3 2.41478 (15)
Au2/Ir2—2Al1 2.6113 (11)
Au2/Ir2—2Al1 2.6364 (10)
Au2/Ir2—2Al2 2.6086 (10)
Au2/Ir2—2Al2 2.6751 (11)
Au2/Ir2—1Al3 2.42465 (14)
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