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Double Hurwitz numbers and multisingularity loci

in genus 0

Maxim Kazarian∗, Sergei Lando†, Dimitri Zvonkine‡

Abstract

In the Hurwitz space of rational functions on CP1 with poles of given orders,

we study the loci of multisingularities, that is, the loci of functions with a given

ramification profile over 0. We prove a recursion relation on the Poincaré dual

cohomology classes of these loci and deduce a differential equation on Hurwitz

numbers.
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1 Introduction

Double Hurwitz numbers count transitive factorizations of the identity permutation in
the symmetric group SK into a product of two permutations with given cycle types and
a given number of transpositions. In topological terms, they enumerate topologically
distinct meromorphic functions f on Riemann surfaces C of a given genus g with
prescribed orders of poles and zeroes and prescribed nonzero simple critical values.
In the case when the genus of C equals g = 0 and one of the two distinguished
permutations is the identity, a closed formula for these numbers was proposed by
Hurwitz more than a century ago. In general, in genus 0 explicit formulas for the
generating function of double Hurwitz numbers are known. In spite of the existence
of such formulas and a variety of modern proofs, many natural questions concerning
these numbers remain open.

Hurwitz’s argument was algebraic, based on the study of combinatorics of the
permutation group. On the other hand, Hurwitz numbers are related to the geometry
of spaces of meromorphic functions and their compactifications, called Hurwitz spaces.
We propose a new recursion for genus 0 double Hurwitz numbers that has a topological
origin: it is derived from cohomological identities on loci of functions with a given
multisingularity, that is, a given ramification profile over one branch point. We expect
that variations of this approach could be adapted to other families of Hurwitz numbers
for which effective formulas are not known at the moment, including those for higher
genus curves.

This paper is a continuation of our project on the study of cohomology classes of
strata in Hurwitz spaces initiated in [7, 8, 12, 13, 10].

Consider a generic map f : X → Y between two smooth compact manifolds.
Given a singularity type α, denote by Xα the locus of points in X where f has a
singularity of this type. Thom’s principle states that Poincaré dual cohomology class
of Xα is a universal polynomial in Chern classes of the map f that only depends on α.
Further, consider the locus Y{α1,...,αk} of points in Y whose preimage contains k points
of given singularity types. This locus is called a multisingularity locus. Kazarian’s
principle states that the Poincaré dual cohomology class of a multisingularity locus
is the push-forward under f of a universal polynomial in Chern classes of f that only
depends on α1, . . . , αk. The universal map over a Hurwitz space does not satisfy the
genericity assumptions for these principles to apply. However it turns out that one
can compute the corrections to the universal polynomials that appear in this case.

1.1 Double Hurwitz numbers

Given a partition λ = (λ1, λ2, . . . ) we denote by ℓ(λ) the number of its parts, by |λ|
the sum of its parts, by |Autλ| the number of permutations of its parts that preserve
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their values, and by pλ and qλ the monomials
∏
pλi and

∏
qλi , respectively. For

instance, if λ = (4, 3, 3, 1, 1, 1), then ℓ(λ) = 6, |λ| = 13, |Aut λ| = 2! · 3!, pλ = p31p
2
3p4,

qλ = q31q
2
3q4.

Let λ and µ be two partitions of a positive integer K. Let g ≥ 0 be an integer
and denote m = ℓ(λ) + ℓ(µ) + 2g − 2. Thus g can be recovered from m and vice
versa. A transitive factorization of genus g and ramification type (λ, µ) is a list of
two permutations σ, ρ ∈ SK and m transpositions τ1, . . . , τm ∈ SK in the symmetric
group SK such that

• the cycle type of σ is λ, the cycle type of ρ is µ;

• the product ρτm . . . τ1σ is the identity permutation;

• the subgroup of SK generated by σ, ρ, and the transpositions τ1, . . . , τm is
transitive.

The double Hurwitz number hg;λ,µ is the number of transitive factorizations as above
divided by K!.

Double Hurwitz numbers can be organized into a natural generating function H ,
which is an infinite power series in two infinite sets of variables, p = (p1, p2, . . . ) and
q = (q1, q2, . . . ), and an additional formal variable β. The coefficient of the monomial
βmpλqµ in H is

1

m! |Autλ| |Autµ|
hg;λ,µ.

The generating function H can be determined, for example, by the so-called cut-
and-join equation [5]

∂

∂β
eH =W eH , W =

1

2

∑

i,j

(
(i+ j) pipj

∂

∂pi+j
+ i j pi+j

∂2

∂pi∂pj

)
.

This equation determines the function H uniquely from the initial conditions
H(0; p, q) =

∑∞
n=1

pnqn
n

. This initial condition indicates that the only degree n map
C → CP1 unramified outside 0 and ∞ is the map CP1 → CP1 given by z 7→ zn.
More explicitly, the series eH can be written as

eH = eβWe
∑ pnqn

n .

The Schur polynomials sλ(p) form an eigenbasis for the operator W , and the
corresponding eigenvalues are given by

w(λ) =
1

2

ℓ∑

i=1

((
λi − i+

1

2

)2
−

(
−i+

1

2

)2)
,

where λ = (λ1, λ2, . . . , λℓ), λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0, see details, for example, in [9].
From this one deduces the so-called Frobenius formula for H , see [11, 14]:

eH =
∑

λ

ew(λ) βsλ(p)sλ(q),
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where the summation runs over the set of all Young diagrams (partitions) λ and sλ
is the corresponding Schur polynomial.

The generating function H possesses interesting integrable properties. In partic-
ular, it satisfies equations of the Toda lattice hierarchy, see [14, 9].

The genus expansion for this function can be obtained by the substitution

~2H(~; ~−1 p; ~−1 q) = H(0)(p; q) + ~2H(1)(p; q) + . . . .

Here the term H(g) enumerates genus g coverings.
Let us collect genus 0 Hurwitz numbers with fixed ramification type λ =

(λ1, . . . , λr) over zero and arbitrary ramification types over infinity into a single se-
ries hλ(q). More precisely, define the series hλ(q) by the expansion

H(0)(p1 + 1, p2, . . . ; q)|β=1 =

∞∑

r=1

1

r!

∑

λ1,...,λr

hλ(q) pλ1 . . . pλr . (1)

Thus the coefficient of qµ in hλ counts the connected genus 0 ramified coverings of
the sphere with

• r marked and numbered zeros of orders λ1, . . . , λr;

• any number of unmarked simple zeros (this is consequence of the shift of variable
p1 by 1);

• a ramification profile µ over ∞;

• only simple branch points outside 0 and ∞.

This coefficient is equal to this number divided by |Aut (µ)| and by the factorial of
the number of simple branch points.

By definition, the function hλ(q) does not depend on the order of the entries
λ1, . . . , λr.

In this paper we derive a differential equation on the functions hλ and a broader set
of generating functions to be defined later. The equation is of topological origin: it is
derived from cohomological information contained in the stratification of the Hurwitz
space by the multisingularity types of the functions. This differential equation allows
one to compute all the double Hurwitz numbers recursively. As far as we can see,
this kind of recursion has never appeared before.

Note that at the moment our method meets a serious obstacle in higher genus,
due to the fact that, contrary to the genus 0 case, higher genus Hurwitz spaces are
smooth orbifolds no longer.

1.2 Hurwitz spaces

The Hurwitz spaces we consider are spaces of meromorphic functions on a rational
curve, with marked poles of prescribed orders. The orders of zeroes are not specified.
Functions with given orders of zeroes form certain subvarieties in the Hurwitz spaces;
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these subvarieties are the strata of the stratification of these spaces with respect to
the multisingularity type. Since zeros and poles play different roles, the ramification
types over 0 and ∞ enter our formulas not in a symmetric way.

The derived relations between the singularity strata are independent of the specific
Hurwitz space whose stratification we study; they are totally determined by the local
degeneration types of the functions involved. In particular, the q-variables, that keep
track of the orders of the poles, are not involved explicitly in our equations for the
generating function.

For any tuple of positive integers κ = (k1, . . . , kn), we denote by Hκ = H(k1,...,kn)

the space of rational functions f(z) with n marked poles of orders k1, . . . , kn, respec-
tively. Two rational functions are equivalent and correspond to the same point of the
Hurwitz space if they can be obtained from each other by a homography z 7→ az+b

cz+d
.

This Hurwitz space is introduced and discussed in detail in [3]. Since we only consider
the case when the source curve has genus zero, we do not indicate the genus in the
notation.

We’ll make use of a generalization of these spaces, namely, for any integer r ≥ 1 we
denote by Hr|κ = Hr|(k1,...,kn) the space that parameterizes functions with n marked
poles of prescribed orders and r extra marked points in CP 1. The marked points that
are not poles are called supplementary marked points. We number the marked points
in the following order: the supplementary marked points are numbered from 1 to r,
while the poles have numbers r + 1, . . . , r + n.

We denote by Hr|κ a natural completion of the space Hr|κ. This is the moduli
space of stable maps from genus 0 curves to CP1 with k preimages of ∞ of prescribed
orders and r more marked points. For more details see [3].

For r+ n ≥ 3, the Hurwitz space is related to the moduli space Mr+n of possibly
singular stable genus zero curves with r+n marked points via the natural projection
π : Hr|κ → Mr+n that takes a rational function to the stabilization of its source
curve.

This projection is an orbifold cone (see [4], Chapter 4 for the definition of a cone,
[3], [15] for the orbifold generalization). The group C∗ of nonzero complex numbers
acts onHr|κ by multiplying functions by constants. Its projectivization PHr|κ, that is,
the space of non-constant C∗-orbits, is a compact orbifold of dimension dimPHr|κ =
ℓ(κ) + |κ|+ r − 3. It carries a natural (rational) fundamental homology class

[PHr|κ] ∈ H2(ℓ(κ)+|κ|+r−3)(PHr|κ)

and the characteristic cohomology class of the C∗-action

ξ = c1(O(1)) ∈ H2(PHr|κ),

where O(1) is the dual of the tautological line bundle of the cone. Here and below
we always consider cohomology groups with coefficients in Q.

Remark 1.1 A particular case that we will encounter in our recursion is r = n = 1.
In this case the moduli space Mr+n = M2 does not exist, and we consider Hr|k as a
cone over the orbifold BZk = {point}/Zk. The projectivization PH1|k is a weighted

5



projective space. Similarly, one can view H0|k as a cone over BZk, but we will actually
never encounter this space.

1.3 Strata and their degrees

Definition 1.2 For every pure dimension subcone Z ⊂ Hr|κ, its degree is defined to
be the intersection number of the subvariety PZ ⊂ PHr|κ with the suitable power of
the class ξ,

degr|κ(Z) =

∫

PZ

ξdimPZ =

∫

PHr|κ

1

1− ξ
⌢ [PZ].

More generally, for any cohomology class α ∈ H∗(PHr|κ), we define its degree as the
number

degr|κ(α) =

∫

PHr|κ

α

1− ξ
.

The degree is a Q-valued linear function on the total cohomology space of the
projectivized Hurwitz space.

In our recursion we will encounter a particular case when Z is included into the
zero section of the cone. In this case we set

degZ =





∑

z∈Z

1

stab(z)
if dimZ = 0,

0 else.

For any tuple of non-negative integers λ = (λ1, . . . , λr), we denote by Xλ =
X(λ1,...,λr) ⊂ Hr|κ the set of functions having a zero of order exactly λi at the i th
supplementary marked point for i = 1, . . . , r. Thus, if λi = 0, then the function f
does not vanish at the i th marked point; if λi = 1 then the function must have a
simple zero at the corresponding point, and so on. Further, we denote by X λ the
closure of X(λ1,...,λr) in Hr|κ. In particular, with this notation we have Hr|κ = X (0,...,0),
and in general X λ is a closed suborbifold of Hr|κ called a multisingularity stratum.

Note that we may consider the same type λ of degeneration of functions in Hurwitz
spaces Hr|κ for different κ = (k1, . . . , kn).

Proposition 1.3 For each tuple λ = (λ1, . . . , λr) of positive integers, the generating
function for the degrees of the singularity stratum X λ in different Hurwitz spaces
coincides with the generating function hλ(q) for the corresponding Hurwitz numbers
defined by Eq. (1):

hλ(q) =
∞∑

n=1

1

n!

∑

k1,...,kn

degr|(k1,...,kn)(X λ) qk1 . . . qkn .

This proposition will be proved in Section 2.1. It shows that computing double
Hurwitz numbers is equivalent to computing the degrees of multisingularity strata in
Hurwitz spaces.
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The Hurwitz space Hr|κ carries natural “tautological” classes ψ1, . . . , ψr. Namely,
the cotangent line at the ith supplementary marked point to the source curve of a
rational function defines a line bundle over Hr|κ denoted by Li, and we set ψi =
c1(Li) ∈ H2(Hr|κ), i = 1, . . . , r. These classes are the pull-backs under the natural
projection π : PHr|κ → Mr+n of the corresponding ψ-classes defined in a similar way
on Mr+n.

To each singularity stratum X λ one can assign the fundamental class [PX λ] of its
projectivization and its “descendants”, obtained by multiplying [PX λ] by monomials
in the ψ-classes ψ1, . . . , ψr.

Definition 1.4 For any two tuples of non-negative integers λ = (λ1, . . . , λr) and
ν = (ν1, . . . , νr), of the same length ℓ(λ) = ℓ(ν) = r, we define the function

xλ,ν(q) =

∞∑

n=1

1

n!

∑

κ=(k1,...,kn)

degr|κ(ψ
ν1
1 . . . ψνrr [PX λ]) qk1 . . . qkn .

The function xλ,ν(q) is invariant under simultaneous permutations of the parts
in λ and ν. We have

hλ(q) = xλ,(0,...,0)(q).

1.4 The recursion

To formulate the recursion, let us introduce a new set of variables ti,j, i ≥ 0, j ≥ 0,
and collect the functions xλ,ν(q) into the following descendant genus zero Hurwitz
potential

X(t, q) =

∞∑

r=1

1

r!

∑

λ=(λ1,...,λr)
ν=(ν1,...,νr)

xλ,ν(q) tλ1,ν1 . . . tλr ,νr .

The original generating function for the genus zero double Hurwitz numbers is related
to the series X(t, q) as follows:

H(0)(p1 + 1, p2, . . . ; q)|β=1 = X(t, q)
∣∣

ti,0=pi (i≥1),
ti,j=0 (j>0 or i=0)

.

Proposition 1.5 We have

x(0,...,0),(ν1,...,νr)(q) =

(
|ν|

ν1, . . . , νr

)
z|ν|,r(q)

where

zd,r(q) =
∑

K,n

1

n!

(
n+ r − 3

d

)
Kn+r−3−d

∑

k1+···+kn=K

n∏

i=1

kkii
ki!
qki.

In [17], an algebra of power series in a single variable has been introduced. This
algebra is generated by two power series, namely,

∞∑

n=1

nn−1x
n

n!
,

∞∑

n=1

nn
xn

n!
.
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This algebra contains all the generating functions for Hurwitz numbers enumerating
ramified coverings of the sphere with fixed degenerate ramification, provided the
degree n of the coverings varies. For ramified coverings of the torus, a similar role is
played by the algebra of quasimodular forms.

The power series zd,r(q) play a similar role in computing double Hurwitz numbers.
Namely, all the series hλ(q1, q2, . . . ) and xλ,µ(q1, q2, . . . ) belong to the algebra gener-
ated by the series zd,r. Note that the series zd,r are not algebraically independent,
they obey certain polynomial relations. We will give a description of this algebra in
a separate paper.

The expression in Proposition 1.5 gives the initial conditions for our recursion. To
formulate the recursion itself, we need the following explicit series in the t-variables:

Ψa,ℓ =
∞∑

k=0

1

k!

∑

ν1+···+νk=ℓ+k−3
λ1+···+λk=a

(
|ν|

ν1, . . . , νk

) k∏

i=1

tλi,νi.

Remark 1.6 The coefficients of Ψ are equal to

(
|ν|

ν1, . . . , νk

)
=

∫

Mℓ+k

ψν11 · · ·ψνkk .

This is the form in which this series appears in the proof of the recursion.

Theorem 1.7 The series X obeys the following differential equations valid for any
s ≥ 0 and m ≥ 0:

∂X

∂ts+1,m

=
∂X

∂ts,m
+ s

∂X

∂ts,m+1

−
∑

ℓ≥1,a≥0

1

ℓ!

∂Ψa,ℓ

∂ts,m

∑

σ1+···+σℓ=a

ℓ∏

i=1

(
σi

∂X

∂tσi,0

)
.

These differential equations provide a recursion for the coefficients of the series X .
The recursion expresses each series xλ,ν(q) with ℓ(λ) = ℓ(ν) = ℓ as a polynomial in
the known series zd,r(q) of Proposition 1.5 with r ≤ ℓ.

The geometric meaning of the recursion will be explained in Section 3.

1.5 Examples

The recursion of Theorem 1.7 translates into polynomial relations between the Taylor
coefficients xλ,ν of the t-expansion of X . Each series xλ,ν is expressed as a polynomial
in similar series of smaller degrees with respect to the grading defined by deg xλ,ν =
|λ|. Thus, due to the initial conditions of the recursion, the series xλ,ν are expressed
as polynomials in the series zd,r of Proposition 1.5. Here are a few first examples for
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the Hurwitz generating series hλ(q) = xλ,(0,...,0)(q):

h(2) = z0,1 + z1,1,

h(3) = z0,1 −
z20,1
2

+ 3 z1,1 + 2 z2,1,

h(4) = z0,1 −
5 z20,1
2

+ 6 z1,1 − 2 z0,1 z1,1 + 11 z2,1 + 6 z3,1,

h(5) = z0,1 −
15 z20,1

2
+

5 z30,1
6

+ 10 z1,1 − 15 z0,1 z1,1 − 2 z21,1 + 35 z2,1 − 6 z0,1 z2,1

+ 50 z3,1 + 24 z4,1,

h(2,2) = −6 z0,1 + z20,1 + z0,2 − 11 z1,1 + 2 z1,2 − 6 z2,1 + 2 z2,2,

h(3,2) = −10 z0,1 + 9 z20,1 + z0,2 − z0,1 z0,2 − 35 z1,1 + 6 z0,1 z1,1 + 4 z1,2 − z0,1 z1,2

− 50 z2,1 + 8 z2,2 − 24 z3,1 + 6 z3,2,

h(2,2,2) = 85 z0,1 − 40 z20,1 − 18 z0,2 + 6 z0,1 z0,2 + z0,3 + 225 z1,1 − 24 z0,1 z1,1 − 51 z1,2

+ 6 z0,1 z1,2 + 3 z1,3 + 274 z2,1 − 84 z2,2 + 6 z2,3 + 120 z3,1 − 54 z3,2 + 6 z3,3.

1.6 Acknowledgements

The first two authors are grateful to the participants of the seminar “Characteristic
classes and intersection theory” at the Department of mathematics, NRU HSE. The
third author is partly supported by the ANR-18-CE40-0009 ENUMGEOM grant.

2 Degrees of strata in Hurwitz Spaces

2.1 Degrees of strata are double Hurwitz numbers

In this section we prove Proposition 1.3, i.e., the equality

hλ(q) =

∞∑

n=1

1

n!

∑

k1,...,kn

degr|(k1,...,kn)(X λ) qk1 . . . qkn .

Proof. The argument is similar to that of [3]. Let m be the number of simple
critical points of a generic rational function in the stratum Xλ, those where the critical
values differ from zero and infinity. This number can be determined by the Riemann–
Hurwitz formula. Then there is a natural map from Xλ to Cm that associates to
a rational function f ∈ Xλ the unordered collection of its m critical values. This
map extends to an algebraic map X λ → Cm called the Lyashko–Looijenga map,
or branching morphism. The target space Cm is the mth symmetric power of the
complex line C. By definition, the Hurwitz number is the degree of this map, that is,
the number of preimages of a generic point. The Lyashko–Looijenga map is, of course,
C∗-equivariant, where C∗ acts on the target Cm with weights 1, . . . , m. It follows that
the Lyashko-Looijenga map descends to a map of projectivizations Λ : PX λ → PCm,
where PCm is the weighted projective space with weights 1, . . . , m. The map Λ has the
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same degree as the Lyashko-Looijenga map itself. Moreover, we have Λ∗O(1) = O(1)
and Λ∗ξ = ξ. Thus the degree of the Lyashko-Looijenga map or of Λ is equal to

deg(Λ) =

∫
PXλ

ξm−1

∫
PCm

ξm−1
= m! degℓ(λ)|κ(Xλ).

The last equality is due to the fact that
∫
PCm

ξm−1 = 1
m!
. We conclude that up

to the factor m!, the Hurwitz number (the left-hand side of the equality) is equal
to the degree of the singularity stratum Xλ. The factorial factor is accounted for
automatically when the numbers are collected into the appropriate generating series.
As a result, the two generating series for the Hurwitz numbers and for the degrees of
the singularity strata coincide.

In the exceptional case n = 1, r = 1, k1 = λ1 = k the stratum X λ is composed
of only one map f = xk and we have m = 0. The corresponding Hurwitz number is
equal to 1/k, which is also the degree of the cone according to Remark 1.1. �

2.2 The initial conditions of the recursion

In this section we compute the degree of the cohomology class ψν11 . . . ψνrr [PX (0,...,0)].
Using this, we determine the generating function x(0,...,0),ν(q) and thus prove Propo-
sition 1.5.

Recall that PX (0,...,0) = PHr|κ. Applying the projection formula to the forgetful
map π : PHr|κ → Mr+n we get

degr|κ(ψ
ν1
1 . . . ψνrr [PX (0,...,0)]) =

∫

PHr|κ

ψν11 . . . ψνrr
1− ξ

=

∫

Mr+n

ψν11 . . . ψνrr π∗

( 1

1− ξ

)
.

The push-forward class π∗
(

1
1−ξ

)
is the so-called total Segre class of the cone Hr|κ →

Mr+n. It is computed in [3]:

π∗

( 1

1− ξ

)
=

∏n

i=1
k
ki
i

ki!

(1− k1ψr+1) . . . (1− knψr+n)
.

Therefore, in this case, the degree of the cohomology class is expressed as an inter-
section number of ψ-classes on Mr+n:

∫

Mr+n

ψν11 . . . ψνrr π∗
( 1

1− ξ

)
=

n∏

i=1

kkii
ki!

∫

Mr+n

ψν11 . . . ψνrr
(1− k1ψr+1) . . . (1− knψr+n)

=
n∏

i=1

kkii
ki!

(
n + r − 3

ν1, . . . , νr

)
(k1 + · · ·+ kn)

n+r−3−|ν|.

The last equality is due to the well-known formula for the intersection numbers of
ψ-classes over Mn (see [16]):

∫

Mn

ψk11 . . . ψknn =

{(
n−3

k1,...,kn

)
if k1 + · · ·+ kn = n− 3,

0 if k1 + · · ·+ kn 6= n− 3.
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It follows that

x0,ν(q) =
∞∑

n=1

1

n!

∑

κ=(k1,...,kn)

degr|κ(ψ
ν1
1 . . . ψνrr [PX λ]) qk1 . . . qkn

=

(
|ν|

ν1, . . . , νr

)∑

K,n

1

n!

(
n+ r − 3

|ν|

)
Kn+r−3−|ν|

∑

k1+···+kn=K

n∏

i=1

kkii
ki!
qki.

This is exactly the formula announced in Proposition 1.5. �

3 From a cohomological relation to the recursion

As explained in the introduction, our recursion formula is a consequence of an identity
in the cohomology ring of the Hurwitz space. In this section we introduce and prove
this identity, then deduce the recursion formula.

3.1 The cohomological identity

Consider the multisingularity variety PX λ1,λ2,...,λr ⊂ PHr|κ. Meromorphic functions
forming this variety vanish at the first marked point together with their first λ1 − 1
derivatives. The subvariety PX λ1+1,λ2,...,λr ⊂ PX λ1,λ2,...,λr is distinguished by the
condition that the next derivative, of order λ1, also vanishes. We will now show that
the derivative of order λi is actually a section of some specific line bundle and its
vanishing locus can be related to the first Chern class of this line bundle.

Let C be a curve, f : C → CP 1 a meromorphic function, and x1 ∈ C a marked
point that is not a pole of f . The quotient of the space of s-jets at x1 by the space of
(s− 1)-jets at x1 is the line T⊗s

x1
C. Thus, if f(x1) = · · · = f s−1(x1) = 0, then f (s)(x1)

is a linear map f (s)(x1) : T
⊗s
x1
C → T0CP

1. Note that this map is well defined only if
all the derivatives of order less than s vanish at x1.

As the function f varies in the Hurwitz space, the tangent lines Tx1C to the source
curves at x1 form the line bundle L∨

1 whose first Chern class is −ψ1. Similarly, for the
projectivized Hurwitz space, the tangent lines T0CP

1 to the target curve at 0 form
the line bundle O(−1) with the first Chern class −ξ. As a corollary, we obtain the
following statement.

Lemma 3.1 Consider the line bundle Hom(L∨⊗λ1
1 ,O(1)) over PHr|κ, whose first

Chern class is c1(Hom(L∨⊗λ1
1 ,O(−1))) = λ1ψ1 − ξ. Then f (λ1)(x1) (the derivative

of the rational function of order λ1 at the first marked point) is a well-defined holo-
morphic section of this line bundle over the multisingularity stratum PX λ1,λ2,...,λr .

The zeroes of the holomorphic section f (λ1)(x1) form a divisor in PX λ1,λ2,...,λr .
The multisingularity stratum PX λ1+1,λ2,...,λr is one of the components of this divisor.
We will see that the section f (λ1)(x1) has a simple vanishing along this component.
In general, however, the zero divisor has many other components formed by functions
with singular source curves. We call these components the boundary components of

11



the zero divisor. Denoting these components by Dα and the vanishing order of the
section along Dα by mα, we obtain a cohomological relation

(λ1ψ1 − ξ)[PX λ1,λ2,...,λr ] = [PX λ1+1,λ2,...,λr ] +
∑

mαDα. (2)

Our goal is now to list all the components Dα of the zero divisor and determine the
vanishing orders mα.

The irreducible components Dα of the zero divisor correspond to certain singu-
larity types of the functions in the family Hr|κ. We start by recalling the description
of singularity types from [10] adapted to our situation, the one in the presence of
supplementary marked points.

Definition 3.2 Let J ⊂ {1, . . . , r} and ℓ be a positive integer such that |J |+ ℓ ≥ 3.
Let σ1, . . . , σℓ be positive integers. We denote by X J ;σ1,...,σℓ

λ1,λ2,...,λr
the locus of meromorphic

functions f ∈ Hr|κ satisfying the following conditions. (i) The source curve C has an
irreducible component C0, called the central component, containing the supplementary
marked points of the set J and no other marked points; the function f vanishes
identically on C0. (iii) The component C0 meets the other irreducible components at
ℓ points; the function f has zeros of orders exactly σ1, . . . , σℓ at these points. (iii) The
function f has zeros of orders exactly λi at the supplementary marked point that are

not in J . We denote by X
J ;σ1,...,σℓ
λ1,λ2,...,λr

the closure of this locus.

The closure X
J ;σ1,...,σℓ
λ1,λ2,...,λr

is a suborbifold of PHr|κ of pure codimension 1 +
∑
σi.

It has many irreducible components corresponding to all possible distributions of the
poles and the remaining supplementary marked points among the ℓ components of

the curve different from the central one. If a function f lies in X
J ;σ1,...,σℓ
λ1,λ2,...,λr

, then its
derivatives of all orders vanish on the central component. Therefore, functions with
nonisolated singularities can appear as the components Dα of (2) if 1 ∈ J . The precise
statement is given in the following theorem. Denote |σ| =

∑ℓ

i=1 σi, |λJ | =
∑

i∈J λi.

Theorem 3.3
a) The stratum PX

J ;σ1,...,σℓ
λ1,λ2,...,λr

lies in the closure of PX λ1,...,λr iff |σ| ≥ |λJ |.

b) The stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

has codimension 1 in PX λ1,...,λr iff |σ| = |λJ |.

c) Assuming this condition is satisfied, the divisor PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

is a component of the

zero locus of f (λ1)(x1) iff 1 ∈ J .

d) In this case the vanishing order of f (λ1)(x1) along PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

equals σ1 · · ·σℓ.

e) The vanishing order of f (λ1)(x1) along PX λ1+1,λ2...,λr equals 1.
f) The section f (λ1)(x1) has no other zeros.

Corollary 3.4 The following relation holds in the cohomology ring of PHr|κ:

[PX λ1+1,λ2,...,λr ] = (λ1ψ1 − ξ)[PX λ1,λ2,...,λr ]

−
∑

J, 1∈J⊂{1,...,r}

∑

σ⊢|λJ |

σ1 . . . σℓ(σ) [PX
J ;σ1,...,σℓ(σ)
λ1,λ2,...,λr

]. (3)

This relation is the precise version of (2).
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3.2 Vanishing loci of fλ1(x1): proof of Theorem 3.3

The statement and the proof are similar to [10], Section 2.1, but the presence of
supplementary points introduces some extra complications. To prove the theorem we
first need to discuss deformations of stable maps in order to give a precise description
of the closure PX λ1,λ2,...,λr in PHr|κ.

Let f ∈ Hr|κ be a stable map. For any point y ∈ C, a connected component X of
f−1(y) that is not a regular point of f is called a ramification locus. Thus a ramifica-
tion locus is either a ramification point of f , or a node of the source curve C of f , or a
stable genus 0 subcurve of C contracted to y. In [10] we introduced standard deforma-
tion spaces for these three types of ramification loci, parametrizing all functions with
the same monodromy as the ramification locus. Deformations of ramification points
are given by polynomials, deformations of nodes by Laurent polynomials, and defor-
mations of contracted curves by rational functions on contracted curves, respectively.
We will recall more precise definitions later.

Proposition 3.5 The neighborhood of f in Hr|κ is canonically decomposed into a
direct product of deformation spaces of the ramification loci of f .

Proof. Draw a disk Dy around every branch point y ∈ C of f so that the disks do
not intersect. A sufficiently small deformation f̃ of f has all of its branch points in
the union of the disks Dy, while over C \ ∪Dy the maps f and f̃ determine the same
nonramified covering. Each connected component of f̃−1(Dy), except disks that map
biholomorphically to Dy, is a small deformation of the corresponding ramification
locus X ⊂ f−1(y).

Conversely, choose a deformation of every ramification locus of f sufficiently small
for all branch points to lie inside Dy. Then the monodromies around Dy of a ram-
ification locus of f and of its deformation coincide. Thus the deformations can be
glued into the graph of f instead of the preimage f−1(Dy), and we obtain a stable
map in the neighborhood of f . �

LetX be a ramification locus of f over 0, that is, X ⊂ f−1(0). Denote by λ(X) the
sum of integers λi over the supplementary marked points i contained in X . Further,
denote by σ(X) the total degree of f in the neighborhood of X . More precisely, if X
is an isolated zero of order λ, then σ(X) = λ. If X is a node and f has ramification
orders σ1, σ2 at the branches, then σ(X) = σ1 + σ2. If X is a union of irreducible
components of C that meet other components at ℓ points at which f has zeros of
orders σ1, . . . , σℓ, then σ(X) =

∑ℓ

j=1 σj .

Definition 3.6 A ramification locus X ⊂ f−1(0) is acceptable if λ(X) ≤ σ(X).

Lemma 3.7 A stable map f lies in the closed stratum PX λ1,λ2,...,λr iff (i) we have
f(xi) = 0 for all i such that λi ≥ 1, and (ii) all ramification loci in f−1(0) are
acceptable.
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Proof. First suppose that f lies in PX λ1,λ2,...,λr . Take a smooth map f̂ ∈

PXλ1,λ2,...,λr close enough to f . The connected components of f̂−1(Dy) are in a one
to one correspondence with those of f−1(y) for any branch point y. Moreover, if X

is a connected component of f−1(0) and X̂ the corresponding connected component

of f̂−1(D0), then X̂ contains the same set J ⊂ {1, . . . , n} of supplementary marked

points as X and the degree of f̂ on X̂ is equal to σ(X). It follows that σ(X) ≥ λ(X).

Indeed, the sum of orders of zeros of f̂ over X̂ cannot exceed its degree. This proves
the “only if” part.

To prove the “if” part, we will use Proposition 3.5. First suppose that every
ramification locus X of f is either a point or an irreducible curve. If X ⊂ f−1(0)
is a curve, it carries a function gX with zeros of orders λi at the supplementary
marked points contained in X (other zeros are allowed) and with poles of orders σj
at the intersection points of X with other components of the curve C (no other poles
are allowed). The acceptability condition ensures that such a function exists. The
functions gX provide a deformation of X . If X ∈ f−1(0) is a supplementary marked
point, it can be deformed by a polynomial with a root of order exactly λi at the marked
point. For all other ramification loci (those that correspond to branch points y 6= 0
and those that do not contain supplementary marked points) choose any deformation.
By Proposition 3.5, this family of deformations determines a deformation of f into
the stratum PXλ1,λ2,...,λr .

Finally, if a ramification locus X is not irreducible, we can consider a family of
smooth curves Xs that tend to X as s → 0. The stable map obtained from f by
replacing X with Xs lies in the closure PX λ1,λ2,...,λr for any nonzero s, hence f lies in
the closure, too. �

Proof of Theorem 3.3.
a) The stratum PX

J ;σ1,...,σℓ
λ1,λ2,...,λr

lies in the closure of PX λ1,...,λr iff |σ| ≥ |λJ |.

Consider a stable map f ∈ PX J ;σ1,...,σℓ
λ1,λ2,...,λr

. It follows immediately from the definition of

PX J ;σ1,...,σℓ
λ1,λ2,...,λr

that the source curve C of f has only one contracted component, namely
the central component of the stratum. This component is acceptable iff |σ| ≥ |λJ |.
Thus (a) follows from Lemma 3.7.

b) The stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

has codimension 1 in PX λ1,...,λr iff |σ| = |λJ |.

Once we know that PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

lies in PX λ1,...,λr , a simple dimension count provides
the codimension.

c) Assuming this condition is satisfied, the divisor PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

is a component of the

zero locus of f (λ1)(x1) iff 1 ∈ J .
This is because f has a zero of order exactly λ1 at xi when i 6∈ J , while it vanishes
identically in the neighborhood of xi when i ∈ J .

d) In this case the vanishing order of f (λ1)(x1) along PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

equals σ1 · · ·σℓ.
The proof repeats that of Lemma 2.1 in [10] with a slight modification due to supple-
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mentary marked points. We give here a rather concise presentation, referring to [10]
for more details.

Let f be a generic stable map in PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

. In particular, the central component
C0 of the source curve of f is smooth, the supplementary marked points are zeros of
orders exactly λi, the other zeros are simple, and all branch points of f except 0 are
simple. According to Proposition 3.5, there is a local chart on the Hurwitz space Hr|κ

in the neighborhood of f that is a product of standard deformation families for the
ramification loci of f . We are going to determine a parametrization of PX λ1,λ2,...,λr in
this chart. By the genericity assumption, any ramification locus over y 6= 0 is just a
simple ramification point. Its deformation family has one parameter corresponding to
moving y in C. Any such deformation keeps f in PX λ1,λ2,...,λr . Every supplementary
marked point xi with λi ≥ 2 and i 6∈ J is a ramification locus. The corresponding
deformation family is the space of polynomials of degree λi. Any such deformation is
transversal to the stratum PX λ1,λ2,...,λr , since it does not preserve the zero of order λi
at xi. Thus, in the parametrization of the stratum PX λ1,λ2,...,λr , all the parameters
of the deformations must be set to 0. Finally, the most important ramification locus
is the central component X = C0. Its deformation family has moduli parameters,
corresponding to local coordinates in the moduli space M|J |+ℓ on a neighborhood of
the curve C0, and smoothing parameters, describing the ways to smooth out the nodes
where C0 meets the rest of the curve. Changing the moduli parameters always keeps
f in the stratum PX λ1,λ2,...,λr . The smoothing parameters were described in [3]. They
are ui, 1 ≤ i ≤ ℓ and aij, 1 ≤ j ≤ ℓi − 1 if we write the stable map in the following
form:

f(z) =

ℓ∑

i=1

[(
ui

z − zi

)ki

+ ai,1

(
ui

z − zi

)ki−1

+ · · ·+ ai,ki−1

(
ui

z − zi

)]
. (4)

Introduce a coordinate z on the central component C0 of f . Denote by α1, . . . , αℓ
the values of the z-coordinate at the intersection points with the branches. Denote by
βj , j ∈ J the values of the coordinate z at the supplementary marked points. Then
all functions g(z) with zeros and poles of prescribed orders at the points αi and βj
are proportional to

g(z) =

∏
j∈J(z − βj)

λj

∏ℓ

i=1(z − αi)σi
.

We rewrite g in the form (4) and denote by ūi, āi,j the values of the coefficients ui
and aij in this expansion.

Let K = LCM(σ1, . . . , σℓ) and ri = K/σi for 1 ≤ i ≤ ℓ. Then the stratum
PX λ1,...,λr is parametrized in coordinates ui and aij as follows:

ui = ζic
riūi, aij = ζji c

jriāij .

Here (ζ1, . . . , ζℓ) is a collection of roots of unity, ζkii = 1. The action of Z/KZ

on Z/σ1Z × · · · × Z/σℓZ has σ1 · · ·σℓ/K orbits corresponding to local irreducible
components of the stratum PX λ1,...,λr , and we choose one collection of roots of unity
in each orbit. In each component of the stratum, the λ1th derivative at x1 of the
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function corresponding to parameter c is equal to cK · g(λ1)(x1). Thus the vanishing
order of the λ1th derivative at c = 0 equals K for each component. Since there are
σ1 · · ·σℓ/K components, we get the total vanishing order equal to σ1 · · ·σℓ.

e) The vanishing order of f (λ1)(x1) along PX λ1+1,λ2...,λr equals 1.
This is similar to (d), but much easier. Once again, choose a generic f ∈ PX λ1+1,λ2...,λr

and a chart in Hr|κ, containing f , that is a product of standard deformations of
ramification loci. This time the important ramification locus is the supplementary
marked point xi. The corresponding deformation space is

zλ1+1 + a1z
λ1−1 + · · ·+ aλ1 .

The stratum PX λ1,λ2...,λr in this coordinate is parametrized by one variable a as
follows:

(z − a)λ1(z + λ1a).

The derivative of order λ1 at a is just (λ1 + 1)a, thus its vanishing order along a = 0
equals 1.

f) The section f (λ1)(x1) has no other zeros.
Let f be any stable map lying in the closed stratum PX λ1,λ2...,λr and satisfying
f (λ1+1)(x1) = 0. Denote by X the connected component of f−1(0) containing x1.
Let J be the set of marked point contained in X , ℓ the number of points at which X
meets other components of the curve and σ′

1, . . . , s
′
ℓ the orders of zeros of f at these

points. If X = {x1} then we let J = {1}, ℓ = 1, σ′
1 = order of the zero of f at x1.

It follows from Lemma 3.7 that all the connected components of f−1(0), includ-
ing X , are acceptable. In particular, we have

∑
j∈J λj ≤

∑
σ′
i. Choose any list of

integers σi ≤ σ′
i such that

∑
j∈J λj =

∑
σ′
i. If X = {x1} we let σ1 = λ1 + 1. We

claim that f lies in the closure of the stratum PX J ;σ1,...,σℓ
λ1,λ2,...,λr

(or of PXλ1+1,λ2...,λr , if
X = {x1}). To see that apply to f the following sequence of deformations. (i) If X
is not smooth, deform it into a smooth curve. (ii) Deform generically all ramification
loci that do not contain supplementary marked points xi with λi > 0. (iii) Deform
all ramification loci over 0 except X so that each supplementary marked point xi
contained in these loci becomes a zero of order λi. This is possible by Lemma 3.7.
(iv) Deform the function f at the ℓ attachment points to X using the polynomial
deformation families of degree σ′

i to reduce the orders of zeros at these points from σ′
i

to si. Thus we have constructed a stable map f̃ ∈ PX λ1,λ2...,λr arbitrarily close to f

that lies in the stratum PX J ;σ1,...,σℓ
λ1,λ2,...,λr

or in PXλ1+1,λ2...,λr . It follows that f itself lies in
the closure of one of these above strata. �

3.3 Proof of the recursion

The recursion formula of Theorem 1.7 is obtained by multiplying both sides of the
cohomological relation (3) by a monomial in the ψ-classes and taking the degrees of
the corresponding cohomology classes.
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Lemma 3.8 The stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

decomposes into several irreducible compo-

nents each of which is a direct product of the moduli space M|J |+ℓ and ℓ multisingu-
larity strata in Hurwitz spaces. Such components are in a one-to-one correspondence
with the ways to split the set of poles and the set of supplementary marked points
outside J into ℓ unordered parts in such a way that each part contains at least one
pole.

Proof. If we remove the central component from a curve in the stratum

PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

, the remaining part of the curve decomposes into ℓ connected compo-
nents. Each of them contains at least one pole of the rational function f , since
otherwise f would vanish identically on the connected component in question. The
poles and the supplementary marked points lying on these connected components
determine a splitting of the set of poles and supplementary marked points into ℓ
parts.

Pick one splitting like that. Denote by Ki, 1 ≤ i ≤ ℓ, the list of orders of the
poles on the ith connected component. Similarly, denote by Ji, 1 ≤ i ≤ ℓ, the
set of supplementary marked points that lie on the ith connected component. Each
element s of Ji comes with the corresponding label λs. Now, to each set Ji we add
one extra element corresponding to the point where the ith connected component
meets the central component. This element carries the label σi. Thus for each i we
get the complete set of data that determines a multisingularity stratum in a Hurwitz
space. Given ℓ functions in these ℓ Hurwitz spaces and one stable curve in M|J |+ℓ

we can assemble a rational function f from the intersection PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

by gluing
them together in the natural way. Thus we obtain one irreducible component of the

stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

. �

3.4 Proof of the recursion

Recall that we must prove the following differential equation holds for the generating
series X :

∂X

∂ts+1,m

=
∂X

∂ts,m
+ s

∂X

∂ts,m+1

−
∑

ℓ≥1,a≥0

1

ℓ!

∂Ψa,ℓ

∂ts,m

∑

σ1+···+σℓ=a

ℓ∏

i=1

(
σi

∂X

∂tσi,0

)
.

Let’s consider the coefficient of the monomial
∏r

i=2 tsi,mi
|Aut {(si, mi)}|

in this equality. The equality of these coefficients is obtained by multipying the
cohomological identity (3) by ψm1 ψ

m2
2 . . . ψmrr and taking the degree.

The coefficient in the left-hand side is the degree of

[X s+1,s2,...,sr ]ψ
m
1 ψ

m2
2 . . . ψmrr ,

which is the left-hand side of (3) multiplied by ψm1 ψ
m2
2 . . . ψmrr .
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The sum of the coefficients in the first two terms of the right-hand side is the
degree of

[X s,s2,...,sr ](ξ + sψ1)ψ
m
1 ψ

m2
2 . . . ψmrr ,

which is the first left-hand side term of (3) multiplied by ψm1 ψ
m2
2 . . . ψmrr .

Finally, the terms of the last sum are indexed by a choice of ℓ, a choice of a,
a choice of σ1, . . . , σℓ, and a way to decompose the monomial ts2,m2 · · · tsk,mk into a
product of the ℓ+1 monomials J, J1, J2, . . . , Jℓ. The choices of ℓ, a, σ1, . . . , σℓ, and J

determine one term PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

in the summation of the cohomological identity (3),
where a =

∑
i∈J λi. The choice of J1, . . . , Jℓ determines the choice of an irreducible

component of the stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

, as explained in Lemma 3.8. Let us inspect
the contribution to the coefficient of

∏r

i=2 tsi,mi
|Aut {(si, mi)}|

arising from each given choice of ℓ, a, σ1, . . . , σℓ, J, J1, . . . , Jℓ. This contribution is a
product of several factors.

The first factor is
|Aut {(si, mi)}|

|Aut (J)|
∏ℓ

i=1 |Aut (Ji)|
.

This factor accounts for the fact that the supplementary marked point are numbered,
while the corresponding variables tsi,mi in the monomial are not. The factor trans-
forms the number of ways to split the monomial into a product into the number of
ways to split the supplementary marked points into ℓ+ 1 groups.

The second factor is 1/ℓ!. It accounts for the fact that the irreducible components

of the stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

are labelled by unordered set partitions into ℓ parts, while
the terms of the product

ℓ∏

i=1

(
σi

∂X

∂tσi,0

)

are ordered.
The third factor is

∏ℓ

i=1 σi. This factor is present in the cohomological identity (3),
where it represents the vanishing order of the section.

The fourth factor is the coefficient of the series Ψa,ℓ. As explained in Remark 1.6,
this coefficient is the intersection number

∫

M|J|+ℓ

∏

i∈J

ψmii .

This factor appears as we integrate over the moduli of the central component the
product of relevant ψ-classes.

As stated in Lemma 3.8, each irreducible component of the stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

is the product of the moduli space M|J |+ℓ and ℓ multisingularity strata in Hurwitz
spaces. Moreover, each multisingularity stratum comes with a monomial in ψ-classes.
So as not to multiply unnecessary notation, let’s just denote the multisingularity
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strata by X
(i)

and the corresponding monomials in ψ-classes by ψ̃(i) for 1 ≤ i ≤ ℓ.
Then the fifth and last factor is the product of degrees

ℓ∏

i=1

deg [X
(i)
ψ̃(i)].

Now it remains to explain why the product of factor 4 (the integral over the moduli
of the central component) and factor 5 (the product of degrees of ℓ multisingularity

strata multiplied by monomials ψ̃(i)) is equal to the degree of the corresponding

irreducible component of the stratum PX
J ;σ1,...,σℓ
λ1,λ2,...,λr

multiplied by
∏
ψmii .

This follows from a general statement. The Segre class of a product of cones Ci →
Bi is equal to the product of their Segre classes. Given a collection of cohomology
classes αi ∈ H∗(Bi), the degree of the product

∏
i αi is equal to the evaluation on∏

Bi of
∏
αi · s(

∏
Ci). The latter, in turn, is equal to the product of evaluations of

αi · s(Ci) on Bi. In our case, the cones Ci are the multisingularity strata X
(i)

and one
trivial one over M|J |+ℓ. The classes αi are the monomials in ψ-classes.

We conclude that the recursion equality is obtained by multiplying the cohomo-
logical relation 3 by the monomial ψm1

1 · · ·ψmrr and taking the degrees of all classes.
This completes the proof of Theorem 1.7. �

4 A reduced form of the recursion

Let us set pi = ti,0 (i ≥ 1) and tj = t0,j (j ≥ 0). The variables p1, p2, . . . ; t0, t1, . . .
form the reduced set of the t-variables. Consider the restriction homomorphism

Q[t0,0, t1,0, t0,1, . . . ] −→ Q[p1, p2, . . . ; t0, t1, . . . ],

ti,0 7→ pi (i ≥ 1), t0,j 7→ tj , ti,j 7→ 0 (i, j ≥ 1).

Denote by X and Xs,m the image of the descendant Hurwitz potential X and its
partial derivative ∂ts,mX , respectively, under the reduction. Then one can observe

that the collection of functions X and Xs,m, s,m ≥ 0, is closed with respect to the
recursion of Theorem 1.7.

Theorem 4.1 The functions Xs,m considered as formal power series in the variables
p1, p2, . . . ; t0, t1, . . . obey the following equations

∂psX = Xs,0 (s ≥ 1),

Xs+1,m = Xs,m + sXs,m+1 −
∑

ℓ≥1, a≥s

1

ℓ!

∂Ψa−s,ℓ

∂tm

∑

σ1+···+σℓ=a

ℓ∏

i=1

(
σiXσi,0

)
(m, s ≥ 0),

X0,m = ∂tmX (m ≥ 0),

where

Ψa,ℓ =
∑

k,j≥0




1

j!

∑

λ1+···+λj=a
λi≥1

pλ1 . . . pλj







1

k!

∑

ν1+···+νk=ℓ+k+j−3
νi≥0

(
|ν|

ν1, . . . , νk

)
tν1 . . . tνk
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Using the reduced set of variables means that, for the Hurwitz spaces Hr|κ under
consideration, we associate both degeneracy conditions and the ψ-classes to only
one of the supplementary marked points, say, to the first one, while to the other
supplementary marked points we associate either degeneracy conditions or the ψ-
classes, but not both.

Applying relations of this theorem repeatedly, one expresses each partial derivative
∂psX = Xs,0 in the direction of the p-variables as a power series in the variables ti, pj ,
and the partial derivatives ∂tmX = X0,m in the direction of the t-variables. Therefore,
these relations determine the series X uniquely from the initial conditions

X
∣∣∣
pj=0

=
∑

r≥0

1

r!

∑

ν1,...,νr

(
|ν|

ν1, . . . , νr

)
z|ν|,r tν1 . . . tνr ,

where zd,r = zd,r(q) is the same as in Proposition 1.5.
Theorem 4.1 provides a reduced and simplified form of the recursion sufficient

for an independent computation of the Hurwitz numbers of Proposition 1.3. Some
further reduction is discussed in the next section.

5 String and dilaton equations

A study of the forgetful map π : Hr+1|κ → Hr|κ given by forgetting the last sup-
plementary marked point leads to partial differential equations called the string and
dilaton equations. They express the partial derivatives ∂t0,0X and ∂t0,1X , respectively,
in terms of partial derivatives in other variables.

Theorem 5.1 The descendant genus zero Hurwitz potential X(t, q) obeys the follow-
ing string and dilaton equations

∂X

∂t0,0
=

∑

λ,d≥0

tλ,d+1
∂X

∂tλ,d
+
∑

k≥1

k qk
∂X

∂qk
,

∂X

∂t0,1
=

∑

λ,d≥0

tλ,d
∂X

∂tλ,d
+
∑

k≥1

qk
∂X

∂qk
− 2X.

Proof. Denote the marked poles of f by p1, . . . , pn, and the supplementary marked
points by x1, . . . , xr or x1, . . . , xr+1.

Consider the locus δi ⊂ Hr+1|κ composed by stable maps f : C → CP1 of the
following form. The source curve C has n disjoint irreducible components C1, . . . , Cn
containing the marked points p1, . . . , pn respectively; the restriction of f to C1, . . . ,
Cn has the form z 7→ zk1 , . . . , zkn ; these n components are connected by a union X
of one or several irreducible components on which the map f vanishes identically; the
subcurve X contains the supplementary marked points x1, . . . , xr; the marked point
xr+1 belongs to the component Ci.
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1

2

r

r + 1

p1

pi

pn

The reason we have introduced the loci δi is that the forgetful map π maps them
to the zero section of the cone Hr|κ. Thus the forgetful map PHr+1|κ → PHr|κ is not
defined on Pδi. To construct a well-defined forgetful map we introduce the blow-up

P̃Hr+1|κ of PHr+1|κ along the loci Pδi, and denote by ∆i the exceptional divisor
corresponding to Pδi. Thus we obtain the following commutative diagram.

PHr+1jκ

PHr+1jκ PHrjκ

Mg;n+r+1 Mg;n+r

pr+1 pr

Note that the locus δi is isomorphic to the quotient orbifold

M0,r+n/
(
Z/k1Z× · · · × Ẑ/kiZ× · · · × Z/knZ

)

with the trivial group action, where the hat means a skipped factor. The restriction
of pr to the corresponding exceptional divisor ∆i is a degree ki map onto PHr|κ.

We will work in the blown-up space P̃Hr+1|κ. Denote by ψ1, . . . , ψr+1 the pull-

backs of the ψ-classes fromMg,n+r+1 at the supplementary marked points to P̃Hr+1|κ.

Similarly, denote by ψ̂1, . . . , ψ̂r the pull-backs of the ψ-classes from Mg,n+r at the

supplementary marked points to P̃Hr+1|κ. Further, denote by ξ the pull-back of the

ξ-class from PHr+1|κ to P̃Hr+1|κ and by ξ̂ the pull-back of the ξ-class from PHr|κ

to P̃Hr+1|κ. Finally, denote by Dj, 1 ≤ j ≤ r, the pull-back from Mg,n+r+1 of the
divisor of curves of the form

Dj =

{
xj

xr+1

}
.

Note that the restriction of pr to Dj is an isomoprhism onto PHr|κ.
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Lemma 5.2 The following relations hold in H∗(P̃Hr+1|κ):

a) DjDj′ = 0 for j 6= j′;

b) ∆iDj = 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ r;

c) ∆i∆i′ = 0 for i 6= i′;

d) ξ∆i = 0 for 1 ≤ i ≤ n;

e) ψjDj = 0 for 1 ≤ j ≤ r;

f) ψr+1Dj = 0 for 1 ≤ j ≤ r;

g) ψr+1∆i = 0 for 1 ≤ i ≤ n.

h) ξ = ξ̂ +
∑n

i=1∆i;

i) ψj = ψ̂j +Dj for 1 ≤ j ≤ r;

Proof. Relations (e), (f), and (i) are pull-backs of the well-known analogous rela-
tions from Mg,n+r+1. Relations (a), (b), and (c) follow from the fact that the geo-
metric intersections of the corresponding divisors are empty. Relations (d) and (g)
express the vanishing of the intersection between the exceptional divisor of a blow-up
and a pull-back class from the base. Relation (h) is slightly harder. The line bundles
p∗r+1(O(1)) and p∗r(O(1)) are naturally identified except over the exceptional divisors

∆i. So we have ξ = ξ̂ +
∑
ci∆i for some coefficients ci. Now, the normal line bundle

to the exceptional divisor ∆i is identified with O(−1). Thus we have the equation

ξ∆i = 0 = ξ̂∆i − ciξ̂∆i. It follows that ci = 1 for every i. �

It follows from the relations that

ψdj = ψ̂dj +Djψ̂
d−1,

ξdj = ξ̂dj +
n∑

i=1

∆iξ̂
d−1.

This can be easily proved by induction on d.
Now, consider a stratum PX λ1,λ2,...,λr ⊂ PHr|κ, and the stratum PX λ1,λ2,...,λr,0 ⊂

PHr+1|κ obtained by adding one supplementary marked point with λr+1 = 0. The
preimage p−1

r (PX λ1,λ2,...,λr) is the proper transform of PX λ1,λ2,...,λr ,0 under the blow-

up pr+1. For shortness, we will denote the proper transform by X̃ and the strata by
PX r and PX r+1, respectively.

Now we can prove the dilaton relation. The integral

∫

PX r+1

ξdψd11 . . . ψdrr ψr+1,
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where d is determined by degree reasons, is the coefficient of
∏r

j=1 tλj ,dj
∏n

i=1 qki
|Aut {(λj, dj)}| · |Aut {ki}|

in the power series ∂X/∂t0,1. Applying the projection formula to pr+1 we rewrite the
integral as ∫

X̃

ξdψd11 . . . ψdrr ψr+1.

Now we use the relations from Lemma 5.2:
∫

PX r+1

ξdψd11 . . . ψdrr ψr+1 =

∫

X̃

(
ξ̂d +

∑
ki∆iξ̂

d−1
)
(ψ̂d11 +D1ψ̂

d1−1
1 ) . . . (ψ̂drr +Drψ̂

dr−1
r )ψr+1 =

∫

X̃

ξ̂dψ̂d11 ψ̂
dr
r ψr+1.

Applying the projection formula to the map pr, we get

(n+ r − 2)

∫

PX r

ξ̂dψ̂d11 ψ̂
dr
r .

This is the right-hand side of the dilaton relation, where the multiplication of the
coefficient of X by n+ r − 2 is realized by the differential operator

∑

λ,d≥0

tλ,d
∂

∂tλ,d
+
∑

k≥1

qk
∂

∂qk
− 2.

Thus we have proved the dilaton relation.
We now prove the string relation in a similar way. The integral

∫

PX r+1

ξdψd11 . . . ψdrr ,

where d is determined by the degree argument, is the coefficient of
∏r

j=1 tλj ,dj
∏n

i=1 qki
|Aut {(λj, dj)}| · |Aut {ki}|

in the power series ∂X/∂t0,0. Applying the projection formula to pr+1 we rewrite the
integral as ∫

X̃

ξdψd11 . . . ψdrr .

Now we use the relations from Lemma 5.2:
∫

PX r+1

ξdψd11 . . . ψdrr =
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∫

X̃

(
ξ̂d +

∑
ki∆iξ̂

d−1
)
(ψ̂d11 +D1ψ̂

d1−1
1 ) . . . (ψ̂drr +Drψ̂

dr−1
r ) =

n∑

i=1

∫

∆i

ξ̂d−1ψ̂d11 . . . ψ̂drr +

r∑

j=1

∫

Dj

ξ̂dψ̂d11 . . . ψ̂
dj−1
j . . . ψ̂drr .

Applying the projection formula to the map pr, and recalling that pr|Dj has degree 1,
while pr|∆i has degree ki, we get

n∑

i=1

ki

∫

PX r

ξ̂d−1ψ̂d11 . . . ψ̂drr +

r∑

j=1

∫

PX r

ξ̂dψ̂d11 . . . ψ̂
dj−1
j . . . ψ̂drr .

This is the right-hand side of the string relation. �

The string and dilaton equations provide a further reduction of the recursion of
Theorem 4.1. Namely, they allow one to eliminate the variables t0 = t0,0 and t1 = t0,1
from consideration by setting them to be equal to zero.

Note that the q-derivatives of the right-hand sides of these equations preserve the
ring generated by the functions zd,r(q) of Proposition 1.5. Namely, their action on
the functions zd,r is given by the following equations

(∑

k≥1

k qk
∂

∂qk

)
zd,r = zd,r+1 − zd−1,r,

(∑

k≥1

qk
∂

∂qk

)
zd,r = (d+ 1) zd+1,r+1 + (2− r) zd,r.

(5)

These relations allow one to simplify manipulations with the potentials X and X
by keeping the Taylor coefficients of their t-expansions as polynomials in the func-
tions zd,r(q).

The proof of (5) is obvious: these relations are equivalent to the following identities
between the binomial coefficients:

(
n+ r − 3

d

)
=

(
n + r + 1− 3

d

)
−

(
n + r − 3

d− 1

)
,

n

(
n+ r − 3

d

)
= (d+ 1)

(
n + r + 1− 3

d+ 1

)
+ (2− r)

(
n + r − 3

d

)
.

We conclude this section with a simple remark. Since the coefficients of the series
Ψa,ℓ of Remark 1.6 are intersection numbers of ψ-classes over genus 0 moduli spaces,
these series also satisfy a string and a dilaton equations.

Proposition 5.3 The series Ψa,ℓ of Theorem 1.7 obey the following string and dilaton
equations

∂Ψa,ℓ

∂t0,0
= Ψa,ℓ+1 +

∑

i,j≥0

ti,j+1
∂Ψa,ℓ

∂ti,j
,

∂Ψa,ℓ

∂t0,1
=

∑

i,j≥0

ti,j
∂Ψa,ℓ

∂ti,j
+ (ℓ− 2)Ψa,ℓ.
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6 Computing residual polynomials

The goal of this section is to relate the statements of Theorems 1.7 and 3.3 to the
general multisingularity principle.

Let F : X → Y be a generic finite holomorphic mapping of two compact complex
manifolds of the same dimension. The mapping is degenerate at a point x ∈ X if
dF (x) is a degenerate linear mapping of the tangent spaces at x and F (x), respectively.
For a given singularity type σ, denote by Σσ(X) the closure of the subset of points
in X where F attains a singularity of type σ. The Thom principle states that the
cohomology class [Σσ(X)] ∈ H∗(X) Poincaré dual to the subvariety Σσ(X) admits a
universal expression as a polynomial in relative Chern classes c0(F ), c1(F ), . . . of the
mapping F defined by the series expansion

c(F ) =
c(F ∗(TY ))

c(TX)
= c0(F ) + c1(F ) + . . . , ci(F ) ∈ H2i(X).

The polynomial is quasihomogenous, of degree equal to the codimension of Σσ(X).
This principle has been extended to the case of multisingularities by M. Kazar-

ian [6]. Namely, let σ1, . . . , σm be a set of singularity types. Denote by Σσ1,...,σm(Y )
the closure of the locus of points in Y , whose preimages contain singularities of types
σ1, . . . , σm. Let [Σσ1,...,σm(Y )] ∈ H∗(Y ) be the corresponding Poincaré dual cohomol-
ogy class. Then there are universal polynomials Rσ1,...,σm in the classes ci(F ) such
that the generating function

∑
[Σσ1,...,σm(Y )]tσ1 . . . tσm , where the summation is car-

ried over all tuples of singularity types, is the exponent exp F∗R of the pushforward,
under F , of the generating function R =

∑
Rσ1,...,σmtσ1 . . . tσm .

We shall apply the latter principle to the case of families of meromorphic functions;
its applicability in this case has been proved in [8]. Let H = Hκ be one of the Hurwitz
spaces studied in this paper. The points of this space represent certain meromorphic
functions. This family of functions fits into a diagram of mappings

X̃
F̃

//

P̃ ��
❄❄

❄❄
❄❄

❄❄
Ỹ

Q̃��⑧⑧
⑧⑧
⑧⑧
⑧⑧

H

Here X̃ is the universal curve over H that can be identified with H1|κ in the notation

of the present paper, and Ỹ = H × CP 1. The multiplicative group C∗ of nonzero
complex numbers acts on the space H by multiplying functions by constants. This
action extends naturally to the spaces X̃ and Ỹ . It preserves the singularities and
their types. Denote the C∗-quotient spaces by PH, X , and Y , respectively, and the
corresponding quotient mappings by P : X → PH, Q : Y → H, F : X → Y , so that
we have a commutative diagram of the form

X
F

//

P !!❉
❉❉

❉❉
❉❉

❉ Y

Q}}④④
④④
④④
④④

PH
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We say that F̃ has a singularity of type Ak−1 at a point x ∈ X̃ if x is a nonsingular
point of the fiber of P̃ passing through x, and the restriction of F̃ to this fiber
admits, in an appropriate local coordinate z in the fiber of P̃ at x and an appropriate
local coordinate in the fiber of Q̃ at F̃ (x) the form z 7→ zk. Since multiplication
of a function by a nonzero constant does not change the type of a singularity at a
point, the same definition remains valid for a point x ∈ X . The shift by 1 in the
notation of the singularity type is due to the tradition coming from singularity theory.
Ak−1 singularities are the only possible isolated singularity types at smooth points
of the fibers of P . Since the singularity types Ak−1, k = 1, 2, 3, . . . are indexed by
integer numbers, the multisingularity classes are labeled by tuples of integers: the
locus of functions with ramifications of orders ν1, . . . , νr over one point is denoted by
Σν1,...,νr(Y ). Respectively, the generating function R for the corresponding residual
polynomials can be considered as a function in formal variables t1, t2, . . . , where the
variable tk is in charge of the singularity type Ak−1; in particular, t1 corresponds to
nonsingular points of the mapping F .

If the fibers of P are smooth, the universal polynomials are computed in [8].
We reproduce these computations below. Unfortunately, these computations do not
provide an answer in the general case when the fibers of P are allowed to be singular.
Moreover, the whole multisingularity formula is not applicable in its straightforward
form since the genericity conditions required for its applicability break down in the
presence of nonisolated singularities. Thus, the formulas obtained in [8] should be
corrected by terms supported on the loci of nonisolated singularities.

Observe that the class of the multisingularity locus Σν1,...,νr(Y ) can also be com-
puted by pushing forward the class of the subvariety X(ν1, . . . , νr) ⊂ PHr|κ dis-
cussed in the previous sections of the present paper under the natural forgetful map
PHr|κ → PH1|κ → PHκ. In particular, our inductive computation of the classes
[X(ν1, . . . , νr)] undertaken in this paper implies implicitly the computation of all nec-
essary correction terms for the classes Rν1,...,νr participating in the general multisingu-
larity formula. However, the explicit computation of the pushforward homomorphism
is still to be done.

We show below that the part of the series R corresponding to the contribution
of the smooth fibers of P satisfies the equations of the Kadomtsev–Petviashvili (KP)
integrable hierarchy of partial differential equations. One can hope that the cor-
responding enriched generating functions involving the contribution of nonisolated
singularities also are solutions to suitable integrable hierarchies.

It is proved in [8] that in the case where the fibers of P are smooth, all the
relative Chern classes of F can be expressed as universal polynomials in just two
classes, ξ, ψ ∈ H2(X). Namely, the class ψ = ψ1 is the ψ class associated with the
unique supplementary marked point on X = PH1|κ. The class −ψ can be defined
also as the relative first Chern class of the fibration P : X → PH. The class ξ is the
first Chern class c1(O(1)), where the line bundle O(1) is inherited from the C∗-action

on X̃ . Hence, we define

R(ψ, ξ; t1, t2, . . . ) =
∑

Ri1,i2,...(ψ, ξ)ti1ti2 . . . .
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The first few terms of the function R are

R = t1 +

(
−
1

2
t21 + (ξ + ψ)t2

)
+

(
1

3
t31 − 2(ξ + ψ)t1t2 + (ξ + ψ)(ξ + 2ψ)t3

)
+ . . . .

Theorem 6.1 For a generic family of functions on smooth curves, the generating
function R of residual polynomials is a solution to the scaled KP hierarchy of partial
differential equations. In particular, it solves the first scaled KP equation of the form

∂2R

∂t22
= 2ψξ

(
∂2R

∂t21

)2

+
4

3

∂2R

∂t1∂t3
−

1

3
ψ2∂

4R

∂t41
.

The scaled KP equations are obtained from the ordinary ones by applying to them
the following scaling: a partial derivation of order k is replaced by ξ(−ψ)k−1 times
the same derivation. Since all the partial derivatives in the KP equations are of order
at least 2, the scaled equations are divisible by ξψ, and we simplify them by dividing
by this monomial.

Proof. All the solutions of the KP equations are known to be logarithms of tau
functions for the KP-hierarchy. The tau function exp(− ξ

ψ
RA) is, in fact, the following

one:

exp(−
ξ

ψ
RA) = 1 + ξs̃1 + ξ(ξ + ψ)s̃2 + ξ(ξ + ψ)(ξ + 2ψ)s̃3 . . . ,

where s̃k is the kth scaled one-part Schur polynomial (written in the variables ti),
which are the homogeneous parts of the decomposition

e−
1
ψ
(t1+t2+t3+... ) = s̃0 + s̃1 + s̃2 + . . .

As is well known, an arbitrary linear combination of one-part Schur polynomials is a
tau function.

In order to check that these formulas indeed produce the correct universal ex-
pressions for the residual polynomials, it suffices to verify them on a sufficiently rich
bunch of examples of Hurwitz spaces. For such a bunch, consisting of the spaces of
polynomials (versal unfoldings of the singularities Ak, k = 1, 2, . . . ) the verification
has been done in [8]. �
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