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Abstract  13 

Located on a divergent margin dominated by gravity tectonics above overpressured marine 14 

shales, the Niger Delta slope has been described as having a stepped profile characterized by 15 

‘filled ponded basins’ that are prone to erosion and sediment bypass. Previous studies based on 16 

3D seismic data have described the depositional architecture of the western Niger Delta’s upper 17 

slope, but calibration of the seismic facies is lacking and the timing of major changes in 18 

sedimentary record remains elusive. In this study, seismic sequence-stratigraphy, 3D 19 

geomorphological analyses of high-resolution 3D seismic data, and bio/chronostratigraphic 20 

analyses from four boreholes, enabled the identification and characterization of the depositional 21 

architecture in Neogene ‘filled ponded basins’. Seven major seismic units were dated as 22 
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Chattian, Burdigalian, Serravallian, Tortonian, Middle Pliocene and Middle Pleistocene to the 23 

present day. Major changes in the sedimentary record occurred in the Plio-Pleistocene, with the 24 

onset of erosive channel levee systems (CLSs) and mass-transport deposits (MTDs) generally 25 

capped by a hemipelagic drape. Amalgamated CLSs characterize the Tortonian-Late Miocene 26 

while erosive MTDs and CLSs characterize the Plio-Pleistocene units. Thick, laterally extensive 27 

MTDs are associated with regional slope instability, while active mobile shale triggered local 28 

spatially confined MTDs. Submarine channels evolved from moderate to highly sinuous. The 29 

degree of channel confinement generally decreases downstream where they are characterized by 30 

abandoned meander loops and avulsion resulting from levee breaching. Channel fills and 31 

levees/overbank deposits topped by hemipelagic drapes provide effective reservoir/seal (traps) 32 

for hydrocarbons. The alternation of channel deposits and hemipelagic layers indicate that 33 

eustasy controlled depositional patterns at a regional scale, while the spatio-temporal switches in 34 

submarine channel courses show that shale tectonics locally controlled deposition in intraslope 35 

basins.   36 

 37 

Keywords: West Africa; Niger Delta; Seismic sequence stratigraphy; Filled ponded basins; 38 

Mass-transport deposits; Turbidite systems; Chronostratigraphy.1 39 

1. Introduction 40 

                                                 
a,b* Corresponding author : Kelvin Ikenna Chima; Sorbonne University; Institut des Sciences de 
la Terre (ISTeP), Case 129, Tour 56/66, fifth floor, 4 Place Jussieu, 75252, Paris Cedex. E-mail: 
kelvini.chima@gmail.com 
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 The depositional architecture of the deep-water systems located on divergent margins 41 

is predominantly controlled by gravity tectonics (e.g. Doust and Omatsola, 1990; Damuth, 1994; 42 

Cohen and McClay, 1996; Morely and Guerin, 1996; Graue, 2000; Cobbold et al., 2009). 43 

Gravity gliding and gravity spreading are the two main aspects of gravity tectonics that deform 44 

the sedimentary wedges that prograde into deep-water environments (Morley et al., 2011). While 45 

gravity gliding is characterized by the rigid translation of a rock mass down a slope, gravity 46 

spreading results from flattening and lateral spreading of a rock mass under its own weight 47 

(Ramberg, 1981; Dejong and Sholten, 1973; Alves and Lourenço, 2010; Alves, 2015).  In the 48 

Niger Delta, gravity spreading driven by delta wedge progradation above overpressured marine 49 

shales has been described as the primary control of accommodation and depositional patterns 50 

(e.g. Doust and Omatsola, 1990; Damuth, 1994; Cohen and McClay, 1996; Morely and Guerin, 51 

1996; Graue, 2000; Cobbold et al., 2009).  52 

 The slope of the Niger Delta, characterized by a lower subsidence rate than its regional 53 

sedimentation rate, has been described as comprising a ‘stepped profile’, compared to the 54 

‘above-grade slope profile’ typical of the central Gulf of Mexico-where the rate of salt driven 55 

subsidence is always greater than that of sediment supply (Prather, 2003). Consequently, 56 

‘shallow ponded basins/perched accommodation’ described by Prather et al. (2012a), but herein 57 

referred to as ‘filled ponded basins’, dominate the intra-slope regions of the Niger Delta (Booth 58 

et al., 2000; Prather, 2000). These ‘filled ponded basins’ are dominated by healed-slope 59 

accommodation that is always overfilled or bypassed compared to the underfilled ponded basins 60 

in the central Gulf of Mexico (Prather, 2003). Although the lack of ponded accommodation in 61 

the upper-and mid-slope regions of the Niger Delta renders it susceptible to erosion and bypass, 62 

thin reservoir facies associated with channel and overbank deposits in these areas could still be 63 
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good drilling targets (Prather, 2003). Furthermore, hydrocarbon traps are better developed in 64 

filled ponded systems, where reservoir facies occur directly below mud-rich pelagic/hemipelagic 65 

deposits (Prather, 2003). 66 

Following the discovery of hydrocarbons in the deep-water Niger Delta in recent 67 

decades, exploration is now focused on understanding the control on depositional architecture 68 

and reservoir distribution in the deep-water setting of this region (e.g. Chapin et al., 2002; 69 

Adeogba et al., 2005). Consequently, the impact on submarine channel evolution and 70 

depositional patterns by mobile shale structures has received considerable attention (e.g. 71 

Adeogba et al., 2005; Olusola et al., 2007; Clark and Cartwright, 2012; Prather et al., 2012a, 72 

Jobe et al., 2015; Jolly et al., 2016; Hansen et al., 2017). The depositional architecture of the 73 

Pliocene and Quaternary filled ponded basins on the western slope of the Niger Delta has already 74 

been described and includes MTDs and turbidite systems draped by hemipelagites (e.g. Adeogba 75 

et al., 2005; Olusola et al., 2007). Similar depositional architectures have been described in the 76 

deep-water fold-and-thrust belt of the Niger Delta (e.g. Posamentier and Kolla, 2003; Clark and 77 

Cartwright, 2012). Recently, academic seismic-stratigraphic studies were conducted on the 78 

deeper Neogene stratigraphic records of the upper slope of the western Niger Delta, although 79 

lacking calibration (Benjamin et al., 2015; Benjamin and Huuse, 2017). Industry-based study of 80 

Neogene stratigraphy reveals that highly amalgamated channel fill deposits are less 81 

compartmentalized than less amalgamated overbank deposits (Chapin et al., 2002).  82 

Despite the plethora of observations on the upper slope of the western Niger Delta, lack 83 

of published borehole and bio/chronostratigraphic data has limited seismic facies calibration and 84 

age estimates for the entire Neogene succession in this region. Similarly, no study has 85 

investigated the interactions between shale tectonics and submarine channels/reservoir 86 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

distribution in the study area (Fig. 1).  Hence, the objectives of this study are to: (1) identify and 87 

date major sequence-stratigraphic surfaces (Neogene to present day) preserved on the upper 88 

slope of the western Niger Delta; (2) calibrate seismic facies by defining depositional 89 

environments to better the understanding of depositional patterns and their controlling factors; 90 

(3) investigate the interaction between shale tectonics and depositional patterns with a view to 91 

predicting reservoir distribution in the associated ‘filled ponded basins’. This study not only 92 

provides age constraints on the Neogene stratigraphy of the western Niger Delta, but also 93 

describes the effect of the interplay between autogenic and allogenic forcing on the depositional 94 

architecture and potential reservoir distribution in ‘filled ponded basins’. 95 

 96 

2. Geological setting 97 

  98 

 The Niger Delta is located along the Equatorial Atlantic margin of West Africa (Fig. 99 

1). The delta is underlain by sub-aerial and submarine sediments covering an area of ∼140,000 100 

km2; and its thickness reaches 12 km (Allen, 1965; Evamy et al., 1978; Doust and Omatsola, 101 

1990). The progradation of this siliciclastic wedge since the Late Eocene has been estimated as 102 

∼300 km (Doust and Omatsola, 1990; Fig. 1). Known oil and gas resources rank the delta the 103 

twelfth largest petroleum province in the world (Tuttle et al., 1999). The Niger Delta is sub-104 

divided into three major structural domains: (i) an extensional zone below the continental shelf, 105 

(ii) a transitional zone below the upper slope, and (iii) a compressional zone located at the toe of 106 

the slope (Doust and Omatsola, 1990; Damuth, 1994; Connors et al., 1998; Morgan, 2004; 107 

Billoti and Shaw, 2005; Fig. 1).  108 
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The stratigraphy of the Niger Delta is dominated by three major lithostratigraphic units: 109 

the Akata, Agbada and Benin Formations (Short and Stauble, 1967; Evamy et al., 1978; 110 

Avbovbo, 1978; Doust and Omatsola, 1990; Fig. 2). The Akata Formation comprises marine 111 

shales that range in thickness from 7,000 m beneath the continental shelf to 2,000 m in the distal 112 

portion (Doust and Omatsola, 1990). Its thickness reaches 5,000 m in the deep fold-and-thrust 113 

belt due to the repeated occurrence of thrust ramps (Wu and Bally, 2000; Corredor et al., 2005). 114 

The Agbada Formation constitutes the deltaic unit of the Niger Delta. The thickness of this 115 

paralic unit reaches 3,500 m (Evamy et al., 1978; Avbovbo et al., 1978; Doust and Omatsola, 116 

1990). The depositional setting of this lithostratigraphic unit ranges from delta-front, delta-topset 117 

to fluvio-deltaic environments (Avbovbo, 1978). The Benin Formation consists of alluvial to 118 

upper coastal plain deposits up to 2,000 m thick (Avbovbo, 1978). The Agbada and Benin 119 

Formations are associated with clay-filled channels that were incised during the Late Miocene 120 

and Plio-Quaternary (Fig. 2). 121 

 The present study is focused on the mobile shale belt located on the upper continental 122 

slope downward the transition between the extensional and compressional belts, offshore western 123 

Niger Delta (Fig. 1; red square). It covers 638 km2 at a distance of ~120 km from the present day 124 

coastline (Fig. 1), at depths ranging from 900 to 1,150 m within the Akata Formation, which is 125 

located at water depths between ~810 to ~3240 m. The area is characterized by ‘filled ponded 126 

basins’ located at the flanks of mobile shales and ~3 km wide NE-SW trending submarine 127 

channel complex extending more than 25 km into the 3D block studied (Fig. 3). The reservoir 128 

compartmentalization of the block has already been investigated by Chapin et al (2002) and 129 

seabed mounds and pockmarks by Benjamin et al. (2015); Benjamin and Huuse (2017). 130 

 131 
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3. Dataset and methods  132 

 133 

3.1 Dataset  134 

 135 

The dataset used in this study includes high-resolution 3D seismic and borehole data, 136 

comprising well logs, core and biostratigraphic data. 137 

 138 

3.1.1 Seismic data  139 

 140 

The 3D seismic data were processed as a zero-phase source wavelet in American reverse 141 

standard polarity. Thus, an increase in acoustic impedance corresponds to a trough (blue loop) in 142 

the wavelet, while a decrease in acoustic impedance is represented by a peak (red loop) in the 143 

wavelet. The horizontal resolution of the data is characterized by a stacking bin spacing of 25 m 144 

x 25 m (in-line and cross-line spacing), and a seismic recording sampling interval of 4 145 

milliseconds two-way travel time (TWT). The dominant frequency of the data is 30 Hz over the 146 

first 3 seconds (TWT) but decreases between 20-25 Hz below a depth of 3 km. Using average 147 

interval seismic velocity of 1,639.4 m/s and applying the velocity-wavelength equation (λ/4; 148 

Brown, 1999), the vertical resolution of the data was ~13.7 m over the Pliocene-Quaternary 149 

intervals but decreased between 25 and 30 m at depths below 3 km.  150 

 151 

3.1.2 Borehole data 152 

 153 
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The lithology, facies and depositional environments of five boreholes, labelled FM-1, 154 

FM-2, FM-3ST1, FM-4ST1 and FM-5 located in the southern part of the study area (Fig. 3), 155 

were analyzed. The wells penetrated respective total depths of 4,154 m, 3,627 m, 2,924 m, 3,458 156 

m and 3,497 m below the seafloor. Petrophysical (gamma-ray, resistivity, neutron, density and 157 

sonic) logs were acquired mostly in the deeper stratigraphic intervals, e.g. between 1,140-4,154 158 

m in the deepest FM-1 well and 1,718-2,119 m in the shallowest FM-3ST1 well. Four of the five 159 

boreholes contain biostratigraphic data, whereas core data were only available in two boreholes.  160 

 161 

3.2 Methods 162 

 163 

3.2.1 Seismic and sequence stratigraphic analysis  164 

 165 

A standard seismic-stratigraphic analysis approach (Mitchum et al., 1977) was used for 166 

the 3D seismic data based on the recognition of reflection termination patterns such as onlap, 167 

erosional truncations, seismic facies/configuration and vertical stacking patterns. Previously 168 

described depositional architectures include MTDs, turbidite systems and hemipelagic drapes. In 169 

the present study, MTDs and turbidite deposits were identified based on seismic criteria and 3D 170 

geomorphology (e.g. Posamentier and Kolla, 2003; Richardson, 2011). MTDs were recognized 171 

(i) by their basal shear zone or basal continuous surface, which delimits the overlying deformed 172 

materials and the underlying, relatively continuous materials (Frey Martinez et al., 2005; Alves 173 

and Lourenço, 2010; Gamberi et al., 2011; 2015) and (ii) by their top, characterized by 174 

rugose/irregular topographies (Richardson, 2011). In terms of internal architecture, MTDs may 175 

be chaotic or transparent depending on (i) the nature of materials inherited from the source area 176 
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(Masson et al., 2006), and (ii) the distance from source area (e.g. Alves et al., 2009; Omosanya 177 

and Alves, 2013; Rovere et al., 2014; Omosanya and Harishidayat, 2019). Turbidite systems 178 

were recognized based on the presence of sandy submarine channel deposits, which are generally 179 

characterized by high to moderate seismic reflectivity and high root mean square (RMS) 180 

amplitudes on 3D paleo-geomorphological maps (see also Posamentier and Kolla, 2003; 181 

Catuneanu, 2006). Drapes were interpreted as the result of a combination of pelagic/hemipelagic 182 

suspension fall-out as well as from the fine-grained suspended portion of turbidity flows (Kneller 183 

and McCaffrey, 1999).  184 

 185 

3.2.2 Well logs, lithofacies and depositional environment 186 

 187 

The standard approach to well-log analysis (e.g. Mitchum et al., 1977) is the display and 188 

visual inspection of accurately scaled gamma-ray, neutron-density cross plots, resistivity and 189 

sonic logs. Integrated analysis of these logs and calibration with core data helped delineate 190 

lithofacies and associated depositional environments. 191 

  192 

3.2.3 Bio- and chronostratigraphic analyses 193 

 194 

We analyzed existing biostratigraphic data, chiefly calcareous nannofossils and 195 

planktonic foraminifera, from ditch cutting samples available in four boreholes. This allowed us 196 

to constrain the ages of Neogene stratigraphic intervals. 197 

 198 

3.2.4 3D Seismic geomorphology  199 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 200 

In addition to 2D seismic stratigraphy, we conducted 3D seismic geomorphological 201 

analyses to identify erosional features and channel architectures, and to distinguish main 202 

depositional elements (mass-flow deposits, channel deposits, overbank deposits, mud volcanoes 203 

and hemipelagic units). This was achieved through a detailed analysis of seismic attributes, 204 

horizon slices and amplitude maps (after Posamentier and Kolla, 2003; Catuneanu, 2006).  205 

Seismic attributes are all observations extracted from seismic data that directly or 206 

indirectly facilitate hydrocarbon identification, lithological discrimination or geological 207 

interpretation (Chopra and Marfurt; 2007; Taner et al., 1994). We generated RMS and Variance 208 

Edge/Coherence attributes from the original 3D seismic data using Petrel™ software. The RMS 209 

attribute computes the square root of the sum of squared amplitudes over the geological interval 210 

of interest and facilitates lithofacies discrimination (e.g. Catuneanu, 2006). The variance attribute 211 

(e.g. Fig. 3D) emphasizes the correlation of seismic traces by assigning light colors to areas 212 

where seismic traces correlate (low variance) and dark colors to areas where there is no 213 

correlation (high variance; Fig. 3D; see Catuneanu, 2006). This attribute was used to delineate 214 

structural and stratigraphic discontinuities such as faults, mobile shales, turbidite systems, MTDs 215 

etc. 216 

 217 

4. Results and interpretation  218 

 219 

This section presents the results of seismic facies analysis and lithofacies description, 220 

depositional environments and depositional architectures within the stratigraphic intervals we 221 
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studied. Seismic artefacts (sensu Chopra and Marfurt, 2007; Alves, 2015) in the studied 3D 222 

volume is characterized by seismic wipe out in mobile shales zones (e.g. Fig. 5).  223 

 224 

4.1. Seismic facies analysis and seismic stratigraphic units 225 

 226 

4.1.1 Seismic facies analysis  227 

 228 

Six seismic facies were identified in the studied 3D volume (Fig. 4) using the seismic 229 

facies classification schemes proposed by Prather et al. (1998) and Hanson et al. (2017). These 230 

include: (1) chaotic, discontinuous low amplitude seismic facies (Bl), generally characterized by 231 

an erosive base, irregular top and deformed internal architecture interpreted as mass-transport 232 

deposits (MTDs); (2) chaotic, discontinuous, high amplitude seismic facies (Bh) interpreted as 233 

turbidite feeder channels; (3) inclined, coherent/moderately deformed, high amplitude seismic 234 

facies interpreted as slides/slump blocks; (4) parallel, continuous/convergent, high amplitude 235 

seismic facies (Cbh) interpreted as amalgamated channels/lobes; (5) convergent thinning high 236 

amplitude seismic facies (Cth) flanked by seismic packages that onlap negative topographic relief 237 

features interpreted as levees and channel fill deposits, respectively; (6) transparent, continuous 238 

seismic facies (D) interpreted as hemipelagic drapes.  239 

 240 

4.1.2 Seismic stratigraphic units 241 

 242 

Seven major seismic stratigraphic units were identified in the Neogene stratigraphic 243 

records of the upper slope of the western Niger Delta (Fig. 5).  244 
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 245 

Unit 1 246 

 This is the oldest stratigraphic unit identified in the study area. This unit has not been 247 

drilled. It is characterized by high amplitude seismic packages whose base corresponds to the top 248 

of the reflection-free (low reflectivity) seismic unit (Fig. 5). Seismic reflectivity in Unit 1 249 

generally decreases toward the north corresponding to a vertical, irregular, seismic wipeout zone 250 

that extends upwards from 6 to 1.8 seconds (twt) deforming the overlying seabed (Fig. 5). This 251 

feature was interpreted as mobile shale. Unit 1 thins from north and south toward the mobile 252 

shale zone in the north (Fig. 5). The overall thinning of seismic Unit 1 from the south to the 253 

north toward mobile shale indicates syn-kinematic deformation linked to the movement of 254 

mobile shale during the deposition of Unit 1 (Fig. 5). 255 

 256 

Unit 2  257 

The base of Unit 2 shows baselap (apparent onlap) surface overlain by parallel to sub-258 

parallel, moderate to high amplitude seismic packages that generally decrease in reflectivity 259 

northward due to the presence of mobile shale (Fig. 5). Seismic packages within this unit are 260 

generally subparallel and thin northward except within a landward dipping normal fault near the 261 

mobile shale zone (Fig. 5). 262 

 263 

Unit 3.  264 

The base of unit 3 is also a baselap (apparent onlap) surface overlain by parallel 265 

continuous, high amplitude seismic packages whose reflectivity decreases northward toward the 266 

mobile shale zone (Fig. 5). Although Unit 3 reaches maximum thickness within a fault-267 
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controlled accommodation in the southern part, it thins northward toward the mobile shale zone 268 

(Fig. 5).  269 

 270 

Unit 4 271 

The base of unit 4 is locally erosional and marks a transition from underlying parallel, 272 

continuous high amplitude seismic packages to overlying moderate to high amplitude strata (Fig. 273 

5). Unit 4 is characterized by localized high amplitude seismic packages that generally converge 274 

or thin away from their central parts toward their lateral limits (Fig. 5). These seismic packages 275 

are interpreted as amalgamated channel levee deposits (dotted purple circles in Fig. 5). Although 276 

Unit 4 also reaches maximum thickness in fault-controlled accommodation in the southern part, 277 

it thins northward toward the mobile shale zone (Fig. 5).  278 

  279 

Unit 5 280 

Unit 5 is marked at the base by an erosional event overlain by thin, discontinuous/chaotic, 281 

low amplitude seismic packages that grade to relatively continuous, high amplitude seismic 282 

packages near the mobile shale zone (Fig. 5). Seismic geometries in Unit 5 vary from sub-283 

parallel (north and south) in the mobile shale zone to convergent/thinning toward the mobile 284 

shale zone (Fig. 5). Unit 5 is characterized by amalgamated, high amplitude seismic packages 285 

corresponding to the channel levee deposits described above (dotted purple circles in Fig. 5). An 286 

over 80 m-thick transparent seismic unit interpreted as an hemipelagic drape overlies this unit 287 

(Fig. 5). This hemipelagic layer was truncated by younger channel levee systems (CLSs) that 288 

locally incised the underlying deposits by up to 40 m (Fig. 5). The thickness of Unit 5 remains 289 

uniform in the south but thins northward toward the mobile shale zone.  290 
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 291 

Unit 6 292 

The base of Unit 6 is erosional and marks a major change with the onset of erosive MTDs 293 

and CLSs (Fig. 5). This erosional event can be traced throughout the studied 3D block except in 294 

the northeast, where it could not be interpreted due to the combined effect of signal wipe out 295 

(artefacts) and erosion (Fig. 5). Three erosive mass-transport deposits labelled lower, middle and 296 

upper MTDs were identified in unit 6 (Figs. 5, 6).  297 

The lower MTD covers an area of ~155 km2 and extends 3-5 km laterally with a 298 

maximum thickness of ~148 m (using an average interval velocity of 1,639.4 m/s). Its upper 299 

limit is relatively gentle with localized erosional scours (Fig. 5). This MTD truncates the 300 

underlying CLS, reaching its maximum thickness at the northern and southern flanks, but drapes 301 

the central area, where the CLS thins out (e.g. Figs. 5, 6 C, D, G).  302 

The middle MTD covers an area of ~175 km2 with a lateral distance of 6-8 km and 303 

reaches maximum thickness of ~246 m in the hanging-wall block bounded by normal faults 304 

labelled P, Q (see also Doust and Omatsola, 1990; Cohen McClay, 1996; Graue, 2000; Figs. 5, 305 

6B, F). The middle MTD is followed by relatively continuous/chaotic, high amplitude seismic 306 

packages interpreted as turbidite feeder channels. Unlike the lower MTD, the middle MTD is 307 

highly deformed by synthetic and antithetic normal faults with inferred offsets of a few meters, 308 

and 20-25 m relief incised into the underlying CLS (Figs. 5, 6F).  309 

The upper MTD is the third and most laterally extensive MTD in Unit 6 (Fig. 5). It 310 

covers an area of 187 km2 with a lateral distance of 12 km and reaches a maximum thickness of 311 

~205 m downstream (Fig. 6A, E). This MTD also incises the underlying CLS, but was truncated 312 

by younger turbidite feeder channels and affected by extensional deformation (Figs. 5, 6A, E). 313 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

The upper MTD is overlain by CLSs, ultimately draped by a hemipelagic layer that was 314 

truncated by younger CLSs (Fig. 5). 315 

 316 

Unit 7 317 

 Unit 7 is the youngest seismic unit identified in the study area. Its base marks another 318 

major change in the sedimentary record, characterized by overall high-frequency and high-319 

amplitude seismic packages (Fig. 5). These seismic packages are interpreted as amalgamated 320 

channel levee/lobe deposits and alternate with transparent seismic packages corresponding to 321 

hemipelagites (Fig. 5). The amalgamated channel levee/lobe deposits are locally truncated by 322 

turbidite feeder channels (Fig. 5). Unit 7 is topped by the seafloor, which is directly underlain by 323 

a thick hemipelagic deposit (Fig. 5). 324 

 325 

4.2 Lithofacies and depositional environment 326 

 327 

The integrated analysis of well logs in the study area shows that the intervals 328 

characterized by average to moderately high gamma-ray log values, low resistivity, high neutron-329 

density separation and high sonic values correspond to hemipelagic layers, overbanks and/or 330 

mud-rich turbidites (e.g. Fig. 7). However, intervals defined by low gamma-ray, high resistivity, 331 

low neutron-density separation and low sonic values are interpreted as amalgamated channel 332 

deposits (Fig. 7). Facies vary from amalgamated channel sands at the base of submarine channel 333 

deposits to overbank and/or hemipelagic drape at the top (Fig. 7).  334 

 335 

4.3 Bio/chronostratigraphic analyses and correlation with seismic data 336 
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 337 

Despite the location of the study area on the upper slope, which is prone to mass-wasting 338 

and sediment reworking, the integration of calcareous nannofossil and planktonic foraminifera 339 

biohorizons increased the reliability of the age model presented in this study.   340 

We fixed the first occurrences (FOs), last occurrences (LOs), and the corresponding 341 

depths of key Neogene planktonic foraminifera (pf) and calcareous nannofossils (cn), in the 342 

biostratigraphic distribution sheet of the FM-1, FM-2, FM-3ST1 and FM-4 boreholes. We 343 

assigned ages to these fossil markers using equivalent ages derived from recently published 344 

studies (Anthonissen and Ogg, 2012; Backman et al., 2012; Agnini et al., 2014; Raffi et al., 345 

2016). Accordingly, the FO of Sphenolithus ciperoensis (cn) was assigned to ~24.4 Ma; the LO 346 

of Cyclicargolithus abisectus (cn) to ~23.5 Ma; the FO of Globoquadrina dehiscens (pf) to ~22.4 347 

Ma; the FO and LO of Sphenolithus heteromorphus (cn) to ~17.5 Ma and ~13.53 Ma 348 

respectively; the LO of Neogloboquadrina acostaensis (pf) to ~9.8 Ma; the LO of Cartinaster 349 

coalitus (cn) to ~9.7 Ma (Fig. 7).  350 

With the aid of time-depth relationship (checkshot) data, we depth-matched this 351 

bio/chronostratigraphic information with their corresponding seismic horizons. Finally, we 352 

attributed relative ages to the identified seismic reflectors based on: (i) the presence of fossil 353 

markers in at least two wells, with the exception of the LOs of S. ciperoensis (24.4 Ma) and C. 354 

abisectus (23.5 Ma), which were only recorded in the deepest FM-1 borehole. (ii) Relative 355 

depths of the identified seismic reflectors with respect to the nearest biohorizons (Figs. 5, 7, 8).  356 

The basal limit of Unit 1 has not been drilled and could not be assigned a precise age 357 

(Figs. 5, 8). It tops the transparent seismic unit previously interpreted as deep-marine shales 358 

deposited during Eocene sea-level highstand e.g. Doust and Omatsols (1990). Also, it marks a 359 
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transition from the transparent seismic unit to the high amplitude seismic packages interpreted as 360 

turbidite deposits (amalgamated channels/lobes; e.g. Figs. 9, 13). The base of Unit 1 could be 361 

associated with an increase in sediment supply to the Niger Delta following the regional uplift 362 

that affected the area in the Oligocene (~34-28 Ma; Chardon et al., 2016; Grimaud et al., 2017).  363 

The baselap (apparent onlap) associated with the base of Unit 2 (purple line in Fig. 5) 364 

occurs 200 m below the FO of Sphenolithus ciperoensis (~24.4 Ma), which occurs at the depth of 365 

4,017.3 m in the FM-1 borehole (Fig. 7). The base of Unit 2 also could not be assigned a precise 366 

age since it has not been drilled (Fig. 7). The geometries of successive apparent onlaps (Fig. 5) 367 

suggests it is associated with a non-deposition period in the deep basin probably during 368 

maximum flooding of the shelf. Also, since it lies 200 m below the 24.4 Ma biohorizon, it could 369 

be a good candidate for the sea-level transgression described in the Chattian (Haq et al., 1987; 370 

Fig. 8).  371 

The base of Unit 3 (pink in Fig. 5) occurs 195 m above the LO of Cyclicargolithus 372 

abisectus (~23.5 Ma) and the FO of Globoquadrina dehiscens (~22.4 Ma; Figs. 5, 7). The base 373 

of this unit, defined by apparent onlaps, could also be a good candidate for a sea-level 374 

transgression in the Burdigalian (Haq et al., 1987; Fig. 8). The older fossil marker-the LO of C. 375 

abisectus (~23.5 Ma), which was only recorded in the FM-1 borehole, occurs at the same depth 376 

as the younger fossil marker-the FO of G. dehiscens (~22.4 Ma), recorded in both FM-1 and FM-377 

2 boreholes. These fossil markers are separated by ~1.1 Ma and should not coexist. Hence, this 378 

datum may represent a condensed interval or alternatively, C. abisectus could represent a 379 

reworked component. Since, the base of seismic Unit 3 lies 195 m above the FO of G. dehiscens 380 

~22.4 Ma-Aquitanian (Figs. 7, 8), it could be related to the long-term Burdigalian sea-level 381 

transgression. It was tentatively assigned to the ~18.5 Ma (see Haq et al., 1987; Fig. 8).  382 
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The base of seismic Unit 4 occurs 160 m above the LO of Sphenolithus heteromorphus 383 

(~13.53 Ma) and corresponds to a regional erosional truncation.  This limit could be linked to the 384 

short-term sea-level fall in the Serravallian (~13.8 Ma) according to the Haq et al. (1987; Fig. 8), 385 

but probably occurred a little later in the Niger Delta. Since it is younger than 13.53 Ma, it was 386 

tentatively assigned to the Serravallian (~12.5 Ma). 387 

The base of Unit 5 corresponds to a regional truncation and occurs 120 m above the LO 388 

of Catinaster coalithus (~9.7 Ma). Since this erosional event is younger than 9.7 Ma, it was 389 

assigned a tentative age of ~9.5 Ma on the assumption that it could be associated with the major 390 

progradation event recorded in the eastern Niger Delta during the Tortonian ~9.5 Ma (Jolly et al., 391 

2016).  392 

On top of seismic Unit 5, we identified a transparent unit characterized in the FM-3ST1 393 

borehole by abundant and diverse nannofossils and foraminifera. The LO of Discoaster 394 

quinqueramus (~5.5 Ma) allowed us to confidently date this hemipelagic layer as uppermost 395 

Messinian. At the top of this hemipelagic layer lies a barren interval, which is followed by an 396 

interval characterized by the simultaneous occurrence of Reticulofenestra pseudoumbilicus (cn), 397 

Globorotalia plesiotumida (pf), Globorotalia miocenica (pf), Discoaster pentaradiatus (cn), 398 

Globorotalia exilis (pf), Discoaster brouweri (cn) and Gephyrocapsa spp (cn). The co-399 

occurrence of D. brouweri and D. pentaradiatus, whose extinction levels should be distinct in 400 

the uppermost Pliocene (Backman et al., 2012), together with the Pleistocene markers such as H. 401 

sellii and Gephyrocapsa spp, suggests that the top of this interval has been affected by 402 

reworking. The presence of a regional erosional event corresponds to this interval on seismic 403 

sections (e.g. red line in Figs. 5, 9B, 10C, 11C). It is characterized by the onset of erosive CLSs 404 

and MTDs.  405 
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Although we were unable to precisely define the Messinian-Pliocene transition due to 406 

poor biostratigraphic data, the onset of sediment-gravity flows following the hemipelagic drape 407 

dated ~5.5 Ma could be associated with sea-level fall following the transgressive event of the 408 

uppermost Messinian (Haq et al., 1987). Therefore, the base of Unit 6 could be related to a sea-409 

level fall in the Middle Pliocene (~3.7 Ma; see Haq et al., 1987 curve recalibrated by Gorini et 410 

al; 2014; Fig. 8). This interpretation seems to agree with the progradation event recorded in the 411 

eastern Niger Delta during the Middle Pliocene (3.7 Ma; Jolly et al., 2016).  412 

Similarly, assuming that the base of the laterally extensive (upper MTD) and associated 413 

CLS, mark the onset of the major cooling event at the base of the Gelasian ~2.6 Ma (see Miller 414 

et al., 2005; Fig. 8), the base of Unit 7, characterized by erosive CLSs and the onset of strongly 415 

reflective seismic packages could be associated with a sea-level fall during the Middle 416 

Pleistocene. It was assigned ~?1.9-0.9 Ma on the assumption that it could mark the onset of the 417 

high-frequency/high-amplitude sequence cycles (Miller et al., 2005; Fig. 8). The assigned 1.9 418 

Ma seems to agree with a published line located a few kilometers from our study area (see 419 

Bellingham et al., 2014). 420 

 421 

4.4. 3D seismic geomorphology and depositional architecture 422 

  423 

Detailed analysis of interval attribute maps, horizon and time slices focused on Units 5, 6 424 

and 7 (Fig. 5). It allowed us to characterize the depositional architecture within the younger 425 

stratigraphic units in detail. RMS amplitude extraction at 3.3 seconds (twt) at the top of parallel, 426 

continuous high amplitude seismic packages (Cbh facies), revealed the presence of NE-SW 427 

trending sinuous channels (Fig. 9A). These channels are characterized by their low amplitudes in 428 
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their axes, showing high amplitudes in their overbanks (Fig. 9A). They are interpreted to have 429 

incised older amalgamated channel/lobe deposits but were draped with mud during their 430 

abandonment (see also Chapin et al., 2002; Jobe et al., 2015). A ~5 m core data retrieved in the 431 

FM-1 borehole within the (Cbh) facies revealed high net-to-gross channel sand, characterized by 432 

blocky gamma-ray log patterns (Fig. 9B). Downstream, a ~2 m core data retrieved in the FM-433 

3ST1 borehole is characterized by interbedded sand and shales that grade downward to 434 

dominantly shales characterized by irregular gamma-ray log patterns (Fig. 9B, D). Lateral 435 

variation in the gamma-ray log from blocky in the FM-1 borehole to irregular patterns in the FM-436 

3ST1 borehole points to an overall decrease in grain size in this case from the channel axis to 437 

overbank deposits characterized by thin interbedded sands and shales.  438 

The RMS amplitude map of the erosive event at the base of Unit 6 revealed the presence 439 

of a ~2 km wide, E-W oriented, low-amplitude, moderate sinuosity submarine channel complex 440 

(labelled 1; Fig. 10A, B) and three channel levee systems (CLSs labelled 2, 3 and 4), confined to 441 

the southern part of the mobile shale zone (Fig. 10 A, B). The main CLS developed tripartite, 442 

moderate sinuosity networks with overall E-W paleo-flow direction (Fig. 10A, B). CLS 1 443 

terminated on a moderate amplitude, lobe-like feature (Fig. 10 B). CLSs 3 and 4 are 444 

characterized by higher amplitudes and crossed paleo-relief associated with a buried fold/shale-445 

cored anticline (Fig. 10A, B).  446 

RMS amplitude extraction at the base of Unit 7 reveals the presence of a submarine 447 

channel complex (SE in Fig. 11B; labelled channel 1), CLSs 2, 3 and 4 (SE in Fig. 11B) and 448 

bifurcating, moderate sinuosity CLSs located in the NW corner of the 3D volume (Fig. 11B). 449 

The NW CLSs are interpreted as bypass channels that incised older sand-rich amalgamated 450 
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channels/lobe deposits. The updip continuity of the main submarine channel complex is obscured 451 

by mobile shale/erosion (Fig. 11B).  452 

Furthermore, the horizon slice at the base of the high reflectivity seismic packages in 453 

Unit 7 reveals the presence of erosive submarine channel complex 1 and high sinuosity CLSs 2 454 

and 3 (Fig. 12A, B). A seismic line through this channel complex revealed its erosive character 455 

and wide U-shaped geometry. This stage marks a significant increase in the width of the channel, 456 

the development of higher sinuosity, a northward shift toward the mobile shale zone and overall 457 

NE-SW orientation compared to the previous stages (Figs. 10, 11 and12). 458 

An RMS amplitude extraction at 1.9 seconds within the high amplitude seismic packages 459 

revealed a NE-SW trending, moderate sinuosity submarine channel complex (labeled 1; Fig. 460 

13B) and four E-W oriented sinuous CLSs (labelled 2, 3, 4 and 5; Fig. 13B). These channels are 461 

all confined to the southern part of the mobile shale zone (Fig. 13). The submarine channel 462 

complex 1 captured the CLSs 2 and 3 downslope, where the latter developed abandoned meander 463 

loops (Fig. 13). CLS 4 is bordered by a high amplitude sediment wedge interpreted as levee 464 

deposits (Fig. 13). The linear, high amplitude channel-like feature located downslope of CLS 4 is 465 

interpreted as an avulsion channel (see also Posamentier and Kolla, 2003; Fig. 13).  466 

The horizon slice at 1.8 seconds (below the present day seafloor) shows the presence of 467 

irregular, low coherent seismic areas in the north, flanked by planar radial discontinuities 468 

interpreted as radial faults (Fig. 14A). These low coherent features were interpreted as mobile 469 

shales (Figs. 2, 5, 12-14). Linear scars were also observed in a hanging-wall fault block adjacent 470 

to the mobile shale zone (Fig. 14). A seismic line through these lineated features revealed 471 

coherent to slightly deformed high amplitude seismic packages with a somewhat erosive base. 472 

These lineaments were interpreted as scars associated with mobile shale-derived MTDs (Fig. 473 
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14D). This MTD shows a lateral distance, area and maximum thickness of ~2.3 km, ~13 km2 and 474 

~60 m, respectively (Table 1). The presence of an E-W oriented, moderate sinuosity submarine 475 

channel complex characterized by rough edges and entrenched CLSs can also be observed on 476 

this map (Fig. 14). 477 

 478 

 5. Discussion 479 

  480 

Here, we focus on the sedimentary processes in intraslope basins, interactions between 481 

shale tectonics and submarine channel evolution, depositional patterns and their implications for 482 

reservoir distribution. We prefer the term ‘filled ponded basins’ to ‘shallow ponded basins’ used 483 

by Prather et al. (2012a) in the description of the depositional architecture in the intraslope 484 

basins we studied. We think this term is more appropriate as the 3D block we studied is located 485 

in a supply-dominated deep-basin between 900-1,150 m, where deep-water processes dominate, 486 

and where the high rate of sediment supply filled the accommodation created by shale tectonics.  487 

 488 

5.1 Interaction between shale tectonics and submarine channel complex  489 

  490 

Detailed seismic and 3D geomorphological analyses (Fig. 15) revealed that the main 491 

submarine channel complex described in Units 6 and 7 (Figs. 10-15) evolved in three stages from 492 

the Pliocene to the present day. The evolution of the submarine channel from relatively moderate 493 

to high sinuosity over the Pliocene and the Pleistocene could be related to shale tectonics (Figs. 494 

5, 10-15; see also Olusola et al., 2007; Clark and Cartwright, 2012; Jolly et al., 2016; Hansen et 495 

al., 2017). 496 
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During stage 1 (Middle Pliocene-Early Pleistocene), the channel was characterized by 497 

narrow morphology, low sinuosity and confined to the south of mobile shale in an E-W 498 

orientation (Figs. 10-11, 15). The narrow low sinuosity of the channel during this stage is typical 499 

of young submarine channels with a relatively high slope gradient (see also Posamentier and 500 

Kolla, 2003; Ferry et al., 2005; Heiniö and Davies, 2007; Jobe et al., 2015; Jolly et al., 2016; 501 

Hansen et al., 2017). The E-W orientation of the channel south of the mobile shale zone suggests 502 

that the later was active from the Middle Pliocene to the Early Pleistocene, leading to the 503 

channel’s confinement (Fig. 10-11, 15).  504 

Stage 2 (Early to Middle Pleistocene) marks a northward shift of the submarine channel 505 

complex toward the mobile shale zone and a transition from an E-W to a NE-SW orientation 506 

(Figs. 12, 15). Its higher sinuosity, broad U-shaped morphology are typical features of mature 507 

submarine channels with relatively gentle slope gradients (Fig. 12; see also Posamentier and 508 

Kolla, 2003; Ferry et al., 2005; Jobe et al., 2015; Heiniö and Davies, 2007; Jolly et al., 2016; Qin 509 

et al., 2016; Hansen et al., 2017). The channel’s northward adjustment toward the mobile shale 510 

zone (Figs. 12, 15) suggest relative quiescence of mobile shales.  511 

Stage 3 (Middle Pleistocene to present day) marks a return of the channel to its original 512 

E-W paleo-flow direction, south of the mobile shale zone (Figs. 1D, 14-15). The downward shift 513 

of the submarine channel complex suggests that renewed activity of the mobile shale led to the 514 

deflection of the submarine channel complex southward away from the mobile shale zone. The 515 

presence of NE-SW oriented, high sinuosity submarine channel complexes 1 and 2 at 1.9 516 

seconds (twt; middle part of Unit 7; Fig. 13) suggests that shale tectonics and the final southward 517 

deflection of the channel complex occurred a little later than the Middle Pleistocene. The 518 

presence of mud volcanoes on the present day seafloor supports the ongoing activity of the 519 
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mobile shale (Fig. 5). The presence of entrenched sinuous channel levee system within a valley 520 

(Fig. 14) indicates increasing confinement due to successive erosional and aggradational 521 

(depositional) stages (Fig. 13; channel complexes 1 and 2).  A large valley containing the 522 

channel develops complex geometries as the valley wall becomes unstable (large scars Fig. 523 

14A), with the development of inner terraces and a central sinuous channel (labeled in part B). 524 

The modification of the channel valley could result from the increasing confinement and focused 525 

energy of turbidity currents (see also Gee and Gawthorpe 2007, and others) during their activity. 526 

The present day hemipelagic drape (Fig. 14 C) shows that the last channel complex described in 527 

this study was not active in the Holocene.   528 

 529 

5.2 Reservoir distribution in filled ponded basins    530 

 531 

Fig. 13 is a detailed example of the recent entrenched channel levee system (CLS) in Unit 532 

7. The generally high amplitudes on the upstream bank of channel levee system (e.g. CLS 4; Fig. 533 

13) suggest that sand-rich sediment was deposited both in the channel axis and on the overbank. 534 

In addition, the chaotic high amplitude reflection packages (HARPs) at the erosional base of the 535 

main submarine channel complexes (e.g. Figs. 13, 14; labeled HARPs) are interpreted as coarse 536 

grained turbiditic channel fill deposits (after Prather et al., 1998; Heiniö and Davies, 2007; 537 

Gamboa and Alves, 2016). However, the occurrence of high RMS amplitudes downstream of the 538 

channels (e.g. CLS 4 in Fig.13A, B; labelled avulsion channel) show that turbidity flows 539 

periodically spilled sandy deposits on the overbank environment. The presence of high 540 

amplitudes associated with the avulsion channel (Fig. 13 A, B) compared to lower amplitudes in 541 

the downstream part of the main CLS 4 (Fig. 13), suggests that sand-rich sediment was diverted 542 
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from the main channel during the avulsion event. Similar observations have been reported in the 543 

De Soto Canyon, Gulf of Mexico, where upstream avulsion due to a breached levee resulted in 544 

the deposition of the avulsion lobe and concomitant decrease in both water and sediment 545 

discharge downstream of the main channel (Posamentier and Kolla, 2003).  546 

 As a first conclusion, these detailed images of reservoir distribution in Unit 7 are a good 547 

analog for the Middle to Late Miocene turbidite deposits described by previous authors as 548 

amalgamated channels and overbank deposits (Chapin et al., 2002). However, our study shows 549 

that reservoirs topped by hemipelagic layers and/or mud-rich turbidites are Late Oligocene to 550 

present day in age (see Figs. 5, 7, 9). Our study also shows that the geometries and the 551 

distribution of reservoir could be controlled by both shale tectonics and sediment supply, with 552 

prevalence of hemipelagic deposition during the periods of sea level rise (see Figs. 7 and 8). 553 

Reservoir facies were confirmed by borehole data (see Fig. 9). Lobe-like deposits (e.g. Fig. 10 B) 554 

are generally rare and not discussed further in this paper due to lack of sufficient evidence to 555 

fully characterize their architecture.  556 

 557 

5.3 Shale tectonics vs MTD types and distribution: 558 

  559 

Two types of MTDs were recognized based on seismic facies, internal architecture and aerial 560 

extent (Figs. 5, 6, 14 D and Table 1): (1) Mobile shale-derived MTDs and (2) regional MTDs. 561 

Detailed analysis of kinematic indicators enabled us to infer the source area of the locally 562 

derived type 1 MTDs, but the limited size of the 3D volume we studied did not allow us to 563 

observe the headwall scars of the type 2 MTDs. However, analysis of their thickness maps 564 

helped us to infer their provenance.  565 
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 566 

Type 1 (Mobile shale-derived MTDs)  567 

The type 1 MTDs described in seismic Unit 7 are thin and laterally confined adjacent to 568 

mobile shales (Fig. 14. D; Table 1). Their strong reflectivity distinguishes them from the type 2 569 

MTDs, and their overall coherent internal architecture indicates that they are close to their source 570 

area (mobile shales).  571 

Type 2 (Regional MTDs) 572 

 The type 2 MTDs described in Unit 6 (labelled lower, middle and upper MTDs; Figs. 5, 573 

6; Table 1) are characterized by thick, chaotic, discontinuous low amplitude/transparent seismic 574 

packages that are bounded at the base by laterally extensive erosional scours. Their thick, lateral 575 

distribution, low amplitudes and chaotic internal architecture indicate that they were reworked 576 

far from their source areas (shelf-margin/upper slope). 577 

The distribution of the regional MTDs could be controlled by general slope (Fig. 6), syn-578 

depositional faulting (Fig. 6 B) and differential compaction/cementation in the underlying 579 

substratum (Fig. 6 D).  580 

The lower MTD increases in thickness from the NE downslope to the SW suggesting 581 

possible source area upslope (Fig. 6C; see also Alves et al., 2009). However, the local increase in 582 

MTD thickness on both side of CLSs (Figs. 5, 6C, G), suggest that the degree of 583 

compaction/cementation in the underlying CLSs could be a controlling factor at local scale. The 584 

differential erosion in sandy CLSs and muddy deposits could also explain the observed variation 585 

in thickness of the lower MTD (see erosional truncations at its base, Fig. 6 G).  586 

We observed a NE-SW decrease in thickness of the middle MTD downstream (6B, F) 587 

due to its confinement within fault bounded accommodation (Hanging-Wall; HW; Fig. 6F). This 588 
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observation suggests that the deposition of MTD in the intraslope basins of the Niger Delta was 589 

controlled by syn-depositional normal faults (P, Q? Fig. 6 F) that were active during the 590 

emplacement of MTD (Fig. 6B, F). 591 

The thickness of the upper MTD increases downstream and was locally controlled by the 592 

degree of compaction in the underlying CLSs (Fig. 6A). The overall downstream increase in 593 

thickness of this MTD suggests a response to regional accommodation development (see also 594 

Alves et al., 2009). The foregoing observations strongly suggest that the type 2 MTDs originate 595 

from shelf-margin and/or upper slope. 596 

 597 

5.4 Control of depositional systems in filled ponded basins: 598 

    599 

Our results show that the depositional architecture of the filled ponded basins in the 600 

western Niger Delta is controlled by shale tectonics, sediment supply and eustasy.  601 

At local scale, basin tectonics is associated with mobile shale deformation and syn-602 

depositional faults, controlling submarine channel morphology and depositional patterns in these 603 

filled ponded basins. Inferred high uplift/subsidence rates driven by the mobile shale in the 604 

Middle Pliocene and Early Pleistocene resulted in high slope gradients characterized by 605 

erosionally confined channels with low sinuosity (e.g. Figs. 10B, C, D; 11 A, C). However, 606 

relative quiescence and/or low subsidence/uplift rates from the Early to Middle Pleistocene 607 

resulted in more mature CLSs characterized by complex terraces, overbank deposits and channel 608 

avulsion (e.g. Fig. 13). The erosional nature of the main submarine channel complex during 609 

mobile shale deformation suggest that a dynamic equilibrium was maintained between changing 610 

local slope gradients and sedimentation rates (see also Adeogba et al., 2005; Clark and 611 
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Cartwright, 2012; Jolly et al., 2016; Hansen et al., 2017). Similar observations have been made 612 

in the adjacent lower Congo Basin (Ferry et al., 2005).  613 

In addition, the control of the distribution of MTDs by syn-depositional faults suggests 614 

that mass-wasting was coeval with the growing faults. Equivalent observations have been 615 

reported in the lower Congo Basin (Ferry et al., 2005).  616 

 At a basin scale, the depositional sequence is characterized by a succession of MTDs and 617 

turbidite deposits topped by hemipelagic layers (see Fig. 6G). Moreover, the Plio-Pleistocene 618 

sedimentary records show that eustasy and sediment supply could control the depositional 619 

architecture at regional scale (e.g. Figs. 5, 6E, G, H; 10-13C). The absence of thick hemipelagic 620 

drape above the older submarine channel complex (e.g. CLS 1 Fig 10 C, D) suggests that this 621 

hemipelagic drape could have been eroded during stage 1 of the submarine channel complexes or 622 

that the former was below resolution. However, the presence of a thick hemipelagic layer above 623 

the present day submarine channel complex (just below the present day seafloor; Figs. 5, 10 C, 624 

D; 12-14 C) indicates that it was draped and abandoned during the last postglacial sea level rise. 625 

These observations suggest that channel complexes were most active during the low eustatic sea 626 

level but that hemipelagic sedimentation prevailed during high eustatic sea level.  627 

 628 

Conclusions 629 

 630 

The Neogene stratigraphy of the western Niger Delta’s slope is characterized by seven 631 

major seismic units dated as Chattian, Burdigalian, Serravallian, Tortonian, Middle Pliocene, 632 

Middle Pleistocene and present day. Major changes in the sedimentary record occurred in the 633 

Pliocene-Pleistocene, characterized by erosional MTDs, turbidites and channel levee systems 634 
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draped by hemipelagites.  In the Plio-Pleistocene upper sequences, we observed changes in the 635 

morphology of submarine channel complexes over time (low sinuosity/highly erosive versus 636 

high sinuosity/depositional) that were controlled by the interaction between shale tectonics 637 

(creating accommodation, and controlling the seafloor profile) and sediment supply.  638 

 Younger sequences of the Niger Delta upper slope could be a good analog for 639 

sedimentary processes in intraslope basins; at the margin scale, depositional architecture in the 640 

filled ponded basins on the upper slope of the western Niger Delta is controlled by the interaction 641 

between local basin tectonics, eustasy and sediment supply. Reservoir facies are characterized by 642 

amalgamated channel fills and overbank deposits. Periodic levee breaching by high-energy 643 

turbidity currents results in channel avulsion and diversion of sand-rich sediments downstream of 644 

avulsion channels. Our detailed analysis of the depositional architecture of the Tortonian and 645 

Plio-Pleistocene sedimentary units provides useful analog for deeper exploration of the older 646 

stratigraphic units. 647 
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Table 1: Summary of statistical measurements on MTDs 
 

 

Name Length (m) Thickness (m) Area (km2) 
Mud-derived MTD 2.3 75 13 
Upper MTD 12 205 187 
Middle MTD 6-8 246 175 
Lower MTD 3-5 148 155 
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 10 

Fig. 1. A: Superposed relief and bathymetric map of the Niger Delta showing the extensional, 11 

translational and compressional zones. B: Schematic map showing progradation of the delta from 12 

the Late Eocene to the present day. The red box in inset map B shows the location of the Niger 13 

Delta in the Gulf of Guinea. Red box and black circles in A show the limit of the 3-D block we 14 

studied and the locations of the boreholes, respectively. Yellow arrow points to the downstream 15 

section of the submarine channel complex that crossed the study area. A, B modified after 16 

(Rouby et al., 2011). 17 
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 35 

 36 

Fig. 2. Schematic diagram (not drawn to scale) of the three lithostratigraphic units underlying the 37 

Niger Delta (redrawn after Brownfield, 2016, on the right). Representative deep borehole (FM-1 38 

well) that penetrated more than 4 km into the deeper Neogene sedimentary records in the Akata 39 

Formation and the bio-chronostratigraphycally dated intervals in this study (on the left). 40 
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 59 

 60 

Fig. 3.  Physiography of the study area. A, B: Uninterpreted and uninterpreted time slice (at 4.9 61 

seconds twt) showing mobile shales and filled-ponded basins in the block studied. C: Time-62 

structure map near the level of time slice illustrating the same features as in panels A and B. D: 63 

Variance attribute map of the seabed showing the presence of mud volcanoes and submarine 64 

channel complex. Black dots show the location of the boreholes. 65 
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 78 

 79 

Fig. 4: Overview of the seismic facies observed in this study, corresponding line drawings and 80 

interpretations of the depositional environment. 81 
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 105 

Fig. 5. A, B: Uninterpreted and interpreted seismic lines showing the stratigraphic architecture of 106 

the study area. Note the lateral discontinuities (erosional truncations) and the juxtaposition of 107 

different seismic facies. 108 
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 126 

 127 

Fig. 6. A, B, C: Isochron maps of the lower, middle and upper MTD showing respective spatial 128 

variations in sediment thickness. D: Horizon slice at the top of the amalgamated channel levee 129 

deposits underlying the lower MTD showing the presence of sinuous channel. E-G: Seismic lines 130 

illustrating the architecture of the MTDs. Variations in the thickness of the middle MTD on the 131 
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footwall and hanging wall blocks are indicated by double-headed arrows (panel F). See text for 132 

detailed explanation. 133 

 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

Fig. 7: Representative borehole (FM-1 well) drilled to a total depth of 4.15 km down to the 147 

Neogene series. The identified fossil markers, data and estimated ages are shown on the left. The 148 

well logs used for lithology, facies and depositional environment analysis are shown on the right. 149 

Note the vertical succession of facies from channel axis, overbank and/or hemipelagic deposits. 150 

See text for a detailed explanation.  151 
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 164 

 165 

Fig. 8: Chronostratigraphic chart showing standard stages, long-term and short-term sea level 166 

curves (after Haq et al., 1987); the Late Miocene-Quaternary cycles according to Haq et al., 167 

(1987) curve recalibrated by Gorini et al. (2014). The Plio-Pleistocene cycles according to Miller 168 

et al. (2005).  169 

 170 

 171 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

Fig. 9. A: RMS amplitude map at 3.3 seconds (twt) in the Cbh facies showing channel 192 

architectural patterns. B: Corresponding seismic line illustrating the associated seismic facies. C, 193 

D: Core data from the FM-1 and FM-3ST1 wells showing the lithological content. 194 
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 204 

 205 

 206 

Fig. 10. A: Uninterpreted horizon (variance attribute) slice of the erosional event at the base of 207 

Unit 6. B:  RMS amplitude extraction on the base of Unit 6 draped on panel A. The main 208 

submarine channel complex (labeled 1) and channel levee systems (labelled CLSs 2, 3 and 4) are 209 

illustrated. C, D: Interpreted seimic line and line drawing showing the architecture of the 210 

channels. Yellow arrow (panel B points to paleo-flow direction), while red arrow (part D) points 211 

to the level of amplitude extraction. Note the narrow, low sinuosity, erosional character and E-W 212 

orientation of the main submarine channel complex 1. Note also the ability of the CLSs 2 and 3 213 

to cross paleo-relief features associated with the buried shale-cored anticline/fold. 214 
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 234 

Fig. 11. A: Uninterpreted RMS amplitude map of a channel levee system near the top of Unit 7 235 

draped on the horizon (variance attribute) slice. B: Interpretation of panel A illustrating narrow, 236 
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erosional low sinuosity submarine channel complex 1 and moderate sinuosity CLSs (labeled 2, 3 237 

and 4). C: Seismic line and line drawing illustrating the architectures of the channels.  Red arrow 238 

(panel C) points to the level of amplitude extraction. Note the prsence of bifurcating, bypass CLS 239 

that incised older amagamated channel/lobe deposits in the NW corner of the map and the 240 

truncation of amalgmated channel levee deposits by the lower and middle MTDs. 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

Fig. 12. A: Horizon (variance attribute) slice at the base of the high reflectivity seismic packages 254 

above the base of Unit 7 (blue line). Note the presence of wide, highly sinuous submarine 255 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 

channel complex (labeled 1 in panels B and C), and highly sinuos CLSs (labeled 2 and 3). Note 256 

also the erosional character and northward shift of the main submarine channel complex 1 257 

toward the mobile shale zone in the NE and its NE-SW orientation.  258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 
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 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

Fig. 13. A: Uninterpreted RMS amplitude map at 1.9 seconds (twt) draped on horizon (variance 278 

attribute) slice. B: 3D geomorphological interpretation of panel A showing the architectures of 279 

submarine channel complex (labeled 1), CLSs 2 to 5 and faults. C: Seismic line and line drawing 280 
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illustrating the complex cut and fill architecture/lateral aggradation of the main submarine 281 

channel complexes 1. Note: (I) The erosive nature of the main channel complex compared to the 282 

aggrading CLSs 3 to 5. (II) The presence of abandoned meander loops associated with the 283 

meandering CLS 2. (III) The presence of an avulsion channel downstream of levee deposit 284 

adjacent to CLS 4. (IV) The overall decrease in RMS amplitude downstream along the CLS 4 285 

and the corresponding increase upstream along the avulsion channel. 286 

 287 

 288 

 289 
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 299 

 300 

 301 

 302 

Fig. 14. A, B: Uninterpreted and interpreted horizon (variance attribute) slice at 1.8 seconds (twt) 303 

showing the presence of submarine channel complexes (yellow arrow), sinuous CLSs, mobile 304 
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shales, radial faults and lineated scars associated with mobile shale-derived MTDs. C: Seismic 305 

lines illustrating the erosional character and rough edges of the submarine channel complex. D: 306 

Seismic line showing the conformable/slightly deformed, high amplitude seismic packages 307 

associated with mobile-derived MTDs. Note the E-W orientation, presence HARPs (panel C), 308 

terraces and entrenched CLS in the main submarine complex. 309 

 310 

 311 
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 316 
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 318 

 319 

 320 

 321 

 322 

Fig. 15. Shale tectonics and submarine channel complex evolution from Middle Pliocene to 323 

present day. Note E-W orientation of the channel complex during the Middle Pliocene-Early 324 
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Pleistocene (purple polygon; Unit 6); the NE-SW orientation during the Early-Middle 325 

Pleistocene (green polygon; Unit 7) and the E-W orientation from the Middle Pleistocene to 326 

present day (brown polygon; Unit 7). Note the confinement of mobile shales in the NE of the 327 

study area during the Plio-Pleistocene intervals. See text for more detailed explanation.  328 
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Highlights 

• The Neogene stratigraphy of the western Niger Delta slope dates to the Chattian  

• Major changes in sedimentary record occurred in the Tortonian and Plio-Pleistocene 

• Depositional architecture is controlled by eustasy, sediment supply and shale tectonics  

• Depositional sequence in intraslope basins constitutes MTDs, turbidites and hemipelagites 

• Channel fills and overbank deposits act as reservoirs while hemipelagites act as seals 


