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Abstract 
 

A poly(vinylmethyl-co-dimethyl)siloxane has been functionalized with phenylethanethiol, N-

methylmercaptoacetamide and heptadecafluoro-1-decanethiol by a thermal radical thiol-ene 

reaction initiated by azobisisobutyronitrile. The resulting polymers were obtained in good 

yields with most of the time a complete conversion of the vinyl groups. The reaction also 

preserved the fragile polysiloxane backbone. The polymer, grafted with about 25% of 

mercapto-acetamide groups is soluble in polar solvents such as dimethylformamide and 

dimethylsulfoxide, opening the way for further functionalization with polar molecules such as 

unprotected carbohydrates. Spherical and branched gold nanoparticles were coated with these 

polymers. This coating induced a surface resonance plasmon shift resulting from the interaction 

of the grafted polysiloxanes with the nanoparticle surface. The shift can be explained by the 

variation of the refractive index of the side groups but may be also related to the self-

organization of polysiloxanes and their interactions with the gold surface depending on their 

polarity.  
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Introduction 
 

In recent years, the interest in nanomaterials based on semiconductors or metals has 

considerably increased. At this scale, these materials have unique optical, electronic and 

catalytic properties which are used in many applications (low concentration detection of 

analytes,[1–3] catalysis,[4–6] therapy,[7,8] diagnosis,[9] tissue engineering,[10] high resolution 

imaging,[11] electronics[12]…). The use of these nanoparticles for a targeted application often 

requires modifying their surface by adding an organic or inorganic layer.[13–17] This additional 

layer has two main advantages. First it enables the dispersion of nanohybrids in different 

solvents and improves their colloidal stability. Secondly it changes the nanohybrid properties 

and can provide a recognition function or a response to a stimulus.  

 

The objective of this work is to study gold nanohybrids obtained by coating gold nanoparticles 

(“NP”) with functionalized polysiloxanes. These nanohybrids can be characterized by their 

absorbance in the visible spectrum, linked to the Surface Plasmon Resonance (SPR) 

phenomenon. First, the SPR band of the gold NPs is expected to shift when the functionalized 

polysiloxane used to coat their surface is changed. Secondly, once coated, a change in the 

environment of the coated nanoparticle (solvent, chemicals….) may change the polysiloxane 

conformation and/or its interaction with the gold surface, resulting in an extra shift of the SPR 

band. As a result, the hybrid nanoparticle could be used as a sensor. 

 

Polysiloxanes were selected because these polymers are very flexible, with a low glass 

transition temperature. Thus, they are expected to change their conformation quite easily in 

response to different stimuli (solvents, temperature, ions, sugars, proteins ...). In addition, the 

grafting of suitable organic groups can modulate their refractive index.[18,19] The 

functionalization of polysiloxanes is not always easy because the siloxane bond is sensitive to 

acid or basic conditions. Few reactions are convenient for preserving the silicone polymer and 

notably the most used is hydrosilylation, but more recently, other strategies are developed such 

as azide-alkyne click chemistry,[20] Schiff base chemistry,[21] Piers–Rubinsztajn reaction,[22] 

thioacetals,[23] aza-Michael[24]…etc…. The thiol-ene reaction also appears as a suitable strategy 

for grafting in a single step various unprotected functional groups, including acids, amines or 

alcohols. Since the reaction is a radical reaction, it preserves well the integrity of the 

polysiloxane backbone. The reaction is initiated either thermally in the presence of a radical 

initiator or by photochemistry, preferentially in the presence of a photoinitiator. Finally, the 

precursor polymers, vinyl polysiloxanes, are easy to prepare with different proportions of vinyl 

functions distributed throughout the chain. This reaction ensures the distribution of the desired 

functions throughout the polysiloxane backbone (such as amides, phenyl, fluorinated), in 

addition to the thioether functions. The latters are expected to help the formation of nanohybrids 

through the interaction of the thioether with the gold surface. The thiol-ene reaction has been 

increasingly used in the last years for functionalizing polysiloxanes[25–31]. It has been used  

notably for preparing hydrophilic or amphiphilic polysiloxanes,[32–36] surface functionalized 

PDMS elastomers,[37,38] antibacterial silicones,[39] elastomers for modulating cell adhesion,[40] 

self-healing polysiloxanes,[41] polysiloxanes elastomers with optical properties,[42,43] liquid 

crystal polysiloxanes,[44] electroactive ferrocene-grafted polysiloxanes,[45,46] polysiloxanes with 

tunable dielectric properties,[47] or contact lens elastomers.[48] Thiol-ene strategy is also used in 

the case of polysiloxanes for getting an efficient, orthogonal cross-linking,[18,49–51] often 

initiated photochemically and consequently, has been adapted to electrospinning[52] and 3D 

printing.[53–55]   

 



In this work, the functionalized polysiloxanes have been prepared in two steps: the first step 

consisted in preparing poly(methylvinyl-co-dimethyl)siloxanes containing around 25% of vinyl 

groups, by cationic redistribution (Figure 1). In the second step, three different thiols N-

methylmercaptoacetamide 4, phenylethanethiol 5 and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluoro-1-decanethiol 6 (Figure 1) were grafted by thiol-ene reaction on the vinyl 

polysiloxane. In addition to varying the refractive index surrounding the particles, the different 

grafts have different polarities and are prone to make varied molecular interactions (hydrogen 

bonds, hydrophobic interactions, π-π stacking ...). N-Methyl-mercaptoacetamide 4 was also 

selected in order to introduce a relatively hydrophilic group able to provide strong hydrogen 

bonding and to impart solubility to the corresponding grafted polysiloxane in polar solvents, 

such as DMF or DMSO. Actually, such polysiloxanes soluble in DMF or DMSO are interesting 

for the preparation of carbohydrate grafted polysiloxanes ("glycosilicones"), since they would 

enable the direct grafting of unprotected carbohydrate moities in monophasic conditions.[56–58]  

 

Concerning the gold nanoparticles, the wavelength of the Surface Plasmon resonance (SPR) 

absorption band is affected by many factors.[59,60] It is mainly affected by the particle shape,[61] 

dimensions and aggregation. Aggregation of gold nanoparticles produced a strong blue shift of 

the SPR band. It can be irreversible or reversible, depending on the system.[3,62] This shift due 

to aggregation is typically used for biodetection, relying on antigen-antibody complexation or 

DNA hybridization that leads to aggregated gold nanoparticles.[59] However, in our work, we 

were mostly interested in the subtle variations induced by the interactions of polymers with the 

gold nanoparticles in solution that do not provoke the aggregation and settling of nanoparticles. 

The wavelength shift is usually small compared to the shift due to aggregation, but can bring 

information on the surrounding of the nanoparticles. Accordingly, the SPR band is affected by 

the solvent refractive index,[63] by organic layers, either well-organized monolayers,[64] 

surfactants[65] or polymers,[66–68] wrapping the nanoparticle. When this organic layer is stimuli-

responsive, the SPR band shifts with the application of the stimulus. Consequently, the 

nanoparticle suspension (but also single nanoparticles[69]) can behave as a sensor. Thus, the 

observation of a SPR band shift without aggregation phenomenon has been applied to the 

detection of ions and chemicals[70–73] (including pesticides[74]) or biomolecules[61,75–82]. The 

detection of different chemicals at ultralow concentrations[83] or single atomic ions[70] has been 

demonstrated. This method of detection, which does not require labeling is known as "LSPR 

nanosensors" for "Localized Surface Plasmon Resonance Nanosensors" or localized surface 

plasmon resonance detection. [84–89] The plasmon band shift is also more sensitive in the case 

of anisotropic or hollow (gold shells)[90] nanoparticles and for this reason rod, branched or 

hollow nanoparticles are preferentially used for this purpose.[91] In this work, we used a 

surfactant-free method, based on the reduction of the gold tetrachloroauric acid by glucosamine 

for generating branched gold nanoparticles.[92]   

 

 

 



 
 

Figure 1: General scheme for the synthesis of functionalized polysiloxanes 
 
 

 
 

Figure 2 : Functionalized polysiloxanes prepared 

 

 

 

 

 

 

 

A :  P(AcM-co-DM)S B :  P(PhM-co-DM)S C : P(FM-co-DM)S

D :  P(AcM-co-PhM-co-DM)S E :  P(AcM-co-FM-co-DM)S



Results and discussion 
 

Synthesis of functionalized polydimethylsiloxanes 
 

In a first step, the copolymer 3 (poly(methylvinyl-co-dimethyl) siloxane or P(VM-co-DM)S) 

was prepared by cationic redistribution of a polymethylvinylsiloxane 1 with about 16 units 

(PVMS, 1) with octamethyltetrasiloxane (2, D4), in the presence of an acid catalyst (Tonsil 

Optimum) (Figure 1). The redistribution was fully characterized by SEC, 1H NMR, 13C NMR 

and 29Si NMR and led to the desired copolymer with a Mn around 5500 g/mol and a 

methylvinylsiloxane unit ratio =  23% (the feeding ratio was 28%). Assignment of the different 

triads and their respective integrals allowed to assess the quality of the redistribution of vinyl 

groups within the siloxane structure. Based on the triads centered on a D pattern, a distribution 

close to the one corresponding to a random statistical distribution is observed: the respective 

integrations ratio for the triads DDD, VDD/DDV and VDV were found equal to 66, 30 and 4% 

close to the theoretical values of 59, 36 and 5% (where D stands for dimethylsiloxane unit and 

V for methylvinylsiloxane unit). 

 

The P(VM-co-DM)S copolymer 3 was then functionalized by a thiol-ene reaction with three 

different thiols, N-methyl-mercaptoacetamide 4, 2-phenylethanethiol 5, and 

3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol 6 to give three copolymers: 

A: P(AcM-co-DM)S, B: P(PhM-co-DM)S, C: P(FM-co-DM)S and two terpolymers: D: 

P(AcM-co-PhM-co-DM)S, F: P(AcM-co-FM-co-DM)S (Figure 2). In the case of terpolymers, 

the thiols were introduced in equimolar amounts, namely with 0.5 mol of thiol 4 and 0.5 mol 

of thiol {5 or 6} for 1 mol of vinyl. The reaction was performed under thermally activated 

radical conditions, by addition of azobisisobutyronitrile (AIBN), under inert atmosphere and 

heating for 8 hours at 80°C. The polymers were purified by precipitation in cold acetonitrile. 

Characterization of the copolymers was made by 1H NMR, 13C NMR, 29Si NMR and size 

exclusion chromatography (SEC) (SI-1 and SI-2). We focused on the conversion of the vinyl 

function and the grafting position of the thiol on this function (in  or  position relative to the 

silicon atom). For the 2-phenylethanethiol 5 and for the fluorinated thiol 6, the reaction occurred 

at 100% on the carbon in  of the silicon atom, but in the case of N-methyl-mercaptoacetamide 

4, 14% of the thiol-ene reaction occurred on the carbon in  of the silicon, which can be 

quantified by 1H NMR (Figure 4 and SI-2). The results are reported in Table 1. The reaction 

was very efficient and 100% of the vinyl groups are converted to the thioethers for the 2-

phenylethanethiol, N-methyl-mercaptoacetamide, with no vinyl function visible in NMR after 

reaction. With the fluorinated thiol, the reaction was not complete, even by adding 20%mol of 

AIBN and 10 to 20% of unreacted vinyl groups are observed. This thiol would need further 

excess of AIBN for achieving a complete reaction. The thiol-ene reaction does not break the 

polysiloxane chain: the three polymers showed a peak in SEC with retention time and a shape 

quite similar to the starting polymer P(VM-co-DM)S 3, without enlargement or shouldering of 

the peak (Figure 3 and SI-1). Overall, except the issue of bad smelling of the reagents, this 

reaction is easy to implement compared to hydrosilylation or click chemistry and very 

respectful of the silicone backbone. Concerning their visual aspect and solubility, P(FM-co-

DM)S C exhibits a slight iridescence under light illumination and the other three polymers 

(P(VM-co-DM)S 3, P(AcM-co-DM)S A and P(PhM-co-DM)S) B are transparent viscous 

liquids. These polymers are all soluble in CHCl3 and interestingly, P(AcM-co-DM)S A is 

soluble in DMF and DMSO and P(FM-co-DM)S C is slightly soluble in DMF. 

 



 
 

 
Figure 3: Left: Size Exclusion Chromatogram of P(AcM-co-DM)S A after thiol-ene reaction of P(Vm-

co-DM)S 3 with with N-methyl-mercaptoacetamide 4. Right: 1H NMR spectrum of P(AcM-co-DM)S 

A in CDCl3.  

 

 

 
Table 1: Polymers properties and SPR maximum and shift for branched gold nanoparticles – 

polysiloxane hybrids 

 

Polymer n20
D  

[a] 

Solubility 

In DMF 

Yield Vinyl 

conversion 

grafting 

in alpha 

(%) 

SEC 

RT 

(min) 
[b] 

Mn 

meas. 

(calc.) 
[c] 

 

Mw IP 
[d] 

 

SPR max 

(SPR 

shift) 

(nm) 

spherical 
[e] 

SPR max 

(SPR 

shift) 

(nm) 

branched 
[f] 

3 1.43 
[a*] 

no 72 n.a. n.a. 25 5440 8360 1,5 515 

(-2) 

695 

(+15) 

A 1.52 yes 71 100 14 24  (7150) - - 513 

(-4) 

665 

(-15) 

B 1.58 no 95 100 0 23  (7690) - - 519 

(+ 2) 

745 

(+65) 

C 1.31 sparingly 43 80 0 22 5330 

(11700) 

 

5660 1,1 513 

(-4) 

665 

(- 15) 

[a] refractive index of the thiols used for grafting and of poly(methylvinyl-co-dimethyl)siloxane [a*]. Refractive 

index of a poly(dimethyl siloxane): 1.40. Water (20°C) = 1.33. 
[b] SEC RT = retention time of the polymer by Size Exclusion Chromatrography 
[c] For P(PhMcoDM) B and P(AcMcoDM) A the dn/dc and the signal with the light scattering detector are too low 

to enable a correct determination of Mn and Mw by this method (Mn measured). The integrity of the polysiloxane 

is attested by the retention time and the shape of the peak. Mn can be calculated (Mn calc.) from Mn of 

P(VMcoDM) 3 on which the mass of the grafted thiol is added (23% grafting). 
[d] IP = index of polydispersity 
[e] shift of maximum wavelength of surface plasmon resonance band (SPR) compared to the "nude" spherical gold 

nanoparticles (517 nm is the maximum for the nude branched nanoparticles). 
[f] shift of maximum wavelength of surface plasmon resonance band (SPR) compared to the "nude" branched gold 

nanoparticles (680 nm is the maximum for the nude branched nanoparticles). 

 



 

Preparation of gold nanoparticles 
 

Two kinds of gold nanoparticles were synthesized. Nanoparticles with a spherical shape were 

synthesized by reduction of HAuCl4 by NaBH4. Experimental conditions were set to get these 

negatively charged nanoparticles with an average radius of approximately 5 ± 2 nm (Figure 4a). 

The gold nanoparticles stabilized by negative charges are sensitive to any increase of the ionic 

strength or change in pH which induces a charge neutralization and then aggregation. The 

preparation of branched gold nanoparticles ("nanostars") is based on the reduction of HAuCl4 

by glucosamineHCl and NaOH as the unique reagents. Figure 5a shows the transmission 

electronic microscopy (TEM) images of gold nanostars obtained by this method, showing 

homogeneous morphologies and sizes. Nanoparticles with an overall diameter between 100 and 

150 nm were obtained in high yield. The absorbance spectrum (Figure 5b) exhibit two surface 

plasmon resonance (SPR) bands. The first band around 540 nm is associated with the inner core 

(540 nm), while the second band around 680 nm could be attributed to the plasmon modes of 

the branches of the nanostars. These two families of nanoparticles have a high colloidal stability 

in aqueous solutions: hydrodynamic diameter Dh equal to 10 nm (spherical) and 150 nm 

(branched) are measured and absorption spectra do not evolve significantly over a week period. 

Both results are compatible with well dispersed, not aggregated nanoparticles. 

 

 
Figure 4. (a) TEM image and (b) UV-vis spectra of colloidal dispersions of spherical gold nanoparticles 

(mean diameter equal to 5±1 nm) after 1 hour (solid line) and 1 month (dash line).  

 

 

   

 
 
Figure 5. (a) TEM image and (b) UV-vis spectrum of colloidal dispersions of branched gold 

nanoparticles (diameters around 100-150 nm) 

 



 

Preparation and characterization of polysiloxane-gold hybrid nanoparticles 
 

The modified polysiloxanes were mixed with spherical and branched nanoparticles in order to 

evaluate their ability to interact with the surface of pristine gold nanoparticles and to modify 

surface plasmon band. Accordingly, a solution of spherical or branched gold nanoparticles was 

poured into glass tubes covered with a dried thin film of polymer. After stirring the 

nanoparticles coated with the polymer are obtained. The amount of polymer and of gold 

nanoparticles were adjusted at a quite low level to avoid aggregation. The optical properties of 

the resulting nanohybrids were then further studied (Figure 6).  

 

 

 
 
 

Figure 6 : Preparation of spherical or branched gold nanoparticles coated with a functionalized 

polysiloxane 

 

 

In the case of spherical nanoparticles, the wrapping with the functionalized polysiloxane does 

not affect much the plasmon resonance band (Figure 7 and Table 1). A very slight red shift and 

intensity increase is observed with the P(PhM-co-DM)S B (+ 2nm) and very slight blue shift is 

observed with P(FM-co-DM)S C (-4 nm), P(AcM-co-DM)S A (-4 nm) and P(VM-Co-DM)S 3 

(-2 nm) (Table 1). Conversely, in the case of branched nanoparticles, significant shifts have 

been observed depending on the groups grafted on the polysiloxane (Figure 8 and Table 1). 

Compared to the “nude” branched nanoparticles only stabilized with glucosamine (SPR max = 
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680 nm), a slight red shift of +15 nm is observed with P(VM-co-DM)S 3 (SPR max = 695), 

while a strong red shift of +65 nm and a higher absorbance is observed when the particles are 

wrapped with P(PhM-co-DM)S B (SPR max = 745 nm). For the two more polar polysiloxanes 

A and C, a slight blue shift is observed of -15 nm (SPR max = 665 nm), with a broadening of 

the bands and change in the relative intensity of the core vs branches SPR bands.  

 

 
Figure 7. UV-vis spectrum of colloidal dispersions of spherical gold nanoparticles wrapped 

with polysiloxanes P(VM-co-DM)S 3, P(AcM-co-DM)S A, P(PhM-co-DM)S B and P(FM-co-

DM)S C with different grafting 

 

Therefore, adsorption of the different polymers on the surface of nanoparticles is evidenced by 

the modification of surface plasmon resonance position. This adsorption might be favored by 

the thioether function present on these polymers in addition to other specific functions and by 

the flexibility of siloxane chains. The observed effects on the SPR band followed the same 

trends with both spherical and branched NPs with a position of the maximum of SPR ranked as 

follow: phenyl > vinyl > acetamide ≈ fluorinated. This effect is, as expected, far more 

pronounced in the case of branched nanoparticles since anisotropic nanoparticles are known to 

be more sensitive to external factors. The observed effect can be ascribed to two phenomena. 

The first effect, as mentioned in the introduction, is related to the change of the refractive index 

of the surrounding layer of the nanoparticle, following the adsorption of a polymer layer on its 

surface[63]. This is in quite good agreement with the expected change of refractive index of the 

grafted thiols that are ranked as follows: phenylethanethiol 5 (1.58) > N-methyl-

mercaptoacetamide 4 (1.52) > poly(methylvinyl-co-dimethyl)siloxane (1.43) > 

heptadecafluoro-1-decanethiol 6 (1.31) (see Table 1). Nevertheless, the observed effect could 

not be solely ascribed to this modification of refractive index, notably because P(VM-co-DM)S 

3 and P(AcM-co-DM)S A do not strictly follow the refractive index ranking. In fact, the silicone 

backbone also can play a role on the mean refractive index of the polysiloxane, that should be 

close to the poly(methylvinyl-co-dimethyl)siloxane refractive index (1.43). It represents more 

or less 75% of the polymer and thus could hide in part the effect of the side groups. Also, among 

the polymers studied, two of them are hydrophobic P(VM-Co-DM)S 3 and P(PhM-Co-DM)S 

B and two of them are more polar P(AcM-Co-DM)S A and P(FM-Co-DM)S C. The precise 

conformation of the polymer at the gold /water interface might modulate both the shift and the 

intensity of the SPR band. In the case of hydrophobic polymers, an increase of the polymer 



concentration lead to aggregation of the nanohybrids and their irreversible precipitation as 

inferred from DLS measurements by the significant increase of measured hydrodynamic 

diameter. To minimize this phenomenon, a very low concentration of polymer equal to 1.6.10-

6 wt.% for all polymers was used. This concentration ensures good colloidal stability of the 

generated nanohybrids and no significant change of measured absorption spectra and 

hydrodynamic diameter of the formed nanohybrid was observed over a few days. However, the 

hydrophobic character of the polymer may favor aggregation phenomenon that could explain 

in part the blue shift in the case of P(VM-co-DM)S 3 and P(PhM-co-DM)S B, in addition to 

the refractive index effect. For the two more polar polymers, the enlargement of the SPR band 

and the change of the relative intensity of the core vs branches band could also revealed 

colloidal interactions, but in this case, related to hydrogen bonding, amphiphilic behavior or 

dipolar interactions. Mix between these different effects can finally explained the SPR shifts 

observed. 

 

 
Figure 8. UV-vis spectrum of colloidal dispersions of branched gold nanoparticles wrapped with 

polysiloxanes P(VM-co-DM)S 3, P(AcM-co-DM)S A, P(PhM-co-DM)S B and P(FM-co-DM)S 

C with different grafting  

 

Conclusion 
 

The functionalization of polysiloxanes by thiol-ene reaction appears as a very efficient route, 

complete, with good yields and respectful of the polysiloxane backbone. It also tends to be 

easier to implement than hydrosilylation. This method is thus increasingly used in recent years 

to prepare functionalized polysiloxanes and also as a cross-linking method. It also enables the 

easy introduction of polar groups, giving polysiloxanes sufficiently hydrophilic to make them 

soluble in polar solvents, thus opening the way for introducing polar groups such as unprotected 

carbohydrates. The wrapping of gold nanoparticles with the grafted polysiloxanes leads to a 

shift of the surface plasmon resonance band. It can be related in part to the relative refractive 

index of the polysiloxanes and may be affected also by possible polymer-polymer interactions 

depending on the polar or apolar character of the polymers. 



Experimental section 
 

Materials: Tetrachloroauric acid trihydrate (HAuCl4, 3H2O), sodium borohydride (NaBH4), 

glucosamine·HCl and sodium hydroxide (NaOH) were purchased from Aldrich Fine chemicals 

and were used without further purification. Azobisisobutyronitrile (AIBN) is purchased from 

Aldrich Fine chemicals and recrystallized from ethanol before use. PolyVinylMethylSiloxane 

and Tonsil Optimum 214FF® were obtained from Gelest and Süd Chemie respectively. 

Absolute ethanol (AnalaR normapur VWR) was used as received. Using a Purite device, water 

was purified through a filter and ion exchange resin (resistivity  18 MΩ.cm). All glassware 

and magnetic stir bar should be washed with aqua regia. In order to ensure the proper cleaning 

of the utensils and containers, they are systematically washed using first aqua regia, then three 

rinses with ultrapure water, acetone and finally ethanol before drying. For all reactions 

performed with thiols, the glassware, reaction residues and accessories were washed after 

reaction and after recovering the desired product in a bath of sodium hypochlorite aqueous 

solution before being discarded in order to oxidize the unreacted thiols. 

 

Characterization: Size Exclusion Chromatography has been performed on coupled 

Ultrastyragel columns HR1, HR3 and HR4 (Waters) at a flow rate of 1 ml/min at 35°C in 

toluene. A refractive index (RI) detector Optilab Wyatt and a static light scattering (SLS) 

detector Mini-Dawn Wyatt were used as detector. Refractive index increments dn/dC have been 

measured in toluene with DnDc-2010 apparatus from Polymer Standards Service. 1H NMR and 
29Si NMR has been performed on Brucker Advance 300 MHz and on Brucker Advance 400 

MHz spectrometers respectively. 13C NMR and correlation experiments have been performed 

on a Brucker Advance 500 MHz. 

 

Dynamic Light Scattering (DLS) and zeta potential measurements were carried out at 25°C 

with a Malvern Instrument Nano-ZS equipped with a He-Ne laser (λ = 633 nm). Samples were 

introduced into cells (pathway: 10 mm) after filtration through 0.45 µm PTFE micro-filters. 

The correlation function was analyzed via the non negative least square (NNLS) algorithm to 

obtain the distribution of diffusion coefficients (D) of the solutes, and then the apparent 

equivalent hydrodynamic diameter (<Dh>) was determined using the Stokes–Einstein equation. 

Mean diameter values were obtained from three different runs. Standard deviations were 

evaluated from diameter distribution and was equal to 5 nm for all samples. For Zeta potential 

measurements, zeta potential was extracted from mobility values using Smoluchowski model. 

Transmission Electron Microscopy (TEM). A drop of the aqueous dispersions was placed on a 

carbon-coated copper TEM grid and left to dry under air. For samples needing negative 

staining, the TEM grids were successively placed on a drop of the sample solution for 2 min, 

on a drop of an aqueous solution of uranyl acetate (2 wt.%, 2 min) and finally on a drop of 

distilled water, after which the grids were then air-dried before introduction into the electron 

microscope. The samples were observed with a HITACHI HU12 microscope operating at 70 

kV. Size distribution was determined by manual counting on ca. 150 particles, using WCIF 

Image J software. UV-visible spectroscopy measurements. An Analytik Jena diode array 

spectrometer (Specord 600) or a BMG Labtech diode array spectrometer (Spectrostar nano) 

equipped with a temperature control system was used for UV-visible absorption spectra 

recording (optical path length: 1 cm). 

 



Preparation of poly (methylvinyl-co-dimethyl) siloxane, P(VM-co-DM)S 3. 
Redistribution of PVMS with D4. 
 
In a reactor equipped with a magnetic stirrer, introduce 222 mg (2% by weight relative to the 

mixture) of Tonsil Optimum 214FF® (Süd Chemie) catalyst under an inert atmosphere. 

Introduce 100 mmol of anhydrous D4 2 (octamethylcyclotetrasiloxane), ie a mass of 7.4 g and 

67 mmol of linear PVMS 1 (PolyVinylMethylSiloxane, Gelest) or a mass of 3.68 g. Heat for 

23 to 48 hours at 75-80 ° C with gentle stirring and under an inert atmosphere. The polymer 

solution is diluted in hexane and then filtered on a sintered filter cone in the presence of 

decalite®. Finally, the filtrate is passed through a 0.2 μm PTFE filter to remove any trace of 

catalyst. The solution thus obtained is concentrated in vacuo, and the polymer is then 

precipitated by adding dropwise the filtered solution in a solution of methanol at 4°C. After 

removing the supernatant, the precipitate is dried under vacuum at 100 ° C with stirring for 

three hours. This last step makes it possible to eliminate small cycles and short chains. SEC: 

retention time (RI detector) = 22.5 min. dn/dc = -0.091. Ratio VM/DM (vinylmethylsiloxane / 

dimethylsiloxane units) = 23%. Yield: 72%. 

 

NMR 1H (CDCl3):δ ppm: 5.90-6.06; 5.74-5.84 (2m, CH=CH2, 3H); 0.13-0.20; 0.02-0.13 (2m, 

CH3-Si, 22H). NMR 29Si (CDCl3 + 0.03M Cr(acac)3): 2 triads for D =[(CH3)2-Si-O] and  

V=[(CH3)(CH=CH2)-Si-O-], 1 diad for M =[(CH3)3-Si-O]: δ ppm: 7.20-7.30 (m, MDD, 0.11Si); 

7.32-7.40 (m, MDV,  0.04Si);  8.22-8.28 (m, MVD, 0.01Si); 8.35-8.40 (m, MVV, 0.007Si); -

22.10 to -21.70 (m, DDD,12.7Si); -21.60 to -21.20 (m, DDV and VDD, 5.6Si); -21.10 to -20.70 

(m, VDV, 0.8Si);- -36.10 to -35.70 (m, DVD, 1.5Si);  -35.70 to -35.20 (m, DVV, 2.2Si);  -35.20 

to -34.80 (m, VVV, 1.8Si). Detail for sub-triads. Triads centered on "D": -21.93 (m, DDDDD); 

-21.85 (m, DDDDV); -21.46 (m, DDDVD); -21.38 (m, DDDVV);  -21.31 (m, VDDVV);  -

20.97 (m, DVDVD);  -20.89 (m, DVDVV). Triads centered on "V": -35,88 (m, DDVDD); -

35.82 (m, DDVDV); -35.50 (m, DDVVD); -35.44 (m, DDVVV); -35.04 (m, DVVVD); -34.97 

(m, DVVVV). NMR 13C (CDCl3): δ ppm:  137.5 to 136.9 (Si-CH=CH2); 133.6 to 132.8 (Si-

CH=CH2) 2.1; 1.8-0.9; 0.3 (Si-CH3). Signals from 137.5 to 136.9 (Si-CH=CH2) and from 133.6 

to 132.8 (Si-CH=CH2) come out very clearly in the form of triads, which must be attributable 

to the influence neighboring patterns (D or V). The attribution could not be made with certainty 

and would require a coupling study with silicon. The integrations and forms of the signals, 

however, make it possible to make the following attribution hypothesis: triad Si-CH=CH2: 

137.5-137.3 (m, VVV); 137.3-137.1 (m, DVV, VVD); 136.9-137.1 (m, DVD)); triad Si-

CH=CH2: 133.6-133.3 (m, DVD); 133.3-133.2 (m, DVV, VVD); 132.8-133.2 (m, VVV). 

 

 

General protocol of the thiol-ene reaction on P(VM-co-DM)S 3 
 
In a reactor equipped with a magnetic stirrer, 1g of P(VM-co-DM)S 3 with 23% of vinyl 

functions, (3 mmol of vinyl functions) is introduced. 1.7 eq./vinyl of thiol reagent is introduced 

(5 mmol) are introduced. In the case of thiol-ene reactions involving two thiol reactants 

(heterofunctionalization), an equimolar proportion is used, rather than an excess, so as to 

introduce the two thiols in an equivalent way. Azobisisobutyronitrile (AIBN) is then added in 

a proportion from 2% to 20 mol% relative to the thiol introduced, ie approximately 0.05 to 0.7 

mmol. The amount was adjusted according to the nature of the thiol and the efficiency of the 

reaction. The whole is diluted in 4 mL of toluene and then deoxygenated by argon bubbling for 

at least 30 minutes, and then maintained under an inert atmosphere throughout the duration of 

the reaction. Heat for 1 hours at 80°C with relatively rapid stirring. The reaction is stopped by 



stopping the heating. Evaporate the solvent on the rotary evaporator and then on the vacuum 

manifold for a limited time to prevent loss of the product by evaporation. The reaction product 

is purified by precipitation. Precipitation conditions were adjusted according to the nature of 

the polymer. The following thiols employed without prior purification: N-

methylmercaptoacetamide 4, 2-phenylethanethiol 5, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluoro-1-decanethiol 6. AIBN = Azo-bis-isobutyronitrile. 

 

A: Poly (methyl-N-methylaminocarbonylmethylthioethyl-co-dimethyl) siloxane, P(AcM-
co-DM)S 
 

For the reaction with N-methyl-mercaptoacetamide 4, 440 L of thiol are introduced (5 mmol) 

with 1.0 g of P(VM-co-DM)S 3 (13 mmol, 3 mmol of vinyl groups), and 90 mg AIBN (0.5 

mmol, 10% mol/thiol) in 4 mL toluene. The polymer is purified by precipitation in cold 

acetonitrile. The crude product is added dropwise into acetonitrile at -20°C and left at -20°C 

for 3h. This operation is repeated three times, each time removing the acetonitrile. The polymer 

is precipitated at the bottom of the flask. After drying, a transparent pale yellow viscous liquid 

is obtained. SEC: retention time (RI detector) = 24 min.      

dn/dc = -0,06. Yield: 71%. 
 

NMR 1H (CDCl3): δ ppm: 6.90-7.20 (m, NH,1H); 3.23 (s, S-CH2-C=O, 2H); 2.84 (d, JCH3-NH = 

4.8, CH3-NHCO, 3H); 2.75-2.85 (m, Si-CH2-CH2-S, 0.14H), 2.50-2.62 (m, Si-CH2-CH2-S, 

1.72H); 0.80-1.00 (m, Si-CH2-CH2-S, 2H); 0.00-0.20 (m, H3C -Si, 20H). NMR 29Si (CDCl3 + 

0.03M Cr(acac)3): δ ppm: -20 to -23 (m, Si(CH3)2, 2Si); -23 to -26 (m, SiCH3(CH2-CH2-S-), 1Si). 

NMR 13C (CDCl3): δ ppm: 170 (CO); 36.3 (S-CH2-CO); 28.5-27.5 (Si-CH2-CH2-S); 26.9 (CH3-

NH); 18.2 (Si-CH2-CH2-S); 2.1, 1.6 to 1.2 and 0.4 to -0.2 (H3C-Si). 

 

 

B: Poly (methyl-phenylethylthioethyl-co-dimethyl) siloxane, P(PhM-co-DM)S 
 

For the reaction with 2-phenylethanethiol 5, 1 g (7.5 mmol) of thiol is introduced with 1.0 g of 

P(VM-co-DM)S 3 (13 mmol, 3 mmol of vinyl groups) and 92 mg (0.6 mmol, 7%mol/thiol) of 

AIBN in 4 mL toluene. The polymer is purified by precipitation in cold acetonitrile. The crude 

product is added dropwise into acetonitrile at -20 ° C and left at -20 ° C for 3h. This operation 

is repeated three times, each time removing the acetonitrile. The polymer is precipitated at the 

bottom of the flask. After drying a colorless transparent viscous liquid is obtained. SEC: 

retention time (RI detector) = 23 min. dn/dc = -0.076. Yield: 95%. 

 

NMR 1H (CDCl3) : δ ppm: 7.35-7.20 (m, CHarom(m), 2H); 7.20-7.10 (m, CHarom(o,p), 3H); 

2.90-2.80 (m, S-CH2-CH2-Carom, 2H); 2.80-2.70 (m, S-CH2-CH2-Carom, 2H); 2.65-2.55 (m, 

Si-CH2-CH2-S, 2H); 1.00-0.80 (m, Si-CH2-CH2-S, 2H);  -0.10 to 0.24 (m, H3C -Si, 25H). NMR 
29Si (CDCl3 + 0.03M Cr(acac)3): δ ppm:  6 to 9 (m, (CH3)3-Si-O-, 0.12Si); -18 to -23 (m, O-

(CH3)2-Si-O, 3Si); -23 to -27 (m, CH3(CH2-CH2S)Si-O-, 1Si); -28 to -30 (traces, 0.03Si); -65 

to -67 (traces, CH3SiO,-O,-OSi, 0.15Si). NMR 13C (CDCl3): δ ppm: 140.5 (Carom); 128.8 

(CHarom(o,m),); 126.6 (CHarom(p)); 36.6 (S-CH2-CH2-Ph); 33.9-33.7 (S-CH2-CH2-Ph); 27.0 

(Si-CH2-CH2-S); 18.6 (Si-CH2-CH2-S); 1.4, 0.0 (H3C-Si) 

 

 



C: Poly (methyl-perfluorooctylethylthioethyl-co-dimethyl) siloxane, P(FM-co-DM)S 
 

1g (2 mmol) of 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol 6 is 

introduced with 0.63g of P(VM-co-DM)S 3 (8.2 mmol, 1.9 mmol), 70 mg AIBN (0.4 mmol, 

20% mol/thiol). The polymer precipitates after the temperature decreases to room temperature. 

The precipitate is washed with toluene, by heating the mixture with the polymer and then 

precipitating it by placing it at -20°C. This operation is repeated three times. After drying, a 

iridescent pale yellow viscous liquid is obtained. SEC: retention time (RI detector) = 22 min. 

dn/dc = -0,276. Yield: 43%. 
 

NMR 1H (CDCl3) : δ ppm: 2.80-2.70 (m, S-CH2-CH2-CF2, 2H);  2.70-2.58 (m, S-CH2-CH2-CF2, 

2H); 2.50-2.25 (m, Si-CH2-CH2-S, 2H); 1.00-0.80 (s, Si-CH2-CH2-S, 2H); -0.1 to 0.25 (m, H3C 

-Si, 29H). NMR 29Si (CDCl3 + 0.03M Cr(acac)3): δ ppm: 8.0-7.0 (m, (CH3)3-Si-O, 0.06Si); -20 

to -23 (m, (CH3)2-Si-O, 3Si); -23 to -26 (m, CH3(CF3-(CF2)7-CH2-CH2-S-CH2-CH2)-Si-O-), 

0.81Si); -34 to -37 (traces, 0.05Si). NMR 13C (CDCl3): δ ppm: 106 to 123 (multiples peaks, CF2, 

CF3); 32.0 (Si-CH2-CH2-S); 26.7 (S-CH2-CH2-CF2); 22.3 (S-CH2-CH2-CF2); 18.0 (Si-CH2-

CH2-S); 2.0, 1.0, -0.4 (H3C-Si). 

 

 

D: Poly (methyl-N-methylaminocarbonylmethylthioethyl-co-methyl-
phenylethylthioethyl-co-dimethyl) siloxane, P(AcM-co-PhM-co-DM)S D 
 

(N-methyl-mercaptoacetamide 4 (120 µL, 1.5 mmol) and 2-phenylethanethiol 5 (240 µL, 1.5 

mmol (50/50)) were introduced in the reaction flask, with 1.0 g (13 mmol, 3 mmol of vinyl 

groups) of P(VM-co-DM)S 3 and 9 mg of AIBN (2%mol/thiol). The crude product is added 

dropwise into acetonitrile at -20°C and left at -20°C for 3h. This operation is repeated three 

times, each time removing the acetonitrile. The polymer is precipitated at the bottom of the 

flask. After drying, a pale yellow viscous liquid is obtained. The two thiols, introduced in 

equimolar amounts were grafted onto the siloxane backbone with a ratio slightly different from 

50/50. Given this small difference and for the sake of clarity, the NMR spectrum has been 

described for an equimolar grafting of the two thiols. Possible grafting of N-

methylmercaptoacetamide in the  position of the vinyl group in masked by the signal of the 

phenyl thioether. 10% of unreacted vinyl groups are observed. dn/dc = 0.097. Yield: 50%.  
 

NMR 1H (CDCl3) : δ ppm: 7.35-7.25 (m, CHarom(m), 2H); 7.25-7.15 (m, CHarom(o,p), 3H); 

6.8-7.2 (m, NH, 1H); 3.25 (s, S-CH2-C=O, 2H); 2.95-2.70 (2m, CH3-NHCO, S-CH2-CH2-

Carom, S-CH2-CH2-Carom, 7H); 2.70-2.50 (m, Si-CH2-CH2-S, 4H); 1.00-0.80 (m, Si-CH2-

CH2-S, 4H);  -0.1 to 0.25 (m, H3C-Si, 52H). NMR 29Si (CDCl3 + 0.03M Cr(acac)3): δ ppm:  7 to 

8 (m, (CH3)3-Si-O, 0.1Si); -20 to -23 (m, O-(CH3)2-Si-O, 3Si); -23 to -27 (m, CH3(CH2-

CH2S)Si-O-, 1Si). NMR 13C (CDCl3): δ ppm: 170 (CO); 140.7 (Carom); 128.6 (CHarom(o,m),); 

126.3 (CHarom(p)); 36.3, 36.0 (S-CH2-CH2-Ph, S-CH2-CO); 33.5 (S-CH2-CH2-Ph); 27.0-28.0 

(Si-CH2-CH2-S); 26.9 (CH3-NH); 18.3 (Si-CH2-CH2-S (Ph)); 17.9 (Si-CH2-CH2-S (Ac)); 1.8, 

1.1, -0.3 (H3C-Si).  

 

 



E: Poly (methyl-N-methylaminocarbonylmethylthioethyl-co-methyl-
perfluorooctylethylthioethyl-co-dimethyl) siloxane, P(AcM-co-FM-co-DM)S 
 
N-methylmercaptoacetamide 4 (150 µL, 1.7 mmol) and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-

heptadecafluoro-1-decanethiol 6 (815 mg, 1.7 mmol), and 1g P(VM-co-DM)S 3 (13 mmol, 3 

mmol of vinyl groups), 43 mg (0.3 mmol, 17%mol/thiol) AIBN are introduced in 4 mL of 

toluene. The polymer precipitates after the temperature decreases to room temperature. The 

toluene is removed and the precipitate is washed again with toluene then recovered and dried 

under vacuum. dn/dc = 0.023. The NMR signals from the fluorinated group or the 

mercaptoacetamide group integrate for 1/1. Possible grafting of N-methylmercaptoacetamide 

in the  position of the vinyl group is masked by the signal of the fluorinated thioether. 

 

NMR 1H (CDCl3): δ ppm: 7.2-6.8 (m, NH, 1H); 3.25 (s, S-CH2-C=O, 2H); 2.87 (s, CH3-NH, 

3H); 2.80-2.70 (m, S-CH2-CH2-CF2, 2H);  2.70-2.50 (m, S-CH2-CH2-CF2, Si-CH2-CH2-S-CH2-

CO, 4H); 2.50-2.30 (m, Si-CH2-CH2-S-CH2-CH2-CF2, 2H); 1.00-0.80 (m, Si-CH2-CH2-S,4H); 

0.30-0.00 (m, H3C-Si, 37H). NMR 29Si (CDCl3 + 0.03M Cr(acac)3)): δ ppm: 7 to 8 (m, (CH3)3-

Si-O, 0.06Si); -20 to -23 (m, Si(CH3)2, 3Si); -23 to -27 (m, SiCH3(CH2-CH2-S-)-O, SiCH3(CF3-

(CF2)7-CH2-CH2-S-CH2-CH2)-O-, 1Si). 

 

Preparation of spherical nanoparticles[14]:  
 

35 µL of freshly prepared NaOH (1 mol·L-1) solution were added to 18.8 mL of ultrapure water 

under magnetic stirring. Then 1 mL of HAuCl4 0.01 mol·L-1 solution was added, the solution 

became pale yellow. Finally 100 µL of freshly prepared NaBH4 0.1 mol·L-1 were added under 

vigorous stirring. The solution changed from pale yellow to deep red immediately. 

[NaOH]/[NaBH4]/[HAuCl4]=3.5/1/1. Typical TEM analysis of these nanoparticles is given in 

figure x. NPS diameter was found equal to 5±1 nm. From dynamic light scattering a 

hydrodynamic diameter of 10 nm was measured. These nanoparticles have a plasmon resonance 

band centered at 520 nm that does not evolve significantly after several weeks. Therefore the 

solution remains stable for weeks.  

 

Preparation of branched nanoparticles[92] 
In a typical synthesis, 400 μL of an aqueous solution of NaOH (1 mol.L-1), 5mL of a 

glucosamine·HCl solution (10-1 mol.L-1) and 5 mL solution of HAuCl4 (10-2 mol.L-1) were 

mixed in 90  mL of ultrapure H2O. Within 30 minutes, solutions with magnetic stirring at 25°C, 

experienced color transition from colorless to purple-blue. Gold nanostars were then studied 

and used without further purifications steps. 

 
Preparation of polysiloxane-gold nanoparticle hybrids 
 

Solutions of the following polysiloxanes: P(VM-co-DM)S 3, P(AcM-co-DM)S A, P(PhM-co-

DM)S B, P(FM-co-DM)S C were prepared at 10-4 wt% in toluene. 50 µL of the polymer 

solutions was poured into tubes and the toluene was evaporated at room temperature 1 day so 

that a polymer film was obtained. 3 mL of nanoparticles solutions (spherical or branched) were 

dispersed in each tube. UV / Visible spectra were recorded 24 hours later.   
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