Supporting information

Mechanofluorochromic properties of an AIEE-Active 2-Phenylbenzoxazole Derivative: More than Meets the Eye?

Chantal Carayon, Abdelhamid Ghodbane, Nadine Leygue, Jinhui Wang, Nathalie Saffon-Merceron, Ross Brown, Suzanne Fery-Forgues*

	λ_{abs} (nm)	$\lambda_{\rm em}$ (nm)	$arPsi_{ m F}$	SS (cm^{-1})
<i>n</i> -Heptane ^a	351, <u>365</u> , 386	397, <u>419</u> , 458	0.02	3531
Tetrahydrofuran ^a	360	478	0.02	7117
Ethanol ^a	358	490	0.03	7603
Nylon filter ^b	nd	448	0.12	nd
Water/THF 95:5 ^b	nd	556	0.13	nd

Table S1. Spectroscopic characteristics of compound **1** in the three solvents, after adsorption on a Nylon filter and in water/THF 95:5 v/v. Maximum absorption (λ_{abs}) and emission (λ_{em}) wavelength, fluorescence quantum yield (Φ_F), Stokes shift (SS). a) [Dye] ~2.6 × 10⁻⁵ M for absorption; For emission, λ_{ex} 348 nm in *n*-heptane, close to the absorption maximum for THF and ethanol. b) λ_{ex} 380 nm. For finely-resolved spectra, the most intense peak is underlined. nd: not determined.

Sample		$\lambda_{\rm em}$ (nm)	$arPsi_{PL}$
Pristine		502	0.34
Ground		508, 554 (sh)	0.39
Heated*(48h)	45°C	504	0.33
	80°C	502	0.28
	125 °C	490	0.24
	150 °C	490	0.25
Ground again		508, 554 (sh)	0.29
Fumed* (CH ₂ Cl ₂)	4 days	504	0.29
	8 days	496	0.24
Melted		550	0.20
Crystals grown in ethanol		514, 548	0.12
Pressed pristine		510, 542 (sh)	0.22
Pressed ground		526 (sh), 548	nd

Table S2. Maximum emission wavelength (λ_{em}) and photoluminescence quantum yield (Φ_{PL}) of the various solid samples of **1**. Excitation at 380 nm.*After one grinding process. sh: shoulder. nd: not determined.

Figure S1. Photoluminescence emission spectrum of compound 1 after adsorption on a Nylon filter. $\lambda_{ex} = 380$ nm.

Figure S2. (a) Fluorescence lifetime map (left) and distribution of average fluorescence lifetimes (right) for a sample of pristine powder. (b) Zoom of a region of interest. $\lambda_{ex} = 405$ nm

Figure S3. Fluorescence lifetime map (left) and distribution of average fluorescence lifetimes (right) for a sample of ground powder. (b) Zoom of the region indicated by a square in the top left corner. $\lambda_{ex} = 405$ nm.

Figure S4. Fluorescence lifetime map (left) and distribution of average fluorescence lifetimes (right) taken at different places for a sample of ground-and-then-heated (125°C) powder.

Figure S5. Photoluminescence spectra of pristine powder (dashed line), ground powder (orange line), and ground powder fumed for 4 days (yellow line) and 8 days (blue line) with dichloromethane.