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Résumé
Dans ce travail, nous commençons par présenter un état
de l’art des résultats sur le problème de model-checking
en relation avec la logique RB±ATL, qui est une version
de ATL avec ressources. Cela nous permet d’identifier plu-
sieurs problèmes ouverts et d’établir des relations avec les
logiques à la RBTL, lorsque RB±ATL est restreinte à un
unique agent. Ensuite, nous montrons que le problème de
model-checking pour RB±ATL restreinte à un agent et à
une ressource est PTIME-complet. Pour ce faire, nous fai-
sons une léger détour en passant par les systèmes d’addi-
tion de vecteurs avec états. Nous prouvons de nouveaux
résultats de complexité pour l’accessibilité d’un état de
contrôle et pour la non-terminaison, lorsqu’un seul comp-
teur est autorisé. Cet article a été présenté à la confé-
rence AAMAS’19, Montréal, mai 2019.

Mots Clef
Logiques pour systèmes multi-agent, model-checking, sys-
tèmes d’addition de vecteurs avec états, complexité.

Abstract
In this work, we begin by providing a general over-
view of the model-checking results currently available for
the Resource-bounded Alternating-time Temporal Logic
RB±ATL. This allows us to identify several open problems
in the literature, as well as to establish relationships with
RBTL-like logics, when RB±ATL is restricted to a single
agent. Then, we show that model checking RB±ATL is
PTIME-complete when restricted to a single agent and a
single resource. To do so, we make a valuable detour on
vector addition systems with states, by proving new com-
plexity results for their state-reachability and nontermina-
tion problems, when restricted to a single counter. This pa-
per has been presented at the conference AAMAS’19,
Montréal, May 2019.

Keywords
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1 Introduction
In recent years, logic-based languages for specifying the
strategic behaviours of agents in multi-agent systems have
been the object of increasing interest. A wealth of logics
for strategies have been proposed in the literature, inclu-
ding Alternating-time Temporal Logic [AHK02], possibly
with strategy contexts [LM15], Coalition Logic [Pau02],
Strategy Logic [CHP07, MMPV14], among others. The ex-
pressive power of these formalisms has been thoroughly
studied, as well as the corresponding verification problems,
thus leading to model checking tools for game structures
and multi-agent systems [CLMM14, LQR15, AdAG+01,
KNN+08].
It is worth noticing that the computational models under-
lying these logic-based languages share a common fea-
ture : actions are normally modelled as abstract objects
(typically a labelling on transitions) that bear no compu-
tational cost. However, if logics for strategies are to be
applied to concrete multi-agent systems of interest, it is
key to account for the resources actions might consume
or produce. These considerations have prompted recently
investigations in resource-aware logics for strategies. Ob-
viously, there is a long tradition in resource-aware logics
that dates back at least to substructural and linear logics
(see e.g. [POY04]). More specifically, in this paper we fol-
low the line of Resource-bounded Alternating-time Tem-
poral Logics [ALNR14, ABLN15, ALN+15, ABLN17,
AL18, ABDL18], which are characterised by two main
features : firstly, actions in concurrent game structures are
endowed with (positive/negative) costs ; and secondly, the
standard strategy operators of Alternating-time Temporal
Logic (ATL) are indexed by tuples of natural numbers,
intuitively representing the resource budget available to
agents in the coalition. This account has proved success-
ful in the modelling and verification of a number of multi-
agent scenarios, where reasoning about resources is criti-
cal [ABLN17].
Our motivation for the present contribution is threefold.
First of all, in the literature there are several gaps in the re-
sults available for the decidability and complexity of the re-
lated model checking problem. For instance, if we assume



two resources and two agents in our multi-agent system,
then model checking is known to be PSPACE-hard and in
EXPTIME, but no tight complexity result is available. Our
long-term aim is to fill all such gaps eventually. Further,
while completing this picture, it is of interest to identify
model checking instances that are tractable. Although the
notion of tractable problem is open to discussion, in the
context of strategy and temporal logics a model checking
problem decidable in polynomial time (in the size of the
formula and model) falls certainly within the description.
Finally, complexity results for Resource-bounded ATL ap-
pear disseminated in a number of references, and are pro-
ved by using a wealth of different techniques, thus hinde-
ring a clear vision of the state of the art. We aim at deve-
loping a unified framework based on general proof tech-
niques. Vector addition systems with states (VASS) are key
in this respect [KM69].

Our contribution in this paper is also threefold. Firstly, we
give an overview of the complexity results currently avai-
lable for both RB±ATL and RB±ATL∗, the two most si-
gnificant flavours of Resource-bounded ATL. This allows
us to point out that, while for RB±ATL∗ we have tight
complexity results for any number of resources and agents,
in RB±ATL there are still several open problems, whose
solution is not apparent. Secondly, we extend current mo-
del checking results for RB±ATL to a more expressive lan-
guage including the release operator R too. Thirdly, we
prove that model checking RB±ATL is PTIME-complete,
when we reason about a single resource and a single agent.
Since we show that this setting is tantamount to the Com-
putation Tree Logic CTL with a single resource, our re-
sult means that we can reason about resources in CTL at
no extra computational cost. Most interestingly, to prove
this main contribution we establish new complexity results
for the state-reachability and nontermination problems in
VASS with a single counter. The latter can be seen as self-
standing contributions in formal methods.

Structure of the paper. In Sect. 2, we present background
notions on resource-bounded concurrent game structures
and ATL-like logics. In Sect. 2.3, we show that the
resource-bounded logics RBTL∗ and RB±ATL∗ restric-
ted to a single agent have the same expressive power. In
Sect. 3, we prove the main theoretical contributions of the
paper. Specifically, in Sect. 3.1 we review the state of the
art on model checking RB±ATL. Then, in Sect. 3.2 we
show that the state-reachability and nontermination pro-
blems for VASS with a single counter are decidable in
PTIME. Finally, in Sect. 3.3 we leverage on our new results
for 1-VASS to prove that model checking RB±ATL with
a single agent and a single resource is PTIME-complete.
Sect. 4 concludes the paper, discusses the complexity of
RB±ATL∗ fragments, and evokes directions for future
work.

This paper has been presented at the conference AA-
MAS’19, Montréal, May 2019.

2 Preliminaries
Below, we introduce preliminary notions on models for
resource-bounded logics, as well as the logical languages
themselves. Our presentation follows closely [ABDL18].
In the rest of the paper, N (resp. Z) is the set of natural num-
bers (resp. integers) and [m,m′] with m,m′ ∈ Z is the set
{j ∈ Z | m ≤ j ≤ m′}. For a finite or infinite sequence
u ∈ Xω ∪X∗ of elements in some set X , we write ui for
the (i + 1)-th element of u, i.e., u = u0u1 . . .. For i ≥ 0,
u≤i is the prefix of u of length i+1, i.e., u≤i = u0u1 . . . ui
and u≥i is the suffix of u defined as u≥i = uiui+1 . . .. The
length of a finite or infinite sequence u ∈ Xω ∪X∗ is de-
noted as |u|, where |u| = ω for u ∈ Xω .

2.1 Resource-bounded CGS
Resource-bounded CGS are concurrent game structures
[AHK02] enriched with counters and a cost function that
assigns a cost (either positive or negative) to every action,
thus updating the values of the counters as the system exe-
cutes. Hereafter we follow closely [ABDL18] and assume
a countably infinite set AP of propositional variables (or
atoms).

Definition 1 (RB-CGS) A resource-bounded
concurrent game structure is a tuple M =
〈Ag, S,Act, r, act, cost, δ, L〉 such that :

— Ag is a finite, non-empty set of agents (by default
Ag = [1, k] for some k ≥ 1) ;

— S is a finite, non-empty set of states s, s′, . . . ;

— Act is a finite, non-empty set of actions with a distin-
guished action idle ;

— r ≥ 1 is the number of resources ;

— act : S×Ag → ℘(Act)\{∅} is the protocol function,
such that for all s ∈ S and a ∈ Ag, idle ∈ act(s, a) ;

— cost : S × Ag × Act → Zr is the (partial)
cost function ; that is, cost(s, a, a) is defined only
when a ∈ act(s, a), and moreover, we assume that
cost(s, a, idle) = ~0 ;

— δ : S × (Ag → Act) → S is the (partial) transition
function such that δ is defined for state s and map
f : Ag → Act only if for every agent a ∈ Ag, f(a) ∈
act(s, a) ;

— L : AP → ℘(S) is the labelling function.

Intuitively, a resource-bounded CGS describes the inter-
actions of a group Ag of agents, who are able to per-
form the actions in Act according to the protocol function
act. The execution of a joint action entails a transition in
the system, as specified by the function δ. Moreover, on
each transition the values of the r resources are updated
according to the cost of the joint action. The idle ac-
tion is introduced in [ALNR14, ALNR17] and it is often
advantageous in terms of computational complexity (see
e.g. [ABLN17, ABDL18] or Section 3). An RB-CGS M is
finite whenever L is restricted to a finite subset of AP . The



size |M | of a finite M is the size of its encoding when inte-
gers are encoded in binary and, maps and sets are encoded
in extension using a reasonably succinct encoding.
Given a coalition A ⊆ Ag and state s ∈ S, a joint action
available to A in s is a map f : A → Act such that for
every agent a ∈ A, f(a) ∈ act(s, a). The set of all such
joint actions is denoted as DA(s). Given a state s ∈ S,
the set of joint actions available to Ag is simply denoted
as D(s), and the function δ is defined only for such joint
actions. We write f v g if Dom(f) ⊆ Dom(g), and for
every agent a ∈ Dom(f), g(a) = f(a). Given a joint
action f ∈ DA(s), we write out(s, f) to denote the set of
immediate outcomes :

{s′ ∈ S | for some g ∈ D(s), f v g and s′ = δ(s, g)}.

Further, given a joint action f ∈ DA(s) and a state s, the
cost of a transition from s by f (w.r.t. coalition A) is defi-
ned as

costA(s, f)
def
=

∑
a∈A

cost(s, a, f(a)).

A computation λ is a finite or infinite sequence s0
f0−→

s1
f1−→ s2 . . . such that for all 0 ≤ i < |λ| − 1 we have

si+1 = δ(si, fi).

2.2 The logics RB±ATL∗ and RB±ATL
To specify the strategic properties of agents in resource-
bounded CGS, we present the logics RB±ATL∗ and its
fragment RB±ATL, which are extensions of ATL∗ and
ATL respectively, introduced in [ALNR14, ALN+15] to
explicitly account for the production and consumption of
resources by agents. Once more, in the presentation of
RB±ATL∗ and RB±ATL we follow [ABDL18].
Syntax. Given a finite set Ag of agents and a number
r ≥ 1 of resources, we write RB±ATL∗(Ag, r) to denote
the resource-bounded logic with agents from Ag and r re-
sources, whose models are resource-bounded CGS with the
same parameters.

Definition 2 (RB±ATL∗) The state-formulas φ and path-
formulas ψ in RB±ATL∗(Ag, r) are built according to the
following BNF :

φ ::= p | ¬φ | φ ∧ φ | 〈〈A~b〉〉ψ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ,

where p ∈ AP ,A ⊆ Ag, and~b ∈ (N∪{ω})r. The formulas
in RB±ATL∗(Ag, r) are understood as the state-formulas.

Clearly, RB±ATL∗ extends ATL∗ by indexing the strategic
operator 〈〈A〉〉 with tuple~b, whose intuitive meaning is that
the coalition A can achieve their goal by using at most ~b
resources. Alternatively, ~b can be understood as the initial
budget of the computations, which is the interpretation fol-
lowed along the paper. Then, the value ω plays the role of
an infinite supply of the resource.

The dual operator [[A
~b]] is introduced as [[A

~b]]ψ
def
=

¬〈〈A~b〉〉¬ψ. The linear-time operators X and U have their
standard readings ; while the propositional connectives ∨,
→, and temporal operators release R, always G, and even-
tually F are introduced as usual. For instance, φRψ def

=
¬(¬φU¬ψ), and therefore φRψ shall be equivalent to
Gψ ∨ (¬φ ∧ ψ)U(φ ∧ ψ).
We also consider the fragment RB±ATL(Ag, r) of
RB±ATL∗(Ag, r), where path formulas are restricted by
ψ ::= Xφ | φUφ | φRφ.

Remark 1 Differently from [ABDL18], we explicitly
consider the release operator R in our definition of
RB±ATL. Indeed, in [LMO08] it is proved that, differently
from the case of the Computation Tree Logic CTL, it is not
possible to express R in terms of X and U in ATL. This
proof can be quite easily adapted to the case of RB±ATL
by considering the subclass of CGS assigning the cost 0
to all actions. Hence, we explicitly introduce the operator
R. In Section 3.3, we will prove that this extra expressivity
comes at no cost in terms of the complexity of the verifica-
tion problem.

Semantics. We provide a formal interpretation of the
languages RB±ATL∗ and RB±ATL by using resource-
bounded CGS. Specifically, we need a formal notion of
resource-bounded strategy for the interpretation of stra-
tegic operators 〈〈A~b〉〉. To start with, a (memoryful) stra-
tegy FA for coalition A is a map from the set of finite
computations to the set of joint actions of A such that

FA(s0
f0−→ s1 . . .

fn−1−−−→ sn) ∈ DA(sn). A computation

λ = s0
f0−→ s1

f1−→ s2 . . . respects strategy FA iff for

all i < |λ|, si+1 ∈ out(si, FA(s0
f0−→ s1 . . .

fi−1−−−→ si)).
A computation λ that respects FA is maximal if it cannot
be extended further while respecting the strategy. In the
present context, maximal computations starting in state s
and respecting FA are infinite and we denote the set of all
such computations by Comp(s, FA).
Given a bound ~b ∈ (N ∪ {ω})r and a computation λ =

s0
f0−→ s1

f1−→ s2 . . . in Comp(s, FA), let the resource
availability ~vi at step i < |λ| be defined as : ~v0 = ~b and
for all i < |λ| − 1, ~vi+1 = costA(si, fi) + ~vi (assuming
n + ω = ω for every n ∈ Z). Then, λ is ~b-consistent iff
for all i < |λ|, ~vi ∈ (N ∪ {ω})r (negative values are
not allowed). If ~b(i) = ω, we actually have an infinite
supply of the i-th resource, thus not constraining the be-
haviour of agents with respect to that particular resource.
Since the resource availability depends only on the agents
in A, in [ABDL18] this is called the proponent restric-
tion condition (see also [ABLN15]). Without this restric-
tion about the action costs of the opponent coalitions, the
model-checking problem can be shown undecidable when
the number of agents is unbounded, see e.g. [ABLN15].
The set of all the~b-consistent (infinite) computations is de-
noted by Comp(s, FA,~b). A ~b-strategy FA with respect to



s is a strategy such that Comp(s, FA) = Comp(s, FA,~b).

Definition 3 (Satisfaction relation) We define the satis-
faction relation |= for a state s ∈ S, an infinite compu-
tation λ, p ∈ AP , a state-formula φ, and a path-formula ψ
as follows (clauses for Boolean connectives are standard
and thus omitted) :

(M, s) |= p iff s ∈ L(p)
(M, s) |= 〈〈A~b〉〉ψ iff for some~b-strategy FA w.r.t. s,

∀λ ∈ Comp(s, FA), (M,λ) |= ψ
(M,λ) |= φ iff (M,λ0) |= φ
(M,λ) |= Xψ iff (M,λ≥1) |= ψ
(M,λ) |= ψUψ′ iff for some i ≥ 0, (M,λ≥i) |= ψ′,

and ∀0 ≤ j < i, (M,λ≥j) |= ψ

Clearly, ATL∗ and ATL [AHK02] can be seen as frag-
ments of RB±ATL∗ and RB±ATL respectively. In particu-
lar, the unindexed strategic operator 〈〈A〉〉 can be expressed
as 〈〈A~ω〉〉.
In the sequel, we consider the following decision problem.

Definition 4 (Model Checking) Let k, r ≥ 1, φ a formula
in RB±ATL∗([1, k], r) (resp. RB±ATL([1, k], r)), M be a
finite RB-CGS for Ag = [1, k] and r resources, and let s
be a state in M . The model checking problem amounts to
decide whether (M, s) |= φ.

We conclude this section with a remark on the case of a
single agent, which will be prominent in what follows.

Remark 2 In the case of a single agent, that is, for Ag =

{1}, in our languages we only have modalities 〈〈Ag~b〉〉 and
〈〈∅~b〉〉, as well as duals [[Ag~b]] and [[∅~b]], for~b ∈ (N∪{ω})r.
By Definition 3, the meaning of these operators is as fol-
lows :

(M, s) |= 〈〈∅~b〉〉ψ iff for every computation λ from s,
(M,λ) |= ψ

(M, s) |= [[∅~b]]ψ iff for some computation λ from s,
(M,λ) |= ψ

(M, s) |= 〈〈Ag~b〉〉ψ iff for some~b-consistent computation
λ from s, (M,λ) |= ψ

(M, s) |= [[Ag
~b]]ψ iff for every~b-consistent computation

λ from s, (M,λ) |= ψ

Notice that the semantics of operators 〈〈∅~b〉〉 and [[∅~b]]
corresponds to the meaning of modalities A and E in
CTL∗ ; whereas 〈〈Ag~b〉〉 and [[Ag

~b]] can be used to intro-
duce resource-bounded counterparts E~b and A

~b of modali-
ties E and A. In Section 2.3, we show that RB±ATL∗ for
the single agent case is basically equivalent to a different
resource-bounded logic RBTL∗ introduced in [BF09].

One of our goals is to provide a framework for the com-
plexity classification of (fragments of) RB±ATL(Ag, r),
as well as extensions such as RB±ATL∗(Ag, r). Mainly,
we focus on bounding the number of agents or resources,
proving novel results along the way.

2.3 When RBTL∗ comes into play
Below, we present a resource-bounded temporal logic that
extends CTL∗ by adding resources [BF10, BF09]. Then,
we show that this logic is essentially the same as single-
agent RB±ATL∗ described in Example 2. While such a re-
sult is not surprising, apparently it has so far been over-
looked in the literature 1. Such an equivalence allows us to
apply results for single-agent RB±ATL to RBTL as well.
We first introduce the syntax and semantics of RBTL∗ as
given in [BF09].

Definition 5 Given r ≥ 1, the state-formulas φ and path-
formulas ψ in RBTL∗ are built according to the following
BNF :

φ ::= p | ¬φ | φ ∧ φ | 〈~b〉ψ

ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ,

where p ∈ AP and ~b ∈ (N ∪ {ω})r. Formulas in RBTL∗

are all and only the state-formulas generated by the BNF.

The fragment RBTL of RBTL∗ is obtained by restricting
path formulas just like in the case of RB±ATL : ψ ::=
Xφ | φUφ | φRφ. In [ABDL18] the interpretation of
RBTL∗ is given on a particular class of models, based on
vector addition systems with states :

Definition 6 (Model) A model for RBTL∗ is a tuple A =
〈Q, r,R, L〉 s.t. (i) (Q, r,R) is a vector addition system
with states (VASS), that is,

1. Q is a non-empty finite set of control states ;
2. r ≥ 1 is the number of counters ;
3. R is a finite subset of Q× Zr ×Q ;

and (ii) L : AP → ℘(Q) is a labelling function.

In a model A, a pseudo-run λ is an infinite sequence
(q0, ~v0) → (q1, ~v1) → . . . such that for all i ≥ 0, there
exists (q, ~u, q′) ∈ R such that qi = q, qi+1 = q′, and
~vi+1 = ~u + ~vi. A pseudo-run λ is a run iff for all i ≥ 0,
~vi ∈ (N ∪ ω)r.

Definition 7 (Satisfaction relation) We define the satis-
faction relation |= in model A, for state q ∈ Q, run λ,
p ∈ AP , state-formula φ, and path-formula ψ as follows
(clauses for Boolean connectives are immediate and thus
omitted) :

(A, q) |= p iff q ∈ L(p)
(A, q) |= 〈~b〉ψ iff for some run λ from (q,~b),

(A, λ) |= ψ
(A, λ) |= φ iff (A, λ0) |= φ
(A, λ) |= Xψ iff (A, λ≥1) |= ψ
(A, λ) |= ψUψ′ iff for some i ≥ 0, (A, λ≥i) |= ψ′,

and for all 0 ≤ j < i, (A, λ≥j) |= ψ

1. Indeed, in [ABDL18], complexity results are given independently
for both RBTL∗ and single-agent RB±ATL∗, even though the two logics
can be translated one into the other.



Next, we prove that the logics RBTL∗ and
RB±ATL∗({1}, r) with a single agent are semantically
equivalent, in the sense that truth-preserving translations
exist between models and formulas. First, consider the
translation map τ from RBTL∗ to RB±ATL∗({1}, r) such
that τ is the identity onAP , it is homomorphic for Boolean
and temporal operators, and τ(〈~b〉ψ) def

= E
~bτ(ψ). Actually,

it can be shown that τ is a bijection between RBTL∗ and
RB±ATL∗({1}, r). Not only that, but τ is a bijection
between RBTL and RB±ATL({1}, r) as well. Further,
given a resource-bounded CGS M = 〈{1}, AP, S,Act, r,
act, cost, δ, L〉 with a single agent 1, define the associated
model AM = 〈S, r,R, L〉 for RBTL∗ such that

— R is the set of tuples (q, ~u, q′) such that δ(q, a) = q′

for some action a ∈ act(q, 1) with cost(q, 1, a) = ~u.

Symmetrically, given a model A = 〈Q, r,R, L〉, define
the associated single-agent, resource-bounded CGS MA =
〈{1}, Q,R, r, act, cost, δ, L〉 such that for every q ∈ Q,

— act(q, 1) = {(q′, ~u, q′′) ∈ R | q = q′} ;
— for every (q, ~u, q′) ∈ act(q, 1), cost(q, 1, (q, ~u, q′)) =

~u ;
— for every (q, ~u, q′) ∈ act(q, 1), δ(q, (q, ~u, q′)) = q′.

We now state the following auxiliary lemma, whose proof
follows immediately by the definitions of AM and MA

above.

Lemma 1 1. Given a single-agent, resource-bounded
CGS M and state s ∈ S, for every ~b-consistent
computation λ in M , in AM there exists a run λ′

from (s,~b) such that for every i ≥ 0, (λi, ~vi) →
(λi+1, ~vi+1) with ~vi+1 = ~vi + ~u for ~u =

cost(λi, 1, ai) and λi
ai−→ λi+1.

2. Given a model A for RBTL∗ and state q ∈ Q,
for every run λ from (s,~b), in MA there exists a ~b-
consistent computation λ′ such that for every i ≥ 0,

λi
(λi,~u,λi+1)−−−−−−−→ λi+1 for (λi, ~vi) → (λi+1, ~vi+1) and

~vi+1 = ~u+ ~vi.

By using Lemma 1 we can finally prove that
RB±ATL∗({1}, r) and RBTL∗ are closely related
semantically.

Theorem 1 (1) For every φ in RBTL∗ and model A with
state q ∈ Q, (A, q) |= φ iff (MA, q) |= τ(φ). (2) For every
φ′ in RB±ATL∗ and single-agent, resource-bounded CGS
M with state s ∈ S, (M, s) |= φ′ iff (AM , s) |= τ−1(φ′).

Consequently, RBTL∗ and the restriction of RB±ATL∗ to
a single agent are essentially the same logic in the sense
that their translations are semantically faithful when single-
agent RB-CGS are understood as RBTL∗ models (i.e., a
VASS with a valuation). A similar result holds for RBTL
and single-agent RB±ATL. This result is particularly rele-
vant in the light of Section 3, where we dig deeper into the
verification of single-agent, resource-bounded logics.

s1 s2move : −1 recharge : +1

switch : −1

switch : −1

FIGURE 1 – The resource-bounded CGS in Example 1.
Transitions with action idle are omitted.

Example 1 We illustrate the formal machinery introdu-
ced so far, particularly the single-agent case, with a toy
example. We consider a scenario in which a rover is explo-
ring an unknown area. At any time the rover can choose
between two modes : either it moves around or it recharges
its battery through a solar panel, but it cannot do both
things at the same time. Moving around consumes one
energy unit at every time step, whereas the rover can re-
charge of one energy unit at a time. Switching between
these modes requires one energy unit.
This simple scenario can be model-
led as the resource-bounded CGS M =
〈{rover}, {s1, s2}, {move,recharge,switch,idle},
1, act, cost, δ, L〉 depicted in Figure 1, where in particu-
lar :

— act(s1, rover) = {move,switch,idle} and
act(s2, rover) = {recharge,switch,idle} ;

— cost(s1, rover,move) = cost(s1, rover,switch)
= cost(s2, rover,switch) = −1 and
cost(s2, rover,recharge) = +1 ;

— δ(s1,move) = s1, δ(s1,switch) = s2,
δ(s2,recharge) = s2, and δ(s2,switch) = s1 ;

— AP = {moving} and L(moving) = {s1}.
Even in such a simple scenario with a single agent, we can
express interesting properties such as “no matter what the
rover does, at any time it has a strategy, with an initial bud-
get of at most b energy units, such that it will eventually be
moving”. This specification can be expressed in RB±ATL
as

[[{rover}ω]]G(〈〈{rover}b〉〉Fmoving) (1)

Next, we show that specifications such as (1), concerning a
single agent and a single resource, can be efficiently veri-
fied in PTIME.

3 Model-checking RB±ATL({1}, 1)
This section is devoted to the technical developments of
our main theoretical results. Specifically, in Section 3.1
we review the known complexity results for model che-
cking RB±ATL and its fragments. Then, in Section 3.2 we
prove that the control-state reachability and nontermination
problems for vector addition systems with states (VASS)
with one counter are decidable in PTIME. These results are
then used in Section 3.3 to show that the model-checking
problem for RB±ATL({1}, 1) is also in PTIME. Thus, our



contribution shows that reasoning about a single resource
in RB±ATL with a single agent comes at no extra compu-
tational cost compared to CTL.

3.1 Model Checking Results for RB±ATL
In Table 1, we summarize the main complexity results avai-
lable in the literature for RB±ATL(Ag, r), depending on
the number |Ag| of agents and the number r of resources.
The result in boldface is original from this contribution. All
the results hold in the presence of R instead of G, except the
PSPACE upper bound from [ALNR17, Theo. 2].
For an unbounded number of resources and at least
two agents, the model-checking problem is known to be
2EXPTIME-complete. This result follows from Theorem 2
(membership) and Theorem 3 (hardness) in [ABDL18].
When restricted to a single agent, the problem becomes
EXPSPACE-complete [ABDL18, Th. 4].
For a fixed number of resources greater than four
and at least two agents, the model-checking problem
is again EXPTIME-complete. The upper bound follows
from [ABDL18, Cor. 1], while the lower bound derives
from the complexity of the control-state reachability pro-
blem for alternating VASS [CS14], which can be simu-
lated by using two agents only [ABDL18, Th. 3]. Fur-
ther, for a fixed amount of resources greater than two,
and two agents, the model-checking problem is in EXP-
TIME [ABDL18, Cor. 1]. In the case of a single agent, the
same problem is in PSPACE [ABDL18, Cor. 2] ; whereas
it is PSPACE-hard in both cases, as we can reduce to it
the control-state reachability problem for 2-VASS, which
is PSPACE-complete [BFG+15].
Finally, in the case of a single resource, the problem is
known to be in PSPACE [ALNR17, Th. 2] (the result is es-
tablished for a language with G and it is plausible to extend
it to R). For the case of a single agent, model checking is
in PTIME, which is the main theoretical contribution of this
section. It is therefore PTIME-complete as model checking
CTL is already PTIME-hard (see, e.g., [Sch03, DGL16]).
The characterisation of the complexity for one resource and
at least two agents is still open : currently, neither the proof
of the PTIME upper bound in Section 3.3, nor the PSPACE-
hardness results from [JS07] and [FLL+17, Sect. 5] could
be advantageously used to close this complexity gap.

3.2 Decision problems for 1-VASS
In order to show that the model-checking problem for
RB±ATL({1}, 1) is PTIME-complete, we establish that
two well-known decision problems on vector addition sys-
tems with states (VASS), when restricted to a single coun-
ter, can be solved in polynomial time. More precisely, we
show that the control-state reachability and nontermina-
tion problems for 1-VASS are in PTIME, whereas, for ins-
tance, the control-state reachability problem for VASS is
EXPSPACE-complete in general [Lip76, Rac78]. Although
control-state reachability is a subproblem of the covering
problem, that has been quite studied (see, e.g., [AH09,
BS11, Dem13]), to the best of our knowledge there is no

result in the literature on the upper bound when restricted
to a single counter. Hereafter, we provide formal arguments
for tractability by appropriately tuning and correcting the
proof technique dedicated to the boundedness problem for
1-VASS from [RY86]. Note also that in [GHLT16], the up-
dates in the BVASS (extending VASS) are restricted to the
set {−1, 0,+1} (see [GHLT16, Def. 1]). Therefore the up-
per bound in [GHLT16] does not extend to our present
case where updates are arbibtrary integers encoded in bi-
nary. When updates are arbitrary integers encoded in bi-
nary (as done herein), the relevant problems for 1-BVASS
are known to be PSPACE-complete [FLL+17].
We recall the notion of VASS as given in Definition 6, so
a VASS is a structure V = (Q, r,R), where R is a finite
set of transitions. A configuration of a VASS V is defined
as a pair (q, ~x) ∈ Q × Nr (ω is discarded in this section).

Given (q, ~x), (q′, ~x′) and a transition t = q
~u−→ q′, we write

(q, ~x)
t−→ (q′, ~x′) whenever ~x′ = ~u + ~x. Then, (q0, ~x0) is

called the initial configuration.
An r-VASS is a VASS with r counters. We present
two standard decision problems on VASS that play a
crucial role in solving the model checking problem for
RB±ATL(Ag, 1).
Control state reachability problem CREACH(VASS) :
Input : a VASS V , a configuration (q0, ~x0), and a control

state qf .
Question : is there a finite run with initial configuration

(q0, ~x0) and with final configuration with state qf ?
Nontermination problem NONTER(VASS) :
Input : a VASS V and a configuration (q0, ~x0).
Question : is there an infinite run with initial configura-

tion (q0, ~x0) ?
Other classical decision problems for VASS have been
considered in the literature (see e.g. recent developments
about the reachability problem in [Sch16, CLL+18]), but
in this paper we only need to tame the control-state reacha-
bility and nontermination problems for 1-VASS in order to
solve the model-checking problem for RB±ATL({1}, 1).

Definition 8 (Simple Run, Path, and Loop) A simple
run ρ = (q0, ~x0), . . . , (qk, ~xk), k ≥ 0, is a finite run such
that no control state appears twice. A simple path is a
sequence of transitions t1 . . . tk such that no control state
occurs more than once. A simple loop is a sequence of
transitions t1 . . . tk such that the first control state of t1
is equal to the second control state of tk (and it occurs
nowhere else) and no other control state occurs more than
once.

In a 1-VASS, a simple loop is (strictly) positive if the
cumulated effect is (strictly) positive. Given a run ρ =
(q0, x0), . . . , (qk, xk), . . . and α ≥ 0, we write ρ+α to de-
note the sequence (q0, x0+α), . . . , (qk, xk+α), . . .. If ρ is
a run, the sequence ρ+α is also a run. The following lemma
provides 1-VASS with a characterisation of runs ending in
a distinguished final state.



r\|Ag| ∞ 2 1
∞ 2EXPTIME-c. [ABDL18, Th. 2 and 3] EXPSPACE-c. [ABDL18, Th. 4]
≥ 4 EXPTIME-c. [ABDL18, Cor. 1] PSPACE-h. [BFG+15]

3 PSPACE-h. [BFG+15] in PSPACE [ABDL18, Cor. 2]
2 in EXPTIME [ABDL18, Cor. 1]

1 PTIME-h. (from ATL) PTIME-h. (from CTL)
in PSPACE [ALNR17, Th. 2] in PTIME (Th. 4)

TABLE 1 – The complexity of model checking RB±ATL(Ag, r).

Lemma 2 Let V be a 1-VASS, (q0, x0) an initial configu-
ration, and qf a location. There is a finite run from (q0, x0)
to configuration (qf , xf ) for some xf ≥ 0 iff (1) either
q0 = qf ; or

2. there is a simple path (q0, x0), . . . , (qk, xk) with qk =
qf ; or

3. we have that

— there is a simple run (q0, x0), . . . , (qn, xn),
— there is a strictly positive simple loop t1 . . . tβ

such that (qn, xn)
t1...tβ−−−→ (qn, xn + α) is a run

(α > 0),
— there is a simple path starting at qn and ending

at qf .

As illustration, Figure 2 presents a 1-VASS V , and witness
runs and path for the positive instance (V, (q0, 7), qf ) of
CREACH(1-VASS). By contrast, the configuration (q0, 5)
cannot reach qf .

Proof First, it is not difficult to check that if either (1),
(2) or (3) holds, then there is a finite run from (q0, x0)
to configuration (qf , xf ) for some xf ≥ 0. By way of
example, firing the strictly positive simple loop at least
(|Q| ×max{| u |: q u−→ q′ is a transition} times, allows to
pursue the run following the path from qn to qf .
Conversely, let us suppose that ρ = (q0, x0), . . . , (qk, xk)
is a run with qk = qf . If q0 = qf , then the witness
run can be reduced to (q0, x0). Otherwise, either ρ is a
simple run and condition (2) holds, or there are 0 ≤
i < j ≤ k such that qi = qj . In case xi ≥ xj ,
the subrun (qi, xi), . . . , (qj , xj) can be removed from ρ
while leading to a run reaching qf . Typically, the suf-
fix subrun (qi, xi), . . . , (qj , xj), . . . , (qk, xk) with ρ† =
(qj , xj), . . . , (qk, xk) is replaced by ρ+α† for α = xj − xi.
Such a transformation can be performed as soon as the su-
bruns correspond to the application of simple loops with
negative effect. Without loss of generality, we can assume
that ρ has no loop with strictly negative effect.
If ρ is not a simple run, there are 0 ≤ I < J ≤ |Q| such
that qI = qJ and xI < xJ . Consequently,

— there is a simple run (q0, x0), . . . , (qI , xI) ;
— there is a strictly positive simple loop tI . . . tJ−1 such

that (qI , xI)
tI ...tJ−1−−−−→ (qI , xI + (xJ − xI)) ;

— there is a path from qJ to qk = qf such that
(qJ , xJ), . . . , (qk, xk) is a run. So, there is a simple
path from qJ to qk.

As a result, condition (3) is satisfied and the lemma holds.

The characterisation in Lemma 2 can be turned into an al-
gorithm running in polynomial time.

Theorem 2 The problem CREACH(1-VASS) is in PTIME.

Proof Let V be a 1-VASS, (q0, x0) an initial configura-
tion, and qf a location. If q0 = qf , we are done. Otherwise,
define values maxvaliq for i ∈ [0, |Q|] and q ∈ Q such
that if there is a run (q0, x0), . . . , (qj , xj) with qj = q and
j ≤ i, then the maximal value xj among all these runs is
precisely maxvaliq . When there is no such run, by conven-
tion maxvaliq = −∞. Similar values have been considered
to solve the boundedness problem for 1-VASS in [RY86].
Let us compute the values maxvaliq :

— maxval0q0
def
= x0 and maxval0q

def
= −∞ for all q 6= q0.

— For all q and i+ 1 ∈ [1, |Q|],

maxvali+1
q

def
= max(maxvaliq,

{maxvaljq′+u ∈ N | j ≤ i, q u−→ q′ is a transition}).

The values maxvaliq’s can be computed in polynomial time
in the size of V (the number |Q| of locations being an es-
sential parameter as well as the maximal absolute value
| u | from updates –integers being written in binary). One
can show that maxvaliq is indeed the maximal value as spe-
cified above.
Further, note that condition (2) in Lemma 2 is equivalent
to maxval

|Q|
qf 6= −∞. Similarly, the three conditions in (3)

from Lemma 2 are equivalent to : there are q ∈ Q and
I < J ≤ |Q| such that

— maxvalIq 6= −∞.

— maxvalIq < maxvalJq and auxval0q < auxvalJ−Iq ,
where the values auxvaliq′ ’s (i ∈ [0, J − I], q′ ∈ Q)
are defined as follows (similarly to what is done for
the maxvaljq′ ’s) :

— auxval0q
def
= maxvalIq and auxval0q′

def
= −∞ for

all q′ 6= q.
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Witness runs and path for (V , (q0, 7), qf ) :

initial run : (q0, 7), (q2, 11), (q3, 4)

“> 0 loop” : (q3, 4), (q5, 1), (q4, 6), (q3, 5)

final path : q3 −→ q5 −→ qf

FIGURE 2 – Witness runs and path from Lemma 2(3)

— For all q′ and i+ 1 ∈ [1, J − I],

auxvali+1
q′

def
=

max(auxvaliq′ ,

{auxvaljq′′+u ∈ N | j ≤ i, q′ u−→ q′′ is a transition}).

— There is a simple path starting at q and ending at qf .

The first two points above can be checked in PTIME, and
the third one in NLOGSPACE as it is an instance of the stan-
dard graph reachability problem GAP. So, CREACH(1-
VASS) is in PTIME.

Note that the values auxvaliq′ ’s in the proof of Theorem 2
are necessary to guarantee that the values maxvalIq and
maxvalJq are obtained following a common subrun until
reaching the configuration (q, maxvalIq)

2. Now, let us turn
to the characterisation of runs and paths witnessing nonter-
mination.

Lemma 3 Let V be a 1-VASS and (q0, x0) an initial confi-
guration. There is an infinite run starting at (q0, x0) iff

— there is a simple run (q0, x0), . . . , (qn, xn) ; and

— there is a positive simple loop t1 . . . tk such that
(qn, xn)

t1...tk−−−→ (qn, xn + α) is a run (α ≥ 0).

Proof Clearly, the satisfaction of the two conditions im-
plies that there is an infinite run starting at (q0, x0) : just
consider the run generated by (t1 . . . tk)

ω from configura-
tion (qn, xn). Let us prove the other direction, similarly
to what is done in the proof of Lemma 2. Suppose that
ρ = (q0, x0), . . . , (qk, xk), . . . is an infinite run. Without
loss of generality, we can assume that ρ has no simple
loop with strictly negative effect. There are n ≥ 0 and
q ∈ Q such that qn = q, {i ∈ N | qi = q} is infinite
and (q0, x0), . . . , (qn, xn) is a simple run. Consider some
J > I ≥ |Q| such that qJ = qI = q (such an index J ne-
cessarily exists). Obviously, there is a positive simple loop

tI . . . tJ−1 such that (qI , xI)
tI ...tJ−1−−−−→ (qJ , xJ) is a run.

Hence, both conditions in the statement of the lemma hold.

2. We remark that in the proof of [RY86, Theorem 3.4] for solving the
boundedness problem for 1-VASS in PTIME, a similar argument should
have been used.

Once more, the characterisation in Lemma 3 can be tur-
ned into an algorithm to check nontermination, running in
polynomial time.

Theorem 3 The problem NONTER(1-VASS) is in PTIME.

Proof Let V be a 1-VASS and (q0, x0) an initial configura-
tion. Define the values maxvaliq for i ∈ [0, |Q|] and q ∈ Q
such that if there is a run (q0, x0), . . . , (qi, xi) with qi = q,
then the maximal value xi among all these runs is preci-
sely maxvaliq . Note that these values are not the same as
those from the proof of Theorem 2 as we consider runs of
length exactly i. When there is no such run, by convention
maxvaliq = −∞.

— maxval0q0
def
= x0 and maxval0q

def
= −∞ for all q 6= q0.

— For all q and i+ 1 ∈ [1, |Q|],

maxvali+1
q

def
= max({maxvaliq′ + u ∈ N |

q
u−→ q′ is a transition, maxvaliq′ 6= −∞}).

By convention, the maximal value of the empty set is
−∞.

All the values maxvaliq’s can be computed in polynomial
time in the size of V . One can show that maxvaliq is the
maximal value as specified above. Finally, the characte-
risation in Lemma 3 is equivalent to : there are q ∈ Q
and I < J ≤ |Q| such that maxvalIq 6= −∞ and
maxvalIq ≤ maxvalJq and auxval0q ≤ auxvalJ−Iq , where
values auxvaliq′ ’s (i ∈ [0, J − I], q′ ∈ Q) are defined as

— auxval0q
def
= maxvalIq and auxval0q′

def
= −∞ for all

q′ 6= q ;

— for all q′ and i+ 1 ∈ [1, J − I],

auxvali+1
q′

def
=

max{auxvaljq′′+u ∈ N | j ≤ i, q′ u−→ q′′ is a transition}.

All conditions can be checked in polynomial time and the-
refore the nontermination problem for 1-VASS is in PTIME.

To conclude, by Theorem 2 and 3 both the state-
reachability and nontermination problems for 1-VASS are
decidable in PTIME.



3.3 Model-checking RB±ATL({1}, 1) is in
PTIME

In this section we establish our main theoretical result, that
is, the model-checking problem for RB±ATL({1}, 1) is
PTIME-complete (forthcoming Theorem 4) by leveraging
on Theorem 2 and 3. Hereafter, for every b ∈ N ∪ {ω}, we
write 〈〈b〉〉φ instead of 〈〈{1}b〉〉φ. We observe that the case
of a single resource can also capture situations in which
r > 1 resources can be converted into a unique resource
(e.g., money), possibly with different rates.
As done in Section 2.3, given a resource-bounded CGS
M = ({1}, S,Act, 1, act, cost, δ, L) with a single agent
and a single resource, let us define the 1-VASS VM =
(S, 1, RV ) such that q u−→ q′ ∈ RV iff there is some action
a ∈ act(q, 1) such that δ(q, a) = q′ and cost(q, 1, a) =
u. Similarly, we write KM = (S,R,LK) to denote the
Kripke structure such that q R q′ iff there is some action
a ∈ act(q, 1) such that δ(q, a) = q′ and LK(q) = {q}
(by a slight abuse of notations, we assume that AP = Q).
Note that, thanks to the idle action, KM is a total Kripke
structure, i.e., every world has at least one successor. We
introduce Kripke structures as the modality 〈〈ω〉〉 amounts
to forget about the costs in M , and therefore M can be un-
derstood as the Kripke structure KM , and model checking
reduces to CTL model checking. Similarly, as remarked in
Section 2.3, the strategy modality 〈〈∅b〉〉 behaves as the uni-
versal path quantifier A in cost-free transition systems.
We now investigate the relationship between computations
in M and runs in VM and in KM , respectively (a variant of
Lemma 1).

Lemma 4 Let M be a RB-CGS with a single agent and a
single resource.

(I) Let q0
a0−→ q1

a1−→ q2 · · · be a b-consistent computation
associated to the family of resource values (vi)i∈N. If
b ∈ N, then (q0, v0) −→ (q1, v1) −→ (q2, v2) · · · is an
infinite run in VM ; otherwise q0 −→ q1 −→ q2 · · · is an
infinite path in KM .

(II) Let (q0, v0) −→ (q1, v1) −→ (q2, v2) · · · be an infinite
run in VM . Then, there is a v0-consistent computation
q0

a0−→ q1
a1−→ q2 · · · associated to the family of resource

values (vi)i∈N.

(III) Let q0 −→ q1 −→ q2 · · · is an infinite path in KM .
Then, there is an ω-consistent computation q0

a0−→
q1

a1−→ q2 · · · in M .

The proof of Lemma 4 follows immediately by definition,
and this result is instrumental to the three following lem-
mas that are at the heart of the model-checking algorithm
for RB±ATL({1}, 1). Given S1 ⊆ S, we write V S1

M (resp.
KS1

M ) to denote the restriction of VM (resp. KM ) to the lo-
cations in S1 only.

Lemma 5 Let M be an RB-CGS for RB±ATL({1}, 1),
S1 ⊆ S with s ∈ S1, and b ∈ N.

(I) There is a b-consistent computation starting at s in M
that visits only states in S1 iff (V S1

M , (s, b)) is a posi-
tive instance of NONTER(1-VASS).

(II) There is an ω-consistent computation starting in s
in M that visits only states in S1 iff (KM , s) |=
EG(

∨
s′∈S1

s′) in CTL.

This is a consequence of Lemma 4 (which will be genera-
lised in Lemma 7). Let us focus now on the until operator
U.

Lemma 6 Let M be a RB-CGS for RB±ATL({1}, 1),
S1, S2 ⊆ S with s ∈ S, and b ∈ N.

(I) There is a b-consistent computation starting at s in
M such that its projection on S is in S∗1 · S2 · Sω
(understood as an ω-regular expression) iff for some
s′ ∈ S2, (V S1∪S2

M , (s, b), s′) is a positive instance of
CREACH(1-VASS).

(II) There is an ω-consistent computation starting at s in
M such that its projection on S is in S∗1 ·S2 ·Sω iff in
CTL, we have

(KM , s) |= E(
∨
s′∈S1

s′)U(
∨
s′∈S2

s′).

This is again a consequence of Lemma 4 but here, we have
to use the fact that the distinguished action idle is enabled
in any state (which is handy to extend to the infinity a finite
witness run). Finally, we consider the linear-time temporal
operator R.

Lemma 7 Let M be a RB-CGS for RB±ATL({1}, 1),
S1, S2 ⊆ S with s ∈ S, and b ∈ N.

(I) There is a b-consistent computation starting at s in M
such that its projection on S is in Sω2 ∪((S\S1)∩S2)

∗·
(S1 ∩S2) ·Sω iff either (V S2

M , (s, b)) is a positive ins-
tance of NONTER(1-VASS) or for some s′ ∈ S1 ∩ S2,
(V S2

M , (s, b), s′) is a positive instance of CREACH(1-
VASS).

(II) There is an ω-consistent computation starting at s in
M such that its projection on S is in Sω2 ∪ ((S \S1)∩
S2)
∗ · (S1 ∩ S2) · Sω iff in CTL, we have

(KM , s) |= (EG
∨
s′∈S2

s′)∨E(
∨

s′∈(S\S1)∩S2

s′)U(
∨

s′∈S1∩S2

s′).

By using Lemmas 5-7 we derive our main theoretical re-
sult.

Theorem 4 The model-checking problem for
RB±ATL({1}, 1) is PTIME-complete.

PTIME-hardness is inherited from the model-checking pro-
blem for CTL.



Algorithm 1 – RB±ATL({1}, 1) model checking –
1: procedure GMC(M,φ)
2: case φ of
3: p: return {s ∈ S | s ∈ L(p)}
4: ¬ψ: return S \GMC(M,ψ)
5: ψ1 ∧ ψ2: return GMC(M,ψ1) ∩GMC(M,ψ2)
6: 〈〈b〉〉Xψ: return {s | ∃ a ∈ act(s, 1), 0 ≤ b +
cost(s, 1, a), δ(s, a) ∈ GMC(M,ψ)}

7: 〈〈ω〉〉Xψ:
return {s | ∃ a ∈ act(s, 1), δ(s, a) ∈ GMC(M,ψ)}

8: 〈〈∅b〉〉Xψ:
return {s | ∀ a ∈ act(s, 1), δ(s, a) ∈ GMC(M,ψ)}

9: 〈〈b〉〉ψ1 Uψ2: S1 := GMC(M,ψ1) ; S2 :=
GMC(M,ψ2) ;

return {s ∈ S | ∃ s′ ∈ S2 s.t. V S1∪S2
M , (s, b), s′ is a

positive inst. of CREACH(1-VASS) }
10: 〈〈ω〉〉ψ1 Uψ2: S1 := GMC(M,ψ1) ; S2 :=

GMC(M,ψ2) ;
return {s ∈ S | KM , s |=

E(
∨

s′∈S1
s′)U(

∨
s′∈S2

s′)}
11: 〈〈∅b〉〉ψ1 Uψ2: S1 := GMC(M,ψ1) ; S2 :=

GMC(M,ψ2) ;
return {s ∈ S | KM , s |=

A(
∨

s′∈S1
s′)U(

∨
s′∈S2

s′)}
12: 〈〈b〉〉ψ1 Rψ2: S1 := GMC(M,ψ1) ; S2 :=

GMC(M,ψ2) ;
return {s ∈ S | V S2

M , (s, b) is a positive inst.
of NONTER(1-VASS) } ∪{s ∈ S | ∃ s′ ∈ S1 ∩
S2 s.t. V S2

M , (s, b), s′ is a positive inst. of CREACH(1-
VASS) }

13: 〈〈ω〉〉ψ1 Rψ2: S1 := GMC(M,ψ1) ; S2 :=
GMC(M,ψ2) ;

return {s ∈ S | KM , s |=
E(

∨
s′∈S1

s′)R(
∨

s′∈S2
s′)}

14: 〈〈∅b〉〉ψ1 Rψ2: S1 := GMC(M,ψ1) ; S2 :=
GMC(M,ψ2) ;

return {s ∈ S | KM , s |=
A(

∨
s′∈S1

s′)R(
∨

s′∈S2
s′)}

15: end case
16: end procedure

Proof Let M = ({1}, S,Act, 1, act, cost, δ, L) be
a resource-bounded CGS, and φ be a formula in
RB±ATL({1}, 1). Let us present Algorithm 1, a
polynomial-time algorithm that computes the finite
set {s ∈ S | (M, s) |= φ} (by default, b ∈ N) 3.
By induction, one can show that (M, s) |= φ iff s ∈
GMC(M,φ). Lemmas 5-7 are used to prove the sound-
ness of the subroutines for U and R, with b ∈ N∪{ω}, res-
pectively. When the strategy modality is 〈〈∅b〉〉, it behaves
as the standard path quantifier A, which is reflected in Al-
gorithm 1. As far as computational complexity is concer-
ned, GMC(M,φ) is computed with a recursion depth li-
near in the size of φ and the control-state reachability and
nontermination problems can be solved in polynomial time
by Theorem 2 and 3. More precisely, for each occurrence of
a subformula ψ of φ, GMC(M,ψ) can be computed only
once, which guarantees the overall number of calls of the
formGMC(M,ψ) : it is sufficient to take advantage of dy-
namic programming and to work with a table to remember
the values GMC(M,ψ) already computed (omitted in the
present algorithm). It is also worth observing that the ins-
tances we consider are polynomial in the sizes of M and
φ. Finally, we take advantage of the fact that the model-
checking problem for CTL including R remains in PTIME
(see, e.g., [DGL16, Chapter 7]).

Consequently, reasoning about a single resource in the
Computation Tree Logic CTL comes at no extra computa-
tional cost. Hence, in principle we can verify specification
such as formula (1) in Example 1 efficiently. Based on the
correspondences established in Theorem 1, we immedia-
tely derive the following consequence.

Corollary 5 The model-checking problem for RBTL res-
tricted to a single resource is PTIME-complete.

4 Concluding Remarks
We investigated the complexity of the model-checking
problem for Resource-bounded Alternating-time Tempo-
ral Logics. In particular, we established that RBTL∗ and
RB±ATL∗({1}, r) can be understood as slight variants of
the same logic. More importantly, we provided a unified
view of the model-checking problems for RB±ATL, then
proved that model checking RB±ATL({1}, 1) is PTIME-
complete. To do so, we designed original algorithms to
solve the control-state reachability and nontermination pro-
blems for 1-VASS. Hence, as far as worst-case complexity
is concerned, the model-checking problems for CTL and
RB±ATL({1}, 1) behave similarly.
The paper has not touched very much on the model-
checking problem for RB±ATL∗, for which the main re-
sults are summarised in Table 2. Unlike RB±ATL, tight
complexity bounds are known for all variations on the num-
ber of agents and resources. For at least two agents, the

3. We omit the case for the operator G as Gφ is logically equivalent
to ⊥ Rφ.



r\|Ag| ∞ 2 1
∞ in 2EXPTIME [ABDL18, Th. 7] EXPSPACE-c. [ABDL18, Th. 8]
≥ 1 2EXPTIME-h. (from ATL∗) in PSPACE ([ABDL18, Cor. 2] & Th. 1)

PSPACE-h. (from CTL∗)

TABLE 2 – The complexity of model checking RB±ATL∗(Ag, r).

model-checking problem is 2EXPTIME-complete. The up-
per bound comes from [ABDL18, Th. 7], whereas the lo-
wer bound follows from the 2EXPTIME-hardness of ATL∗,
which is proved by using two agents only [AHK02]. On
the other hand, the problem restricted to a single agent
becomes EXPSPACE-complete for an unbounded number
of resources [ABDL18, Th. 8] ; while for a bounded
number r, model checking RB±ATL∗({1}, r) is PSPACE-
complete : the lower bound follows immediately from
the PSPACE-hardness of the model-checking problem for
CTL∗ ; as for the upper bound, we derive it from the
fact that model checking RBTL∗ is in PSPACE [ABDL18,
Cor. 2] and Theorem 1.
As far as future work is concerned, we plan to
implement the PTIME algorithm for model checking
RB±ATL({1}, 1), possibly taking advantage of the very
recent results in [ACP+19], and to investigate the com-
plexity of other meaningful fragments of RB±ATL(Ag, r)
for which tight bounds are unknown. The synthesis of para-
meters for the parameterised version of RB±ATL({1}, 1)
(as well as for other fragments of RB±ATL∗(Ag, r)) is also
worth further investigation.
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