
LSTM Path-Maker : a new LSTM-based strategy for Multiagent Patrolling ∗
LSTM Path-Maker : une nouvelle stratégie pour la patrouille multiagent basée

sur l’architecture LSTM

Mehdi Othmani-Guibourg1,2 Amal El Fallah-Seghrouchni2 Jean-Loup Farges1

1 ONERA, 31000, Toulouse, France
2 Sorbonne Université - Faculté des Sciences

CNRS, UMR 7606, LIP6,
F-75005, Paris, France

{prénom}.{nom}@onera.fr
{prénom}.{nom}@lip6.fr

Résumé
Depuis plus d’une décennie, la tâche de la patrouille mul-
tiagent a attiré l’attention de la communauté multiagent
de manière croissante, en raison de son grand nombre
d’applications potentielles. Cependant, les algorithmes ba-
sés sur des méthodes d’apprentissage profond pour traiter
cette tâche sont à ce jour peu développés. Dans cet article,
nous proposons d’intégrer un réseau de neurone récurrent
à une stratégie de patrouille multiagent. Ce faisant, nous
avons proposé un modèle formel de stratégie d’agent basée
sur l’architecture LSTM, que nous avons nommé LSTM-
Path-Maker. Le réseau LSTM est entraîné sur des traces de
simulation d’une stratégie coordonnée et centralisée, puis
embarqué dans chaque agent en vue de patrouiller effica-
cement sans communication. Enfin, cette nouvelle stratégie
basée sur l’architecture LSTM est évaluée en simulation et
comparée d’une part à une stratégie coordonnée et d’autre
part à une stratégie réactive. Les résultats préliminaires in-
diquent que la stratégie proposée est meilleure que la stra-
tégie réactive.

Mots Clef
Systèmes multiagents, Réseaux de neurones artificiels, Ré-
seaux récurrents à mémoire court et long terme

Abstract
For over a decade, the multi-agent patrol task has received
a growing attention from the multi-agent community due to
its wide range of potential applications. However, the exis-
ting patrolling-specific algorithms based on deep learning
algorithms are still in preliminary stages. In this paper, we
propose to integrate a recurrent neural network as part of

∗Paper presented at the 52nd Hawaii International Conference on Sys-
tem Sciences (HICSS52 2019), titre, résumé et mots-clés en français ajou-
tés.

a multi-agent patrolling strategy. Hence we proposed a for-
mal model of an LSTM-based agent strategy named LSTM
Path Maker. The LSTM network is trained over simulation
traces of a coordinated strategy, then embedded on each
agent of the new strategy to patrol efficiently without com-
municating. Finally this new LSTM-based strategy is eva-
luated in simulation and compared with two representative
strategies : a coordinated one and a reactive one. Preli-
minary results indicate that the proposed strategy is better
than the reactive.

Keywords
Multiagent Systems (MAS), Artificial Neural Networks
(ANN), Long Short-Term Memory (LSTM)

1 Introduction
The generic task of patrolling is by nature conveniently
well-suited for being shared in space and time by several
agents. There is a wide variety of tasks that may be formu-
lated as particular multi-agent patrolling (MAP) problem.
As a concrete example, the task consisting in monitoring an
area by a swarm of drones faces with the problem of coor-
dinating them to patrol that area. Area monitoring is useful
as part of crises, for example in order to detect a start of fire
in a forest, but also to provide an alert, either to save people
or to detect the presence of intruders as part of a complex
humanitarian mission in a conflict area.
A fully-fledged feature of patrolling and other complex
systems is the difficulty to derive analytical results from
their system-wide equations. Thereby it appears that the
only method enabling to predict their behaviour is to si-
mulate the local interactions of their components : this is
exactly the main purpose of agent-based simulation. Thus,
the quality of a patrolling strategy is evaluated in simula-
tion by using different measures, each one measuring a spe-
cific property of distributions of visits generated by strate-

gies. Informally, it is consensual that a good strategy is one
that minimises the time lag between two passages on the
same place and for all places.
For over fifteen years different types of agent strategy
for the (MAP) were proposed : centralised [1], emergent
[1], idleness-based [1], heuristic (idleness and distance)
with pathfinding [2], hamiltonian-cycle-based [3], TSP-
heuristic-based [4], reinforcement-learning-based [5] and
even auctions-based [6] strategies. In this context, Almeida
et al. [2] defined two main types of agent : reactive agents
that act only according to their perception, and cognitive
agents that can pursue a goal.
Until now, as part of the cooperative multi-agent learning,
few works concentrate on the problematic of using Artifi-
cial Neural Networks (ANNs) for the multi-agent patrol-
ling. For example, a few of these studied non-hierarchical
neural network-based methods for planning a complete co-
verage patrolling path where each neuron encodes a spe-
cific region of the space, such as Guo et al. [7] or even a
cooperative multi-agent learning where each robot is en-
dowed with a neural network directly connected to nodes
of others robots’ internal neural network whose weights of
connections are evolved, with D’Ambrosio et al. [8]. Ho-
wever, none tackles the advantages that may be afforded by
deep artificial neural networks in order to outperform the
previous strategies. This paper thereupon proposes the use
of the ANN architecture Long Short-Term Memory (LSTM)
for the multi-agent patrolling problem. The Recurrent Neu-
ral Networks (RNN), as machines to learn temporal series,
are well adapted to this problem to the extent that they can
be viewed as a temporal decision problem. In this way, a
new strategy based on the LSTM architecture is introdu-
ced where the ANN is used as a path generation device
by non-communicating agents to navigate as optimally as
possible through the graph. To that end each neural net-
work architecture is trained offline over data generated for
this purpose, then embedded in the agents which will use it
to select the next node to visit with respect to the previous
ones. Finally, the performances are evaluated according to
the usual evaluation criteria used until now in this field of
study.
The Section 2 presents the background on the multi-agent
patrolling and the LSTM networks useful to understand
proposed developments as well as the previous works using
the ANNs for the MAP. Then, Section 3 introduces LSTM
Path-Maker (LPM), the new strategy for the multi-agent
patrolling based on the LSTM architecture. In Section 4
the learning results are analysed and and the new strate-
gies evaluated. Finally, Section 5 draws some conclusions,
shows certain boundaries for this new strategy and indi-
cates directions for further works.

2 Background
This section presents the background on multi-agent pa-
trolling and the LSTM architecture.

2.1 Multi-agent patrolling
Formal definition. The MAP model consists formally
of a society of agents noted A, able to move in an envi-
ronment with the same mobility parameters, and a graph
noted G = (V,E) as an abstraction representing a dis-
cretisation of the area to patrol. Here, card(V) = N and
V = {1, .., N} is the set of nodes identified by their in-
dexes and standing for the places to visit. E, which is in-
cluded in the set of 2-element subsets of V, is the set of
edges of G accounting for the paths between the places.
With each edge {v, w} corresponds a transit time cv,w re-
presenting the travel time of the edge {v, w}. At the begin-
ning of an instance of a patrol task, agents are positioned on
nodes of G. To each node is associated a dynamic variable
named idleness, indicating the time elapsed since it has not
been visited by any agent[4]. The idleness of a node v at
time t, noted it(v), is defined as being the amount of time
elapsed since that node has received the visit of an agent.
The idleness of all nodes at the beginning of the patrolling
task is set to 0. Finally, each time an agent arrives at a node
v, it shall decide, among the edges including v, namely all
the edges {v, w}, the next edge to travel.

Strategies. A strategy of agent is an information proces-
sing method, or algorithm, allowing each agent to take a
decision each time it arrives at a node. In the MAP, whate-
ver the strategy considered, each agent intends actions ba-
sed on its appropriated perceptions from the environment
and its knowledge about idlenesses of nodes. Among the
wide family of strategies, two are relevant for this work as
representative strategies : Conscientious Reactive (CR) and
Heuristic Pathfinder Cognitive Coordinated (HPCC).
The algorithm of CR is to select the next node to visit as the
one with the highest idleness in its neighbourhood. There is
no communication between agents : idlenesses are estima-
ted by each agent on the basis of its own path. CR can be
thought of as a good representative and thereby a compa-
rison strategy for the reactive and decentralised ones. Note
that for CR as well as for any decentralised strategy, the
considered idlenesses are estimated by each agent from its
own visits to nodes. This estimation is an overestimation of
the actual value of idlenesses because visits of other agents
are neglected.
For HPCC, there is a perfect communication between
agents : idlenesses are estimated by a coordinator on the
basis of all paths of agents. The decision process includes
two steps :

— selection of a target node that is not necessary in the
neighbourhood,

— computation of a path between the current position
of the agent and the target node previously selected.

The selection of the target node takes into account not only
the normalised idleness, but also the normalised time to go
of a candidate goal node from the agent’s current position.
The time to go between two nodes of V corresponds here
to the shortest path between these two nodes. Idleness and
time-to-go are normalised by scaling from 0 to 1. A zero

normalised value is attributed to a the maximum idleness -
encouraging the agent to traverse nodes with high idleness,
since the objective function will be minimized - whereas
a value equal to 1 is attributed to the minimum idleness.
Intermediary values are calculated by means of proportions
as shown in (1) :

If minv∈V{it(v)} 6= maxv∈V{it(v)},∀v0 ∈ V

īt(v0) =
maxv∈V{it(v)} − it(v0)

maxv∈V{it(v)} −minv∈V{it(v)}
(1)

where it(v) and īt(v) are the global and normalised idle-
ness, respectively.
Normalised time to go is calculated similarly. For that pur-
pose, at the minimum time to go is attributed a zero norma-
lised value - encouraging the agent to traverse edges with
short distance, since the objective function will be mini-
mized - whereas at the maximum time to go is attributed
a value equal to 1. Intermediary values are calculated by
means of proportions as shown in (2) :

∀d(v0, v) a time-to-go from v0 to v,

d̄(v0, v) =
d(v0, v)−min{d}
max{d} −min{d}

(2)

where max{d} and min{d} are the maximum and the mi-
nimum time-to-go respectively, over all the v, w ∈ V : v 6=
w.
Finally, for an agent at the position v0 at time t, the values
associated to nodes are given by (3) :

∀v ∈ V, valrH (v, t) =

rH × īt(v) + (1− rH)× d̄(v0, v)
(3)

where the weighting factor rH ∈ [0, 1] must be chosen
by the strategy designer. Minimising the node values ac-
cording to that expression i.e. selecting the nodes with the
minimum value, allows agents to visit nearby nodes with
higher idleness first and foremost. Moreover, there is a me-
chanism forbidding the coordinator to select nodes that are
currently assigned to other agents.
The path computation takes into account the idleness of the
nodes between the current location and the goal to compute
the best path leading there. For that, it weights the edges as
shown in (4) :

∀e ∈ E : e = {v, w},
crP (e) = rP × īt(w) + (1− rP)× c̄v,w

(4)

where the weighting factor rP ∈ [0, 1] must be chosen
by the strategy designer. In that case, it is the normalised
transit time c̄v,w of edge and not the normalised time-to-go
d̄(i, j) of path that is used to value edges :

∀{v, w} ∈ E, c̄v,w =
cv,w −min{c}

max{c} −min{c} (5)

where max{c} and min{c} are the maximum and the mi-
nimum transit times, respectively.
Minimising the edge weights according to that expression
allows agents as well to visit nearby nodes with higher id-
leness first and foremost.
HPCC as a communicating, fully-informed, coordinated,
and thereby centralised strategy is one of the best online -
namely without pre-calculation of paths - strategy. It can
be then regarded as a representative and thereupon a com-
parison strategy for the coordinated and centralised ones.
Note also that HPCC uses actual idlenesses because visits
of nodes by all agents are analysed by the coordinator in a
centralised manner.

Evaluation criteria. Sampaio et al. [9] introduced eva-
luation criteria, relevant to establish aggregation measures
not based on idleness but on the intuitive concept of inter-
val between visits to the node. In this class of evaluation
criteria, the size of intervals between visits at each node is
calculated by registering the value of idleness just before
each visit by an agent. All intervals for all nodes are used
to make an aggregated calculation. The two interval-based
evaluation criteria we selected are the Mean Interval (MI)
and the Quadratic Mean Interval (QMI), the mean and the
root mean square respectively, on all intervals between vi-
sits of a mission execution. QMI as quadratic mean, takes
better into account the difference of time interval between
the nodes and thus, measures the tendency of nodes to be
equitably visited through a simulation run.
In order to better evaluate the contribution of each agent
when the population size varies, these evaluation criteria
are normalised by multiplying values by the number of
agents.

2.2 LSTMs
Recurrent Neural Networks (RNNs) are neural networks
that process an input sequence one element at a time, main-
taining in their hidden units - neurons in the hidden layers
- a state vector called hidden state, containing information
about the history of the sequence’s past elements. Each out-
put of the hidden units ht, depends upon the hidden state
ht−1. This hidden state can be viewed as a memory. Indeed,
adding memory to a neural network allows to process infor-
mation of the sequence itself : the sequential information is
preserved in the hidden state that enable to find correlations
between events separated by several time steps. This me-
mory is contained in the hidden layers which have a feed-
back loop, and therefore they constitute recurrent layers.
LSTM are a special kind of RNN introduced and designed
to take into account long-term dependencies. They have
the same general chain structure as the RNNs except that
the repeating module has a different structure as shown
in Fig. 1. In the first place, as stated by Hochreiter et al.
[10], an LSTM network was a RNN with one input layer,
one fully self-connected hidden layer containing purpose-
built memory cells, gate units, and an output layer. This
memory unit corresponds to a neuron with a recurrent self-

connection. Thereby a cell referred originally to an object
with a single scalar output. The activations of those neu-
rons within the memory units constitute the state noted ct,
sometimes called cell state, of the LSTM network.

figures/lstm-arch.png

FIGURE 1 – Layered LSTM unit : the core composant of
the LSTM architecture.

As stated by Graves et al.[11] an LSTM layer consists of
a set of recurrently connected blocks, known as memory
blocks, which in turn consists of cells. One cell, as a neu-
ron, outputs one scalar. Originally, each memory block has
contained one or more layered recurrently connected neu-
rons called memory cells and sharing the same three mul-
tiplicative units : it the input gate, ot the output gate and
ft the forget gates, i.e. all the cells of a memory block are
connected to the same gate units. The gate units provide
continuous analogies of write, read and reset operations for
the cells. A memory block of size 1 is then a simple me-
mory cell[10] connected to tanh activations. These blocks,
can be thought of as a differentiable version of the memory
chips in a digital computer. In doing so, it follows the net-
work can only interact with the cells via the gates. Besides,
the memory block and the gates form the LSTM unit as
shown in the Fig. 1, which corresponds to a repeating mo-
dule. The state is thereupon, the memory accumulated by
the LSTM through time by using its forget, input and out-
put gates. However, unlike the base RNN model in which
it cover the same concept, the cell state ct must here not be
confused with the hidden state ht, the former being the cell
output while and the latter the output of the hidden layers.
Also, it should be emphasised that the hidden state, respec-
tively the cell state, noted ht, respectively ct, of an LSTM
network, must be distinguished from the hidden state, res-
pectively the cell state, of the layer l (for a multi-layer
LSTM) noted hlt, respectively clt.

For some years and hitherto, most implemented LSTM ar-
chitectures contain only one cell in their LSTM units. The
LSTM units of a same layer can thereupon be “layered”
into only one LSTM unit where for all t a time step, it, ft,
ot and ct, the input gate, forget gate, output gate and cell
activation turn into vectors with the same size as the hid-
den vector ht ; hence the element-wise multiplication ∗. In
that context, an LSTM layer can be viewed as a vectorial
LSTM unit and thereby the vectorial cell and gates com-
pose a layer. It follows that defining the size of a layer’s
cell defines that of its memory cell block and that of its
hidden state in cascade.
The hidden state output from an LSTM layer l is then com-
puted from the following composite function :

ilt = σ(W l
xi x

l
t +W l

hi h
l
t−1 + bli) (6)

f lt = σ(W l
xf x

l
t +W l

hf h
l
t−1 + blf) (7)

olt = σ(W l
xo x

l
t +W l

ho h
l
t−1 + blo) (8)

clt = f lt ∗ clt−1 + ilt ∗ tanh(W l
xc x

l
t +W l

hc h
l
t−1 + blc)

(9)

hlt = olt ∗ tanh(clt) (10)

The parameters of an LSTM layer that must be learned for
a layer l are thereby :

— W l
xi,W

l
hi,W

l
xf ,W

l
hf ,W

l
xo,W

l
ho,W

l
xc and W l

hc

— bli, b
l
f , b

l
o and blc

The structure corresponding to several memory blocks in a
layer l can be derived from its more general architecture by
setting to 0 the elements of W l

hi, W
l
hf , W l

ho which are not
block-diagonal.
Deep LSTMs combine the multiple levels of representation
that have proved so effective in deep networks with the
flexible use of long-range context that empowers RNNs.
The architecture of the deep LSTMs is the same as that pre-
sented previously apart from the fact that there are several
LSTM layers.

2.3 Related works
Few works addressed the problematic of the use of ANNs
in the context of the MAP. Among related works, Guo et
al. [7] studied the use of ANN-based methods for planning
a complete coverage patrolling path. In that work, the area
to patrol is discretised into fixed radius disks that can be
thought of as nodes to visit. Then, each neuron, as a state
variable, represents a region activated negatively or positi-
vely in function of either the presence of obstacle, or the
absence of a visit by the patrol, respectively. Finally, the
activities of all the neurons compose a dynamic landscape
such that the non-visited regions globally attract the ro-
bot in the entire space, and the obstacle locally repel the
robot to avoid collisions. Even though being an original
and interesting approach, the type of neural network used
in this work is not relevant to our problematic laid down.
Indeed, the latter consists of learning temporal sequences

which corresponds here to paths in the graph. Also, in that
work only one neural network was used concomitantly by
all agents, while in our current framework agents do not
communicate, and instead, act in a decentralised way.

D’Ambrosio et al. [8] developed a new communication
scheme they called the hive brain, as part of the coopera-
tive multi-agent learning. In this scheme, each robot is en-
dowed with a neural network directly connected to nodes
of others robots’ internal ANN, whose weights of connec-
tions are evolved. As stated by the authors, this technique is
drawn from an interesting physical phenomenon called odd
sympathy [12], which is the tendency of pendulum clocks
to synchronise when mounted near each other due to a
small amount of physical information transferred between
the pendulums. Thereby they elaborated the hive brain in
an analogical way where the robots learn to synchronise
by training their respective ANN in a robot simulator ; the
training is performed here using an evolutionary algorithm.
In our perspective, this work presents the same problem
than the foregoing, namely the implicit use of communi-
cations in the simulator between agents to feed the brain
of one agent from another one. However, it inspired our
new strategy of agent to the extent that each agent embeds
its individual ANN. Also, although in our work agents are
currently embedded with the same trained ANN whose the
parameters remain unchanged during a mission execution,
in a not too distant future it will bee valuable to draw from
this work to synchronise the agents’ ANNs’ state and the-
reby improve our new strategy’s performances.

Finally, the works of Sales et al. [13] is also related to our
problematic to some extent. Indeed, they developed an au-
tonomous patrolling system composed of four intelligent
robots that can freely move through an indoor environment
and detect intruders. The robots are endowed with a loca-
lisation/navigation system composed of an ANN used in
combination with a Finite State Machine (FSM), whose
the states correspond to the key features of the environ-
ment. The FSM associates a sequence of actions to execute
with a sequence of states. The ANNs process the sensors
data to identify and classify the FSM states (current and
transitions), and to determine the actions to perform. After
being trained offline to identify the key features of the en-
vironment such as corridors, intersections and turns, they
are fed into data obtained from robots’ sensors, then they
output the FSM states. From this work we retained the me-
thod to train the ANNs offline in order to set them for a
specific mission leading agents to navigate as efficient as
possible without communicating. Lastly, in this work, each
robot calculates the shortest path by using A* to reach the
intruder’s position when detected taking into account its
teammates, while in ours, the network is used to select the
next node in the neighbourhood with respect, on the one
hand, to the previous ones, and on the other hand, to what
was learned during the offline training stage.

3 An LSTM-based strategy
This section presents our contribution, that is LPM, a new
LSTM-network-based decentralised agent strategy, which
learns to navigate the nodes composing the area to patrol,
from series of histories collected upon numerous simula-
tion executions of a fully-informed and coordinated stra-
tegy : the HPCC strategy. The first assumption has been
that if agents learn in average to behave in the same way as
the coordinator, which is fully-informed, then they may ap-
proach performances reached by the coordinated strategy.
The main goal of this work is to use LSTM networks to
perform that.

3.1 Formal definition
The LPM strategy is an ANN-based strategy : the decision-
making process is carried out by means of an LSTM net-
work which outputs the next node from the current node
provided as input of the network. This strategy can be
thought of as a reactive strategy using an artefact for gui-
dance through the area to patrol, such as a compass, which
takes implicitly into account the idleness of nodes and the
agents’ positions. In our context, the temporal series repre-
senting the successive visited nodes by an agent is called a
path. Any vertex of a path, has for subsequent vertex one
of its neighbours.
For a given scenario, the LSTM network temporally
learns the next node to visit vt+1 from a model strategy,
according to the previous ones vt, vt−1, ..., v0 in the path
and that for all paths : each path, as a temporal series
accounting for the path of an agent over the graph, is fed
into the network node after node. It follows that, with
defining f as the decision procedure of the model strategy
- and thereby the strategy itself -, the LSTM network of
the scenario that approximates f can be defined as follows :

Let It = {it(v0), it(v1), ..., it(vN)} being the set of shared
idlenesses at the time t and va the node from which a next
node to visit, noted v̄, must be selected as a decision pro-
cess, by an agent a. Then, the next node to visit v̄ will be
selected from the procedure f , the requesting node at the
time t vt ∈ V which corresponds to the node visited by an
agent a at the time t ∈ T, and the set of shared idlenesses
It such as :

∀t ∈ T, v̄ = f(vt, It) (11)

Thus, with considering f̃ the vertex-purpose-LSTM-
network-based decision procedure as a function approxi-
mator of f , and vt we have :

∀t ∈ T, vt+1 = f̃(vt, ..., v1) (12)

This equation pertains to the formal definition of an LSTM
network : each output depends upon the previous outputs.
Let N the number of nodes in the graph. With the aim of
feeding the LSTM network with the most appropriate and
relevant information about the nodes, each node has been

encoded as aN -dimensional one-hot vector : for the vertex
vi, all the coordinates of the vector will be set to 0 except
the i-th coordinate which will be set to 1. The output of the
network thereupon is an N -dimensional vector whose the
values are in [0, 1] ; these values can be regarded as pro-
babilities. Thus, to ensure that all values are positive and
their sum equal to one, the output layer of the networks is a
softmax layer. The node represented by the maximum out-
put vector’s coordinate should be selected as the next one
to visit.
Let (L,H) the profile of parameters of an LSTM architec-
ture so that L and H stand for the number of layers and
the number of hidden units (or memory cells) per layer res-
pectively, of a given LSTM architecture. Formally, by de-
fining b : V → Vbin as being the function mapping all
the indices of nodes into their one-hot representation, the
proposed architecture can then be described with :

x1t = b(vt) (13)

If L > 1,∀l ∈ {1, ..., L− 1} xl+1
t = hlt (14)

Lnet = softmax(W · hLt) (15)

where dim(h) = H and W is a card(V) × H-matrix of
parameters.
Finally, upon training stage’s completion, each LPM agent
will be endowed with the same parametrised LSTM net-
work.

3.2 Network training
The training of the LSTM network is performed from log-
ged paths of any high-performance strategy f . Generally,
the high-performance strategies make use of communica-
tions and centralised decision-making process. The pur-
pose here, is then to approach the performances of these
strategies without communicating and thereupon distribu-
ting and decentralising the decision-making process. In-
deed, for example in the context of a drones’ reconnais-
sance mission or even silent bots penetrating a network,
communications may be impossible or discouraged. Such
a strategy to learn will be called the model strategy or sim-
ply the model if that does not lead to confusion.
For each scenario {f,G, Na}, also called simulation confi-
guration or simply configuration, with Na the number of
agents, whether it does not cause any confusion, the LSTM
network is first pre-trained with the purpose of learning
the topology i.e. the structure of the graph representing
the area. Thereafter, the network is trained over all the
paths retrieved from the executions of configuration for
{f,G, Na}, so that it learns to output with the highest pro-
bability the next node to visit in the path. The process des-
cribed here can be thought of as performing sequence mo-
delling where the sequence is a path of nodes ; here the
sequence modelling corresponds to a path generation.
As aforementioned in the Subsection 3.1, the network’s
output layer is a softmax layer. It can be interpreted as a

probability distribution. Thus path generation aims at lear-
ning a probability distribution over paths by minimising
the cross-entropy of a model given a set of N training se-
quences of length T :

min
θ
−

N∑
n=1

T∑
t=1

log p(vnt |vn1 , ..., vnt−1;θ) (16)

where θ is the set of the model’s parameters, whose the
dimension is dim(H) = 4(2L − 1)H2 + (4L +
5Card(V))H , and p is the predicted probability for the
current element of the observed sequence (vnt).

3.3 Decision
Generally, despite of the pre-training stage, the network
may output the highest probability for a node that is not
in the neighbouring of the one given in input. In doing so,
the decision shall be made only among the output probabi-
lities standing for the neighbour nodes. It follows that each
time the one-hot vector of the current vertex is presented to
the network, the decision procedure f̃ concerning the next
node to visit consist of selecting the next node among the
neighbours of the current vertex with the maximum proba-
bility. This can be mathematically rewritten as bellow :
Let :

— Vbin ⊂ {0, 1}card(V) be the set of nodes formatted
into one-hot vectors,

— Lnet : {0, 1}card(V) → [0, 1]card(V) the function
represented by the LSTM network used here,

— Ng : [0, 1]card(V) ×V → [0, 1]card(V), the func-
tion setting to zero the values of the coordinates not
corresponding to the neighbours of a given node’s
one-hot vector.

Then,

∀t ∈ T,∀vt ∈Vbin,

vt+1 =argmax(Ng(Lnet(b(vt)), vt))
(17)

It then follows that :

∀t ∈T : vt ∈ V,

f̃(vt, ..., v1) = argmax(Ng(Lnet(b(vt)), vt))
(18)

with f̃ depending upon v1, ..., vt due to their relevant fea-
tures being stored in the memory of Lnet.
An alternative way to use the output of the LSTM would
be to compute a path leading to the node output by the net-
work and to provide the first node of this path as vt+1. This
procedure was omitted because the network learns to pre-
dict only neighbour nodes.
Finally, the first experiments showed that using LSTM net-
work as it stands, tends to lead agents to converge indefini-
tely towards a small set of nodes, leaving thereupon others
nodes non-visited until the end of the execution. In doing
so, the decision procedure was slightly improved : hence-
forth, with the aim to make the system more robust, the

next vertex to visit from the current one is randomly selec-
ted according to the distribution of probability output by
the LSTM network, normalised over the neighbourhood of
the current vertex using the Bayes’ theorem over the dis-
tribution of neighbours. This new procedure enables there-
fore to add a little randomness in the decision process when
selecting the next node in the neighbourhood, leading to
increase the robustness of the system, and thereby to avoid
agents to visit only a restricted set of nodes. This new resul-
ting strategy was called Random-Next-Neighbour-LSTM-
Path-Maker, abbreviated RLPM.

4 Experiments and results
LPM was tested and compared to HPCC and CR. This sec-
tion presents the results pertaining to.

4.1 Scenarios

figures/maps-3.png

FIGURE 2 – Graphs used for assessment.

In order to align with previous works carried out in this
field [14] and pursue the experiments in a comparative way,
three different graphs were selected to evaluate the stra-
tegies CR and HPCC as a benchmark for the MAP : Is-
lands, Grid and A, as shown in the Figure 2. Considering
the different structures of these graphs, each one can be
thought of as the representative of a class of graphs, hence
the choice.
For each graph we tested in simulation the strategies CR,
HPCC with a value of 0.2 for rH and rP , RLPM was trai-
ned from HPCC’s simulation with the same value for r as
well, then tested. To that end we used Pytrol, a new Python
MAP-purpose simulator that we specially designed for this
purpose, while a MAP-specific training program was coded
using the deep learning library PyTorch to train the ANNs.
These tests were performed over population sizes of 1, 5,

10, 15 and 25 agents and for each size we selected 100
random starts, also called executions. For each start, each
strategy was tested over 3000 time steps. For any topology,
each execution in simulation on an high-performance ser-
ver takes approximately between 20 seconds and 130 se-
conds for 1 and 25 agents, respectively. This time complies
with real life applications involving drones equipped with
more basic computers and patrolling an area. Considering
that each move takes exactly one period in the proposed
model, after excluding the moves upon edges, an agent vi-
sits in average 600 nodes during one execution of 3000
time steps. In doing so, the paths used to train the LSTM
networks have approximately a length of 600 nodes.

4.2 Training results
For each scenario, we trained seven architectures with pro-
files of parameters, defined as (L,H) in Section 3.1 :
(1, 1), (2, 2), (4, 10), (1, 50), (2, 50), (3, 50), and (50, 2),
with an end-to-end training i.e. a non truncated back-
propagation through time. For any architecture we trained
over 10000 epochs one LSTM network for each simulation
configuration in two stages using the PyTorch library. First,
the network is pre-trained over 2×106 epochs to capture as
far as possible the structure of the topology, with 2-length
series which stand for the edges of the graph. Then, the net-
work is trained over the paths of agents with parameters ini-
tialised with the values learnt during the pre-training stage,
over 10000 epochs. The Figure 3 shows the initial and final
values of the cost, that is the cross-entropy, during the vali-
dation stage for each architecture, averaged over the maps
and numbers of agents. Here the initial cost corresponds to
the validation cost after the first epoch. This figure shows
that the better networks are (2, 50), (1, 50) and (4, 10).
Interestingly, the initial and final cost for the architecture
(50, 2) are almost identical and it has the worst cost with a
value of 3.87. This result tends to show that the network’s
parameters converged very quickly, that is in 1 epoch. The
number of parameters for (1, 1), (2, 2) and (50, 2) are 258,
564 and 2484 respectively. It seems that those numbers are
too low for a satisfactory approximation of the sequences.
At the opposite, (3, 50) has 63100 parameters. It is likely
that this number is too large to avoid overfitting and a rela-
tively bad performance in term of validation cost. Indeed,
for one agent the size of the training data is approximately
50000, that is lower than the number of parameters of the
(3, 50) network.
Considering the bad final validation costs of (50, 2), (1, 1)
and (2, 2), of 3.87, 3.03, and 2.08 respectively, we tes-
ted and evaluated the four LSTM architectures : (4, 10),
(1, 50), (2, 50), (3, 50). Thus, each architecture has given
rise to four variants of RLPM named RLPM-L-H .

4.3 Performance results
To evaluate their performances, the RLPMs were tested and
compared with CR, the reactive strategy, and HPCC, the
cognitive one wherefrom they were trained. We used nor-
malised MI and QMI as evaluation criteria, also referred to

figures/CE-av.png

FIGURE 3 – Costs averaged over the maps and numbers of
agents for each architecture.

as metrics.
Fig. 4 shows all the results from our experiments for the
normalised MI. For the sake of clarity, we show the RLPM
version with the best value over this criterion , i.e. with the
lowest value of MI, and that for each configuration. The
best corresponding version for each configuration is deno-
ted upon the graph. Not surprisingly HPCC always outper-
formed all the other strategies (CR, and the RLPMs) on
all the maps and for all the population sizes of agents, ex-
cept for the map A where RLPM-3-50 barely outperforms
HPCC for 1 agent with a MI of 210 against 212 for HPCC.
For all the maps the RLPMs overwhelmingly outperform
the reactive strategy CR. For all the sizes of agent socie-
ties, the RLPMs are very close from HPCC, especially for
1 agent where their difference over MI ranges from −2, as
previously stated for the map A where RLPM-3-50 is even
better than HPCC, to 11 for the map Grid with a value
of 251 for RLPM-1-50 against 240 for HPCC. Besides, the
evolution of RLPMs’ performances over MI with respect to
the number of agents fit rather well the HPCC’s ones with
an average difference of MI over all the population sizes
for the three maps of 15.
For the maps Islands and A the architecture (2, 50) is al-
ways the best. However, for the map Grid the architecture
(1, 50) is the best for 1, 5, 10 and 25 agents, but for 15
agents it is (4, 10). Further analyses showed that the ar-
chitecture (1, 50) for 15 agents is only worse than (4, 10)
of 1 time step, 297 against 296 for (4, 10). RLPM-1-50 is
thus globally the best strategy for this map. Also, for the
same map the average difference of performances over the
population sizes between the best architectures previously
enumerated and the architecture (2, 50) is only of 2 time
steps. This leads to consider RLPM-2-50 as being globally
the best RLPM strategy for MI.

figures/MI-best_rlpm-all_maps.png

FIGURE 4 – Normalised MI of the evaluated strategies in
y-axis for the three maps and the population sizes of agents
in x-axis.

The Fig. 5 shows the results for the normalised QMI. As
for MI, for the sake of clarity, it is only showed the RLPM
version with the best value, i.e. with the lowest value of
QMI, that for each configuration. As well, the best corres-
ponding version for each configuration is denoted upon the
graph. For the map Islands, the QMI of the best RLPM is
worse than HPCC and CR for all the numbers of agents,
except for 25 agents where CR is worse of 28. Also, it
must be pointed out that for 1 agent CR is a little bet-
ter than HPCC, 290 against 320. This result can be ex-
plained by the topology of the map in combination with
the HPCC’s decision-making rule regarding the next node
to visit : HPCC takes into account the distance from the
agent’s current node while CR chooses its next node to vi-
sit as the one having the greatest idleness in its neighbour.
The best architectures are (2, 50) for 1 agent, (1, 50) for 5,
15 and 25 agents and (4, 10) for 10 agents. In average, over
the whole population sizes and the three maps, for the map
Islands the best RLPMs are worse than HPCC of 256 per-
iods with a significant difference of 533 for 15 agents. For
the map A, the RLPMs are always better than CR but worse
than HPCC, and except for 25 agents where RLPM-3-50
is the best RLPM strategy, RLPM-1-50 is always the best
one. However, RLPM-2-50 turns out to be the best strategy
for QMI when averaging over the population sizes with a
value of 481 periods. Also, in average the best RLPMs are
worse than HPCC of 152 periods. Lastly, for the map Grid,
the RLPMs are worse than HPCC, but better than CR ex-
cept for 1 agent where CR is better than the RLPMs of 32
periods. The best architectures are (2, 50) for 1 agent and
(1, 50) for 5, 10, 15 and 25 agents. As well as for the A
map, in average over the population sizes, RLPM-2-50 is
the best strategy and the best RLPMs are worse than HPCC

figures/QMI-best_rlpm-all_maps.png

FIGURE 5 – Normalised QMI of the evaluated strategies in
y-axis for the three maps and the population sizes of agents
in x-axis.

of 105 periods.
Finally, the architecture (2, 50) tends to be the best RLPM
strategy for MI, except for the map Grid where (1, 50) is
slightly better, while for QMI, (1, 50) is irremediably and
globally the best strategy.

figures/MI_QMI_av-all_maps.png

FIGURE 6 – Criterion space of MI and QMI.

The Fig. 6 represents the criterion space for MI and QMI
with the results of RLPM strategies averaged over the dif-
ferent numbers of agents. Here the different RLPM stra-
tegies and thus the LSTM architectures makes up the deci-
sion space. For the map Islands, it exists two Pareto optimal
solutions in the decision space : the architectures (2, 50)
and (1, 50) where the former is the best for MI with a va-

lue of 211, while the latter is the best for QMI with a value
of 629. For the map A, both are also the only Pareto opti-
mal solutions where the former is still the best for MI with
a value of 234, while the latter is still the best for QMI with
a value of 480. Finally for the map Grid, the architecture
(2, 50) is the only Pareto optimal solution with a value of
(290, 517). This analysis thereby tends to confirm our pre-
liminary and foregoing assumption regarding the architec-
ture (2, 50) and (1, 50) as globally the best ones pertaining
to our problematic, where the former tends to be better for
MI and the latter better for QMI.
As well, the architecture (3, 50) is the worst strategy for the
QMI criterion. QMI as quadratic mean, takes better into ac-
count the difference of time interval between the nodes and
thus measures the tendency of nodes to be equitably visi-
ted through a run. Indeed, it penalises strategies that leave
nodes unvisited (or which produces wide intervals between
visits) during the simulation run[9]. Therefore, it provides
an additional precision upon the distribution of visits over
the nodes : one node with wide intervals have a little im-
pact upon MI while it has upon QMI. Similarly, the archi-
tecture (4, 10) is most of the time the worst strategy for
MI. The performances over QMI of these strategies tends
to show that they visit perpetually the same little set of
nodes, whereupon the visits are poorly distributed over the
nodes. It is likely that (4, 10) presents a too small number
of parameters to learn the behaviour of the HPCC startegy
and, conversely, (3, 50) a too large number of parameters
to avoid over-fitting.

5 Conclusion and perspectives
In this paper we proposed and evaluated a new strategy
for the multi-agent patrolling problem, based on the LSTM
network architecture. To that end, we reminded the model
underlying the multi-agent patrolling problem as well as
the LSTM architecture. Then, we formally defined the new
proposed LSTM-based strategy, wherefore the LSTM net-
work was trained from the traces of a high-performance
strategy. Seven architectures of LSTM were analysed in
this work. Finally, we developed a new fully-fledged si-
mulator in Python, specially designed for the multi-agent
patrolling ; this simulator, that we named Pytrol, allowed
to gather data to learn, test and evaluate the new strategies
which were confronted to the reactive and cognitive stan-
dard strategies.
The evaluation demonstrated that RLPM-2-50 and RLPM-
1-50, the strategies set from the LSTM architectures with 2
layers and 50 neurons, and 1 layers and 50 neurons respec-
tively, are globally the best. RLPM-2-50 is the best upon
MI - a central tendency measure - while RLPM-1-50 is the
best upon QMI - measure that tends to emphasise the node
with long times without visits.
These first experiments show good results as far as for
each topology the proper architecture is selected. It has
been showed that in an extreme situation where commu-
nications are prohibited, a learning strategy based on the

LSTM architecture can perform missions in a context of
crisis with good performances, even better than the reac-
tive and decentralised representative CR. The latter result
show thereupon that a supervised-learning-based strategy
with directed randomness is better than a reactive one and
close to HPCC the cognitive representative for the crite-
rion MI, although RLPM does not communicate, given that
CR and HPCC are good representatives for the reactive and
cognitive strategies respectively. Moreover, CR and RLPM
are decentralised strategies, by design. However, RLPM
was obtained by adding randomness in the decision pro-
cedure, otherwise the system being too much rigid tends to
lead agents to converge indefinitely towards a small set of
nodes. This entails that the learning system resting upon the
LSTM architecture used here is not adaptive. A preliminary
avenue to explore would be to use a new cost function to
optimise, instead of the cross-entropy, to train the models
in a different way, what could improve QMI by increasing
the variability of the learned distribution. Also, in order to
exploit the potential of the LSTM networks for the genera-
tion of paths in the multi-agent patrolling, new deeper and
more complex architecture will be implemented and eva-
luated in the future, as well as other ANN architectures to
improve the distribution of agents over the nodes and the-
reby QMI, but also the performances more generally. In
fact, results presented here are based on LSTM predictor,
but the method proposed here is generic and can be applied
using any type of temporal series predictor.
Markov Decision Process (MDP), Decentralised Markov
Decision Process (DEC-MDP) or Decentralised Partially
Observable Markov Decision Process (DEC-POMDP) mo-
dels could have been considered to model MAP. However,
in a centralised perspective, that is with centralised strate-
gies, the general MAP model used here is equivalent to a
MDP model where the state corresponds to both positions
of agents and global idlenesses. In that, it would be a de-
terminist MDP. For decentralised strategies, in the conside-
red model each agent has an overestimation of idlenesses,
but there is not any probabilist distribution over them. This
model can then not be regarded as a DEC-POMDP. The ex-
tension of this work to any MDP model is thereby limited
by what has been stated before.
Finally, in order to bring RLPM in real life, several steps re-
main to be performed. First, simulation tests using a graph
constructed from geographical data of an area to be patrol-
led shall be conducted. Then validation in field tests with
actual drones will be possible.

References
[1] A. Machado, G. Ramalho, J.-D. Zucker, and A. Dro-

goul, “Multi-agent patrolling : An empirical analysis
of alternative architectures,” in International Work-
shop on Multi-Agent Systems and Agent-Based Simu-
lation, pp. 155–170, Springer, 2002.

[2] A. Almeida, P. Castro, T. Menezes, and G. Ramalho,
“Combining idleness and distance to design heuristic

agents for the patrolling task,” in II Brazilian Work-
shop in Games and Digital Entertainment, pp. 33–40,
2003.

[3] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-
robot area patrol under frequency constraints,” Annals
of Mathematics and Artificial Intelligence, vol. 57,
no. 3-4, pp. 293–320, 2009.

[4] Y. Chevaleyre, “Theoretical analysis of the multi-
agent patrolling problem,” in Intelligent Agent
Technology, 2004.(IAT 2004). Proceedings.
IEEE/WIC/ACM International Conference on,
pp. 302–308, IEEE, 2004.

[5] H. Santana, G. Ramalho, V. Corruble, and B. Ra-
titch, “Multi-agent patrolling with reinforcement lear-
ning,” in Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems-Volume 3, pp. 1122–1129, IEEE Computer
Society, 2004.

[6] T. Menezes, P. Tedesco, and G. Ramalho, “Negotiator
agents for the patrolling task,” in Advances in Artifi-
cial Intelligence-IBERAMIA-SBIA 2006, pp. 48–57,
Springer, 2006.

[7] Y. Guo, L. E. Parker, and R. Madhavan, “Collabora-
tive robots for infrastructure security applications,” in
Mobile robots : the evolutionary approach, pp. 185–
200, Springer, 2007.

[8] D. B. D’Ambrosio, S. Goodell, J. Lehman, S. Risi,
and K. O. Stanley, “Multirobot behavior synchroniza-
tion through direct neural network communication,”
in International Conference on Intelligent Robotics
and Applications, pp. 603–614, Springer, 2012.

[9] G. Sampaio, G. Ramalho, and P. Tedesco, “A tech-
nique inspired by the law of gravitation for the timed
multi-agent patrolling,” in 22nd IEEE International
Conference on Tools with Artificial Intelligence (IC-
TAI), vol. 1, pp. 113–120, 2010.

[10] S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8,
pp. 1735–1780, 1997.

[11] A. Graves and J. Schmidhuber, “Framewise phoneme
classification with bidirectional lstm networks,” in
Proceedings. 2005 IEEE International Joint Confe-
rence on Neural Networks, 2005., vol. 4, pp. 2047–
2052, IEEE, 2005.

[12] M. Bennett, M. F. Schatz, H. Rockwood, and K. Wie-
senfeld, “Huygens’s clocks,” Proceedings of the
Royal Society of London. Series A : Mathemati-
cal, Physical and Engineering Sciences, vol. 458,
no. 2019, pp. 563–579, 2002.

[13] D. O. Sales, D. Feitosa, F. S. Osório, and D. F.
Wolf, “Multi-agent autonomous patrolling system
using ann and fsm control,” in 2012 Second Brazilian
Conference on Critical Embedded Systems, pp. 48–
53, IEEE, 2012.

[14] M. Othmani-Guibourg, A. El Fallah-Seghrouchni, J.-
L. Farges, and M. Potop-Butucaru, “Multi-agent pa-
trolling in dynamic environments,” in (ICA), 2017
IEEE International Conference on Agents, pp. 72–77,
IEEE, 2017.

