The CRDS spectrum of acetylene near $1.73 \mu \mathrm{~m}$

Oleg Lyulin, Semen Vasilchenko, Didier Mondelain, Alain Campargue

To cite this version:

Oleg Lyulin, Semen Vasilchenko, Didier Mondelain, Alain Campargue. The CRDS spectrum of acetylene near $1.73 \mu \mathrm{~m}$. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 234, pp.147158. 10.1016/j.jqsrt.2019.04.006 . hal-02328738

HAL Id: hal-02328738

https://hal.science/hal-02328738

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

@(®)

Oleg Lyulin ${ }^{1,2}$, Semen Vasilchenko ${ }^{1,2}$, Didier Mondelain ${ }^{1}$, Alain Campargue ${ }^{\text {* }}$

${ }^{1}$ Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
${ }^{2}$ V.E. Zuev Institute of Atmospheric Optics SB RAS,1, Academician Zuev square, Tomsk 634021, Russia

Number of Pages: 25
Number of Figures: 8
Number of Tables: 2

Running Head: Acetylene near $1.74 \mu \mathrm{~m}$
Keywords: acetylene; $\mathrm{C}_{2} \mathrm{H}_{2}$; line intensity; CRDS; spectroscopic database; HITRAN

* Corresponding author

Tel: +33 476514319
E-mail address: Alain.Campargue@univ-grenoble-alpes.fr

Abstract

The high-resolution absorption spectrum of acetylene has been recorded at room temperature by high sensitivity cavity ring down spectroscopy (CRDS) in the $5693-5882 \mathrm{~cm}^{-1}$ region. The noise level of the recordings corresponds to a typical minimum detectable absorption, $\alpha_{\text {min }}$, below $10^{-10} \mathrm{~cm}^{-1}$. The positions and intensities of about 4000 lines were determined and analyzed together with about 3900 lines left unassigned in a previous CRDS study in the $5850-6340 \mathrm{~cm}^{-1}$ region (OM Lyulin, D. Mondelain, S. Béguier, S. Kassi, J. Vander Auwera, A. Campargue. High sensitivity absorption spectroscopy of acetylene by CRDS between 5851 and $6341 \mathrm{~cm}^{-1}$. Mol Phys, 112, 2433-44 (2014)). In total, about $2620{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ and $250{ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$ absorption lines are assigned in the present work, most of them being newly reported. The ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ lines belong to 53 bands and include 24 bands newly identified or improved in the region of the previous study. Altogether, 107 bands in the entire $5693-6340 \mathrm{~cm}^{-1}$ while the HITRAN database provides line parameters of only nine ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ bands in the same region. The lines of ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$ in normal abundance (2.2%) belong to eight bands whose intensities are reported for the first time. Spectroscopic parameters of the upper vibrational levels were derived from standard band-by-band fits of the line positions (typical rms values of the (obs.-calc.) deviations are better than $0.002 \mathrm{~cm}^{-1}$). The vibrational transition dipole moment squared and Herman-Wallis coefficients of each band were derived from a fit of the measured intensity values. A recommended line list is provided for the bands newly assigned with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities computed using the derived Herman-Wallis coefficients. As a result, the constructed line list includes a total of 4471 transitions belonging to 53 bands of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ and 8 bands of ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$. This list of acetylene transitions above $5693 \mathrm{~cm}^{-1}$ extends to lower energy and completes our empirical spectroscopic database for acetylene in the $5850-9415 \mathrm{~cm}^{-1}$ range.

1. Introduction

Up to the visible spectral region, the acetylene absorption spectrum is organized into polyads of vibrational states in strong resonance interaction [1-6 and reference therein]. Each polyad is characterized by a polyad quantum number, $P=5 V_{l}+3 V_{2}+5 V_{3}+V_{4}+V_{5}$, where V_{i} are the conventional vibrational normal modes quantum numbers, and $i=1-5$ correspond to the symmetric CH and CC stretching modes, the antisymmetric CH stretch, and the trans- and cis-degenerate bending modes, respectively. The latter being characterized by the bending angular momentum quantum numbers, l_{4} and l_{5}. The present contribution takes part in a long term project aiming at constructing an empirical database for acetylene in the near infrared. Indeed, in spite of being the most studied four-atoms molecule and of increasing needs for planetary applications, the status of the spectroscopic databases of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ in the near infrared is far to be satisfactory both in terms of completeness and accuracy. For instance, in its last version, the HITRAN database [7] provides only the few strongest bands for each ΔP variation of the polyad quantum number. While a number of studies have been devoted to rovibrational assignments and line positions analysis [4-6,8-10], intensity information is generally missing which prevents the inclusion of these data in spectroscopic databases. This is for instance the case of the extensive study reported by Keppler et al. [9] by Fourier-transform spectroscopy (FTS) with a 352.5 m pathlength in the 1.4-1.7 $\mu \mathrm{m}$ region which partly overlapped our region of interest. In addition, due to the number and strength of rovibrational interactions, the rovibrational assignment of high sensitivity spectra of acetylene is a challenge in the near infrared because many hot bands including perturbed bands are overlapping leading a highly congested spectrum with no apparent regular structure, except for the few strongest bands.

In 2017, we constructed a spectroscopic database for acetylene in the wide $5850-9415 \mathrm{~cm}^{-1}$ region (excluding the $6341-7000 \mathrm{~cm}^{-1}$ interval) [11] by gathering results of six studies by Fouriertransform spectroscopy (FTS) in the region of the strong bands [12-14] and cavity ring down spectroscopy (CRDS) in the region of weak absorption intervals between the bands [15-17]. Compared to the HITRAN [7] and GEISA [18] spectroscopic databases in the region, the number of bands and lines (179 and 11113, respectively) was increased by more than a factor of ten. In our database, the acetylene line positions are calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities are computed using the vibrational transition dipole moment squared and Herman-Wallis coefficients derived, for each band, from a fit of measured intensities. This approach allowed completing the experimental list by adding missing lines and improving poorly determined positions and intensities. Note that, very recently we extended the database towards higher energy from the analysis of an FTS spectrum in the $9280-10740 \mathrm{~cm}^{-1}$ interval [19,20].

In the present study, the CRDS spectrum in the $5693-5882 \mathrm{~cm}^{-1}$ region is considered. This study extends to lower energy a previous CRDS investigation in the $5851-6341 \mathrm{~cm}^{-1}$ [16] where about 4600 absorption features were left unassigned. The assignment of the spectrum is performed by
comparison to the predictions of a global effective model developed at IAO-Tomsk for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ [21] This global model is the basis of the recently released Acetylene Spectroscopic Databank (ASD) [22]. The ASD line positions are calculated on the basis of a global effective Hamiltonian (EH) with parameters values fitted against an exhaustive review of the ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ line positions available in the literature. Line intensities are calculated using the corresponding EH eigenfunctions and an effective dipole moment (EDM) with parameters fitted against experimental intensities, for each ΔP value. The assignment of the CRDS spectra of Ref. [16] relied on a previous version of the model predictions which were updated in the recent ASD on the basis off enlarged datasets including the positions and intensities reported in Ref. [16]. As a result, the predictive capabilities of the model in the region are improved. This is the reason why, in the present work, together with the analysis of newly recorded region, we reconsider the unassigned lines of Ref. [16] in the $5850-6340 \mathrm{~cm}^{-1}$ region.

2. Experimental details and line list construction

Fig. 1
CRDS spectrum of acetylene near $5770 \mathrm{~cm}^{-1}$ illustrating the richness of the spectrum and the spectral congestion. The sample pressure was 0.10 Torr. Four successive enlargements illustrate the high dynamics of the recordings giving access to absorption coefficients from $10^{-6} \mathrm{~cm}^{-1}$ to the noise level $\alpha_{\text {min }} \sim 8 \times 10^{-11} \mathrm{~cm}^{-1}$. The comparison to the HITRAN line list (blue dots) displayed on the three upper panels shows that the large amount of acetylene lines newly measured.

The reader is referred to Ref. [23] for a general description of the CRDS setups developed in our group. Fibered distributed feed-back (DFB) laser diodes are used as light source. Using a set of eight DFB laser diodes (from Eblana Photonics), the 5695-5900 cm^{-1} spectral interval has recently become accessible to our CRDS spectrometer. The setup was already used for a high sensitivity characterization of the spectra of water isotopically enriched in ${ }^{17} \mathrm{O}$ [24], $\mathrm{N}_{2} \mathrm{O}$ [25] and carbon dioxide in its $1.75 \mu \mathrm{~m}$ transparency window [26,27]. Each laser diode tuning ranges about $20 \mathrm{~cm}^{-1}$ by temperature tuning from $-5^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ allowing for the coverage of the $5692.95-5882.17 \mathrm{~cm}^{-1}$ range with only a few spectral gaps: 5715.8-5723.0, 5744.5-5747.9, 5809.0-5810.2 and 5851.7-5855.8 cm^{-1}.

The finesse of the cavity varied from 130,000 at $5850 \mathrm{~cm}^{-1}$ to 200,000 at $5700 \mathrm{~cm}^{-1}$ resulting in measured ring down (RD) times from $200 \mu \mathrm{~s}$ to $300 \mu \mathrm{~s}$, respectively. About 30 to 100 RD events were averaged per spectral point.

An acetylene sample free of acetone and in normal isotopic abundance was used to fill the cell at a pressure of 0.10 Torr. The cell temperature was measured with a temperature sensor (TSic 501, IST-AG, 0.1 K accuracy) fixed on the cell surface, covered by an external blanket of foam for thermal isolation. During the recordings reported here, the cell temperature varied between 293.4 and 295.1 K. The gas pressure was continuously measured by a capacitance gauge (MKS Baratron, 10 Torr, 0.25% accuracy of the reading).

During the spectrum recording, a wavemeter measured the wavenumber of the laser emission at each spectral step of typically $0.002 \mathrm{~cm}^{-1}$ giving a first frequency calibration of the spectrum. This calibration was then refined using accurate $\mathrm{C}_{2} \mathrm{H}_{2}$ line positions provided by the HITRAN2016 database [7]. This leads to an estimated uncertainty of $1 \times 10^{-3} \mathrm{~cm}^{-1}$ on the line center determination of unblended lines.

The minimum detectable absorption coefficient (evaluated as the rms of the base line fluctuation), $\alpha_{\text {min }}$, varies between $1 \times 10^{-10} \mathrm{~cm}^{-1}$ and $6 \times 10^{-11} \mathrm{~cm}^{-1}$ depending on the RD time. As a result, line intensities spanning more than three orders of magnitude (from 5×10^{-24} to $10^{-27} \mathrm{~cm} / \mathrm{molecule}$) could be retrieved from the measured spectra. The successive enlargements of the spectra presented in Fig. 1 illustrate the sensitivity and high dynamic range of the recordings and the noise level on the order of $\alpha_{\text {min }} \sim 8 \times 10^{-11} \mathrm{~cm}^{-1}$. In the investigated region, the acetylene spectrum is not particularly weak (strongest lines have intensity on the order of $10^{-23} \mathrm{~cm} /$ molecule). This is the reason why a pressure value of 0.1 Torr was sufficient to detect many new lines. In Fig. 1, the HITRAN line list superimposed to the recorded spectrum shows the large amount of newly detected transitions. The high spectral congestion (about 20 lines $/ \mathrm{cm}^{-1}$) made the rovibrational assignment particularly laborious.

A homemade multiline fitting computer code was used to derive the line positions and intensities. The line shape was modeled with the Voigt profile with Gaussian width calculated for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ Doppler broadening. The Doppler half width at half maximum of the line shape (HWHM) is about $0.007 \mathrm{~cm}^{-1}$ while the average pressure self-broadening of $0.14 \mathrm{~cm}^{-1} / \mathrm{atm}$ [7] leads to a negligible

Lorentzian contribution of about $2 \times 10^{-5} \mathrm{~cm}^{-1}$. The spectrum is very dense so the accuracy of the reported intensities depends on the weakness and overlapping of the considered lines. In the case of relatively strong isolated lines, we estimate to 5% the uncertainty on the line intensity. Overall, line centres and intensities were derived for a set of about 4000 lines. Using HITRAN2016 database a number of water lines was removed from the line list, leaving about 3800 lines to be assigned in the 5693-5882 cm^{-1} region.

3. Rovibrational assignments

An overview of the line lists at disposal is presented in Fig. 2. The $5693-6341 \mathrm{~cm}^{-1}$ displayed interval includes the region above $5851 \mathrm{~cm}^{-1}$ investigated in Ref. [16]. On the upper panel, the list of transitions above $5850 \mathrm{~cm}^{-1}$ as assigned in Ref. [16] is displayed together with the HITRAN line list. The middle panel shows the list of lines at disposal for new assignments. It consists in the list of lines retrieved from the new spectra in the $5693-5882 \mathrm{~cm}^{-1}$ region (about 4100 lines) complemented by about 3900 unassigned lines of Ref. [16], above $5882 \mathrm{~cm}^{-1}$ and in the $5851.7-5855.8 \mathrm{~cm}^{-1}$ interval which corresponds to a gap of the present recordings for which no new spectra were recorded The lower panel shows the list of lines assigned in the present study, thus a subset of the data presented in the middle panel.

Fig. 2.
Different line lists for acetylene in the $5695-6340 \mathrm{~cm}^{-1}$ region.
Upper panel: Acetylene transitions assigned in Ref. [16] above $5851 \mathrm{~cm}^{-1}$ (green open circles) and HITRAN2016 database (red dots),
Middle panel: Line list under analysis consisting of the list retrieved from new CRDS recordings below $5882 \mathrm{~cm}^{-1}$ (black open circles) and lines left unassigned in the analysis of Ref. [16] (grey open circles),
Lower panel: Subset of the middle panel limited to the lines assigned in this work (blue open circles).

As mentioned above, the ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ rovibrational assignment was performed on the basis of the predictions of the Tomsk effective Hamiltonian model developed in the frame of the effective operator approach [21]. This model considers all the resonance interactions between rovibrational levels up to the ninth order of perturbation theory. Effective rovibrational parameters were adjusted to reproduce more 30000 measured line positions collected from the literature up to $9900 \mathrm{~cm}^{-1}$, including those from Ref. [16]. All but five bands reported in this work correspond to $a \Delta P=9$ variation of the polyad quantum number. The five remaining bands, located above $6250 \mathrm{~cm}^{-1}$, correspond to $\Delta P=10$. The calculation of the line intensities requires a set of effective dipole moment (EDM) parameters for each ΔP value. The $\Delta P=9$ EDM parameters used in the construction of the line list of Ref. [22] relied on a few FTS measurements of the strongest bands [28] and on the large set of intensity values reported in Ref. [16]. The presence of a Q branch, the observation of the 1:3 intensity alternation from even to odd values of J and lower state combination difference (GSCD) relations were systematically used as additional criteria to confirm the assignments.

Fig. 3.
Comparison of the measured positions of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ with corresponding calculated values included in the Acetylene Spectroscopic Databank [22] in the 56980-6100 cm^{-1} region.

Overall, 2627 lines were assigned to fifty-three ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ bands, most of them being newly reported and located in the newly recorded region. The deviations between measured and ASD predicted line positions are plotted on Fig. 3 versus the wavenumber. As expected, the largest deviations (up to $0.1 \mathrm{~cm}^{-1}$) correspond to lines located in the newly recorded region, as the ASD list took into account the CRDS data of Ref. [16] above $5850 \mathrm{~cm}^{-1}$.

The assigned bands are listed in Table 1 in increasing order of the upper state energy. In the first column, we provide the $\left(v_{1} v_{2} v_{3} v_{4} v_{5} l_{4} l_{5} \varepsilon\right)$ normal mode labeling and symmetry type (e or f) relative to the Wang transformation. The vibrational labeling is obtained from the global effective Hamiltonian [21] and usually corresponds to the maximum fraction of the low J eigenfunctions in the normal mode basis. In order to avoid duplicate vibrational labeling, we chose one of the major contributors for the labeling of the states at 5893.26 and at $7787.32 \mathrm{~cm}^{-1}$. We also give the band name in the vibrational notation of Plíva adopted in the HITRAN database: $v_{1} v_{2} v_{3}\left(v_{4} v_{5}\right)^{\ell \pm} r$ with $l=\left|l_{4}+l_{5}\right|, l_{t}$ being the vibrational angular momentum quantum number associated with the degenerated bending mode t, \pm being the symmetry type for Σ vibrational states $(l=0)$, and r a roman numeral indicating the rank of the level, by decreasing energy value ($r=I$ for the highest energy level), inside the set of states having the same l value.

The assignment of the four vibrational bands provided by the HITRAN database in the 5693$5882 \mathrm{~cm}^{-1}$ region (see Table 1) was extended towards higher J rotational quantum number. In the $5850-6340 \mathrm{~cm}^{-1}$ region reported in Ref. [16], fifteen bands were identified among the set of unassigned lines and the analysis of nine bands was improved. For example, the P branches of the $v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{0}-$ $v_{5}{ }^{1}$ and $v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{2}-v_{5}{ }^{1}$ hot bands at 5836.12 and $5844.64 \mathrm{~cm}^{-1}$, located in the newly recorded region, could be assigned. The assignment of the $v_{1}+\left(3 v_{4}+v_{5}\right)^{0+}$ at $5865.56 \mathrm{~cm}^{-1}$ band was greatly extended, mainly in the P branch. The number of observed transitions in the $v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}{ }^{1}$ band at $5836.11 \mathrm{~cm}^{-1}$ was increased from 19 to 103 . The assignment of the transitions reaching f upper level of the $2 v_{2}+\left(v_{4}+3 v_{5}\right)^{0}-v_{4}{ }^{1}$ hot band given in Refs. [11,16] was corrected. Overall, forty bands are reported for the first time. Part of the upper vibrational states were already observed as upper levels of different bands located in other spectral regions but thirteen upper states, marked " N " in Table 1, are new. Additionally, transitions to f sublevels of the $v_{1} v_{2} v_{3} v_{4} v_{5} l_{4} l_{5}=02013-13,0201311$ and 1013030 vibrational states are observed for the first time from the $2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} I I-v_{4}{ }^{1}, 2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} I-v_{4}{ }^{1}$ and $v_{1}+v_{3}+3 v_{4}{ }^{3}-\left(v_{4}+2 v_{5}\right)^{3}$ bands, respectively, while transitions to their e sublevels were already reported in the literature from the bands $2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} \mathrm{II}, 2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} I$ [29] and $v_{1}+v_{3}+3 v_{4}{ }^{3}-2 v_{4}{ }^{2}$ [12]. The assigned bands include three "forbidden" bands with $\Delta K=2$ and four with $\Delta K=3$. ($K=l$ for linear molecules). As an illustration of the sensitivity of the CRDS recordings, let us mention (i) the unexpected detection of the $2 v_{2}+\left(3 v_{4}+v_{5}\right)^{4}-v_{4}{ }^{1}$ band reaching the "exotic" 0203131 upper state with $K=$ 4 and (ii) the detection of the $3 v_{3}-v_{1}$ hot band near $6267.02 \mathrm{~cm}^{-1}$ from the $v_{l}=1$ lower state at 3372.85 cm^{-1} with a relative population of only about 8×10^{-8}.

Finally, 248 transitions of eight bands of $\mathrm{H}^{12} \mathrm{C}^{13} \mathrm{CH}$ in natural abundance in our sample (2.2 \%) were identified. Their identification relied on the extensive study by Di Lonardo performed by FTS with 99% enrichment in $\mathrm{H}^{12} \mathrm{C}^{13} \mathrm{CH}$ and a 55.1 m pathlength [30] (the corresponding line positions can be found in Ref. [31]). No intensity information was reported in Refs. [30,31]. Although of limited
accuracy due to their weakness and frequent overlapping in our CRDS acetylene spectrum, the intensity of the $\mathrm{H}^{12} \mathrm{C}^{13} \mathrm{CH}$ bands are, to the best of our knowledge, the first ones reported in the region.

4. Band by band analysis.

4.1. Spectroscopic parameters

The rotational analysis was performed using the standard formula for the rovibrational energy levels of an isolated vibrational state:

$$
\begin{equation*}
T(v, J, e / f)=G_{e / f}+B_{e f f} J(J+1)-D_{e l f}[J(J+1)]^{2}+H_{e f f}[J(J+1)]^{3} \tag{1}
\end{equation*}
$$

Where $G_{e f f}$ is the vibrational term value and $B_{e f f}, D_{e f f}$, and $H_{e f f}$ are the rotational and distorsion constants of the e and f sub levels. The parameters of the lower vibrational levels were constrained to their fitted values of Refs. [16,32], except for the 0001212 and 1000000 levels. The spectroscopic constants of these two levels, included in Table 1, were determined from a fit of the line positions of the $\left(v_{4}+2 v_{5}\right)^{3}-\left(2 v_{4}+v_{5}\right)^{3}$ and $v_{1}-v_{5}{ }^{1}$ bands reported in Refs. [33,34]. As the e and f sub bands may be perturbed in a different way, different sets of spectroscopic parameters were fitted for the e and f levels. When a given sublevel was observed through transitions from different lower levels, its spectroscopic parameters were obtained from a simultaneous fit of the line positions of the different sub-bands. The retrieved constants of the lower and upper states are listed in Table 1. The results of the fit are provided for each band in the Supplementary Material I. The bands of Ref. [16] which were updated or extended in the present work are indicated by "Luy14".

Some of the studied bands were found to be affected by perturbations (they are marked with "P" in Table 1). In the cases where the perturbation does not allow reproducing the rotational structure using Eq. (1), the levels with high rotational quantum number were excluded from the fit. After exclusion of the lines with poorly determined centers or affected by perturbation, the average rms values of the (meas.-fit) differences are on the order of $1.5 \times 10^{-3} \mathrm{~cm}^{-1}$ which is close to our claimed accuracy on the measured line positions. The distortion constants of the perturbed bands are usually anomalously large or negative. Two examples of the results of the fit of perturbed bands leading to effective parameters values are presented in Fig. 4.

Fig. 4.
Examples of perturbed bands. The data represent the differences between the measured line positions and their values calculated using retrieved spectroscopic constants. The blue squares and red triangles correspond to the P branch and R branch, respectively.

5. Line intensities.

Let us consider an absorption line corresponding to the $V^{\prime} J^{\prime} \mathcal{E}^{\prime} \leftarrow V J \mathcal{E}$ transition in a linear molecule (V and J are the vibrational index and the angular momentum quantum number, respectively, and $\varepsilon= \pm$ is the parity). The intensity of the considered transition, $S_{V^{\prime} J^{\prime} \varepsilon^{\prime} \leftarrow V J \varepsilon}$ (in $\mathrm{cm} /$ molecule), at a temperature T (in K) is related to the transition dipole moment squared $|R|^{2}$:

$$
S_{V^{\prime} J^{\prime} \varepsilon^{\prime} \leftarrow V J \varepsilon}(T)=\frac{8 \pi^{3}}{3 h c} C g_{V J \varepsilon} \frac{V_{V^{\prime} J^{\prime} \varepsilon^{\prime} \leftarrow V J \varepsilon}}{Q(T)} \exp \left(-\frac{h c E_{V J \varepsilon}}{k T}\right)\left[1-\exp \left(-\frac{h c V_{V^{\prime} J^{\prime} \varepsilon^{\prime} \leftarrow V J \varepsilon}}{k T}\right)\right] L(J, K)|R|^{2}(2)
$$

where $E_{V J \varepsilon}$ is the lower state energy and $v_{V^{\prime} J^{\prime} \varepsilon^{\prime} \leftarrow V J \varepsilon}$ is the transition wavenumber, $Q(T)$ is the total internal partition function at temperature T, C is the isotopic abundance, and $g_{V J \varepsilon}$ is the nuclear statistical weight of the lower state and $L(J, K)$ is Hönl-London factor. The values of the total internal partition function of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ and ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$ were deduced from the data tabulated in Ref. [35]. The ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ and ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$ natural isotopic abundances were fixed to their HITRAN values (0.9776 and 0.02197 , respectively).

The expression of the Hönl-London factors for parallel ($\Delta K=0$), perpendicular ($\Delta K= \pm 1$) and $\Delta K= \pm 2$ forbidden bands can be found in Ref. [11], and in Ref. [36] for $\Delta K= \pm 3$. To reduce the data, effective parameters can be deduced expanding $|R|^{2}$ empirically to take account for the rotational dependence:

$$
\begin{align*}
& |R|^{2}=\left|R_{0}\right|^{2}\left(1+A_{I}{ }^{R P} m+A_{2}{ }^{R P} m^{2}\right)^{2}(P \text { - and } R \text {-branches }), \tag{3}\\
& |R|^{2}=\left|R_{0}\right|^{2}\left(1+A_{2}{ }^{Q} m^{2}\right)^{2}(Q \text {-branch }), \tag{4}
\end{align*}
$$

m being equal to $-J$ in the P-branch, $J+1$ in the R-branch, and J in the Q-branch. $\left|R_{0}\right|^{2}$ is the vibrational transition dipole moment squared, and $A_{1}{ }^{R P}, A_{2}{ }^{R P}$, and $A_{2}{ }^{Q}$ are the Herman-Wallis coefficients. Note that we use the squared form of the terms between parentheses in Eqs. $(3,4)$ accordingly to our previous publication [11].

Vibrational transition dipole moments squared and Herman-Wallis coefficients obtained from an unweighted fit of the experimental intensity values are reported in Table 2. The calculated line intensities and the relative differences from their measured values are included in Supplementary Material I, for every band. As a result of the frequent line overlapping and of the weakness of many bands, a significant number of line intensities are not sufficiently accurate and were excluded from the fit. The transitions ignored in the intensity fit are marked with "i" in the Supplementary Material. Very often, different sublevels of a given band could not be fitted with the same set of empirical parameters. Assuming that it is due to different perturbation mechanisms, we provide in these cases different sets of empirical parameters for each-sub band. The root mean square deviation of the intensity fit given by the fitting procedure is included in Table 2. In many cases, in view of the number of intensity values which were excluded, it seems that the obtained $r m s$ values overestimate the quality of the fits and we give in the last column of Table 2 our own estimation of the relative error bars of the intensities
calculated with the obtained set of parameters. Some weak bands show a very irregular rotational intensity distribution. Although poorly reproduced by the fit, these bands are kept in Table 2 (with a 50%) error bar) because the knowledge of the order of magnitude of the band strength is a valuable information.

Fig. 5.

Four examples of the line intensity fits of the different sub-bands of hot bands (see details in the text). Black squares and blue circles correspond to $|R|^{2}$ values of the $e-e$ and $f-f$ transitions, respectively, while red triangles and green stars correspond to the $e-f$ and $f-e$ transitions in the Q branche. (m stands for $-J, J, J+1$ for P, Q, R branches, respectively).

In Fig. 5 are presented four interesting examples of the rotational dependence of the transition dipole moment squared. One can see that different parameters had to be used for describing the rotational dependence of the different Q-branches of the $v_{1}+v_{2}+2 v_{4}{ }^{2}-v_{5}{ }^{1}$ band. The $v_{2}+v_{3}+2 v_{4}{ }^{0}-v_{4}{ }^{1}$ hot band shows an unusual rotational dependence of the transition dipole moment squared in the R branch. The vibrational transition dipole moments squared of the different sub bands of the $v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{0}-v_{5}{ }^{1}$ band are very different. Finally, the $e-e, f-f$, $e-f$ and $f-e$ sub bands of the $v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}{ }^{1}$ band have different set of parameters.

6. Recommended empirical line list

On the basis of the empirical parameters obtained, a recommended acetylene line list was generated for each band listed in Table 2 for the reference temperature of 296 K , following the same method as adopted in Ref. [11]. For each branch of a given band, the line list was calculated for all the transitions up to a maximum J value exceeding by 1 the largest J value of the observations. Line positions were computed using the spectroscopic constants of Table 1 and line intensities were
obtained from $\left|R_{0}\right|^{2}$ and Herman-Wallis factors collected in Table 2. This approach allows completing the experimental observations by interpolation between measured lines and slightly extends beyond the observations. This is especially important in the case of weak bands, where a significant number of lines are obscured by strong ones. These advantages are illustrated in Fig. 6 by the example the $\mathrm{v}_{2}+\left(3 \mathrm{v}_{4}+3 \mathrm{v}_{5}\right)^{0+}$ I band at $5921.92 \mathrm{~cm}^{-1}$.

Fig. 6.
Comparison of the measurements (circles) to the obtained recommended empirical line list (triangles) for the band $v_{2}+\left(3 v_{4}+3 v_{5}\right)^{0+} I$ at $5921.92 \mathrm{~cm}^{-1}$.

As discussed in Ref. [11], a number of bands are perturbed and cannot be reproduced using an isolated band model. Additionally, there are cases of local perturbation around some J value due to a crossing with energy levels of a perturber state. In such cases, and also in the cases where calculated intensity values were anomalously large we kept in the recommended line list the measured intensity values, marked them with an "e" label. Moreover, we did not perform any interpolation or extrapolation around such lines and, consequently, some J values may be missing in the rotational structure. The set of recommended line lists is provided as Supplementary Material 2. The recommended line list contains 3975 lines of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ and 496 lines of ${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{2}$. The number of lines is given for every band in fifth column of Table 2. Note that the line list recommended in this work contains some bands already included in the recommended line list of Ref. [11] above $5850 \mathrm{~cm}^{-1}$. These bands are noted in Table 1 and should be removed from the list of Ref. [11] when the two recommended lists are merged. The direct comparison of the CRDS spectrum to the recommended lists displayed in Fig. 7 shows that the lines left unassigned are generally weak (see also lower panel of Fig. 2).

Fig. 7.
Comparison of the CRDS spectrum of acteylene to the recommended list obtained in this work (upper panel) and to acetylene sepctroscopic databank (ASD) of Ref. [22]. (lower panel).

5. Discussion and concluding remarks

In the region of the newly recorded spectra below $5882 \mathrm{~cm}^{-1}$, the HITRAN2016 line list [7] provides spectroscopic information only for the four strongest bands: two $\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$cold bands $\left(2 \nu_{2}+\left(2 v_{4}+v_{5}\right)^{1} I I\right.$ and $\nu_{2}+\nu_{3}+\nu_{4}{ }^{1}$ at 5816.86 and $5850.65 \mathrm{~cm}^{-1}$, respectively) and two $\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{u}$ hot bands $\left(2 v_{3}-v_{5}{ }^{1}, v_{1}+v_{2}+2 v_{4}{ }^{0}-v_{5}{ }^{1}\right.$ at 5773.18 and $5784.84 \mathrm{~cm}^{-1}$, respectively). Their line positions were calculated values in [37], using a polynomial expansion (Eq. (1)) with spectroscopic constants fitted against FTS position values from Refs. [9,28]. Line intensities provided by the HITRAN database were calculated in [37] using $\left|R_{0}\right|^{2}$ and Herman-Wallis coefficients derived from a fit of the FTS line intensities reported in Ref. [28]. The comparison of the HITRAN positions and intensities to those of our recommended line list is presented in Fig. 8. The intensity ratios show for each branch a break of the slope for a high J value. These breaks correspond to the highest J value of the measured intensities used in Ref. [37]. Jacquemart et al. extrapolated the intensities beyond $J_{\max }$ by fixing $|R|^{2}$ to the value corresponding to $J_{\max }$ which led to the observed breaks of slopes. Excluding HITRAN extrapolated
values, a systematic deviation on the order of 5-8 \% is noted between our intensity values and those provided by the HITRAN database.

Fig. 8.
Comparison of the positions and intensities of the lines provided by the HITRAN2016 database for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ to those recommended in pour list. The break of slopes observed for the intensity ratios is due to the HITRAN values (see Text).

As line positions are concerned, large deviations (more than $0.01 \mathrm{~cm}^{-1}$) are observed in the range of HITRAN high J extrapolations. Our spectroscopic constants rely on a set of line positions significantly more extended than the FTS dataset used in Ref. [37]. As an example, in the case of the $\mathrm{v}_{1}+\mathrm{v}_{2}+2 \mathrm{v}_{4}{ }^{0}-\mathrm{v}_{5}{ }^{1}$ band at $5784.84 \mathrm{~cm}^{-1}$, the highest rotational line positions considered in Ref. [37] correspond to $P(20), Q(21)$ and $R(16)$ while the sensitivity of our recordings allowed for the measurement of the transitions up to $P(32), Q(29)$ and $R(28)$. The range of the HITRAN extrapolations beyond the FTS measurements is relatively large (up to $P(25), Q(25)$ and $R(15)$ in the above example) and thus somewhat hazardous. The uncertainty attached to the HITRAN positions has been increased from 0.001 to $0.01 \mathrm{~cm}^{-1}$ in the case of the extrapolated values. Some deviations exceeding this error bar are nevertheless observed.

In summary, the high-resolution CRDS absorption spectrum of acetylene has been recorded with unprecedented sensitivity and analyzed in the $5693-5882 \mathrm{~cm}^{-1}$ region. The predictions of the global model developed at IAO-Tomsk [21,22] have allowed assigning many new bands and extend assignment already known bands in this region and in the region $5850-6340 \mathrm{~cm}^{-1}$ analyzed several
years ago. Overall, $2627{ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ lines were assigned to fifty-three bands, most of them being newly reported. Using new or improved upper state parameters and vibrational transition moment squared and Herman-Wallis parameters, recommended line lists of acetylene were generated for each band by interpolation and limited extrapolation beyond the observations. We have included in Fig. 7 a typical example of comparison of the measured acetylene spectrum to the line lists provided in the Acetylene Spectroscopic Databank [22]. The displayed region near $5840 \mathrm{~cm}^{-1}$ is located just below the range of our previous CRDS study above $5851 \mathrm{~cm}^{-1}$ [16] which were taken into account to derive the set of effective parameters used to generate the ASD. Significant deviations are noted in particular concerning line intensities (see Fig. 3 for the line position comparison). Although providing a considerable higher number of lines (for instance 150 lines with intensity larger than 10^{-28} $\mathrm{cm} /$ molecule, to be compared to 26 in our list), the ASD relying on a global modeling approach of the ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ spectrum does not reach the accuracy of our empirical line list based on the usual band-by-band analysis. Nevertheless, as demonstrated in this work, the assignment of the present CRDS spectrum would not have been achieved without the high quality predictions of the ASD. In addition, the global approach has the advantage to be more complete, in particular for applications at high temperature. The large amount of new data obtained in this work will be valuable to further refine the EH and EDM effective parameters used to generate the ASD. Let us hope that future versions of the ASD will help to reduce the important number of lines remaining unassigned in our CRDS spectra.

Acknowledgements

The supports of the CNRS (France) and RFBR (N16-55-16017) in the frame of Laboratoire International Associé SAMIA are acknowledged. O.L thanks Université Grenoble Alpes for a twomonths support at LIPhy Grenoble. This work was performed in the frame of the LabexOSUG@2020 (ANR10 LABX56) and of the ANR project e_PYTHEAS (ANR-16-CE31-0005).

References

1. Kellman ME and Tyng V. The dance of molecules: New dynamical perspectives on highly excited molecular vibrations," Acc. Chem. Res. 40, 243-250 (2007).
2. Herman M, Liévin J, Vander Auwera J, Campargue C. Global and accurate vibration hamiltonians from high-resolution molecular spectroscopy. Adv Chem Phys 1999;108:1-431. Wiley, New York.
3. Herman M, Campargue C, El Idrissi MI, Vander Auwera J. Vibrational spectroscopic database on acetylene, $\widetilde{X} \Sigma_{g}^{+}\left({ }^{12} \mathrm{C}_{2} \mathrm{H}_{2},{ }^{12} \mathrm{C}_{2} \mathrm{D}_{2}\right.$ and $\left.{ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}\right)$ J Phys Chem Ref Data 2003;32:921-1361.
4. Fayt A, Robert S, Di Lonardo G, Fusina L, Tamassia F, Herman M. Vibration-rotation energy pattern in acetylene: ${ }^{12} \mathrm{CH}^{12} \mathrm{CH}$ up to $6750 \mathrm{~cm}^{-1}$ J Chem Phys 2007;126:114303/1-8..
5. Campargue A; Temsamani MA; Herman M. The absorption spectrum of $\mathrm{C}_{2} \mathrm{H}_{2}$ between 12800 and $18000 \mathrm{~cm}^{-1}$: I. Vibrational assignments. Molecular Physics 1997;90:793-805.
6. Yang SF; Biennier L; Campargue A; et al. The absorption spectrum of $\mathrm{C}_{2} \mathrm{H}_{2}$ between 12800 and $18000 \mathrm{~cm}^{-1}$: II. Rotational analysis Molecular Physics 1997;90:807-16.
7. Gordon IE, Rothman LS, Hill C, Kochanov RV, Tan Y, Bernath PF, et al. The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 2017;203:3-69. https://doi.org/10.1016/j.jqsrt.2017.06.038
8. Zhan X, Vaittinen O, Halonen L. High-Resolution Photoacoustic Study of Acetylene Between 11500 and $11900 \mathrm{~cm}^{-1}$ Using a Titanium:Sapphire Ring Laser J. Molec Spectrosc 1993;160,172-180.
9. Keppler KA, Mellau G, Klee S, Winnewisser BP, Winnewisser M, Pliva J, et al. Precision measurements of acetylene spectra at $1.4-1.7 \mu \mathrm{~m}$ recorded with $352.5-\mathrm{m}$ pathlength. J Mol Spectrosc 1996;175:411-20.
10. Robert S, Herman M, Fayt A, Campargue A, Kassi S, Liu A, et al. Acetylene, ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$: new CRDS data and global vibration-rotation analysis up to $8600 \mathrm{~cm}^{-1}$. Mol Phys 2008;106:2581605.
11. Lyulin OM, Campargue A. An empirical spectroscopic database for acetylene in the regions of $5850-6341 \mathrm{~cm}^{-1}$ and 7000-9415 cm^{-1}. J Quant Spectrosc Radiat Transf 2017;203:461-471. 10.1016/j.jqsrt.2017.01.036
12. Lyulin OM, Vander Auwera J, Campargue A. The Fourier transform absorption spectrum of acetylene between 7000 and $7500 \mathrm{~cm}^{-1}$. J Quant Spectrosc Radiat Transf 2015;160:85-93.
13. Lyulin OM, Vander Auwera J, Campargue A, The Fourier transform absorption spectrum of acetylene between 8280 and $8700 \mathrm{~cm}^{-1}$. J Quant Spectrosc Radiat Transf 2016;177:234-240 http://dx.doi.org/10.1016/j.jqsrt.2015.11.026
14. Béguier S, Lyulin OM, Hu SM, Campargue A. Line intensity measurements for acetylene between 8980 and $9420 \mathrm{~cm}^{-1} \mathrm{~J}$ Quant Spectrosc Radiat Transf 2017;189:417-420. 10.1016/j.jqsrt.2016.12.020
15. Lyulin OM, Campargue A, Mondelain D, Kassi S. The absorption spectrum of acetylene by CRDS between 7244 and $7918 \mathrm{~cm}^{-1}$ J Quant Spectrosc Radiat Transf 2013;130:327-43.
16. Lyulin OM, Mondelain D, Béguier S, Kassi S, Vander Auwera J, Campargue A. High sensitivity absorption spectroscopy of acetylene by CRDS between 5851 and $6341 \mathrm{~cm}^{-1}$. Mol Phys 2014;112:2433-44.
17. Kassi S, Lyulin OM, Béguier S, Campargue A. New assignments and a rare peculiarity in the high sensitivity CRDS spectrum of acetylene near $8000 \mathrm{~cm}^{-1}$. J Mol Spectrosc 2016;326:106114.
18. Jacquinet-Husson N, Armante R, Crépeau N, Chédin A, Scott NA, Boutammine C, et al. The 2015 edition of the GEISA spectroscopic database. J Mol Spectrosc 2016;327:31-72. doi:10.1016/j.jms.2016.06.007
19. Lyulin OM, Béguier S , Hu SM, Campargue A, The absorption spectrum of acetylene near $1 \mu \mathrm{~m}$ (9280-10740 cm^{-1}) (I): Line positions. J Quant SpectroscRadiatTransf 2018;208:179-187 DOI: 10.1016/j.jqsrt.2018.01.007
20. Lyulin OM, Campargue A. The absorption spectrum of acetylene near $1 \mu \mathrm{~m}\left(9280-10740 \mathrm{~cm}^{-1}\right)$ (II): Line intensities. J Quant Spectrosc Radiat Transf 2018;215:51-58. DOI:
10.1016/j.jqsrt.2018.04.025
21. Lyulin OM, Perevalov VI. Global modelling of vibration-rotation spectra of acetylene molecule. J Quant Spectrosc Radiat Transf 2016;177:59-74.
22. Lyulin OM, Perevalov VI. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank. J Quant Spectrosc Radiat Transf 2017;201:94-103.
23. Kassi S, Campargue A. Cavity ring down spectroscopy with $5 \times 10^{-13} \mathrm{~cm}^{-1}$ sensitivity. J Chem Phys 2012;137:234201. doi: 10.1063/1.4769974
24. Mikhailenko SN, Mondelain D, Karlovets EV, Kassi S, Campargue A. Cavity Ring Down Spectroscopy of ${ }^{17} \mathrm{O}$ enriched water vapor near $1.73 \mu \mathrm{~m}$. J Quant Spectrosc Radiat Transf 2019; 222-223:229-235.10.1016/j.jqst.2018.10.027
25. Bertin T, Mondelain D, Karlovets EV, Kassi S, Perevalov VI, Camargue A. High sensitivity cavity ring down spectroscopy of $\mathrm{N}_{2} \mathrm{O}$ near $1.74 \mu \mathrm{~m}$. J Quant Spectrosc Radiat Transf 2019 in press10.1016/j.jqsrt.2019.02.011
26. Čermák P, Karlovets EV, Mondelain D, Kassi S, Perevalov VI, Campargue A. High sensitivity CRDS of CO_{2} in $1.74 \mu \mathrm{~m}$ transparency window. A validation test for the spectroscopic databases. J Quant Spectrosc Radiat Transf 2018;207:95-103.
27. Karlovets EV, Čermák P, Mondelain D, Kassi S, Campargue A, Tashkun SA, Perevalov VI. Analysis and theoretical modelling of the ${ }^{18} \mathrm{O}$ enriched carbon dioxide spectrum by CRDS near $1.74 \mu \mathrm{~m}$. J Quant Spectrosc Radiat Transf 2018;217:73-85.
28. Lyulin OM, Jacquemart D, Lacome N, Perevalov VI, Mandin JY. Line parameters of acetylene in the 1.9 and $1.7 \mu \mathrm{~m}$ spectral regions J Quant Spectrosc Radiat Transfer 2008;109:1856-74.
29. Amyay B, Herman M, Fayt A, Campargue A, Kassi S. Acetylene, ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$: refined analysis of CRDS spectra around $1.52 \mu \mathrm{~m}$. J Mol Spectrosc 2011;267:80-91.
30. Di Lonardo G, Fusina L, Tamassia F, Fayt A, Robert S, Vander Auwera J, et al. The FT absorption spectrum of ${ }^{13} \mathrm{CH}^{12} \mathrm{CH}$ (II): rotational analysis in the range 9500 to $10000 \mathrm{~cm}^{-1}$. Mol Phys 2006; 104:2617-2625.
31. Robert S. PhD thesis Université Libre de Bruxelles (2009).
32. Di Lonardo G, Baldan A, Bramati G, Fusina L. The infrared spectrum of ${ }^{12} \mathrm{C}^{13} \mathrm{CH}_{2}$: the bending states up to $\mathrm{v}_{4}+\mathrm{v}_{5}=4$. J Mol Spectrosc 2002;213:57-63.
33. Jacquemart D, Lacome N, Mandin JY, Dana V, Lyulin OM, Perevalov VI. Multispectrum fitting of line parameters for ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ in the $3.8-\mu \mathrm{m}$ spectral region. J Quant Spectrosc Radiat Transf 2007;103:478-95.
34. Amyay B, Herman M, Fayt A, Fusina L, Predoi-Cross A. High resolution FTIR investigation of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ in the FIR spectral range using synchrotron radiation. Chem. Phys. Lett. 2010;491:17-19.
35. Fischer J, Gamache RR, Goldman A, Rothman LS, Perrin A. Total internal partition sums for molecular species in the 2000 edition of the HITRAN database. J Quant Spectrosc Radiat Transfer 2003;82:401-12.
36. Perevalov VI, Lukashevskaya AA. Parameterization of the Effective Dipole Moment Matrix Elements in the Case of the Asymmetric Top Molecules. Application to NO_{2} Molecule. Atmospheric and Oceanic Optics 2015;28:17-23.
37. Jacquemart D, Lacome N, Mandin J-Y, Dana V, Tran H, Gueye FK, Lyulin OM, Perevalov VI, Régalia-Jarlot L . The IR spectrum of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$: Line intensity measurements in the $1.4 \mu \mathrm{~m}$ region and update of the databases. J Quant Spectrosc Radiat Transf 2009;110:717-732. http://dx.doi.org/10.1016/j.jqsrt.2008.10.002

Table 1. Spectroscopic parameters (in cm^{-1}) of the rovibrational bands of ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$ assigned in the $C W$-CRDSspectra of acetylene between 5693 and $6341 \mathrm{~cm}^{-1}$. The bands are listed according to the increasing values of the upper state energy levels.

${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}$											
Lower levels											
$v_{1} v_{2} v_{3} v_{4} v_{5} l_{4} l_{5} \varepsilon^{a}$	G_{c}	$B_{\text {elf }}$	$D_{\text {eff }} \times 10^{6}$	$H_{e l f} \times 10^{10}$	$n_{f i t} / N_{t o t}{ }^{b}$	Bands ${ }^{\text {c }}$	Band type	$\Delta G_{c}{ }^{\text {d }}$	observed lines ${ }^{e}$	$r m s f$	Notes ${ }^{\text {g }}$
0000000	0.0	1.1766462	1.6270	0.016							
0001010e	611.693759	1.17532307	1.6405	0.0177							
0001010f	611.693755	1.18055377	1.67973	0.0187							
0000101e	729.15410	1.1764413	1.6326	0.017							
0000101f	729.15410	1.1811398	1.6714	0.018							
0002020f	1228.7997	1.179109	1.692								
0002020 e	1228.8011	1.17908	19.0	245							
0002000	1230.3894	1.17937	-15.8	-246							
000111-1e	1328.0722	1.180508	3.595	2.76							
000111-1f	1340.5507	1.1800836	1.715								
0001111 f	1342.8023	1.179838	1.647								
0001111 e	1342.8034	1.179804	-0.226	-2.78							
0000200	1449.1107	1.181234	4.415	6.52							
0000202f	1458.2936	1.180757	1.669								
0000202e	1458.2944	1.180714	-1.052	-6.43							
0003030e	1851.3699	1.180358	10.15								
0003030f	1851.3749	1.18006	6.33	39							
0003010 f	1854.5970	1.18583	-3.8	-61							
0003010 e	1854.5978	1.17533	-6.2								
0002121f	1961.9321	1.180731	-1.03	-5.15							
0002121 e	1961.9332	1.18069	-1.31	-10							
0000301 f	2169.1559	1.188211	2.782	-1.89							
0000301 e	2169.1575	1.178631	2.55	1.65							
0001212 e	2074.1790(4)	1.181561(3)	1.056(4)		48/48	$\left(v_{4}+2 \nu_{5}\right)^{3}-\left(2 v_{4}+v_{5}\right)^{3}$	$\Phi_{\mathrm{g}}-\Phi_{\mathrm{u}}$	731.372(1)	P21/Q11/R27	0.6	Amy10
0001212f	2074.1807(5)	$1.181533(7)$	0.95(2)	1.7(2)	42/42	$\left(v_{4}+2 v_{5}\right)^{3-}\left(2 v_{4}+v_{5}\right)^{3}$	$\Phi_{\mathrm{g}}-\Phi_{\mathrm{u}}$	731.3803(8)	P17/Q10/R29	0.4	Amy10
1000000 e	3372.8472(5)	1.169804(5)	1.62(1)		55/55	$\mathrm{v}_{1}-\mathrm{v}_{5}{ }^{1}$	$\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{\mathrm{u}}$	2643.6931(5)	P24/Q24/R22	0.07	Jacq07
Upper levels											
$\boldsymbol{P}=9$											
N 0014020 e	5719.758(4)	1.1769(1)	40(2)	733(45)	10/14	$v_{3}+4 v_{4}{ }^{2}$	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5719.758(4)	P11/R17	3.0	
0014000 e	5721.792(1)	1.17819(6)	-46.1(7)	-848(18)	17/33	$v_{3}+4 v_{4}{ }^{0}$	$\Sigma_{\mathrm{u}}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	5721.792(1)	P12/R25	1.6	
02021 2-1f	5816.8621(5)	$1.172502(3)$	2.723(4)		29/29	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{1}$ II	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5816.8621(5)	Q29	0.5	HITRAN, Kep96
02021 2-1e	5816.8629(4)	$1.165053(2)$	$2.576(3)$	1.10(1)	66/71	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{1}$ II	$\Pi_{u}-\Sigma_{\text {g }}{ }^{+}$	5816.8629(4)	P41/R43	0.9	HITRAN, Kep96
N 0202101 e	5840.5093(4)	$1.170042(3)$	2.988(2)		28/38	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{1} \mathrm{I}$	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5840.5093(4)	P33/R35	1.2	
N 0202101 f	5840.5143(8)	$1.166782(7)$	2.50(1)		14/19	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{1} \mathrm{I}$	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5840.5143(8)	Q25	1.8	

	0202121 e	5842.634(2)	1.16820(1)	0.38(2)		14/18	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{3}$	$\Phi_{\mathrm{u}}-\Sigma_{\mathrm{g}}{ }^{+}$	5842.634(2)	P20/R25	1.5	P	
	020212 1f	5842.658(1)	1.16802(2)	0.30(5)		11/15	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{3}$	$\Phi_{\mathrm{u}-\Sigma_{\mathrm{g}}{ }^{+}}$	5842.658(1)	Q25	0.8		
	0111010 e	5850.6471(6)	1.163361(7)	1.73(2)	8.0(1)	47/58	$v_{2}+v_{3}+v_{4}{ }^{1}$	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5850.6471(6)	P34/R26	1.6		HITRAN, Kep96
	011101 of	5850.6496(7)	1.169250(6)	1.25(1)	1.19(5)	38/38	$v_{2}+v_{3}+v_{4}{ }^{1}$	$\Pi_{u}-\Sigma_{\mathrm{g}}{ }^{+}$	5850.6496(7)	Q38	0.9		HITRAN, Kep96
	10031 1-1e	5865.5601(6)	1.17874(1)	19.57(9)	132(1)	38/52	$v_{1}+\left(3 v_{4}+v_{5}\right)^{0+}$	$\Sigma^{+}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	5865.5601(6)	P31/R31	1.2	P	Lyu14, Amy11
	01033 1-1e	5893.2617(9)	1.18008(3)	22.1(2)	199(4)	18/28	$\mathrm{v}_{2}+\left(3 \mathrm{v}_{4}+3 \mathrm{v}_{5}\right)^{0+} \mathrm{II}$	$\Sigma_{\text {u }}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	5893.2617(9)	P21/R19	1.6	P	Lyu14
	01033 3-3e	5921.9203(7)	1.17960(1)	3.25(8)	15(1)	34/35	$\mathrm{v}_{2}+\left(3 v_{4}+3 \mathrm{v}_{5}\right)^{0+} \mathrm{I}$	$\Sigma_{\text {u }}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	5921.9203(7)	P21/R20	1.0		
N	0012200 e	5943.5447(6)	1.178804(5)	1.984(6)		32/35	$v_{3}+\left(2 v_{4}+2 v_{5}\right)^{0} \mathrm{I}$	$\Sigma_{\mathrm{u}}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	5943.5447(6)	P23/R34	1.0		
N	10013 1 1f	6090.361(2)	1.17868(1)	2.79(2)		9/9	$\mathrm{v}_{1}+\left(\mathrm{v}_{4}+3 \mathrm{v}_{5}\right)^{2} \mathrm{II}$	$\Delta_{\mathrm{u}}{ }^{-} \Sigma_{\mathrm{g}}{ }^{+}$	6090.361(2)	Q25	1.0		
N	1001311 e	6090.375(2)	1.17847(2)	-5.81(8)	-33.2(7)	17/20	$v_{1}+\left(v_{4}+3 v_{5}\right)^{2} \mathrm{II}$	$\Delta_{u^{-}} \sum_{\mathrm{g}}{ }^{+}$	6090.375(2)	P26/R24	1.7	P	
$\boldsymbol{P}=10$													
N	02031 3-1f	6409.5157(3)	1.169844(2)	2.427(2)		58/62	$2 \mathrm{v}_{2}+\left(3 \mathrm{v}_{4}+\mathrm{v}_{5}\right)^{2} \mathrm{II}-\mathrm{v}_{4}{ }^{1}$	$\Pi_{u}-\Pi_{g}$	5797.8219(3)	P27/Q33/R27	1.3		
N	020313 -1e	6409.5169(7)	1.16984(1)	13.61(8)	79(1)	43/57	$2 v_{2}+\left(3 v_{4}+v_{5}\right)^{2}$ II $-v_{4}{ }^{1}$	$\Pi_{u}-\Pi_{g}$	5797.8231(7)	P31/Q20/R23	1.5	P	
	02031 1-1e	6413.8975(5)	1.17005(1)	-8.92(9)	-81(1)	45/47	$2 v_{2}+\left(3 v_{4}+v_{5}\right)^{0+}-v_{4}^{1}$	$\Sigma_{\mathrm{u}}{ }^{+}-\Pi_{\mathrm{g}}$	5802.2037(5)	P21/Q20/R19	1.1		
N	0203131 e	6443.845(6)	1.1735(1)	27.4(8)	395(14)	6/7	$2 v_{2}+\left(3 v_{4}+v_{5}\right)^{4}-v_{4}{ }^{1}$	$\Gamma_{u}-\Pi_{g}$	5832.151(6)	Q11/R16	0.3		
N	020313 1f	6444.164(3)	1.16754(8)	-4.9(6)	-90(11)	15/19	$2 v_{2}+\left(3 v_{4}+v_{5}\right)^{4}-v_{4}{ }^{1}$	$\Gamma_{u}-\Pi_{g}$	5832.470(3)	P17/Q16/R15	1.6		
	011202 of	6447.8094(6)	1.16777(2)	-1.7(1)		28/45	$v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}^{1}$	$\Delta_{u}-\Pi_{g}$	5836.1156(6)	P23/Q20/R19	1.2	P	Lyu14, Kep96
	0112020 e	6447.8097(8)	1.16785(4)	27.1(6)	542(21)	28/58	$v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}{ }^{1}$	$\Delta_{u}-\Pi_{\mathrm{g}}$	5836.1159(8)	P24/Q30/R25	1.0	P	Lyu14, Kep96
	0112000 e	6449.1056(9)	$1.16788(4)$	-23.0(3)	-370(9)	31/39	$v_{2}+v_{3}+2 \nu_{4}{ }^{0}-v_{4}{ }^{1}$	$\Sigma_{u}{ }^{+}-\Pi_{g}$	5837.4118(9)	P17/Q16/R14	1.4		
	0020000 e	6502.3368(5)	1.166130(4)	$3.313(8)$	3.46(4)	89/91	$2 v_{3}-v_{5}{ }^{1}$	$\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{\mathrm{u}}$	5773.1827(5)	P29/Q37/R32	1.5		HITRAN, Kep96
N	110202 0f	6510.2596(9)	$1.16660(1)$	1.81(2)		11/11	$v_{1}+v_{2}+2 v_{4}{ }^{2}-v_{5}{ }^{1}$	$\Delta_{\mathrm{g}}-\Pi_{\mathrm{u}}$	5781.1055(9)	Q22	1.2		
N	1102020 e	6510.2626(5)	1.166620 (7)	5.60(2)	17.2(2)	63/76	$v_{1}+v_{2}+2 v_{4}{ }^{2}-v_{5}{ }^{1}$	$\Delta_{\mathrm{g}}-\Pi_{\mathrm{u}}$	5781.1085(5)	P32/Q31/R31	1.5		
	1102000 e	6513.9918(4)	1.166582(5)	-3.20(2)	-20.0(1)	71/83	$v_{1}+v_{2}+2 v_{4}{ }^{0}-v_{5}{ }^{1}$	$\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{\mathrm{u}}$	5784.8377(4)	P32/Q29/R28	0.9	P	HITRAN, Kep96
N	02022 2-2f	6533.0231(4)	1.170879(4)	2.689(8)		32/45	$2 v_{2}+\left(2 v_{4}+2 v_{5}\right)^{0}$-II $-v_{5}{ }^{1}$	$\Sigma_{\mathrm{g}^{-}}-\Pi_{\mathrm{u}}$	5803.8690(4)	P20/Q25/R19	1.3		
N	0202200 e	6560.7067(5)	$1.170214(6)$	0.82(2)	-46.0(1)	53/64	$2 v_{2}+\left(2 v_{4}+2 v_{5}\right)^{0} \mathrm{I}-v_{5}{ }^{1}$	$\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{\mathrm{u}}$	5831.5526(5)	P31/Q28/R29	1.4		
	01111 1-1e	6562.4106(5)	1.168795(7)	5.66(2)	56.9(1)	59/62	$v_{2}+\nu_{3}+\left(v_{4}+v_{5}\right)^{0+}-v_{5}^{1}$	$\Sigma_{\mathrm{g}}{ }^{+}-\Pi_{\mathrm{u}}$	5833.2565(5)	P33/Q20/R20	1.4		Lyu14
	01111 1-1f	6569.6089(4)	1.168320(2)	1.252(1)		66/75	$v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{0-} v_{5}{ }^{1}$	$\Sigma_{\mathrm{g}^{-}}-\Pi_{\mathrm{u}}$	5840.4548(4)	P24/Q40/R27	1.2		Lyu14
	0111111 e	6573.796(1)	1.16813(2)	-5.03(9)	-38(1)	39/47	$\nu_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{2}-v_{5}{ }^{1}$	$\Delta_{\mathrm{g}}-\Pi_{\mathrm{u}}$	5844.642(1)	P18/Q29/R22	1.6	P	Lyu14
	011111 1f	6573.7996(9)	1.16803(2)	-3.27(9)	-28(1)	44/46	$v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{2}-v_{5}{ }^{1}$	$\Delta_{\mathrm{g}}-\Pi_{\mathrm{u}}$	5844.6455(9)	P22/Q20/R21	1.0		Lyu14
N	02013-1 3f	6664.464(2)	1.17123(2)	2.79(6)		5/8	$2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} \mathrm{II}-v_{4}{ }^{1}$	$\Delta_{u}-\Pi_{g}$	6052.770(2)	P15/Q18	0.4		
	02013-1 3e	6664.4677(9)	1.17117(2)	-3.65(4)		9/11	$2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} I I-v_{4}{ }^{1}$	$\Delta_{u}-\Pi_{g}$	6052.7739(9)	P17/Q19/R05	2.1		
	02013 1-1f	6681.1586(5)	1.171364(6)	4.09(1)		26/33	$2 v_{2}+\left(v_{4}+3 v_{5}\right)^{0}-v_{4}{ }^{1}$	$\Sigma_{u^{\prime}-\Pi_{g}}$	6069.4648(5)	P20/Q19/R21	1.5		Lyu14 ${ }^{\text {h }}$
N	020131 1f	6686.986(1)	1.17111(2)	-0.53(6)		9/9	$2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} I-v_{4}{ }^{1}$	$\Delta_{u}-\Pi_{g}$	6075.292(1)	Q12/R16	1.4		
	0201311 e	6686.991(2)	1.17099(5)	2.7(3)		10/10	$2 v_{2}+\left(v_{4}+3 v_{5}\right)^{2} \mathrm{I}-v_{4}{ }^{1}$	$\Delta_{u}-\Pi_{g}$	6075.297(2)	Q12/R08	1.0		
N	00114-1 2e	6752.638(4)	1.18676(7)	2.4(3)		9/9	$v_{3}+\left(v_{4}+4 v_{5}\right)^{1} \mathrm{I}-\mathrm{v}_{4}{ }^{1}$	$\Pi_{u}-\Pi_{g}$	6140.944(4)	P13/R13	0.8		
N	00114-1 2f	6752.639(1)	1.17603(1)	1.45(2)		14/16	$\mathrm{v}_{3}+\left(v_{4}+4 \mathrm{v}_{5}\right)^{1} \mathrm{I}-\mathrm{v}_{4}{ }^{1}$	$\Pi_{u}-\Pi_{g}$	6140.945(1)	P24/R23	1.2		
N	1001410 f	6779.0509(6)	1.189411(8)	5.15(2)		20/20	$v_{1}+\left(v_{4}+4 v_{5}\right)^{1} I I-v_{5}{ }^{1}$	$\Pi_{\mathrm{g}}{ }^{-} \Pi_{\mathrm{u}}$	6049.8968(6)	P21/R19	1.4		
N	1001410 e	6779.0549(7)	1.17382(1)	3.90(4)		20/20	$v_{1}+\left(v_{4}+4 v_{5}\right)^{1} \mathrm{II}-v_{5}{ }^{1}$	$\Pi_{\mathrm{g}}{ }^{-} \Pi_{\mathrm{u}}$	6049.9008(7)	P18/R13	1.0		
$\boldsymbol{P}=\mathbf{1 1}$													

101301 Of	8330.033(2)	$1.17611(5)$	-2.0(4)	-33(8)	8/12	$v_{1}+v_{3}+3 v_{4}{ }^{1}-\left(v_{4}+2 v_{5}\right)^{3}$	$\Pi_{u}-\Phi_{\mathrm{g}}$	6255.850(2)	P18/R15	0.8	\mathbf{P}	
1013010 e	8330.050(2)	1.16371(7)	-39.2(7)	-790(17)	11/16	$v_{1}+v_{3}+3 v_{4}{ }^{1}-\left(v_{4}+2 v_{5}\right)^{3}$	$\Pi_{u}-\Phi_{\mathrm{g}}$	6255.875(2)	P17/R13	0.9	P	
10121 2-1f	8419.5048(5)	1.174844(4)	3.435(5)		24/41	$v_{1}+v_{3}+\left(2 v_{4}+v_{5}\right)^{1}$ II- $3 v_{5}{ }^{1}$	$\Pi_{\mathrm{g}}-\Pi_{\mathrm{u}}$	6250.3489(5)	P20/Q30/R19	1.1	P	
10121 2-1e	8419.5068(5)	$1.164895(6)$	2.78(1)		19/26	$v_{1}+v_{3}+\left(2 v_{4}+v_{5}\right)^{1}$ II- $3 v_{5}{ }^{1}$	$\Pi_{\mathrm{g}}-\Pi_{u}$	6250.3493(5)	P16/ R27	1.3		
$\boldsymbol{P}=15$												
0030000 e	9639.8678(9)	1.15838(1)	1.79(2)		23/33	$3 v_{3}-v_{1}$	$\Sigma_{\mathrm{u}}{ }^{+}-\Sigma_{\mathrm{g}}{ }^{+}$	6267.0206(9)	P25/R24	1.6		
${ }^{13} \mathrm{C}^{12} \mathrm{CH}_{2}$												
Lowe	levels											
0000000	0.0	1.1484335	1.5256									
0001010 e	608.3535	1.147100	1.592									
0001010 f	608.3535	1.152127	1.640									
000010 1f	728.2282	1.152682	1.586									
000010 1e	728.2293	1.148195	1.544									
Uppe	levels											
0014000	5713.179(3)	1.1481(1)	9.1(6)		11/11	$\mathrm{V}_{3}+4 \mathrm{v}_{4}{ }^{0}$	$\Sigma-\Sigma$	5713.179(3)	P08/R10	1.2		
02021 2-1e	5747.316(1)	1.13712(2)	2.46 (3)		15/15	$2 v_{2}+\left(2 v_{4}+v_{5}\right)^{1}$ II	$\Pi{ }^{-\Sigma}$	5747.316(1)	P21/R22	1.8		
0111010 f	5807.5720(9)	1.140664(5)	1.538(5)		29/29	$v_{2}+v_{3}+v_{4}{ }^{1}$	$\Pi{ }^{-\Sigma}$	5807.5720(9)	Q33	0.7		
0111010 e	5807.5721(8)	$1.135477(6)$	1.511(8)		40/40	$v_{2}+v_{3}+v_{4}{ }^{1}$	$\Pi^{-\Sigma}$	5807.5721(8)	P29/R27	1.0		
0112020 f	6400.041(3)	1.13910(2)	1.53(5)		15/15	$v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}{ }^{1}$	$\Delta^{-\Pi}$	5791.688(3)	P22/Q20/R09	3.1		
0112020 e	6400.141(7)	$1.13725(7)$	6.2(2)		12/16	$v_{2}+v_{3}+2 v_{4}{ }^{2}-v_{4}{ }^{1}$	$\Delta^{-} \Pi$	5791.788(7)	P20/Q13/R16	3.3		
0112000	6401.819(2)	1.14002(4)	-8.7(2)	-88(3)	16/16	$v_{2}+v_{3}+2 v_{4}{ }^{0}-v_{4}{ }^{1}$	$\Sigma^{-} \Pi$	5793.466(2)	P11/Q22/R04	5.5	\mathbf{P}	
0020000	$6492.8545(6)$	$1.137375(6)$	1.418(9)		60/63	$2 v_{3}-v_{5}{ }^{1}$	$\Sigma^{-} \Pi$	5764.6252(6)	P26/Q27/R26	2.2		
01111 1-1e	6518.2049(9)	1.139926(9)	3.42(2)		29/29	$v_{2}+v_{3}+\left(v_{4}+v_{5}\right)^{0+}-v_{5}{ }^{1}$	$\Sigma^{-} \Pi$	5789.9756(9)	P24/Q24/R16	2.7		
1010000	6542.879(2)	1.13631(2)	1.57(5)		14/14	$v_{1}+v_{3}-v_{5}{ }^{1}$	$\Sigma \Sigma^{-} \Pi$	5814.650(2)	P21/Q19/R12	1.3		

Notes

The spectroscopic parameters are given in cm^{-1}. The confidence interval (1 SD) is given in parenthesis in the unit of the last quoted digit.
${ }^{a}$ Normal mode labeling: $v_{i=1-5}$ are the vibrational quantum numbers, $l_{4,5}$ are the vibrational angular momentum quantum numbers associated to the degenerate bending modes and $\varepsilon=e$ or f is the symmetry type relative to the Wang transformation. The labeling was obtained according to the maximum value of the modulo of the expansion coefficients of the vibrational eigenfunction in the normal mode basis (for low J values). In two cases, the vibrational labeling has been chosen to avoid duplication (see Text, Section 3). " N " marks upper states newly observed.
${ }^{b} N_{\text {tot }}$ is the total number of the observed transitions reaching a given vibrational state and $n_{f i t}$ is the number of positions included in the fit of the parameters.
${ }^{c}$ Observed band in Plíva's notation
${ }^{d}$ Band center. $\Delta G_{c}=G_{c}^{\prime}-G_{c}^{\prime \prime}$
${ }^{e}$ Observed branches with the maximum value or, in some cases, with the range of the total angular momentum quantum number.
${ }^{f}$ Root mean square deviation in $10^{-3} \mathrm{~cm}^{-1}$ unit. " P " marks perturbed states.
${ }^{g}$ Amy10 [34] and Jacq07 [33] correspond to the source of line positions used to fit the listed lower state parameters, "HITRAN" indicates the six bands included in the HITRAN20116 database [7]; Lyu14 [16], Kep96 [9] and Amy11 [29] mark bands which were previously reported in these references.
${ }^{h}$ The assignment of the band $2 v_{2}+\left(v_{4}+3 v_{5}\right)^{0}-v_{4}{ }^{1}$ centered at $6069.4648 \mathrm{~cm}^{-1}$ has been changed compared to Ref. [16].

Table 2. Vibrational transition dipole moment squared and Herman-Wallis coefficients of the acetylene bands assigned in this work. When available, the values previously obtained and used to generate the spectroscopic database of Ref. [16] (Lyu17) are given for comparison.

Band ${ }^{\text {a }}$	$\Delta G_{c}{ }^{\text {b }}$	$N_{\text {exp }}{ }^{\text {c }}$	rms (\%) ${ }^{\text {d }}$	$N_{\text {tot }}{ }^{\text {e }}$	Transitions ${ }^{f}$	$\left\|R_{0}\right\|^{2}$ in D^{2}	$A_{1}^{P R} \times 10^{2}$	$A_{2}^{P R} \times 10^{3}$	$A_{2}^{Q} \times 10^{3}$	Ins. $\%^{g}$
$\mathrm{C}_{2} \mathrm{H}_{2}$										
0014020-00000 00	5719.76	8	5.7	27	P12/R17	3.7(2)E-12		0.3(2)		7
$0014000-0000000$	5721.79	23	5.3	39	P13/R25	1.47 (3)E-09	0.32(8)	-0.49(5)		7
002202 Of - 0002121	5723.54	6	6.6	15	P12/Q07	8.6(3)E-07				15
$0021010 \mathrm{e}-0001111$	5748.47	28	4.7	74	P20/Q31/R31	$6.77(7) \mathrm{E}-07$	-0.29(4)		0.14(3)	7
$0021010 \mathrm{f}-0001111$	5748.48	25	6.3	75	P22/Q29/R27	7.7(1)E-07	-0.58(7)		0.43(4)	7
00210 1 0-00011 1-1f	5750.73	24	4.9	78	P23/Q33/R22	6.19(7)E-07	-0.36(6)			7
$0020200-0000301$	5752.95	10	20.8	58	P21/Q16/R21	3.4(2)E-06				50
$0020101 \mathrm{e}-0000202$	5759.90	39	4.5	65	P24/Q25/R19	$1.35(2) \mathrm{E}-06$	-0.51(4)	-0.29(3)	0.14(3)	7
002010 1f -00002 02	5759.91	32	4.4	69	P25/Q25/R25	1.37(1)E-06	-0.33(4)		0.37(3)	7
00210 1 0-00011 1-1e	5763.21	26	4.8	77	P21/Q31/R25	4.97(8)E-07	-0.52(6)	0.65(6)	0.39(5)	7
02032 3-2-00011 1 1e	5764.09	19	5.0	68	P22/Q31/R18	4.44(6)E-07			0.52(4)	7
02032 3-2-00011 1 1f	5764.09	15	8.0	78	P28/Q26/R27	3.7(1)E-07			-0.40(8)	10
$1103030-0001111$	5764.1	10	42	34	P09/Q28/R20	0.7(1)E-07				50
02032 3-2-00011 1-1f	5766.32	15	5.3	87	P26/Q22/R39	$3.22(6) \mathrm{E}-07$			0.6(1)	10
$0020101-0000200$	5769.08	34	5.1	83	P28/Q26/R29	$1.47(2) \mathrm{E}-06$	-0.43(5)	0.64(4)	-0.52(4)	7
1102121-0000202	5769.79	22	43	70	P17/Q24/R25	1.9(2)E-07				50
$1103030-000111-1$	5772	7	68	7	P15/Q26	0.5(2)E-09				50
$0020000-0000101$	5773.18	70	4.0	101	P30/Q38/R33	1.152(6)E-06	-0.47(2)			5
02032 3-2-00011 1-1e	5778.83	16	7.9	51	P21/Q31	6.6(2)E-07			-0.58(6)	10
1102121-0000200	5778.97	7	28	13	P25/Q27/R17	1.2(2)E-09				50
11020 2 0-000010 1e	5781.11	28	12	82	P32/Q23/R31	7.2(3)E-09	-4.2(4)	16.4(6)		20
$1102020-000010$ 1f	5781.11	11	44	25	Q31	7.2(3)E-09			9(1)	50
1102000-0000101	5784.84	69	4.2	92	P33/Q30/R29	1.161(8)E-06	-0.38(2)	-0.459(9)	-0.39(1)	5
02041 2-1f - 0002000	5785.55	5	2.5	14	Q14	7.9(3)E-08			0.8(2)	10
02031 3-1e - 0001010	5797.82	31	6.9	70	P31/Q21/R23	3.48(7)E-08	-0.54(7)	0.69(5)	-1.42(6)	10
02031 3-1f-00010 10	5797.82	40	4.1	87	P28/Q34/R28	3.22(3)E-08	-0.23(3)	0.16(2)	0.32(3)	7
02031 1-1-00010 10	5802.20	24	5.8	63	P22/Q21/R20	2.84(6)E-08	-0.63(4)	-1.47(3)	1.31(8)	10
02022 2-2f-00001 01	5803.87	15	6.7	67	P21/Q26/R20	$1.84(4) \mathrm{E}-08$			0.5(1)	10
$0111210-0000202$	5815.47	24	41	123	P24/Q31/R17	1.6(2)E-07				50
02021 2-1-00000 00	5816.86	74	3.8	116	P42/Q30/R44	$2.65(1) \mathrm{E}-08$	-0.24(2)			5
$0113030-0002020$	5817.91	24	9.3	97	P20/Q18/R25	$1.23(3) \mathrm{E}-07$	-0.4(1)	0.5(1)		15
$0202200-0000101$	5831.55	31	5.4	87	P32/Q29/R29	$5.39(5) \mathrm{E}-08$		3.08(8)	1.45(6)	7
$0203131-0001010$	5832.3	11	42	51	P18/Q17/R17	2.4(4)E-11				50
011111 1-1e-00001 01	5833.26	41	5.4	76	P34/Q21/R21	$2.03(3) \mathrm{E}-07$	-0.31(4)	-0.38(3)	-0.94(4)	10
$011111-1 e-0000101$	5833.25	11	4.06	23	R23	2.5(1)E-07	-1.1(1)			Lyu17
$0112020 \mathrm{e}-0001010$	5836.12	37	20	67	P24/Q25/R25	1.01(5)E-07	-0.4(2)	0.4(1)	-4.51(8)	50

$0112020 \mathrm{f}-0001010$	5836.12	31	4.4	52	P23/Q20/R19	9.8(1)E-08	-0.41(4)	-0.48(4)	-0.56(4)	7
0112020-00010 10	5836.12			19	R19					Lyu17
$0112000-0001010$	5837.41	20	8.7	49	P18/Q17/R14	8.6(3)E-08	-1.6(2)	-5.1(2)	1.5(2)	15
01111 1-1f-000010 1	5840.45	30	5.6	94	P25/Q41/R28	5.7(1)E-08		0.26(3)	0.61(7)	10
$011111-1 f-0000101$	5840.45	10	5.45	29	R29	6.9(1)E-08				Lyu17
$0202101-0000000$	5840.51	33	7.9	76	P33/Q26/R35	1.16 (3)E-09	-0.65(8)	-1.42(5)	0.47(7)	15
$0202121-0000000$	5842.65	17	8.0	48	P21/Q25/R26	8.4(9)E-13		4.2(4)	4.6(5)	20
$0111111 \mathrm{e}-0000101$	5844.64	25	8.0	65	P19/Q29/R23	5.3(1)E-08		-1.07(6)	0.31(6)	10
$0111111 \mathrm{f}-0000101$	5844.65	33	4.5	63	P23/Q21/R22	5.43(7)E-08	-0.55(4)	-0.42(3)	-0.47(4)	10
$0111111-0000101$	5844.65	17	4.10	43	R23	6.1(1)E-08	-1.14(7)			Lyu17
$0111010-0000000$	5850.65	86	3.1	100	P35/Q39/R26	1.103(6)E-07	-0.22(1)	-0.033(7)	-0.085(6)	5
10031 1-1-00000 00	5865.56	35	4.8	53	P31/R31	2.77(3)E-09	0.47(3)	-0.24(2)		5
$100311-1-0000000$	5865.56	18	4.53	27	P4/R22	2.90 (3)E-09				Lyu17
$1012000-0003010$	5878.19	11	3.1	34	P12/Q24	2.01(4)E-06	2.6(2)		0.73(5)	7
$1012000-0003010$	5878.19			14	P08/Q24/R08					Lyu17
$010331-1-0000000$	5893.26	25	4.2	43	P22/R20	2.03(3)E-09	0.26(4)	-0.39(3)		7
$010331-1-0000000$	5893.26	24	3.6	35	P18/R16	2.12(2)E-09		-0.50(4)		Lyu17
01033 3-3-00000 00	5921.92	25	4.9	44	P22/R21	7.09(7)E-10				7
0012200-00000 00	5943.54	23	3.7	60	P24/R35	$2.25(2) \mathrm{E}-10$	-0.11(3)			7
11021 2-1e-00020 20	5977.15	14	9.4	51	P17/Q15/R30	4.3(2)E-08	0.9(2)			20
11021 2-1f -00020 20	5977.15	19	12	68	P36/Q19/R34	4.1(1)E-08	-0.7(1)		-5.0(1)	20
110212-1-0002020	5977.15			49	P29/Q20/R34					Lyu17
1101210-0001111	5986.54	17	5.1	88	P09/Q20/R23	8.6(4)E-11	-1.07(7)			7
11012 1 0-0001111	5986.54			21	P7/Q24/R22					Lyu17
1100202-0000101	6039.37	12	4.3	67	Q26/R28	8.6(4)E-11		3.0(2)	3.9(2)	10
$1001410-0000101$	6049.90	24	4.2	73	P22/R20	4.10(4)E-10	-0.89(4)			7
02013-1 3-00010 10	6052.77	6	9.9	32	P17/Q19/R06	$4.0(3) \mathrm{E}-11$		5(1)		50
$0201311-0001010$	6075.29	14	7.4	50	Q13/R17	8.1(3)E-11			0.7(2)	10
02013 1-1-00010 10	6069.46	19	9.5	52	P20/Q19/R21	1.20(4)E-10	-1.0(2)	0.8(1)		15
$1001311-0000000$	6090.37	14	5.4	68	P27/Q26/R25	4.1(2)E-14	-2.51(9)	1.10(7)	-4.30(5)	10
00114-1 2-00010 10	6140.94	12	8.8	75	P25/R24	3.5(1)E-11	-1.4(1)			10
2001111-0003030	6156.86	9	7.9	47	P21/Q20/R19	1.05(3)E-08				30
10121 2-1-0003010	6250.35	23	9.6	96	P21/Q30/R28	1.10(4)E-07	0.9(1)	0.6(1)		15
1013030-00012 12	6255.14	9	6.5	45	P11/Q12/R08	2.7(1)E-07	1.6(4)	-1.8(5)		20
1013010-00012 12	6255.86	18	73	28	P18/R15	2.4(6)E-10				50
$0030000-1000000$	6267.02	15	9.3	51	P25/R25	9.3(2)E-05				15
020333-3-00002 00	6338.21	8	6.7	17	P16/R00	2.87(7)E-07				10
${ }^{13} \mathbf{C}^{\mathbf{1 2}} \mathrm{CH}_{2}$										
0014000-00000 00	5713.18	6	14	21	P09/R11	2.1(1)E-08				40
02021 2-1-00000 00	5747.32	10	13	45	P22/R23	5.9(3)E-08	-0.5(2)			20
$0020000-0000101$	5764.63	40	5.4	82	P27/Q28/R27	1.39(2)E-05	-0.41(5)	0.08(3)		10

$011111-1-0000101$	5789.98	29	22	67	P25/Q25/R17	$3.2(1) \mathrm{E}-06$				50
$0112020-0001010$	5791.73	14	9.9	94	P21/Q20/R16	$8.4(3) \mathrm{E}-07$		$2.3(2)$		20
$0112000-0001010$	5793.47	7	5.7	40	P12/Q23/R05	$7.2(4) \mathrm{E}-07$			$1.5(2)$	20
$0111010-0000000$	5807.57	43	4.9	92	P30/Q34/R28	$8.85(7) \mathrm{E}-07$	$-0.37(4)$			7
$1010000-0000101$	5814.65	14	55	55	P22/Q20/R13	$1.3(2) 1 \mathrm{E}-06$				50

Notes
${ }^{a}$ Band vibrational labeling, $\left(V_{1} V_{2} V_{3} V_{4} V_{5} l_{4} l_{5}\right)$
${ }^{b}$ Band center in cm^{-1}
${ }^{c} N_{\text {exp }}$ is the total number of measured line intensities included in the fit of the Herman-Wallis coefficients.
${ }^{d}$ Root mean square deviation of the intensity fit in \%
${ }^{e} N_{\text {tot }}$ is the total number of lines included in our recommended list (SupMat II) including those with calculated and purely experimental line parameters.
${ }^{f}$ Maximum J value included in the database for the P, Q and R branches of each band.
${ }^{g}$ Estimated uncertainty of the line intensities values given in the recommended line list (SupMat II).

